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Abstract

We consider a Baron-Ferejon type bargaining model with recog-
nition probabilities determined by a Tullock contest. The contest is
carried out once-and-for-all before bargaining a la Yildirim (2010). It
is known that for ex-ante symmetric players, there do not exist sym-
metric stationary subgame perfect equilibria (SSPE) in pure invest-
ment strategies. In this paper, we show the existence of an asymmetric
SSPE if players are sufficiently patient. In these equilibria, players are
divided into large vs. moderate investors, where the latter group size
equals the majority quota.
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1 Introduction

The Baron-Ferejohn model of legislative bargaining (Baron and Ferejohn
(1989)) received significant attention in the literature as a natural extension
of the sequential bargaining model. Especially the finding of the uniqueness
of the stationary subgame perfect equilibrium (SSPE) payoffs under general
recognition probabilities (Eraslan (2002)) inspired the attempts to extend
and apply this model in several respects. (See Eraslan and Evdokimov (2019),
for example.) Yildirim (2007, 2010) has endogenized recognition as a Tullock
contest (Tullock (1980), see also Ali (2015) for an alternative formulation
as an all-pay auction). Such a model would give a potential explanation of
the bargaining power and how an institutional arrangement might affect the
consequence of bargaining as well as the use of resources by the legislators.
Yildirim (2007) analyzed mainly the case where investments are made in
the beginning of every bargaining period (”transitory recognition”) while
in the same paper, another version of investment (persistent recognition) is
introduced too, where investment is made once and for all at the beginning
of the negotiation. With the persistent recognition, the SSPE payoffs remain
unique in pure strategy efforts when the voting rule is unanimity, which is
examined in Yildirim (2010) for instance. However, the characterization of
equilibrium has been elusive when the rule is non-unanimity, as previously
noted in Querou and Soubeyran (2011) for example. (Here, we deal with
the case where the issue is purely distributive. The story is different if the
issue is represented by a single-dimensional policy choice. see Cardona and
Polanski (2011))

The remainder of this paper is organized as follows. Section 2 presents the
model and reviews known results about equilibria in the bargaining game.
Section 3 presents asymmetric equilibria with pure investment strategies, and
Section 4 concludes.

2 The model

We analyze a two-stage game in which players first make investments to
improve their position in the bargaining game played in the second stage.
Prior to bargaining, the first-stage investments become common knowledge.
This paper focuses on the equilibrium strategies of the first stage. The results
of the second stage are well known. Therefore we would like to state some of
the known results for the second stage without a proof.



2.1 The bargaining game

There are n players indexed by i € N = {1,...,n} who can divide the cake
of size 1 if an agreement x = (x1,...,x,) is reached on how to divide the cake
when at least ¢ players agree where n/2 < ¢ < n. (The case with n = ¢ is the
pure bargaining or the unanimity rule and we have sufficient understanding
of this situation (e.g. Yildirim (2010)). Player ¢’s utility from an agreement
x is simply x;,7 = 1,...,n, the size of the player’s share. If no agreement is
reached, each player obtains utility 0. Agreements z must then satisfy z; > 0
(individual rationality) and ), #; = 1 (efficiency). Time periods are indexed
by natural numbers t € N= {0, 1,...}.

This game starts in period 0 wherein a proposer i € N is selected. Each
player ¢ has a probability p; > 0 of being chosen. The selected player ¢ offers
an agreement x*, and the other players, the responders, announce Yes or No.
In the literature, both simultaneous and sequential voting rules are studied.
However, we describe the game with simultaneous voting rule for simplicity
and remark on the case of sequential voting later. (With suitable refinement
respectively, both yield the identical set of equilibrium payoffs.) If more than
or equal to q players say Yes, the game ends with an agreement x*. If not, the
game then moves to the next period and the proposer is selected randomly
with probabilities p;,7 = 1,...,n. If an agreement x is reached in period t,
then player ¢'s utility is 6°z;,i € N, where § is the common discount factor,
0<o<1.

We assume that in each period ¢, all past decisions of all players are
common knowledge. Then if no agreement has been reached before period t,
a new selection of the proposer begins at ¢ + 1.

A history is any sequence of actions taken in the game (including chance
moves where the nature chooses the proposer for that period if no agreement
was reached in the previous period or at the beginning of the second stage).
If an agreement is reached in the history, then it must terminate there. A
player i's strategy s; of is a plan specifying for each history, (1) what is the
proposal to be proposed when the last component of the history specifies i as
the chosen proposer, and (2) if the last component of the history is a proposal
made by the other player, whether this player votes Yes or No is specified.
(In the case of sequential voting, the last component may be another player’s
response. )

A profile s = (s1,...,8,) is a Nash equilibrium if s; maximizes player
s utility when ¢ believes that other players j choose s;. A subgame is a
game beginning after a history where the last action(s) in the history is a
common knowledge among players. A Nash equilibrium s is subgame perfect,
if it is a Nash equilibrium in every subgame of a bargaining game. A strategy



is stationary, if a strategy prescribes the same action for any history if the
actions within a period are identical. (For infinite games, stationarity could
be define by the property that in the identical subgames the same subgame
strategy is induced. See Osborne (2023)). A subgame perfect equilibrium
s is stationary if every strategy s; is stationary. Kalandrakis (2015) utilized
the stage undominated (Baron and Kalai (1993)) notion to refine SSPE in
the simultaneous voting protocol (e.g. Osborne (2023)). This refinement
yields set of payoffs identical to that given by the SSPE under the sequential
voting protocol as characterized by Eraslan (2002).

Under sequential voting, upon a proposal, within a period, responders
announce Yes or No sequentially given a certain ordering on N (several
variants on this may exist (cf. Eraslan and McLennan (2013)). If ¢ — 1
players say Yes the game ends. If the quota is not reached within that
period, the game moves into the next period. All the responses are known
by other players immediately, and the definition of strategies, subgames, and
stationarity are modified to accommodate these changes.

Eraslan (2002) (Theorem 5) demonstrates that the SSPE payoft is unique
and for each player, this payoff is non-decreasing in the recognition proba-
bility with a common discount factor (Corollary 1). Kalandrakis (2015) re-
ported a characterization of this set of equilibrium payoffs considering that
the set of equilibrium payoffs of SSPE which is stage undominated coincides
with the set of SSPE outcomes of the game under the sequential voting (the-
orem 1, 2 and Footnote 6). Eraslan and McLennan (2013) also describes
identical outcomes in terms of the "reduced equilibrium" in a more general
setup.

2.2 Second Stage Equilibrium

Let p = (p1,...,pn) be a vector of recognition probabilities. Given p, and
with the assumption of the identical discount factor, we shall describe the
expressions for SSPE payoffs, given by Eraslan (2002) and Kalandrakis (2015)
(where distinct discount factors are allowed).

By the stationarity, we could represent the recursive relationship among
equilibrium payoffs. Let player i’s continuation value be v;. A key player is
player ¢ with the g-th smallest recognition probability and set of players with
the same continuation payoff as player q. Define the set M(p,$) = {j : v; =
vg} s L(p,6) = {j : v; < v}, and H(p,6) = {j : v; > v,}.(This definition
differs from those of Kalandrakis (2015) only slightly which we comment
on later.) Where it is convenient, we omit p and §. We refer to {L, M, H}
as the equilibrium partition, which would vary with profiles of recognition
probabilities. Moreover, M is nonempty while L and/or H could be empty.
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For the strategy to be optimal, a proposer ¢ should make offers yielding a
minimal amount to other players who would vote for the proposal év; i.e. to
those members of the minimal winning coalition W including the proposer
which minimizes ), 6év;. In a SSPE, this offer is accepted by the members.

JEW,j#£i

In Kalandrakis (2015), equilibrium payoffs given p and an equilibrium
partition are characterized by two variables. One is the "marginal reservation
value" r = 6év,, the largest amount paid to a single coalition member in
the proposal wherein if the proposer is in H, r can be considered as the
opportunity cost. The other is the "maximal proposer surplus" .S, which
represent the gain from being a proposer, i.e. S =1—6Y v; — (¢ — |L|)r

jeL
wherein if the proposer is in H, opportunity cost r is subtrjacted. Combining
the conditions that ) v; = 1, that is the sum of v; must be equal to 1,
JEN
Kalandrakis (2015) obtain a system of linear equations in S and r.
Lemma 1 of Kalandrakis (2015) indicates that v; = p;(S+r) if i € H and

v = ffs if ¢ € L. The difference in the definition of M and H between this
study and that of Kalandrakis is that we include i in M, if v; = p;(S+7r) = %
rather than in H.

Write > p; = p(T') for any T' C N.

JeET

pi{|M| —6(q — |L| — p(H))}/D i€l
vi = § (1—=0)p(M)/D ieM (1)
pi(1 = ){|M| —6(q — |L| — p(H) —p(M))}/D i€ H

where

D = (8p(H) + [M])[1 = & + 6p(L)] — &(q — |L)[(1 = 6)p(H) +p(L)]. (2)

(These expressions are employed in Imai and Salonen (2012). To obtain
this, solve the simultaneous equations in S and r described above, which
yield S = 6(1 — 8)[|L| + 2L 4 p(H) — /D and r = §(1 — §)p(M)/D.)

Moreover, to confirm the equilibrium properties, determining whether the
partition is an equilibrium partition is necessary. Lemma 1 of Kalandrakis

(2015) reports the conditions that i € H if 1%;1_5 >r,and i € L if %S <r

(modified for the definition of M and H here). Quantity R; = %ﬁf)

enables us to obtain one interpretation of these conditions. Provided that
r>0,R,>0ifr > 1‘5’;;1_ S,and R; < 1ifr < %S. The recursive relationship
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for the continuation value of a player in M can be written in the form of & =
pi(r+S) 4+ R;(1 — p;)r. R; is the probability of being invited into a majority
coalition when ¢ € M is not a proposer. If i € H, i is not invited, and if i € L,
1 is always invited. Hence, the above condition represents the condition so
that i’s payoff can be probabilistically adjusted to attain the level r/6.(In
Eraslan (2002), the basic relations are expressed using the probabilities of
each player’s inviting other players by proposing the discounted continuation
value in the proposal.)

Based on these properties, we state two Lemmas.

Lemma 1: If #ﬁé >pi > nl_;(fq holds for each i then the equilibrium
partition is given by M = N.

Proof: If at an equilibrium, M = N, then S = "_T‘Sq and r = %. Then for
each 1, lf’;;i > 5 >
O

(Note that n_§q+5 >1> nl_;fq holds.)

Lemma 2: Given p > 0, there exists ' < 1 such that for any § > ¢,
L(p,6) = 0.

Proof: Suppose the claim does not hold. Then for any &' < 1, there exists
6 > & so that L(p,6) # 0. For i € L(p,$), pi{|M(p,8)| — 6(q — |L(p, 6)| —
p(H(p,6))}/D < (1 —6)p(M(p,6))/D must hold by the definition of L and
M. Since D > 0, this becomes p;{|M(p, 6)| — 6(q — |L(p, )| — p(H(p,d))} <
(1 —=0)p(M(p,6)).

Note that if ¢ = [L(p, 0)| + |M(p,6)|, then p(H(p,6)) > =2 > 0 and
if H(p,6) = 0, then 1 < |L(p,8)| + |M(p,6)] = q holds. Thus given p >
0, {|M(p, 0)| — 6(q — |L(p, 0)| — p(H(p,0))} > max{6(|M(p,6)| + |L(p,6)| —
q),6p(H(p,6))} > 6(**%) > 0 holds for any 6, on the one hand. On the
other hand, there exists 6” < 1 such that (1 — ) minp; < 5-. These two
inequalities cannot hold at the same time. [

(Note that this relation holds when 6 changes given p > 0. If p changes
given ¢ < 1, then for smaller values of p;, L(p, §) becomes non-empty.)

ffg holds; hence the equilibrium condition is satisfied.

2.3 Investment Game

Before the bargaining game begins, players can make investments that in-
crease their recognition probabilities. Let e; > 0 denote the amount (money,
effort etc.) invested by player i. We assume that p; depends on the invest-

ments e = (eq, ..., e,) in the following simple way:
€; .
pile) = —=—, 1 €N (3)
D€
JEN
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If no one invests, each player has the same probability 1/n of being selected
as the proposer.

We assume that players’ investment costs are linear and identical: invest-
ing an amount e; costs ce;, where 0 < ¢ for all i € N.

A player’s expected payoff U;(e,6) from investment decisions e in the
whole game (investment and the bargaining stage) is given by

Ui(e,6) = u;(e|d) — cies, © € N, (4)

where wu;(e|d) is given by v; in (1).

We seek for Nash equilibrium of the first stage game where payoff is given
by (U;)ien, and assume that investment levels become common knowledge be-
fore the bargaining game begins. It is known that there is no symmetric pure
strategy equilibrium in this symmetric game (e.g. Querou and Soubeyran
(2011)).

3 Asymmetric equilibrium with pure invest-

ment strategies

While there are no equilibria in which all players make the same investment,
there are equilibria in which players (non-randomly) choose different levels of
investment exist if the discount factor is sufficiently large and the investment
costs are identical. First we show candidate equilibrium.

As has been mentioned, there is no symmetric equilibrium with pure
investment strategy, and we see this from Lemma 1 that if each player invests
the same level, then M = N. Thus each player’s bargaining payoff is 1/n;
and there is an incentive to reduce investment (if investment is positive, and
if the investment level is 0, there is an incentive to increase the investment
level). Lemma 1 also states that even if investment levels differ, thus the
same argument holds if M = N. Thus, one must expect that if there are
equilibria in pure investment strategies, some players will be in L or H.

Although Lemma 2 does not imply the non-existence of an equilibrium
with non-empty L, it indicates that such an equilibrium would involve very
small probabilities and the corresponding payoffs are difficult to analyze.
Therefore, we can hope to find an equilibrium with a partition involving
only M and H. In particular, the case with |M| = ¢ and |H| = n — g would
be atractive. Since M is a minimal winning coalition, a player in H cannot
receive a positive bargaining payoff unless that player becomes the proposer.
Such equilibria exist and can be derived from interior first-order conditions.
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First, we briefly describe the candidate equilibria and their properties,
before establishing that they are indeed equilibria.
Let e(T) = > e;, for any T'C N.
i€T
Given |M| = g and |H| = n — ¢, the bargaining payoffs and S, r become

0 e
Vi = il 1)~ @) Qe yforie M
— Pi

Vi = ) — ae (M) Ol fo”EH
g — a0 eop(H) _ ali=e)e(N oo

= DpH) = Ge)+Qe(F)
p_ 18 _ | e

. = 2D+ Qe()

Q= (1- )q+6 @ >1and @ | 1 as 6 tends to 1.)

Thus, the ratio between S and r is approximately equal to that between
e(H) and e(M) when 6 is sufficiently large. Moreover, recall that the bar-
gaining payoff of a player in M depends on that player’s own investment level
only through e(M). We found that this is reflected in the formula so that
the benefit of investment by a player in M is shared equally by the other
members.

Next, the marginal benefits of investment represented by the bargaining
payoffs are as follows

ov; Qe(
g — W for 1e€M
ov; _ Qae(M)+Q%*(e(H)—ei) ¢ o [

de; (qegM)+Qe(Hf)2 . L . :
These are just results from differentiating fractions but they give a useful

relationship. At an equilibrium satisfying first-order conditions, these two
must be equal to ¢, so we have
qge(M) — Qe; + (Q — 1)e(H) = 0.

Since the same first-order condition holds for each ¢ in H,

¢} = Q'qe’ (M) (5)
where 1
Q= 6
- (- 0@Q-1 8
(Q" =1 when n — ¢ = 1 and otherwise )" > 1 for ¢ close to 1. ' | 1 as 6
tends to 1.)

Finally we obtain

—q)QQ’
el fori € M satisfies Zezj\;[e =e’(M) = . f?n _Q) D007 (7)
e = (n — )0 forie H (8)

’ (1+(n—q)QQ")%
7



The condition

2 maxla(1 - o) I vl )y O

must be satisfied for ¢ € M. We have

_ 1 ;
v = q(1+(557)Q/Q) forie M
v = m for ¢ € H

g — (1=8)+(n—q)QY
(1+(n—q)QQ’)6
¢ a0+ (n—9)QQ)" . .

Observe that the investment level of each player in H is greater than or
equal to g times the aggregate investment level of players in M.

The net payoffs in this equilibrium are

r = -— =

" 1 B (n — q)QQ'e;
' g1+ (n - q)Q’/Q)é q(1+(n - Q)QC?’(S)QG‘S(M)
KT + <nQ—Q :ncm) o in@; E)gg;’)? "
_ Qe +(1(i an)—Qq?Qé ()Z — 09 icm (13)

(10)

We will show that e® with an additional constraint on e} (j € M) is an
equilibrium of the reduced game when ¢ is close to 1.

We need to verify that the above strategies are the best responses to each
other, and to do this, one needs to examine all the equilibrium partitions that
emerge when a player changes the investment level with a payoff function for
each partition. In particular, a partition with non-empty L would emerge
when a player reduces the investment level, and there is another possibility
for L to emerge depending on the balance of investment levels among other
players as well. To illustrate, we present the case for three-person games
using a diagram to show how the way partitions vary. Then we give the
main result and give some discussion.

Ezample 1. If N = {1,2,3}, ¢ = 2 and ¢ > 0 for every i € N, then let the
investment level of player 3 be e3 = (2 —8)/c(3 — §)?, and let the investment
levels of players 1 and 2 satisfy e; + ey = (2 —68)/2¢(3 —6)? with 0 < e; /ey <
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1/5. Then there exists a & < 1 such that for § > 8, there exists an SSPE
with investment levels e = (ey, ez, e3). Evaluating at the limit as 6 tends to 1,
the equilibrium recognition probability ps of player 3 is 2/3. The recognition
probabilities of players 1 and 2 satisfy p; + po = 1/3.

Figure 1 shows an example of an equilibrium for the case n = 3. The
triangle represents the probability simplex. The solid curves delineate each
region corresponding to an equilibrium partition. For clarity, the membership
is written for only some of them. It can be seen that the center of the triangle,
corresponding to the equal investment levels, is in the middle of the region
for M = N. Thus the bargaining payoff is constant at 1/3. Because of the
positive investment cost, this point cannot be an equilibrium, as already
argued.

The thick line segment represents one set of equilibria. The dashed lines
represent the locus of the probability profiles when one player deviates and
the point where three lines intersect is an example equilibrium for this illus-
tration. Observe that as the investment level of each player decreases, that
player may be a single member of L. Moreover as player 2’s investment level
varies, player 1 may approach the region wherein 1 becomes a member of L
in the middle range of player 2’s investment (or probability) level.

Note that in an equilibrium one large investor (player 3) and two moderate
investors (players 2 and 1) coexist, with 2 investing more than 1. (With more
than 3 players, the number of large investors could be higher.)

A special feature of the three-players case is the property that players 1
and 2 must invest different amounts in an equilibrium. If the large investor,
player 3, reduces the investment level, then all players become M players to
receive the same bargaining payoff, 1/3. To maintain the the large investor’s
incentive for investment, in an equilibrium, players 1 and 2 must create a
gap between their investment levels. Consequently that a reduction in the
investment level by player 3 induces player 2 to become an H player, and
player 3 cannot enjoy the payoff, 1/3.However, this is not necessarily the
case for n > 4, since a payoff level of 1/4 or less is not attractive for a large
investor. Another peculiarity of the case ¢ = n — 1 is the fact that after
changing the investment level, all players can become moderate investors, as
mentioned above. But if n — ¢ > 1, there is another large investor exists,
so an H player would not disappear by unilaterally reducing the investment
level of a single large investor.

A side observation is that regions corresponding to partitions containing
non-empty L are located relatively close to the boundary of the probability
simplex (as was suggested by Lemma 2). We observe that partitions contain-
ing a non-empty L shrink to the boundary as the discount factor tends to 1

9



in this case. This is because no matter how small a recognition probability is,
as long as it is positive, a sufficiently large discount factor makes this player
quite expensive so that this player can never be invited into a majority coali-
tion. In general this property holds, which makes our analysis much simpler
since the behavior of the payoffs of players in L is more complicated. Of
course, if the investment level is 0, this argument does not hold in general.
Thus, the bargaining payoff could be discontinuous at the boundary in the
limit.
What we claim in this paper is;

Proposition 1. There is an asymmetric investment equilibrium when 6 is
close to 1.

Proof. The proof is in the Appendix, where the candidate equilibria with
more restrictions are shown to be equilibria when the discount factor is large.
The main reason we need a high discount factor is to show that there is
no best response when a player belongs to L, with a very low investment
level. O

Remark 1. Since M players receive the same bargaining payoff level at the

bargaining stage, the more they invest, the lower their net payoff. However,

the M player’s best ex-ante net payoff remains below that of an H player.
Let i € M and let the equilibrium payoff of a player in H be Ug.

g - 1L+ (n=9)QQ)e’ (M) — (n—q)QQ'e;
' q(1+ (n—q)QQ")%e* (M)
_ (1+(”-49)0Q)
q(1+ (n - q)QQ')?
L Q1+ (n—q9)QQ — (n—q)Q]
- (14 (n—q)QQ")?
— U,

Remark 2. As observed above, the game defined by the limit equilibrium
payoffs of the bargaining game when 6 tends to 1could be considered. For
any strictly positive p, there exists ¢ such that for § > &', L is empty by

10



Lemna 2 and the bargaining equilibrium partition is constant. Thus limit
payoffs exist.

Specifically, for p with some p; = 0, the limit also exists, but the limit
payoffs there may not be continuous in p. Thus, for a player in M, 0 would
not be an equilibrium investment level. Equilibria defined by the first-order
conditions above can be defined analogously. The limit equilibria and payoffs

are
DS g g
1 _ 1 1
where e (M) —Zei, and e; > 0,
ieM
el = qe* (M), for i€ H,
and
el (M) + [(n— @)l(e' (M) — e;)
Ul = 2o for ieM
¢{(n —q) + 1}?e"(M)
1
Ul = fori € H.

Co{n =g+ 1}

Using the limit values, analysis such as comparative statics could become
more transparent.
Social cost of rent-seeking in the limit is

(q(n —q) +1)(n—q)
ql(n —q) + 1]

Y

and its derivative with respect to ¢ is

ql(n—q) +1{(n —2¢)(n—q) — (¢(n —q¢) + 1)}

¢*[(n —q) + 1]
(gln—g)+D)(n—gf(n—q+1)—2q}
¢*[(n —q) +1J3
_ —n—(n—q)(2g9(¢—1) +n)
B I |

This result is similar to that obtained in Yildirim (2007) where the unanimity
rule is shown to minimize the social cost.

11



4 Concluding remarks

We have shown that asymmetric equilibria with pure investment strategies
for the game to influence the bargaining position in legislative bargaining ex-
ist under the assumption of identical costs and identical and large discount
factors. In these equilibria, players are divided into two groups: one with
a very high level of investment and higher payoffs but no chance of being
invited into a majority coalition proposed by other players, and the other
with a relatively moderate level of investment, the same bargaining payoff
within this group and non-negative probability of being invited. Thus, mul-
tiplicity exists in stationary equilibria of two-stage games with substantial
payoff inequality.

Within the group of moderately investing players, there is free rider ben-
efit for those players with lower investment levels (if there is a difference
in investment levels within this group). Basically, this is a consequence of
stationary equilibrium which requires that the bargaining payoffs equalize
as the probability of being invited into a majority coalition adjusts. An-
other important driving force is identical and linear costs so that players’
investment levels can be interchanged to create space for different profiles
of investment levels. Therefore, extending the analysis to heterogeneous in-
vestment costs would be a worthwhile future research direction. However,
from the equilibria obtained here, one could provide insights into whatmight
happen in mixed strategy equilibria in the pure distributive and majoritarian
bargaining game.

Future works remains to tesyt the possibility of the pure strategy equi-
libria with other patterns remain, especially if there are equilibria with other
cardinalities of |M| and |H|, or if there is an equilibrium with a non-empty
L. Moreover, it would be interesting to introduce a more general form of the
context success functions.

APPENDIX

This proposition is proved by explicitly checking the equilibrium condi-
tions for the candidate equilibria that is given in (4).

In the following, we first state the criteria for judging an equilibrium
partition and we show the partitions that arise when a player deviates from
the candidate equilibria. After showing the payoff functions when each player
deviates unilaterally, we state the choice of discount factors. Finally, we
confirm the best response properties. Recall that a bargaining payoff is an
equilibrium payoff of the bargaining game and a net payoff means a payoft
of the investment game.

A.1. Equilibrium Partitions

12



From the characterization of equilibrium payoffs in the bargaining stage
in Section 2, for each p, there corresponds an equilibrium partition, II(p, §) =
{L(p,6), M(p,6), H(p,6)}, (we can omit an empty set). Given p, M(p,6) is
uniquely determined as the set of players who receive the same bargaining
payoff level as player ¢, and hence H(p,6) and L(p, ) are also uniquely
determined. In the following, we will mostly write H, M, L, since we consider
only the equilibrium partition associated with each p, or e.

Recall that in a bargaining equilibrium, for : € M,0 < R; < 1 must hold,
and thus we have the following.

(1= 6)p(M) < pi(|M| — 6q + 6|L[ + 6p(H)) (14)

and

max p; < p(M)
ieM(p) "~ O(p(M) + p(H)) + |M| + 6|L| — 6q

With L = (), the right-hand-side of (5) becomes | A}[)fﬁ)—q and at the candidate

(15)

equilibrium, this condition is almost automatically satisfied for M with |M| =
q.

Given e_; > 0, define €2 = sup{e; : i € L(p(ei,e_;),6)}. (€2° > 0.) For
e, r = 22 holds.

Observation 1: Fixing a partition, e; defined by r = % tends to 0 as
5 — 1. Since there are finitely many possible partitions. e tends to 0 as
o6 — 1.

It is also necessary to consider the possibility that if the investment level
of another player varies, a small investor can become an L player (as shown
in Example 1). For our purpose, assume a non-zero investment profile e > 0
. Moreover, assume that the corresponding equilibrium partition is with an
empty L. Thus, the smallest investor belongs to M. Pick a player ¢ and let e;
vary. Then let p(e;, e_;, §) be the critical investment level of j € arg min{p; :
j' € M\{i}}, to stay in M rather than in L.

(1 —6)p(M)
|M] — 6q + 6|L| + 6p(H))

ple;,e_i,0) = ( (16)

(Note that the corresponding equilibrium partition would change as e;
changes. Later, we explicitly compute p when L = ().)
When {i} € L:
ui(ei, €_i|6) =
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[(IM] = bq + 8|L[)e(N) — e(H)]e;

(e(H) + [M]e(N)(1 = 8)e(N) + 6555) — 8(a — [HI)(1 = 6)e(H) +e(L)]
(17)

We know that the above function is continuous (given a partition), non-
decreasing in e; and is equal to 0 only when e; = 0.

For any investment profile e, let e(T), with T C N, represent the sum
Zej.
jET

Lemma 3: The candidate equilibrium profiles are consistent with the
proposed partition, if minel > 4(1 — 6)% and § satisfies p(e?, §) <
2(1 — 5)%. . . .
Proof: The way we prove this lemma is to first check the consistency for
a partition with L = () and then check that the condition for no player to
be in L is indeed satisfied. n — ¢ players in H(p?) invest at the same level.
Therefore they are all either in M or in H. However, |M(p®)| > ¢. So, the
possible partition with L = () is with M (p°) = M?® or = N. If the latter is the

) ) ; i Y (O
case, R; > 0 must hold and so MATP; < 575, While MATD; = it >
6+n—5 for 6 close to 1, which is a contradlctlon

Finally, for any player not to be in L , we must have mine{ > p(e?, §) =
(1-6)e’ (M)

_ _(n=9)qQ"
(1—0)a+é (n—q)qQ’"+1

partition. Since e(M?) = [Qg"% and in the limit as ¢ tends to 1, this
(n—a)q

value becomes g+ 1% For ¢ sufficiently large, we have
plef, ) = —U=0eAD 91 _ §)ed(M) < 4(1— 8) s < min ef

_ (n—q9)qQ’ [(n—q)+1]%¢
(1 6)q+6(n—q)qQ’+1 ]

where p is computed based on the candidate equilibrium

Therefore the candidate partition is indeed the equilibrium partition as-
sociated with €. [

A.2. Deviation

To confirm the best response property, we need to examine each player’s
bargaining equilibrium payoffs when each player deviates unilaterally, i.e.
u;(e;, e—;|6) for each 4. To this this, we need to identify the equilibrium parti-
tions that would vary with a deviation. Two observations help to understand
the patterns.

Observation 2: Since players in H® choose the same investment levels
in the candidate equilibria, except for the deviating player, the remaining
players must be in the same component of the partition.

14



Observation 3: Below €2, a further reduction in investment level of player
7" does not change the partltlon.

Below, we list the switching levels and partitions for e; > €°, for i € M?
and H?, separately. Figure 2 shows the payoff of player i in M? is depicted.
Point A represents the equilibrium investment level and the equilibrium bar-
gaining payoff for 7. The line passing through A is an iso-net payoff line with
a slope c. Moreover, the line starting from point B has the same slope, ¢. To
the left of point C, player ¢« becomes an L player.

Figure 3 shows the payoff of a player in H®. Point A represents the
equilibrium investment level and the bargaining payoff for i. The line passing
through A is an iso-net payoff line with a slope c. In addition, the line
starting at point B is the upper support of the graph to the left of point B.
At point C, the partition switches and the bargaining payoff is less than in
the case where the switch does not occur. (This does not happen if there
are more than or equal to the two largest investors in M?¢. Also, the case
n — q = 1 is different, because there is only one player in H(p®), when this
player reduces the investment level, M = N emerges. Thus, the bargaining
payoff remains constant for this partition.) After showing the payoffs, we
examine the possibility of other players becoming L players, we shall check
p defined above, and we confirm that no such case arises.

Let Vj{s be the function representing the bargaining payoff of a player
belonging to the set T (= M or H) with the cardinality s, given L = (). Below,
we show the bargaining payoffs corresponding to each player’s deviation, with
the equilibrium partition as described above. (The case with non-empty L
is omitted.) We summarize the payoff functions and the critical value of the

investment level at which a small investor becomes an L player.
We define

s - ed(M)—el+e;
f?'(ei) T q(ef(M)—eltei)+Qed (H)
f3(e)) =1/n
(n—1-6(g—1))e;

filed) = Gmima D)ect(n—1)(e* (H)+e? (M) =)

_ eb(M)—eS+e;
g9(e:) = eﬁ+ez)+Q(66( J—eite])
(e >: ECE
) = Tarx Mcg+€i)+(Q+1)(56(H)_e?)
(61) — (M +Q(e52 H)—ed+e;)

Note that all these functions are defined on R, .When i € M? deviates,
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50 ) ) = =)
e < e <g e <e <e e; < e;

I1 ie M i€ M=N {i} =
ui | Vir (e e?y) = friles) | Vinle) = fi(e:) =1/n | VP (e, e?,) = fii(es)
u + 0 +
ui” - 0 -
P (T=8)eMM)e(N) T=5)e) (T=8)e(M).
(T=8)e(N)-+e () (n—54) P e
4 + * -
§ — (1t(n=0QQ) _ 1y.6 5 =6 _ (n=9)aQ'+1)e’(M)—e]
In the above, € = (¢ = e (M) +e;, € = )

and all the functions are continuous at these values.
To verify that indeed L = () for investment profiles as e; with i € M?*

changes, it suffices to check whether p(e!, €’ ;,6) < mine).
p(ef,eé_i,(S) = (511_563) < ((711_2))
Observation 4: p(ef,e’;,6) < minef if %j)(l\f) < min e}
When i € H? deviates,
eV < e; < max{e?, e’} | max{el, e} <e <€ e < e
11 i€ M,|M|=q i€ M,|M|=q+1 i€ H°
VP ei, €)= g5(e;
w | Viglenet) =gfe) | rmtent ) =D T vp et = i)
+
/
Ui ™ Oifn—qg=1 ™
Ui o Oifn—qg=1 N
P (1—8)e(M)e(N) (1=8)e(M)e(N) (1=8)e(M)e(N)
(1=6)qe(N)+be(H) (I+q(1=6))e(M)+(1+Q)e(H) (1=6)qe(M)+Qe(H)
r + + -
In the above, € = eﬁ% = (Q +1)e} — €*(M) and all the functions

are continuous at these Values.
To check whether L = () when e; with i € H° changes, it suffices to check

whether p(ef,e_;,6) < minef, and indeed we see that
7 S S (1=0)e(N)
P& €=20) = hera@ n-e-7 3)

1-8)(@ (n—g-1)a+ )P (M) ]
= 00 0@ g Dat3) < (1—6)e’(M) < minel. We have:

Observation 5: If (1 — 6)e’(M) < min ef,then p(e},e_;,§) < minel.

Given the explicit form of the payoff functlons, we can check the best
response properties directly.

Lemma 4: From (fh)zeMs we see that f5,(0) < U? and so there exists &'
such that U? > uf(ef% e%,|6) for all i € M?® and § > §. Also for § < 1,
there is a lower bound on e; that satisfies this sufficient condition for a best
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response. []

Let also
Lemma 5: . .

; _ 1 B 1+q _ (g(n—@)+1)2—(1+q)(n—g+1)
61311]1(57 n7 Q) - (n—q+1)2 (q(n—q)+l)2 - (n—q+l)2(q(n—q)+l)2 > 0

Proof: Calculating the numerator, we see
(¢in—q)+1)*—(14+q)(n—q+1)*>0forn>5n—q>2,and ¢ > 3.0

A.3. Best Response Properties
The candidate equilibria e’ are stated with constraints on the range of

€; € M62

[ (M) = ity
where e?(M?) = Z%\jg ie M(pd) = M°
with ? > U (u;(e2]6)) M| =q (18)
and with €0 > 2(1 — 5)?2(_]8

e = Q'qe’ (M?) i€ Hp’) = H° |H| =n—q

and our main claim is

p

Given n and ¢, choose &' such that
for all 6 > &'

h(6,n,q) >0

u; (e, e ,16) < U?  for all i

p(e?,6) < 2(1 — &) i

(19)

Then for n > 4, €° is an equilibrium of the reduced game.

If n = 3, then ¢® as above with e} /e5 < 1/5, is an equilibrium

| (where the names of the players are as in Example 1).

To prove the main claim, we need to check that the candidate equilibria

satisfy the best response properties. First, we check that it is not worthwhile
for players in M?, to invest more in Subclaim 1. Subclaim 1 shows that the
marginal increase in the bargaining payoff is less than the investment cost in
the region where the investment level is so high that the player is the only H
player. (Figure 2) We show the similar relation for an M player by Subclaims
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2 through 4. By Subclaim 2, we check that when n — ¢ > 1, reductions in
the investment level for a player in H® (provided that |M| = ¢ + 1) by an
estimate of the payoff with no investment where we use Lemma 4. (Figure 3)
By Subclaim 4, reductions in the investment level for a player in H° (hence
this player becomes an M player) induce one more player to become an H
player and verify that this case does not improve the payoff of the deviating
player. (Figure 3) By Subclaim 5, we check that if n — ¢ = 1, reductions in
investment level induce M® = N, and as far as n > 4, the equilibrium net
payoff is not worse than 1/n implying that this deviation is not worthwhile.
Since this does not hold when n = 3, we must have some restriction on the
ratio between e} and €. Finally, Subclaim 5 confirms that there is no best
response among e; < e2°.

We represent the limit value as 6 tends to 1 by the superscript 6 = 1.

Subclaim 1: e; with e; > Ef for i € M? are not best responses.

Proof: We show that f/((e?(N) —¢€9)/[6(1 —q) +n —1]) < c. Then since
(e’ (N)—ef)/[6(1—q)+n—1] <€ and f, is strictly concave, we can conclude

that there is no best response among those investment levels with e; > Ef.

Recall that f3/((e"(N) — €})/[8(1 — q) +n — 1)) = Pgfamliet <

(n—g+1)(n—1) _ Q'Q(n—q) _
n2e‘5(H)2 (an()lzc o q{1+Q’Q(7E—q)})2265(M) o
Q2Q(n— n— . n— n—1
{HQ/Q(n_q)‘}{%&(H) > {1+(n_q)‘§265(H). Since (n_qfl)z > %5, we have the

desired inequality.

For Q > 1, we also see that (n —q)g >n — 1 (since n(q—1) > ¢* — 1).
As for the denominators, (6(1 —¢q) +n—1) > @, and n — 1 > ¢, as well, so
the claim holds.[]

Subclaim 2: For i € H®, go(e}) — g(€0)e < m when n — ¢ > 1.

Proof: The left-hand-side is the abscissa of the upper support for g5 (e;, €2 ;)
at €, and the right-hand-side is less than or equal to U?. By Lemma 5, we
have h(6,n,q) > 0.0

Subclaim 3: For i € H® when n — q > 1, g5(e;) > ¢2(e;) for ¢; < €
provided that € > 0.

Proof: When & = (Q 4 1)e) — e*(M) > 0, for e; < €, g5(e;) — gi(e;)
— eﬁ(ﬂf’q)Jrei _ 66‘;% where ¢ = eé(M) — 2, z=Q'(n—q—1), A= (qg+
D)€ (M) + e;) + (Q + 1)(2qe* (M), A’ = q(€’. + €;) + Qzqe’ (M) + €5) and
the numerator becomes

((zq+1)€’ (M)+e;) ((Q+1)el—e’ (M) —e;) > 0.

Subclaim 4: For i € H%if n—q > 2, and q¢ > 3, ¢; € [e2°,€!] is not a best
response.

Proof: By the strict concavity of g5 and the first order condition, € is

not a best response. Then Subclaims 2 and 3 show that the subclaim holds.

18



Subclaim 5: When n—q = 1, let {n} = H®. Then €? is the best response
to e?. "

Proof: Since € < ey, g5(e;) is strictly concave and increasing, e? is
the only investment level that satisfies the first order condition. Next ob-
serve that when n > 3, for e, < €, un(en,e?,|6) < 1/n, whereas Ul =
QU-0)2g—n) 1] _ (@ '~ 1/4 > 1/pn. By the monotonicity of u;, we con-

{Q(n—q)+1}2 {Q+1}2 = v

clude that e, < € cannot be a best response.

When n = 3, let § > ef. US = 22, Viys(er) = 1/3,€5 = (2 — 6)eb — €8

and Uf > (1/3 — ¢2}) holds if & < 210418 (5 1 for § < 1) which holds for
62 —

6 < 1, with % > a0

Subclaim 6: There is no best response for those e; with e; < efo.

Proof: Recall that for those e; with e; < €°, by the choice of §, we have
u;(ei, e_i|6) — ce; < UP which implies that there is no best response for those
e; with e; < €0.0

This completes the verification of the best response properties and thus

6

n

the proof of the proposition is complete.
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