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Introduction

It is well known that long time behaviors of Markov processes may follow rules such as central
limit theorems, laws of large numbers, and large deviation principles. Some rules are controlled
by principal eigenvalues. For example, M. Kac [37] proved that for a transient Brownian motion
on RY, the tail probability of the total occupation time on a compact set decays exponentially
and its rate is given by the principal eigenvalue of the generator of a time changed Brownian
motion. He also proved that the decay rate of a Feynman-Kac semigroup is given by the
principal eigenvalue of the associated Schrodinger operator. Nowadays, this fact follows as a
corollary of the Donsker-Varadhan large deviation theory ([23]). In this thesis, we study long
time asymptotic properties of branching symmetric Markov processes in terms of the principal
eigenvalues and the ground states of the associated Schrodinger type operators. In particular, we
consider the extinction property, the growth rate of the numbers of particles, and the asymptotic
distributions of particles.

A branching symmetric Markov process is known as a simple model of an evolving population.
Roughly speaking, a branching symmetric Markov process is described as follows: each particle
moves on a state space according to the law of a symmetric Markov process until the splitting
time, and then it creates new particles. After that, each of these particles repeats this movement
independently. More precisely, let X be a locally compact separable metric space and m a
positive Radon measure on X with full support. Let M = (X;, P,;) be an m-symmetric Markov
process on X and M = (X;,P,) the branching symmetric Markov process such that each
particle moves independently according to the law of M. We denote by u the branching rate,
that is, the positive continuous additive functional (PCAF) A} in the Revuz correspondence
to p determines the distribution of the splitting time of each particle. We assume that p is
a Green-tight measure (in notation, p € Ko ). For the definition of the Green-tightness, see
Definition 1.1. We denote by {pn(z)}n>0 the branching mechanism, that is, a particle splits into
n particles with probability p,(z) at branching site € X. Further, let Q(z) = >_>", npn(z)
be the expected number of particles which are born at branching site x € X and define the
intensity of population growth by v(dx) = (Q(z) — 1)u(dx).

We first establish a criterion for M to extinct or extinct locally in terms of the principal
eigenvalue for a time changed process. We define a formal operator by

21O (L ), &

where £ is the generator of M. We then see that L@ is regarded as the generator of the
exp (—A}')-subprocess time changed with respect to A? " where A?“ is the PCAF corresponding
to the measure Qu. Since Qu and p denote the intensity of creations and the intensity of killings
respectively, we say that the operator L@ expresses the balance between these intensities. This
suggests that the extinction of the branching process is controlled by the principal eigenvalue



of L@ Tn fact, the operator L#@H is realized as a self-adjoint operator on L?(X;Qu) and
A := \(Qpu, 1) denotes the bottom of the spectrum of £*@#, namely,

X(Q,u,u):inf{é'(u,u)+/u2d,u:u€]-",/uQQduzl}. (2)
X X

Here (€, F) is the Dirichlet form generated by M. We then show that, under the assumption
that \ is a discrete spectrum, the branching process M extincts or extincts locally if and only
if X\ > 1 (see Theorems 2.4 and 2.11 below).

The extinction problem is one of the basic problems of branching Markov processes and
has been studied by many persons. For instance, Sevast’yanov [49] and S. Watanabe [61] con-
sidered this problem for a branching Brownian motion on a bounded domain in R? with state-
independent branching rate and branching mechanism. They then gave a criterion for extinction
by the principal eigenvalue of the Dirichlet Laplacian. R. G. Pinsky [42] investigated and devel-
oped the theory of generalized principal eigenvalues of Schrédinger operators. Using this theory,
he in [43] analytically gave a criterion for a measure-valued branching diffusion process to extinct
locally, that is, the particles on every compact set disappear. On the other hand, Englander
and Kyprianou [26] probabilistically gave the criterion for local extinction. In these papers, the
ground state of the Schrodinger operator plays an essential role; they construct the ground state
by using well-known facts for elliptic differential operators, Harnack’s inequality and Schauder’s
estimate. Here we consider the branching jump Markov processes and this approach is not ap-
plicable to construct the ground state because we do not know the corresponding properties for
non-local operators. To overcome this difficulty, we use the generator of a time changed process.
We can then construct the ground state by using the compact embedding of the Dirichlet form
corresponding to the motion component; however, we must restrict the branching rate within
the class Koo to show the compact embedding. Further, to prove the regularity of the ground
state, we need to restrict the branching rate within the subclass Soo C Koo, which is introduced
in [14] (see Definition 1.1). This assumption on the branching rate essentially says that the
branching is rare at infinity. Here we would like to emphasize that our result is an extension of
the result in [49] and [61] because every constant function belongs to So for Brownian motions
on bounded domains. Moreover, we allow the state spaces to be unbounded and the branching
rate to be not only functions but also measures.

We next study the exponential growth of the numbers of particles for the branching process
M. To cope with this problem, we use the principal eigenvalue and the ground state of an
associated Schrodinger operator. More precisely, let

LY =L+v (3)

and denote by A; := A1(v) the bottom of the spectrum of £":

)\1(1/):inf{é’(u,u)—/Xu2d1/:u€]:,/xu2dm:1}. (4)

Let h be the corresponding ground state. Namely, h is a function on X attaining the infimum
of (4). Define

Zy
My =My h (X)), t>0,
i=1

where Z; denotes the total number of particles and X!, 1 < i < Z, is the position of the ith
particle at time ¢t. Then, under the assumption that A is a negative discrete spectrum, we



prove the square integrability of the martingale M;. As a result, a limit My = limy o, My
exists in L' (P;) and P-a.s. Furthermore, we show that the limit M, is positive P,-a.s. on
the event that the branching process survives (Theorem 3.4). This result says that Z; grows
exponentially with rate —A; at least. We also study the exponential growth of the number of
particles in every relatively compact open set (Theorem 3.8). Theorem 3.8 indicates that the
number of particles in every relatively compact open set may grow exponentially at rate —Aq.
Engldnder and Kyprianou [26] studied the same problem for a branching diffusion process with
regular branching rate function. Here we consider more general branching symmetric Markov
processes than those studied in [26]. Indeed, we discuss the exponential growth for the branching
processes whose motion components are jump Markov processes and whose branching rates are
measures.

As stated above, the square integrability of M; is crucial. We now explain how to prove it.
By the definition of the branching symmetric Markov process, it follows that

E, [M7] = M E, [exp (A7) h(X0)%t < (]

tAC (5)
+ E, U exp (215 + AY) h(X,)2 dARr| |
0

where ¢ is the lifetime of M, AY = A%* — A" and R(z) = Y°°,n(n — 1)pn(z). Hence, to
show the square integrability of My, we use a criterion for the gaugeability of measures. Here
p=pt —pu" € Koo — Koo is said to be gaugeable if

sup E, [exp <A’5)} < 0.
zeX

Z.-Q. Chen [14] and Takeda [52] then showed that j is gaugeable if and only if A(uT, n~) > 1 (see
Theorem 1.2 below). In addition, there are relations between A1 (u) and A(u™, u™) as follows:

M) >0 <= ApT,p7)>1 and A\(p) > 0= Ap",u") > 1.

Applying these results to the right hand side of (5), we establish the square integrability of M;.
We finally establish limit theorems for a class of branching symmetric Markov processes.
Namely, under the assumption that A; is a negative discrete spectrum, we show that for any
z € X, Py-as.
lim e*!Z,(A) = My, / hdm (6)
t—o0 A
for every relatively compact Borel set A in X, where Z;(A) denotes the number of particles on
the set A at time ¢ (Theorem 4.7). The equation (6) says that Z;(A) grows exponentially at
rate —A; and that the ground state determines the asymptotic distribution of particles. The
limit theorem for branching symmetric Markov processes has been studied for a long time. For
example, S. Watanabe studied in [61] and [62] the asymptotic properties of branching symmetric
diffusion processes and established a limit theorem in [62]. His approach is based on a general-
ization of the Fourier transform and requires that the transition densities of the Feynman-Kac
semigroups are represented by the spectral measures and the eigenfunctions. Asmussen and
Hering [4] also established a limit theorem in [4] for general supercritical branching processes.
To apply their result to branching symmetric Markov processes, we have to check that every
spectrum of the Schrodinger operator is discrete, and consequently the Feynman-Kac semigroup
has an eigenfunction expansion. However, branching symmetric a-stable processes with singular



branching rates do not satisfy the conditions imposed in [62] and [4]. In fact, since the transition
density of £” may not be expressed by the spectral measure, the methods used in S. Watanabe
[62] and in Asmussen and Hering [4] are not applicable here. Unlike their conditions, we use the
fact that the operator £¥ has a spectral gap. A crucial point is that the spectral gap implies
the ergodicity of the h-transformed semigroup of the Feynman-Kac semigroup. By this property
with an application of the gaugeability of measures, we can establish (6) in discrete time, and
then extend it to a continuous time version by applying a method from the proof of Theorem
1" in [4].

We consider branching Brownian motions and branching symmetric a-stable processes as
concrete models; a Brownian motion is a typical model of diffusion processes and a symmetric
a-stable process is a typical model of jump processes. As we saw above, we need to calculate
explicitly the principal eigenvalues A and \; in order to find asymptotic properties for these
processes. However, it is difficult in general to calculate the principal eigenvalues of Schrodinger
type operators with non-local principal parts. Therefore, for special classes of them, we calculate
the principal eigenvalues by the Dirichlet principle. We can then obtain asymptotic properties
explicitly for a class of branching Brownian motions and branching symmetric a-stable processes.
For example, let us consider a branching symmetric a-stable process in one dimension with
1 < a < 2. First take the Dirac measure at ¢ > 0 as branching rate and suppose that each
particle dies upon arriving at 0. We then see that this branching symmetric a-stable process
extincts if and only if

I'(«) cos (%) ey

0<a<
@= 2

(Example 2.18). Next take dp, the Dirac measure at the origin, as branching rate and suppose
that the state space is R. We then obtain for any « € R, P -a.s.

o0

tliglo eAl(a)tZt((_ra T)) = </oo
2(1 —e™") Mo, a=2

hdm—O(r”)) My, 1<a<?2

for any r > 0, where
a/(a—1)
21/a

G
asin [ —
«

is the principal eigenvalue of the Schrédinger operator —% (—A)a/ 460 and h is the corresponding
ground state. Moreover, My, is positive P -a.s. (Example 4.12).

Since the explicit calculations of the principal eigenvalues are difficult as we mentioned
above, we try to give lower bound estimates. To do this, we first establish a variational formula
for Dirichlet forms. Recall that X be a locally compact separable metric space and m is a
positive Radon measure on X with full support. In [24], Donsker and Varadhan proved a large
deviation principle of occupation distributions of conservative Markov processes on X with the
so-called I-function as its rate function. Moreover, they showed that, if the Markov process is
m-symmetric, then the I-function is identified with the associated Dirichlet form (€, F). M.
F. Chen [13] then extended this identification to symmetric jump processes with killings. Our
objective is to extend it further to general symmetric Markov processes including time changed
processes. More precisely, let L be the “extended generator” of a symmetric Markov process

)\1(0() = —



determined by the martingale problem and DT (ﬁ) the set of nonnegative functions in the

domain of £ (see Definition 5.1). We then prove

E(f,f)=—  inf / LU 2 feF (7)

ueD+(L),e>0/x U+ €

Furthermore, applying this formula, we obtain the lower bound estimate of the bottom of the
spectrum: let A\g be the bottom of the spectrum of the operator £. We can then derive the
following generalized Barta’s inequality,

Ao > inf (—ﬁu> (), uweD™ (ﬁ) ,

rzeX u

where DT (ﬁ) is the set of strictly positive functions in the domain of £ (Theorem 5.8).

The organization of this thesis is as follows. In Chapter 1, we first recall the notions of
Dirichlet forms and symmetric Markov processes. We next introduce two classes Koo and Seo
of Kato measures, which play an important role in this thesis. We next introduce the notion
of branching symmetric Markov processes. We finally introduce the notion of symmetric a-
stable processes because we consider branching symmetric a-stable processes as typical models.
Chapters 2, 3 and 4 are devoted to the study of asymptotic properties of branching symmetric
Markov processes and its applications to branching Brownian motions and branching symmetric
a-stable processes. We give in Chapter 2 a criterion for extinction or local extinction in terms
of the principal eigenvalues for time changed processes. We study in Chapters 3 and 4 the
exponential growth of the numbers of particles and the asymptotic distributions of particles in
terms of the principal eigenvalues and the ground states of Schrodinger operators. Chapters
5 and 6 are devoted to calculations and estimates of the principal eigenvalues for Schrodinger
type operators. We establish in Chapter 5 a variational formula for Dirichlet forms generated
by general symmetric Markov processes. As its application, we derive generalized Barta’s in-
equality. Using this inequality and the Dirichlet principle, we estimate and calculate in Chapter
6 the principal eigenvalues of Schrédinger type operators associated with Brownian motions and
symmetric a-stable processes. In Appendix A, we show that the Green function is positive for
any absorbing symmetric a-stable process on an open set. This result implies that any absorbing
a-stable process is irreducible even if the state space is disconnected.

Chapter 4 is based on a joint work with Zhen-Qing Chen and Chapter 5 is based on a joint
work with Masayoshi Takeda.



Chapter 1

Preliminaries

In this chapter, we first review the general theory of Dirichlet forms and some facts related to
Feynman-Kac functionals. We next introduce the notion of branching Markov processes. We
finally introduce the notion of symmetric a-stable processes and remark some properties.

1.1 Dirichlet forms and symmetric Hunt processes

Let X be a locally compact separable metric space and m a positive Radon measure on X with
full support. Let M = (Q, F, Fy, 04, Xy, Py, () be an m-symmetric Hunt process on X, where
{Fi}+>0 is the minimal admissible filtration. The shift operator 6; satisfies X; o 8; = Xy
identically for s, ¢ > 0, and ( is the lifetime, ¢ = inf{t > 0: X; = A}, where A is the cemetery
point.

Let us denote by(€, F) the regular Dirichlet form of M. Let F, be the family of m-measurable
functions on X such that |u| < oo m-a.e. and there exists an £-Cauchy sequence {u,} of
functions in F such that lim,, . u, = u m-a.e. Then (£, F.) is called the extended Dirichlet
form of (£,F) ([29, p. 36]). We define the 1-capacity associated with the Dirichlet form (€, F)
for an open set O C X by

Capy(0) = inf {&1(u,u) r u € F, u>1m-ae. on O}, (1.1)
where &, (u,u) = E(u,u) + a [y u? dm for o > 0, and for any set A C X by
Cap(1y(A4) = inf {Cap(l)(O) : O is open, O D A} )

For a set A C X, a statement depending on x € A is said to hold g.e. on A, if there exists
a set N C A of zero capacity such that the statement is true for z € A\ N. Here q.e. is an
abbreviation for quasi everywhere. A function u € F, is said to be quasi continuous, if for any
€ > 0, there exists an open set O C X with Cap(;)(O) < € such that u[x\o is finite continuous,
where u| x\o is the restriction of u on X'\ O. It is then known in Theorem 2.1.7 of [29] that each
u € F, admits a quasi continuous m-version. In the sequel, we always assume that each u € F,
is quasi continuous.

An increasing sequence {F, } of closed sets is said to be a nest if lim;, oo Cap (1) (X \ F},) = 0.
An increasing sequence {F,} of closed sets is said to be a generalized nest if lim;,—,oc Capq) (K \
F,) = 0 for any compact set K C X. A positive Borel measure pu is said to be smooth, if p
charges no set of zero capacity and there exists a generalized nest {F),} such that u(F,) < oo



for all n. Denote by S the set of smooth measures. It is then known in Theorem 5.1.4 of [29]
that there exists a one to one correspondence between smooth measures and positive continuous
additive functionals (PCAFs in abbreviation), the so-called Revuz correspondence, as follows; if
we denote by A} the PCAF corresponding to 4 € S, then for any vy-excessive function h (y > 0)
and any positive Borel measurable function f,

i | [/ F(x dA“] Dymlds) = [ (o) ulds).

A positive Radon measure p on X is said to be of finite energy integral, if

/X|u]du§0\/51(u,u), ue FNCyX) (1.2)

for some positive constant C, where Cp(X) stands for the set of continuous functions on X with
compact support. Denote by Sg the set of measures of finite energy integral. Then, by the Riesz
representation theorem, there exists a unique function Gou € F for p € Sp such that

Ea(Gop,u) :/ udp, uweF (1.3)
X

for any o > 0 ([29, Theorem 2.2.5]). We call G,u the a-potential of .

For any p € S, there exists a generalized nest { F},} such that u, = 15, -u € Sy (|29, Theorem
2.2.4]). Then Lemma 2.2.10 of [29] implies that G pn, — Gofim is again an a-potential for n > m,
and consequently {Gquy,} is an increasing sequence. We thus define the a-potential of u € S by
Gop = limy,— 00 Goftn. We next characterize G, u probabilistically. Let A} be the PCAF whose
Revuz measure is . Then

¢
Gopin(x) = E, [/ e_o‘tXFn (X3) dAf qge x € X.
0

Since {F,} is a generalized nest, it holds that

¢ T ¢
lim E, [ / e—atxpn(Xt)dAf] =E, / e dAf} .
n—oo 0 LJ0

Hence we get
¢
Gop(z) = Ey {/ e~ dAf] qe x € X. (1.4)
0

Denote by S; the set of positive Radon measures on X charging no set of zero capacity. Then
SoC S CS.

When M is transient, the 0-order capacity Cap(A) is defined by replacing & and F in (1.1)
with £ and F, respectively. We say that a positive Radon measure p on X is said to be of finite
(0-order) energy integral, if the inequality (1.2) holds with & on the right hand side replaced
by £. Denote by S; () the set of measures of O-order finite energy integral. Then the equation
(1.3) with @ = 0 determines a unique function Gu € F, for any u € Séo). We call Gp the
(0-order) potential of u. By the same argument as above, we can define Gy for any p € S by

Gup = limy o0 Gpin, where p, = 1p, - p and F, is a generalized nest such that p,, € Sp. We also
see that

Gu(z) = Ey [A’g] qe x € X. (1.5)

7



Let (N, H) be a Lévy system of M (see [8] and [29, Theorem 5.3.1]); that is, N is a kernel
on (Xa,B(Xa)) such that N(z,{z}) =0 for any x € X and H; is a PCAF of M such that, for
any nonnegative function ¢ € B(Xa X Xa) with ¢(z,z) = 0 for any x € Xa,

t
E, Z¢(Xs—7Xs) = by {/0 « ¢(X87y)N(X87y)st )

s<t

where XA = X U{A} and X;_ = limgy; X,. Denote by pg the Revuz measure of the PCAF H;
of M and define

J(dz,dy) := N(z,dy)um(dz) and k(dz) := N(z,A)pg(dx), (1.6)

which are called the jump measure and the killing measure of M, respectively.
By Fukushima’s decomposition [29, Theorem 5.2.2], it holds that for u € F,

w(Xy) —uw(Xo) =M+ N, t>0 Pp-as. forqe ze€X, (1.7)

where M} is a martingale additive functional of finite energy and N is a continuous additive
functional of zero energy. Denote by M,"“ and [ (aruscy, Tespectively, the continuous martingale
part of M{* and the Revuz measure corresponding to (M™¢),, the quadratic variation of M.
The measure 1 pru.cy is called the energy measure of M. A Beurling-Deny decomposition ([29,
Theorem 5.3.1]) then implies that

E(u,u) = ;/X fareey (de) + % //XXX\A(U(:U) —u(y))? J(dz,dy) +/ u(z)? k(dz), wueF,

X

where A = {(z,y) € X x X : x = y}.
Let M* = (X}, P}'), u € Si, be the subprocess of M with respect to the multiplicative
functional exp (—A}) (see [29, Appendix A.2] for details):

EY [f(X])] = Ex [exp(=AY) f(Xy);t < (].
Then M* generates the regular Dirichlet form (£#, F*) ([29, Theorem 6.1.1}):
Fr = FNLA(X;p)

8“(u,u)—8(u,u)+/u2du, u e Fr.
X

Denote by 7/* the right continuous inverse of A},
Tf:inf{s>O:A5/\<>t}.
Let F = supp|u| and let F* be the fine support of the measure p defined by
Ft={zxeX:P, (1§ =0)=1}. (1.8)

Note that F* is finely closed and A} (w) increases only when X;(w) € F* for P-a.s. w € Q for
q.e. z € X ([29, Lemma 5.1.11]). The time changed process M = (Y}', P,) of M with respect



to A} is defined by Y} = X, Then M is a p-symmetric Hunt process on F* with lifetime A‘CL
([29, Theorem 6.2.1]). Set

Hpunu(z) = By [u(Xo 0 ); 0pe < 00],

where o is the hitting time of F*, opu = inf{t > 0: X; € F*}. Then M generates the regular
Dirichlet form (£, F) on L?(F;pu) ([29, Theorem 6.2.1]):

F= {¢ e LZ(F;M) tYp =u p-a.e. on F for some u € .7-}}
E(p, ) = E(Hpuu, Hruu), Y € F, ¢ =u p-a.e. on F for some u € F.

Moreover, (£, F) satisfies

E(u,u) =inf{€(v,v) ;v € Fe, v=1u q.e. on F}. (1.9)

The equation (1.9) is the so-called Dirichlet principle.

1.2 Gaugeability and Feynman-Kac semigroups

1.2.1 Gaugeability and classes of measures

Let {p¢,t > 0} be the Markovian transition semigroup of M given by
pef(x) = B [f(Xy)], feB (X)),

where BT (X) denotes the set of nonnegative Borel measurable functions on X. In this subsection,
we assume that the transition density of M is absolutely continuous with respect to m and denote
by pi(x,y) the integral kernel of py,

pof () = /X P, y) £ (y) m(dy).

Let Go(x,y) be the a-resolvent density of M,

Goz(xvy) = / e_atpt(xvy) dt? a > 0.
0

If M is transient, then the Green function

o0
Golow)i= [ piws )
0
exists for x # y, and we put G(z,y) = Go(z,y).
We now introduce classes of measures in S.

Definition 1.1. (i) A positive smooth Radon measure on X is said to be in the Kato class IC, if

i sup [ Go(ao,y) n(dy) =0,
X

(ii) A positive smooth Radon measure on X is said to be in Koo(Go), if for any € > 0, there
exists a compact set K C X and a positive constant § > 0 such that

sup [ Galwynldy) <,
reX JX\K

9



and for all measurable sets B C K with u(B) < 9,

sup / Gl y) p(dy) < e.
zeX JB

The class K~ is defined by

. — Ks(G), M is transient
1 Ko(G1), M is recurrent.

(iii) A positive smooth Radon measure p on X is said to be in Soo(Ga), if for any € > 0, there
exists a compact set K C X and a positive constant § > 0 such that

Ga(2,y)Galy, 2)
sup / dy) < e,
(z,2)EXx X\A J X\K Ga(z, 2) wldy)

and for all measurable sets B C K with p(B) < 9,

/ GQ(SL', y)Ga(ya Z)
B Ga(x,z)

sup p(dy) < e.

(z,2)eX x X\A
When M is transient, the class Soo(G) is simply denoted by Soo

If M is transient, then it holds that Soc C Koo by Corollary 3.1 of [19] and any measure
in Ko with compact support belongs to Se. It is known in Proposition 2.2 of [14] that any
measure p in Koo is Green bounded,

sup E, [Aﬂ = sup/ G(z,y) p(dy) < oo. (1.10)
rzeX zeX JX

In the sequel, we assume that M is transient. Let u be a signed measure on X which can
be decomposed into u = pu* — p~ for some put, 4~ € Ko. Then the measure p is said to be
gaugeable, if

sup E, [exp (A’C‘)} < 00,
zeX

where A} = Aéﬁ — A" . Define
MpT, ) = inf {E(U,u)—i—/ w?du” s u € F, / u?dp™ :1}. (1.11)
X X

When p~ = 0, we simply denote A(uF,0) by A(u).

Theorem 1.2. ([14, Corollary 2.9, Theorem 5.1]) Suppose that a signed measure p on X can
be decomposed into p = pt — p~ for some T, € Koo. Then the following conditions are
equivalent:

(i) The measure p is gaugeable;

(i) Apt,pm)>1;

(iii) supyex Ex UOC exp (A}) dAY| < oo for any v € K.

10



The implications (i) < (ii) and (iii) = (ii) are already proved in [14, Corollary 2.9, Theorem
5.1]. We can show the implication (ii) = (iii) in a similar way to that yielding Proposition 3.2
of [15] as follows. Let p be a measure on X which can be decomposed into p = p* — p~ for
some p, u~ € Koo. Assume that \(p™, u~) > 1 and fix a measure v € K. Since

Npp™,pp™) = Npp™, ™) = Zk(uﬂu‘)

for any p > 1, we can take p > 1 such that ;\(p;ﬁ,pu*) > 1. Let ¢ > 1 be the conjugate
component of p, that is, ¢ satisfies 1/p 4+ 1/g = 1. Then the Holder inequality implies that

. ]
E, [ / exp (A" dAg] < E; | sup (exp (4})) A¢
0

0<t<¢

" y (1.12)
< B, | sup (exp(AP))| B, [Ag”} :
| 0<t<¢

Noting that the measure gv belongs to Ko, we have sup,c x Fy [AZV] < 00. A direct calculation
yields that

t
sup (exp (AP")) = sup / exp (APF) dAPF + 1
0<t<( 0<t<¢ 0

¢
< sup / exp (APM) dAPFT 41
0<t<¢Jo

¢ _
— [exp (A daz” 41,
0

where i — i~ is the Jordan decomposition of the measure p. Since the measures it and i~
belong to the class Koo, respectively, and the condition that A(pu™,pu~) > 1 is equivalent to
that A(pat,pi~) > 1 by [58, Lemma 3.1], we obtain

¢ _
sup F, [/ exp (AP") dAff”Jr} < 00
rzeX 0

by [14, Corollary 2.9, Theorem 5.1]. Therefore, the right hand side of (1.12) is bounded, which
shows the implication (ii) = (iii).

1.2.2 Feynman-Kac semigroups

In this subsection, we assume the following on M:

Assumption 1.3. (i) (Irreducibility) If a Borel set A is pi-invariant, that is, if ps(14f) = Lapef
holds for every f € L*(X;m) N By(X) and ¢ > 0, then either m(A) = 0 or m(X \ A) = 0 holds.
Here By(X) stands for the set of bounded Borel measurable functions on M.

(ii) (Strong Feller property) For any f € By(X), p+f is a bounded and continuous function on
X.

(iii) (Ultracontractivity) For any ¢ > 0, it holds that ||p¢]|1,00 < 00, where || - ||, 4 denotes the
operator norm from LP(X;m) to LI(X;m).

11



Note that, by Assumption 1.3 (ii) and the m-symmetry of p;, the transition probability of
M is absolutely continuous with respect to m.
We know from [50] that, for a positive smooth measure p of M on X and o > 0,

/ wlrdp < ||Gaptlloofa(u,u), u € F.
X
Then, by the definition of K, it follows that for u € IC, there exists a constant a > 0 such that

1
/ u?dp < E(u,u)—i—a/ u® dm for u e F. (1.13)
X 2 X

Let u be a signed measure on E which can be decomposed as y = pu™ — p~ for some
pht,u~ € K. Let {p}',t > 0} be the Feynman-Kac semigroup given by

pif(x) = B [exp (A7) f(X0)],  f e BT (X). (1.14)
Then it follows from [1, Theorem 3.3] and (1.13) above that {p}’,t > 0} is a strongly continuous

semigroup on L?(X;m) and its associated quadratic form is (¥, F) where

5“(u,u):5(u,u)—/u2du, ueF.
X

Moreover, under Assumption 1.3, we have from [1] the following.

Theorem 1.4. Let u=pu*t —u~ € K — K. Then, under Assumption 1.3, it holds that
(i) For any f € By(X), pi'f is a bounded and continuous function on X. Moreover, p}’ admits
an integral kernel pi'(x,y) that is jointly continuous in (x,y) € X x X for each t > 0:

P () = / P,y f)m(dy), | e B (X).
X

(ii) For any t > 0, it holds that ||p}||p.q < 00 for any 1 < p < ¢ < .

For a signed measure p = pu+ — p~ € Koo — Koo, define
Al(u):inf{é'“(u,u) rueF, / u2dm:1}. (1.15)
X

Denote byo(E#) the totality of the spectrum of the self-adjoint operator associated with (€, F).
Let

Ao = inf{g(u,u) cueF, / u? dm = 1}.
X
We also make the following assumption:

Assumption 1.5. (Compact embedding) The embedding of (F, &) into L?(X; ut) is compact,
where & (u,u) = E(u,u) + [y u?dm.

Under this assumption, by the Friedrichs theorem ([40, Lemma 2.5.4/1]), the spectrum of
o(EM) less than Ay consists of only isolated eigenvalues with finite multiplicities. We denote by
h the corresponding ground state normalized as [ X h?dm = 1. Let Ay(p) denote the second
bottom of the spectrum of o(E#), that is,

)\Q(M):inf{é’“(u,u):uef,/u2dm:1,/uhdm:0}.
X X

12



Then )\2(,[1,) — AI(M) > 0 if )\1(#) < Ao.

In the remainder of this section, we fix a signed measure u = pm — = € Koo — Koo.
Assume that Assumption 1.5 holds and that A := A1 (u) < 0. We note that, since it holds that
h = e)‘ltpff h on X, the ground state h is bounded and continuous by Theorem 1.4 and strictly

positive by the irreducibility of M and the strict positivity of exp(AY). Let G4 and Gh (z,%)
denote the a-resolvent and the a-resolvent density respectively, of the exp (—A}')-subprocess of
M, that is,

) . ¢ .
6 1) = [ 6t wnstmtay) = . | [ e (~ar - 4t7) sxiya
for f € BY(X). Note that
) = [ G5, ) b () = G5, () o) (1.16)
When = = 0, we simply denote G’S\l(h;ﬁ) by G_x, (hu).

1.2.3 Ground states of time changed processes

In this subsection, we assume that M is transient and satisfies Assumption 1.3 (i) and (ii). Let
1 be a signed measure on X which can be decomposed into u = pu* — u~ for some u*,u” €
Koo. Then, by the Dirichlet principle (1.9), A(u+, u™) is the bottom of the spectrum for the

exp (—Af 7>—subprocess of M time changed with respect to A . We now make the following
assumption:

Assumption 1.6. (Compact embedding of the extended Dirichlet space) The embedding of
(Fe, &) into L?(X;ut) is compact.

Under this assumption, A(ut, ™) defined in (1.11) is the principal eigenvalue. Denote by A
the corresponding ground state in F.. We then see in a similar way to Lemma 2.2 of [57] that

M(p) >0 <= AMpT,p)>1 (1.17)

If 1 is a signed measure on X which can be decomposed into p = u™ — = € Soo — Soo, then we
see from Section 4 of [57] that the ground state h is a bounded, strictly positive and continuous
function on X and that

) = & [ & (a)hty) i ().
where G*~ (z,y) := Gf (z,y).

1.3 Branching symmetric Hunt processes

Following [34] and [35], we introduce the notion of branching symmetric Hunt processes. Let
{pn(2)}n>0, z € X, be a sequence such that



For u € S, we denote by Z the random variable of the exponential distribution with rate A}
Pyt < Z| Fso) = exp (—AY).

A particle of the branching symmetric Hunt process starts at x € X according to the law P,.
When ¢ < Z, it dies at time (. On the other hand, when Z < (, it splits into n particles
with probability p,(Xz_) at time Z. Then each of these particles starts at Xz_ independently
according to the law Py, . Let X = {A} and X() = X. Define the equivalent relation ~

on X" =X x ---x X as follows; let x" = (!, 22, 23,...,2"), y" = (v}, 9%, 93, ...,y") € X" If
—_——
n
there exists a permutation o on {1,2,3,--- ,n} such that y* = 2°® for all 4, then it is denoted

by x" ~ y" Let X" = X"/ ~ and X = Un o X (") When the branching process consists of
n particles at time ¢, they determine a point in X (. Hence it defines a branching symmetric
Hunt process M = (X;, Py, G;) on X with motion component M, branching rate i and branching
mechanism {p,(z)}n>0. Let T be the first splitting time of M:

P.(t<T|o(X)) =Pt < Z|Foo)
— exp (AP (1.18)

Denote by Z; the number of particles of M at time ¢, that is,
Zi=n if X;=(X}LX2 X} .. X0 exm,

Define
ep = inf{t > 0: Z; = 0}.

Then eq is called the extinction time of M. Set uc(x) = Py(eg < o0) = P, (limy_o Z; = 0).
We then say that M extincts if ue = 1 on X. Denote by Z;(A) the number of particles in a set
A C X at time t and

Ly =sup{t>0:Z(A) > 0}.

Set ua(z) = Py(La < 00) = P, (limy_o Zi(A) = 0). We then say that M extincts locally if
ug = 1 on X for every relatively compact open set A in X.

Let - -
=Y mpu(z) and  R(z) =Y n(n—1pa(e
= n=1

We then obtain the following:
Lemma 1.7. If sup,cyx Q(x) < oo, then

Z A
> FEXD
=1

for any f € By(X). If sup,cx R(x) < oo, then

Z . Z ’
(Z f(Xi)) (Z 9(X§)>
i=1 i—1

=FE, [eXp (AgQ_l)”) f(Xp)it < C} (1.19)

= B, [exp (A7) FX)9(X0)it < (|

. . (1.20)
tAC t—s , ts )
FE| [ e (A By, | 30 5XE)| Bx | Y 0(Xi)| daf
0 i=1 i=1

for any f, g € By(X).
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Proof. Let us denote by Z;(m) the total number of particles at time ¢ such that each of their
trajectories over time interval [0,¢] has m branching points, and by

Xq(m) = (X} m), X} (m), -+, X[ (m))

the positions of all such particles at time ¢. Define

Zt Z(m)
Zi(f)=>_ fXD) and  Z(m;f)= > f(Xi(m)),
i=1 =1

respectively, for f € By(X). Then
2 = Zilm: f).
m=0

We first show (1.19). It follows from (1.18) that
E. [Z:(0; f)] = Ex [exp (—Af) f(Xe);t < (]
Since each particle moves independently, the strong Markov property yields that

E; [Zi(m; )] = By [Exy [Ze—r(m = 1 )] T <]

Zr
— B, |3 By, [Zealm— L ))5T <1
i=1

- E, [/MC exp (AL Ex, [Z;—s(m — 1; f)] dAsQ“] :
0

By using this relation again, the right hand side above is equal to

tAC (t=s)NC
E, / exp (—AY) Fx, / exp (AN Ex, [Zi—s—u(m — 2; f)] dAQH| dAS*| . (1.21)
0 0

Since AL, , = AL + Al o6 and ( = s+ (o0, on {s < (}, it follows that

Ex

s

(t—s)AC
/ exp (—AY) By, [Zosu(m — 2 f)] dAD
0

(t—s)A(Cobs)
/ €xp (—Aﬁ o 95) EXMOGS [Zt—s—u(m - 2; f)] dAg'u © ‘95
0

/]
/]

P,-a.s. on {s < (}.

(t=s)A(C—s)
= FE, / exp (AL, + AN Ex . [Zi—s—u(m — 2; f)] dA?fu
0

tAC
— exp (A1) E, / exp (—A) Ex, [Zo_u(m — 2; )] dA%* | 7,

15



By Fubini’s theorem, the term (1.21) is equal to
tNC 7 ptAC
E, [ / < / exp (—A")Ex, [Zi—u(m — 2; f)] dAff“) dA?“}
0 s
tAC UNG
=F, [/ exp (—AM) Ex, [Zi—u(m — 2; f)] (/ dASQ“) dAS“]
0 0

tAC
5, [ [ e (-A0 B, 1Z0-m — 2.1 A% dASﬂ -
0

Hence, by repeating this procedure, we have

(42)"

E; [Zi(m; f)] = Ex |exp (—A}) Tf(Xt);t <[,

which implies (1.19).
We next show (1.20). Note that

E; [Z4(0; £)Z(05 9)] = Eq [exp (—AY) f(X2)g(Xe);t < (]

and
E. [Z:(0; f)Zi(m; g)] = 0

for m > 1 because Z;(0; f)Z;(m;g) = 0 by definition. Denote by Z,f(m) the total number
of children of 27 at time t such that each of their trajectories over time interval [0,¢] has m
branching points under the law Pyn, x" = (2,22, 2%,--- ,2") € X" and by

X3 (m) = (X%1<m>, 52 (m), X3 (m), - XIA ) <m>)

the positions of all such particles at time ¢. Let us define

Z} (m)

Zl(mif) =3 F(XF (m)).

i=1
Then the strong Markov property shows that

E; [Zi(m; f)Zi(n; 9)] = Eg [Ex, [Ze(m — 15 f) Zi(n — 1:9)]; T < 1]

Zr ]

= E; |Ex, ZZZ—T(m_ L f)Z] pn—19)| ;T <t
j=1 |

+ B | Ex; > Zlpm -2 p(n—19)| ;T <t
1<Gk<Zr,j#k |

for m,n > 1. Moreover, since each particle moves independently, (1.18) yields that the last term
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above is equal to

E;

Zr
Z EX% [Zt—T(m —1; f)Zt—T(n -1 g)]]
=1

+E; > Ex) [Zi-r(m =1; /)] Ex [Zi-r(n =15 f)]
1<jk<Zr j#k

tAC
=FE, [/ exp (—AL) Ex, [Zi—s(m —1; f) Zi_s(n — 1; g)] dASQ“]
OtAC
+ B, |:/() exp (_Ag) Ex, [Zt—s(m -1 f)] Ex, [Zt—s(’rl _ 1;9)] dAf“:| '

Then, by iterations and Fubini’s theorem,

(42)"
E. [Zi(m; f)Zi(m; g)] = Ex |exp (= A}) ~———f(X:)g(X¢);t < ¢

m)!
tAC m (A?”) o
+ By / exp (=AY “Ex, [Zi-o(m — k; /)| Ex, [Zi—s(m — k; g)] e dAH
0 k=1 :
and
E, [Zi(m; f)Zi(n; g)]
tAC n AQH o
=E, /0 exp (—A%) Z Ex, [Zi—s(m = k; f)]| Ex, [Zt—s(n — k; g)] ((k—)l)' dAH

k=1

for m > n > 1. Noting that

Zi(N)Zi(9) = D Zulm; ) Ze(msg) + > Y (Ze(ms ) Ze(n; 9) + Zi(ms 9) Zu(n; f))

m=0 n=1m=n+1

and using Fubini’s theorem, we obtain (1.20). O

1.4 Symmetric a-stable processes

Let M = (Q, F, F, 04, X1, Pr), 0 < o < 2, be a symmetric a-stable process on R?. Denote by
(£, F*) the Dirichlet form on L?(R?) generated by M®. If a = 2, then M? is the Brownian
motion on RY and (£2, F2) = (D/2, H'(R%)), where H'(R?) is the Sobolev space of order one
and D is the Dirichlet integral,

D(u,u) = /Rd |Vu|? dz, v € H(RY).
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On the other hand, if 0 < a < 2, then M® is a pure jump process and

ul\r) —u 2

2
Fo={ue AR ; // Z(f/)) dedy < 00 b |
RéxRI\A |JC — y|tre

d+a

a2“ 3F< )

2 (0.9}

A(d, o) = and I'(z)= / e 'L dt.
amd/?T (1 — %) 0

If d > «, then M® is transient and the Green function G(x,y) is given by

a2l=ep (d ; a) ,
G(z,y) = . (1.22
(#39) an¥?r (%) |z — yld—e )

where

Let MP = (XP, PP) be the absorbing symmetric a-stable process on an open set D C R%:
set

;=
Aa tZTDa

where 7p is the exit time of M?* from D, 7p = inf{t > 0 : X; ¢ D}. Then the Dirichlet form
(EP, FP) of MP is the following:

D—{uefo"u—Oqe. on D}

/ \Vul|? d, a=2
£ (u,u) = //DXD\A |z — \dg“j) ey
+A(d, )/D u(z)? </Dc|:z:—|d+ady>dx’ 0<a<?2

([29, Theorem 4.4.2, Example 4.4.1]). Let {pP,t > 0} be the Markovian transition semigroup
of MP given by
pf(@) =B [f(XP)]. feBY D).
By definition,
prf() = By [f(Xe) 1t < 7p].

We denote by pP(x,%) the integral kernel of p),

pP f () Z/DptD(ﬂf’y)f(y) dy.

Let Gg(:):,y), B > 0, be the f-resolvent density of MP,
D > D
G (z,y) =/ e 'pp (x,y) dt.
0
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If MP is transient, then the Green function

G (z,y) :—/O py (z,y) dt

exists for x # y, and we put GP(z,y) = GF(z,y). We denote by K2 and SZ respectively, the
classes Ko and S, associated with M when we need to specify the state space D.

Remark 1.8. (i) We remark that Assumptions 1.3 and 1.5 are satisfied by Brownian motions,
symmetric a-stable processes, and that Assumption 1.5 holds for every signed measure p =
ut —p € Koo — Koo Clearly Assumption 1.3 is satisfied by Brownian motions and symmetric
a-stable processes. That Assumption 1.5 holds for symmetric a-stable processes is proved [55].
We also note that Assumption 1.6 is satisfied by transient Brownian motions and symmetric
a-stable processes. That Assumption 1.6 holds for symmetric a-stable processes is proved [57].

Let (£,F) be a regular Dirichlet form on L?(R%) and M the associated symmetric Hunt
process. If (£1,F) is comparable to that of the symmetric a-stable process, then, by applying
the same argument as in [55], we can show that the embedding of (F, &) to L?(R%; 1) is compact
for any p € Ko

For instance, we consider stable-like processes on R? in the sense of [17]; let ¢(z,%) be a
symmetric function on R? x R¢ which is bounded between two positive constants ca > ¢; > 0,
that is,

e < ce(z,y) < cp, ae (z,y) € RT x RY

Fix 0 < o < 2 and define

z) —u(y))?
(u,u) c(x,y) dzdy
I =Y

—{due L2RY) : (u(x) — u(y))® i N
.7-“—{ EL(R)'//Rded\A T dady < }

Since (&, F) is a regular Dirichlet form on L?(R%), there exists an associated symmetric Hunt
process on R?, which is called the a-stable-like process. Clearly the Dirichlet form (£, F) is
comparable to that of the symmetric a-stable process. Moreover, it is proved in [17, Theorem
4.14] that the a-stable-like process on R? admits a Holder continuous transition density which
is comparable to that of the symmetric a-stable process. These facts imply that stable-like
processes on RY fulfill Assumptions 1.3 and 1.5. In addition, if d > «, then they also fulfill
Assumption 1.6. Note that the class Ko of the a-stable-like process on R? is identified with
that of the symmetric a-stable process on RY.

We note that relativistic a-stable processes also satisfy Assumptions 1.3 and 1.5. Let us
denote by (£%, F®) and (R®, D(R®)) the Dirichlet forms on L?(R?; dx) respectively generated
by the symmetric a-stable process and the relativistic a-stable process. Since (R, D(RY)) is
comparable to (7, F*) by (3.7) of [20], Assumption 1.5 holds for relativistic a-stable processes
by applying the arguments in [55, Section 2] to (R{, D(R?)).

(ii) Let M be a simply connected, complete and non-compact Riemannian manifold and
consider the Brownian motion on M. Denote by (€, F) the associated regular Dirichlet form on

L3(M;V):
1
u) = / |Vu|* dV
2 Jm
F = the closure of C5°(M) with respect to &(-,-) + || - HQLQ(M;V)a
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where V' is the Riemannian volume of M. We then see in a similar way to [56, Section 3]
that Assumption 1.5 is satisfied. Moreover, if the Brownian motion on M is transient, then
Assumption 1.6 is also satisfied. On the other hand, we can find in [22, Section 5] some sufficient
conditions for the Brownian motion on M to satisfy Assumption 1.3.

Remark 1.9. Recall that M is the absorbing symmetric a-stable process on an open set D
in RY. Assume that MP is transient. We now show that, if the support of a measure v € S2

is compact, then v belongs to Ss (Gg) for any 3 > 0. Fix a measure v € S with compact

support and put F' = supp[v]. Let O be a bounded C*! domain in D such that F' C O. Here we
say that O is a C1! domain, if for any = € 9O, there exists a positive constant > 0 such that
B(r) N 0O is the graph of a function whose first derivatives are Lipschitz continuous, where
B(r)={y € R%: [z —y| < r}. Since GP(z,y) < G(z,y), Corollary 1.3 of [18] implies that

GO(z,y) < GP(z,y) < CGO(z,y)

for any z,y € F, where C' > 1 is some positive constant depending on F'. Furthermore, since

GO(z,4)G°(y, )
sup dy < 00
(x,z)erO\A/O GO(z,z)

by Theorem 1.8 of [18], it follows from Theorem 5.3 of [14] and Lemma 3.3 of [52] that
GG (z,y) < GO(z,y) < CGY(z,y)

for any z,y € O, which leads us to that
G§(z,y) < GP(z,y) < CGE (x,y)

for any x,y € F. Here the constants C' above are different and depend on 3. Therefore, for any
nonnegative Borel function f on D,

GE(x,y)GF (Y, 2) GB (2,4)GB(y.2)
(z,Z)ESggD\A A G/g (.%’, Z) f(y) V(dy) (z, Z)SI;EF\A/ G ( 72,) f( )V(dy)
D
<o sw [ ELRED )y,
(z,2)eFXF\A
(1.23)

Note that the following 3G-inequality holds locally for G (z,):

GP(z,9)GP(y, 2)
GP(x,2)

< C(GP(x,y) + GP(y,2)), (2,2) € F x F\ A,
where C'is a constant depending on F'. Thereby the right hand side of (1.23) is not greater than

2CSup/G z,y)f(y) v(dy) —QC’sup/G z,y) f(y) v(dy),

zeF z€D

which shows that v belongs to S (Gg).
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Let p be a signed measure on D which can be decomposed into u = ut — = € K2 — K2
such that the supports of ™ and = are compact. Define

Al(u;D)—inf{ED(u,u)—/ugd,u cu € C3P(D), /uzdx—l}.
D D

Assume that A\; := A1 (u; D) < 0 and let h be the corresponding ground state with normalization
[ph*dz = 1. Since p and p~ belong to So (G2,) as discussed above, we can show that, by
the same way as in Section 4 of [57],

C_le))\l(o, z) < h(z) < CG?/\l(o,x), x€D\K (1.24)

for a compact set K C D and a fixed point o € K, where C > 1 is some positive constant
depending on K. On the other hand, if D = R?, then

h(z) < Cexp (—\/—2A1|x|> .z >1 (1.25)
for « = 2 and
c-! C

|z[d+a < h(z) < FIGEE

2] > 1 (1.26)

for 0 < o < 2 by (I1.18) of [12].
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Chapter 2

Extinction of branching symmetric
Markov processes

In this chapter, we give a criterion for extinction or local extinction of branching symmetric Hunt
processes in terms of the principal eigenvalues for time changed processes of symmetric Hunt
processes. Here the branching rates and the branching mechanisms can be state-dependent. In
particular, the branching rates can be singular with respect to the Lebesgue measure. We apply
this criterion to branching Brownian motions and branching symmetric a-stable processes.

2.1 Extinction and local extinction

Let X be a locally compact separable metric space and m a positive smooth Radon measure on
X with full support. Let M = (X3, P;) be an m-symmetric Hunt process on X. Throughout
this section, we assume that M is transient and satisfies Assumption 1.3 (i) and (ii), that is, M
is irreducible and the semigroup satisfies the strong Feller property.

Let M = (X;,Px) be a branching symmetric Hunt process with motion component M,
branching rate u € Koo and branching mechanism {p,(z)},>0. We first consider the extinction
problem of M. Let

o
Fu)(-) =Y pa)ul)™
n=0
We characterize the function u.(x) := P.(ep < 00) as a solution to the equation as follows.

Proposition 2.1. The function u. is a minimal solution to
¢
w(z) = Ey [exp (—Ag) (< oo] VB, [/0 exp (AN F(u) (X)) dAM |, 0<u<1. (21)

Proof. The strong Markov property of M implies that

ue(z) =Pyleo=( < T, eg <o0)+Pyrleg =T <, eg < 0)
+P.(T <ey N, ey < 0)
=P,((<T, (<o) +Pyleg =T <, ep <)
+ E; [Px,(e0 < 0); T < eg A(].
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Since
P,((<T, (<ox)=E, {exp (—Ag) (< oo} ,

¢
P.leo=T <, eg <) =E, [/ exp (—AL) po(Xy) dAf} ,
0

9

C (e e}
E, [Px,(ep < );T <eyA(] = Ey [/0 exp (—A}) an(Xt)ue(Xt)” dAY
n=1

the function w, is a solution to (2.1).
Let R=inf{t >0: Z; # Zy} and S = RAT. Define

So=20
Sk =5k-1+S0bs, ,, k>1,

where 6; is the shift of paths for M. If Zs, = 0 for some k > 1, then we define S; = S}, for all
I > k. Let ug(z) =Py(Zg, =0, eg < 00). Then uy =0 and

up(x) =Pr(( < T, ( <o0)+Preg=T < (, eg < o0)

(2.2)
+ E, [PXT (Zsk_1 =0, eg < OO) T < €0/\C] .
Let x” = (2!, 22,23, --- ,2™) € X(". Since
Pyn [Zski1 =0, e < oo] < HPxi [Zskf1 =0, eg < oo] ,
i=1
the last term of the right hand side of (2.2) is not greater than
Zr
E, HPxiT (Z5k71 =0, eg < oo) T < eg /\C]
i=1
C oo
_ B, / exp (— ALY S pa(X)u_1(X0)" dAY | |
0 n=1
and thus
¢
we(z) < By [exp (—Ag) (< oo} + B, [ / exp (—AM) F(ug_1)(Xy) dA;‘] . (23)
0

Suppose that a function v is also a solution to (2.1). On account of (2.3), ux < v for any k > 1
by induction, which implies that limg_ o ur = ue < v. ]

Lemma 2.2. Any solution to (2.1) is finely continuous.

Proof. Let u be a solution to (2.1). Then the Markov property of M yields that
u(Xy) = Bx, [exp (=A%) ;¢ < 00| + Ex, [ /0 * exp (- A8) F(u)(X) dAf;]
_E, [exp <—A§o€t o et) - o0f; < oo ‘ ft}
+ By Fi

Coby
/ exp (—AE 0 0y) F(u)(Xs00y) dAY o 6, Pp-as. on {t < (}
0
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for all € X. Since it holds that AY, , = A} + Af 06, and that ( =t + o6 Pe-a.s. on {t < (},
the right hand side above is equal to
ft]

¢—t
E:E [exp <_A?+C09t + Af) ;C < o0 ‘ ft} + Ex /0 eXp <_Ag+t + Aé‘) F(u)(XSth) dAéL+t

— exp (A£) B [exp (-A2) ¢ < oo| 7] + exp (A1) B, | Cexp (- AL) F)(X,) 44| 7
t

= exp (Af) B [exp (—AL) ¢ < 00| F] + exp (4f) B, / "exp (- AL) F(u)(X,) dA¢ | 7
0

- exp (4f) [ exp (~A2) F(u)(X,) aAL.

By noting that the right hand side above is right continuous by the right continuity of the
filtration {F;}+>0, the function u is finely continuous by [9, §4 Theorem 4.8]. O

Lemma 2.3. If P,(¢ < 00) < 1 for x € X, then uc.(z) < 1, that is, the process M does not
extinct.

Proof. Since ue <1 and
E, {exp <—A’CL) (= oo} > 0,
(2.1) implies that
¢
ue(x0) < Ey [exp (—A?) ¢ < oo} + E, [/ exp (—A}) F(1)(X;) dAY
0

=1-F, [exp(—Ag);Czoo} < 1.

O
Recall that -
Qz) = F'(1)(z) = Y npa(z)
n=1
and suppose that sup,cy Q(z) < co. Put
M, Q) = inf {5(u,u) +/ wrdp: f e F, / 2 Qdu = 1} . (2.4)
b's b's

We then have

Theorem 2.4. Assume that Py(( < o0) =1 for allx € X and that the branching rate p belongs
to the class Soo. Then, under Assumption 1.6, M extincts if and only if M, Q) > 1.

Proof. Let X\ := A(u1,Q). First suppose that A > 1. Let u be a solution to (2.1) and denote
by 04 the hitting time of a set Ain X, 04 =inf{t >0: X; € A}. Let O = {z € X : u(z) < 1}
and assume that Py (0puno < 00) > 0 for all z € X, where F* is the fine support of the measure
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o defined in (1.8). Since u is finely continuous by Lemma 2.2 and v —u" < (n —1)(1 —u) on O
for n > 2, it follows from (2.1) and the assumption on the lifetime that

u(@) = B, |exp (—AY)| + B, [ /0 " exp (—AL) u(X;) dAé‘]

+ Ey

C o0
| e A S (X (0" ~ u(X) aaf
n=0

> B, {exp <—Ag>} + E, [/OC exp (—Af) u(Xt) dAf]

¢
/0 exp (— A1) S (n = Dpu(X) (1 — u(X,)) dA

n=0

_Ex

for all x € X. Let v =1 — u. Then the right hand side above is equal to

e oo (<) 4 52 [ [ (-8 1 - ot at]

¢
/0 exp (—AL) Y " (n— )pn(Xy)o(Xy) dAY

n=0

—E,

¢
=1-F, [/ exp (—AL) v(Xy) dAtQ”} .
0
Hence
0 < v(z) < GH%y(z), (2.5)

where G*@F is the generalized resolvent defined by

G f(x) = E, [/oC exp (—Ay) f(Xt) dA?H]

for any measurable function f in X such that the right hand side of the expression makes sense.

Let & be the ground state corresponding to A, that is, the function attaining the infimum of
the right hand side of (2.4). Then the function h is bounded, strictly positive and continuous
on X as mentioned in Subsection 1.2.3 before. Since the branching rate p belongs to the class
Swo, it follows that, for a compact set K C X and a fixed point o € K,

h(z) < CG(o,z), € X\ K, (2.6)

where G(x,y) is the Green function of M and C'is a constant depending on K. Thus,

/ h(y) u(dy) < C G(o,y) n(dy)
X\K X\K

< C'sup G(z,y) p(dy) < oo
zeX JX\K

by the fact that So, C Ko and the definition of Ko,. Noting that
| ) () < i) < o
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we see that

/X h(@) p(dz) = /K h(w) puldz) + /X () < oo
Since
h(z) = AGH@rh(z), (2.7)

the inequality (2.5) shows that

/ () (x) Qa)u(dr) = X / G () (z) Q(x)u(d)
X X

3 [ h@)6m () Qauld)
X

[ Hw)ete) Qouts),

X

P

>

where the second equality holds because of the Qu-symmetry of G#@ (see Theorem 2.2 (iv)
of [2]). This contradicts the assumption that A > 1. Hence P (0puno < o0) = 0 for some
x € X, which implies that P,(0puno < 00) = 0 for all x € X because of the irreducibility of M.
Accordingly the equation (2.1) yields that w = 1 on X, and thus u. = 1 on X by Proposition
2.1.

Next suppose that A < 1. Choose a positive constant 3 such that A < § < 1 and a positive
constant e such that 0 < e <1 and F'(1 —¢) > BF'(1) = Q(x). Let § be a positive constant
such that 0 sup,cy h(z) < e and w(z) =1 — dh(z). Then

£ oo (~2)] 4 22 [ [ o (- at) Pl 00 ]
=1 oAt (m) - R aat] 28)
=1-E, [/OC exp (—AY) F'(7)(Xe) (1 — w(Xy)) dAf} ,

where v is a function satisfying 1 — ¢ < w(z) < y(z) < 1 for all x € X. Since

Fl(y)(z) = F'(1 =) (z) = fQ(),

the right hand side of (2.8) is not greater than

1 — B6GHOHRp(z) =1 — X(sh(gc)

by (2.7) and the relation 8 > A. Thus,

E, [exp (—Ag)} B, [ /O : exp (— AM) F(w)(X;) dAY | < w(z). (2.9)

On account of (2.3) and (2.9), we see that uy < w for any k£ > 1 by induction. Hence limy,_. up =
U <w < 1onX. ]
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Remark 2.5. Assume that P, (¢ < co) =1 for all z € X and that u € Sy Recall that
A(p) = inf {E(U,u) tu e F, / u? dp = 1} .
X

If Q(z) = Q, then ) i

This fact says that if Q < 1, then, under Assumption 1.6, M extincts for any branching rate
in S

Let MP be the part of the process M on an open set D in X and (€7, FP) the associated
Dirichlet form on L?(D). Denote by S2 the class S, associated with M?. Then the following
is known:

Lemma 2.6. ([54, Lemma 4.5]) Let D be an open set in X such that Cap(X \ D) > 0 and
w,v € S2. Then under Assumption 1.6, it holds that (i, v; D) > X u,v), where

quu:uE]:D,/qu,uzl}.
D

A, v; D) = inf {SD(u,u) +/

D

We denote by M the branching symmetric Hunt process such that the motion component

is MP and the branching rate is a measure u belonging to S£. Combining Theorem 2.4 with
Lemma 2.6 yields the following;:

Corollary 2.7. Let D be an open set in X such that Py(tp < oo) =1 for all x € D, where
7p = inf{t >0: Xy ¢ D}. Then under Assumption 1.6, the branching process MP extincts if

M, Q) = 1.

Consider a branching diffusion process on a metric space. Then it is known that the ex-
pectation of the number of branches hitting a closed set coincides with the expectation of the
Feynman-Kac functional (see [38]). This relation also holds for branching symmetric Hunt pro-
cesses on X. Combining this fact with Theorem 1.2, Takeda [54] showed the following:

Theorem 2.8. ([54, Theorem 1.2]) Let Ni be the number of branches of M ever hitting a closed
set K in X. Then, under Assumption 1.6, it holds that

sup E; [Ng] < oo <= ANu,Q; X\ K) >1
zeX\K

for any closed set K in X with Cap(K) > 0, where A1, Q; X \ K) := MQu, 1; X \ K).

We note that, although Lemma 2.6 and Theorem 2.8 are proved in [54] for branching sym-
metric a-stable processes, the arguments there also work for more general branching processes
considered in this section.

Let D be an open set in X such that Py(7p < oo) = 1 for all x € X. Assume that the
branching rate u belongs to S2. Then, under Assumption 1.6, Theorem 2.4 and Theorem 2.8
show the following:

A, @Q;D) > 1= Pyleg < o0) =1, supE, [NX\D] < 00
zeD

A, @Q; D) =1= Pyeg < 0) =1, sup E, [NX\D] =00
zeD

M, Q; D) < 1= Py(eg < ) < 1,sup E, [NX\D] = o0.
zeD
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The next lemma says that
{eg = 0} = { lim Z; = oo} P_.-a.s.
t—o0
Lemma 2.9. If P,({ < o0) =1 for all z € X, then
Px(lim Zi=0 or lim Zt:oo) —1, zeD.
t—o0 t—o0
Proof. We first show that
P(Z =k, Vt>0) =0, x* ¢ X* (2.10)
for any k£ > 1. Note that it suffices to consider the case k = 1. Define

=T
Ty,=Ty1+To GTn,1

for n > 1. Then 7T}, denotes the nth branching time of M. Let B be the total number of particle

splits,
B_ 0, if T=o0
] sup {n>1:T, <o}, otherwise,
and let
sp(x) =P, (Z; =1, YVt >0, B=mn).
Since

so(x) = Ey [exp (fA’g) ;¢ = oo} =0
by the assumption on the lifetime, it follows that

sp(z) =Bz (Px,(Z: =1, Vt>0, B=n—1);T <eyA()
¢
— [ [ e (A (X (X ] = 0
0

by induction. Consequently,
P, (Z;=1forall t >0, B<oo):an(3:):0
n=0
for all z € X. Let
t(z) =Py (Zy=1forallt >0, B=o0).

Then
rr¢
ta) = B | [ exp (- AP X 0

Lo
rr¢ ¢

—E, / exp (—A") Ex, { / exp(—A/;)t(Xs)dAglﬂ] dAfl“}
LJo 0
rr¢ Cob

=F, / exp (—AY) Ey {/ exp (—AH 0 0;) (X 0 0;) dAPH o 6, ft] dAf“i}
LJo 0
rr¢ ¢

_ g, / exp (— A") ( / exp(—Ag+Af)t(Xs)dAglﬂ) dAf”‘].
Lo ¢
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By Fubini’s theorem, the last term above is equal to

¢
B | [ exp (-t arraage].
0

By repeating this procedure, it follows that

(A7"

tw) = B, Uocexp(—Aé‘) o t(Xt)dAfW]

for any positive integer n. Since

it(w) = E, [ /0 . (_ Agl_pnu) HX,) d Ai’”‘}

n=0

¢
< FE, [/ dAf} < sup F, [Aﬂ < 00
0 zeD

by (1.10), it follows that ¢t = 0 on X, which implies (2.10).
We next show that the probability that Z; equals k infinitely often is 0 for each positive
integer k. For a positive integer k, let

U=U; =inf{t>0:2, =k}
Vi=U, + Roby,
Up=Vp1+Uoby, ,
V,=U,+Rofy,,

and inf {0} = oo, where R =inf {t > 0: Z; # Zy}. Then

P, (Z; = k infinitely often) = P, ﬂ {Up < o0}

n>1

= lim P, (U, < ).

n—oo
The strong Markov property of M implies that
P, (Uz < 00) =P, (Vi +Uoby, <)
=E; |Px,, (U< o0); <oo}.

By the definition of V7, the right hand side above is equal to
E. [PXU1+R09U1 (U< o0);Ui+Roby, < oo}
=E, [EXU1 Px,(U <o0);R< o0 ;U < oo}

=E, [PXU1 (R+Uoflr <o0);U; <oo} .
Let v = exp (— Supgex P [A’gD Then v > 0 by (1.10) and
P, (¢ <T)=Ey [exp (~4f)] =~
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by the assumption on the lifetime and Jensen’s inequality. As a direct calculation yields that

ka(R+UOHR<OO):1—PXk (R+U09R:OO)

k
<1-[[Pu¢<T)
i=1
<1-4F
for any £ > 1 and x* € X®)_ it holds that

P, (U; < o0) <1—~k

Since
P,(U, < ) =E, [PXUH (R+Uofp < o00);Up1 < oo}
k K\t
< (1—7 )PI(U,H <) < (1—7 )
by induction, we get lim,,—,o, P, (U, < c0) = 0, thereby completing the proof. O

We next discuss the local extinction of M. Let A be a relatively compact open set in X
and denote by p4 the last exit time of M from A, py = sup{t>0:X; € A}. Recall that
ul(z) = Py (L < o0), where Ly = sup {t > 0: Z;(A) > 0}. We then have
A

215 a solution

Proposition 2.10. For every relatively compact open set A in X, the function u
to

w(z) = E, [exp (—Ag) $pa < oo] +E, [/OC exp (—AM) F(u)(X,) dA|, 0<u<1. (2.11)

Proof. Let A be a relatively compact open set in X. Then the strong Markov property of
M implies that

ug (x)

Pm(LA<OO)
Pw(LA<OOa CST)+P27(LA<007 T<C)
P, (Ls < o0, ¢ <T)+E, [Px, (La < o00):T <(].

Since
P,(La<oo, (<T)=FE, [exp <—A’Z> ipa < oo}

and
¢
E, [Px, (La<o);T<(]=FE, {/0 exp (—AY) F (uf) (Xt)dAff] :

A

the function u/

is a solution to (2.11). O

Theorem 2.11. Assume that, for all relatively compact open set A in X, Py(pa < 00) =1 for
all x € X, and that the branching rate p belongs to Soo and its support is compact. Then under
Assumption 1.6, the branching process M extincts locally if and only if A(u, Q) > 1.
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Proof. First suppose that X(u, @) > 1. We then see in a similar way to Theorem 2.4, that
the constant function v = 1 on X is a unique solution to (2.11), which implies that 2 = 1 on
X for each relatively compact open set A in X. Hence M extincts locally. Next suppose that
5\(“, Q) < 1. Let O be a relatively compact open set in X such that O includes the support of
4 and A1, Q; 0) < 1. Then plo belongs to S because the support of x4 is compact in O. Thus
MO = (P)O() does not extinct by Lemma 2.3 or Theorem 2.4. In other words, P{(eg = 00) > 0
for some z € O. Since

P9 (eg = 00) < Pu(Lop = ), z €O,

the branching process M does not extinct locally. O

Remark 2.12. Even if the support of the branching rate is non-compact, Theorem 2.11 remains
true for a branching symmetric a-stable process. More precisely, let D be an open set in R¢
and take an absorbing symmetric a-stable process on D as motion component. Assume that
the branching rate u € S satisfies A(11, Q) < 1. We can then take a bounded C™!' domain O in
D so that A(i, Q; 0) < 1. Let §o(x) = d(z,d0) be the Euclidian distance between z and 9O.
Then there exists a constant C' = C(O, ) > 1 such that

O O
GY(x,y)G (yvz)<C 1 . 1 _
GO(z,z) |z —yld= |y — 2|4

), z,y,z € O

by [18, Theorem 1.6] and there exist positive constants C7 and C3 such that Cy > Cy > 0 and

LSGD(xy)SL z,y €O
|z — y|d— 7 |z —yld—o” ’

which imply that u|o € SC?O. Hence the argument in the proof of Theorem 2.11 works.

Remark 2.13. Extinction of a branching symmetric Hunt process implies local extinction.
Moreover, if P,(¢ < co) =1 for all z € X, then extinction and local extinction are equivalent.

We proved Theorems 2.4 and 2.11 under the assumptions that the branching rate p belongs
to the class Soo and that Assumption 1.6 holds. However, it seems so hard in general to check
Assumption 1.6 for general symmetric Hunt processes. Here we give a sufficient condition for
extinction or local extinction of M that does not require Assumption 1.6.

Theorem 2.14. Assume that P,(¢ < o00) =1 for all x € X. If A, Q) > 1, then M extincts.

Proof. Assume that (i, Q) > 1 and that P, (¢ < o) = 1 for all z € X. Let u be a solution
to (2.1), and let v = 1 — u. We can then show that

0<v(z) < E, [/OC exp (—AM) v(Xy) dA?“} (2.12)

in a way similar to that yielding (2.5). Since

0<w(z) < E, ., n>1

¢ Qu\n
| e capy Bl ape
0 .
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by the iterations of the inequality (2.12), it holds that
s ¢
}:vtwfgﬁg[/$emoCﬁQ_U“>dA?q.
n=0 0
Noting that X(,u; Q@) > 1 if and only if the right hand side above is bounded by Theorem 1.2, we
obtain v = 0 and v = 1 on X, which implies that u, =1 on X. O
We can obtain the following in a similar way to that yielding Theorem 2.14.

Theorem 2.15. Assume that, for every relatively compact open set A in X, Py(pa < o0) =1
forallz € X. If AN, Q) > 1, then M extincts locally.

2.2 Examples

2.2.1 Branching Brownian motions

Example 2.16. Suppose that d = 1. Let M"Y, v € S, be the killed Brownian motion with
respect to exp (—Af) and let M be the branching Brownian motion with motion component
M and branching rate u € KX . First take u = 6 and v = 6_q + 6, for a > 0. Since

2
1+ 2a

1
inf {2D(u,u) +u(—a)? +u(a)?:u € C°(R), u(0)? = 1} =
by Example 6.2 below, the branching process M extincts if and only if

Q0) <1+

1+2a
Next take p = 6_p 4 J for b > 0 and v = dy. Suppose that Q(b) = Q(—b) = Q. Since

1
2(1+b)

inf {;D(u,u) +u(0)? : u € CP(R), u(—b)* 4 u(b)? = 1} =

by Example 6.2, the branching process MY extincts if and only if

@1t 5q

Example 2.17. Let M be a spherically symmetric Riemannian manifold with a pole o and con-
sider the Brownian motion on M. Denote by (£, F) the associated Dirichlet form on L?(M;V):

1
£(u,u) = / IVl v,
2 )m
F = the closure of C§°(M) with respect to E(+,-) + || - H2L2(M;V)7
where V' is the Riemannian volume of M. Let B(r) = {z € M :d(z,0) <r} and 90B(r) =

{r € M :d(xz,0) =r}, where d is the Riemannian distance of M. Denote by ¢, the surface
measure of 0B(r) and let

1

S(r) =6,(0B(r)) and G(r)= /OO 50 dp.
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We now set

AOr; M\ B(r)) = inf{(‘:(u,u) cu € Cg°(M\ B(r)), /BB(R) w?dop =1 }

for r and R with R > r > 0. Then the following results are shown by Takeda [56]; if (Q —
1)S(R)G(R) > 1/2, then

MOop; M\ B(r))>Q—1 < 19 <7 <R,

where the positive constant rg is a unique root of

2(Q —1)S(R)G(R)?
20Q - DS(R)G(R) — 1’

G(r)=

On the other hand, if (Q —1)S(R)G(R) < 1/2, then

A(0r; M\ B(r)) >Q — 1

for any r < R.

Let us denote by M the Brownian motion on M and by M" the absorbing Brownian motion
on M\ B(r). Let M" be the branching Brownian motion with motion component M”, branching
rate p and branching mechanism {py(x)}52, such that Q(z) = >.,° ;npp(z) = Q. Theorem
2.11 and Remark 6.6 then imply the following; if (Q — 1)S(R)G(R) > 1/2, then M" extincts
locally if and only if 79 < r» < R. On the other hand, if (Q — 1)S(R)G(R) < 1/2, then M"
extincts locally for any ~ < R. For instance, take the d-dimensional hyperbolic space H¢ as M
(see Example 3.3 of [32] for definition).

(i) For d =2, S(R)G(R) is strictly increasing,

li = d 1l =1
lim S(R)G(R) =0 an Aim S(R)G(R)
([52, Example 2.6]). Hence if @ > 3/2, then there exists a unique root Ry such that (Q —
1)S(Ro)G(Ro) = 1/2. Moreover, if R > Ry, then M" extincts locally if and only if ro < r < R.
If R < Ro, then M" extincts locally for any » < R. On the other hand, if @ < 3/2, then
(Q —1)S(R)G(R) < 1/2 for all R > 0, and consequently M" extincts locally for any r < R.
(i) For d = 3,

(Q-1S(R)G(R) >1/2 = Q>2+ (2.13)

e2R — 1

by Example 2.6 of [52]. Hence, if Q satisfies the right hand side of (2.13), then M" extincts
locally if and only if ry < r < R. Otherwise, M" extincts locally for any r < R.

(iii) For d > 4, S(R)G(R) < 1/(d — 1) by Example 2.6 of [52]. Therefore, if Q < (d+1)/2,
then M" extincts locally for any r < R.

More detailed properties are studied for branching Brownian motions on H? in [39], and for
branching Markov processes on H? in [36].
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2.2.2 Branching symmetric a-stable processes

Let M® = (X;, P,) be the symmetric a-stable process on R%. Let M be the absorbing a-stable
process on an open set D in R? and (€7, FP) the associated Dirichlet form on L?(D). Define

A(u; D) = inf {ED(u, u):u € CSO(D),/ u? dp = 1}
D
for p € K2.
Example 2.18. Suppose that d = 1 and 1 < o < 2. Then M is recurrent and one point
has positive capacity. Let D = R\ {0}, 4 = 64, @ > 0, and po(x) + p2(z) = 1 on D. Then
Q(z) = 2pa(x). Since
I'(«) cos (%)

AM0a; R\ {0}) = —

2q0—1
by Example 6.6 below, we see from Theorem 2.4 and Theorem 2.8 that
I'(«) cos (E>
Q@) <1- —— 525 = Piley <o) =1, sup By [Npgy] < oo
a z€R\{0}
I'(«) cos (%)
Q(a) =1- 20[—_1 = Px(eo < OO) = 1, sup Ex [N{O}] = O
a z€R\{0}
I'(«) cos (E>
Qa) >1— TIQ = Pu(eg <o0) <1, sup E, [N{O}] = o0.
2a 2€R\{0}
In particular, if
1/(a—1)
I'(«) cos (B>
0<a< ————?—l— :

then this branching symmetric a-stable process extincts even if pa(a) = 1.

Example 2.19. Suppose that 1 < a < 2 and d > «. Then M is transient and the surface of a
sphere has positive capacity. Let &, be the surface measure of a sphere dB(r) = {x € R? : |z| =
r}. Take p = §, and assume that Q(x) = Q. Using Example 4.1 of [58], we see from Theorem
2.11 and Remark 6.6 that, if Q > 1, then M extincts locally if and only if

JaT <d—i—o¢_1>r(a> 1/(a-1)
2 2

(Q—l)P(a;1>P<d;a>

On the other hand, if Q < 1, then M extincts locally for any r > 0.

Let §, be the normalized surface measure of dB(r), &, = 0,/8,(0B(r)). Take pu =
and assume that Q(z) = Q. Noting that A (6,;R?) = 6,(0B(r))A(6,;R?) and 6,(9B(r))
214/2p4=1 T (d/2). we see that if Q > 1, then M@ extincts locally if and only if

0<r< (2.14)

<

d a—1 d— o 1/(d=a)
Lfer@rE ) )] -
9 (d+1)/2T (9) T <d o 1)
2 2
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On the other hand, if Q < 1, then M extincts locally for any r > 0.

Example 2.20. Suppose that 0 < o < 2 and d > «a. Let 1p(,) dz be the d-dimensional Lebesgue
measure restricted on a ball B(r) = {z € R? : |z| < r}. Take p(dx) = 1p(,) dz and assume that

Qx)=Q. If Q@ > 1 and
o d «
2 lr(2>r<2+1)
0<r<

Q-ur(5%) |

then M@ extincts locally by Example 6.4 below. On the other hand, if Q < 1, then M extincts
locally for any r > 0.

1/a

(2.16)

35



Chapter 3

Exponential growth of the numbers
of particles for branching symmetric
Markov processes

We study the exponential growth of the numbers of particles for branching symmetric Hunt
processes by the principal eigenvalues of associated Schrodinger operators under the assumption
that the Schrodinger operators have spectral gaps.

3.1 Exponential growth of the numbers of particles

Let X be a locally compact separable metric space and m a positive smooth Radon measure on
X with full support. Let M = (X}, P;) be an m-symmetric Hunt process on X. Throughout
this section, we assume that M is transient and satisfies Assumption 1.3. Let M = (X, P4, G;)
be the branching symmetric Hunt process with motion component M, branching rate pu € K
and branching mechanism {py(z)}n>0. Recall that Q(z) = > °°  np,(z) and suppose that

sup,ex @(x) < oo.
We proved in Lemma 2.9 that, if P,(¢ < oo) =1 for any = € X, then
{eg = o0} = { lim Z; = oo} P,-a.s.
t—o0
for any € X. This result says that, if the branching process M does not extinct, then

eozoo>:1.

We first study the exponential growth of Z; in terms of the principal eigenvalue

P, <tlim Jy = 00

)\1((Q—1),u):inf{g(u,u)—/Xu2(Q—1)d,u:u€.7-",/Xuzdmzl}. (3.1)

From now on, we suppose that A; := A\ ((Q — 1)u) < 0. We denote by h the ground state
corresponding to A;. Then

h(z) = eMUE, [exp (A,EQ‘”“) h(X):t < c} : (3.2)



Define
Z '
My =M h(X]), t>0. (3.3)
=1

Then M, is a P,-martingale by (1.19) and (3.2), and thus there exists a limit My, := limy_, o, My €
[0,00) P -a.s. Furthermore, it follows from (1.20) and (3.2) that

E, [M7] = B, [exp (A7) n(X0)%t < (|
tAC (3.4)
+E, [/ exp (2)\15 + AEQ_I)“) h(X,)? dASR“] ,
0
where R(z) =Y 7 n(n —1)p,(x).
Lemma 3.1. Assume that sup,cx R(z) < co. Then M; is square integrable.
Proof. Since
B, [exp (A7) R(X0)2t < | < MRl By [exp (A9 ) R(X)st < ¢
= Ml och()

by (3.2), the last term above converges to 0 as ¢ — oco. Hence it follows from (3.4) that

¢
lim B, [M?] = E, [ / exp <2)\15 + AgQ—W) h(X,)? dASR“]
— 00 0

¢ (3.5)
< IRl sup B | [ exp (2054 40709 ]
reX 0

Since

inf{é’(u,u)—/uz(Q—l)du—Q)\l/qum:uef,/uzdm—l}——)\1>0
X X X

by the definition of A;, Lemma 3.5 of [52] shows that

inf{é’(u,u)—l—/u2du—2)\1/qum:uE}",/uQQd,uzl}>1.
X X X

Then the last term of (3.5) is finite by Theorem 1.2, whence M, is square integrable. O

Lemma 3.1 tells us that E, [M] = h(z) > 0, which yields that P, (M € (0,00)) > 0 for
any ¢ € X. It also holds that

¢
E, [M2] = E, [ / exp (2)\13 n AgQ*W) h(X,)? dAf“] .
0

Recall that the extinction probability wu. is a minimal solution to (2.1) by Proposition 2.1.
We then obtain

Lemma 3.2. Suppose that P, (( < o00) =1 for any x € X. If [[,  G*(x,y) p(dx)pu(dy) < oo,
then the equation (2.1) has just two solutions, u =1 and u.

37



Proof. Let u be a solution to (2.1) such that u(zp) < 1 for zy € X. Since u is finely continuous
by Lemma 2.2, it follows from (2.1) that Py, (conrr < 00) > 0, where O = {z € X : u(z) < 1}
and F* is the fine support of the measure p defined in (1.8). Moreover, by the irreducibility of
M, it holds that Py(conpr < 00) > 0 for any = € X, which implies that v < 1 on X.

As a direct calculation yields that

p ‘ p p
E, [exp (—Acﬂ =1—-FE, [/0 exp (—A}) dAY |,
the equation (2.1) is equivalent to that
v =G ((F(1) = F(1—v)) ) on X,

where v = 1 — u > 0. Since the function v. = 1 — u. > 0 is a solution to the equation above, we
see that

/ W(F(L) - F(1 - v,))) dys = / G ((F(1) — F(1 - v)) ) (F(1) — F(1 - v,)) dp
X X
- /X G ((F(1) — F(1 - ve)) ) (F(1) — F(1 —v)) dp
_ / ve(F(1) — F(1 — ) du.
X

Here the integrability of the terms above follows by the assumption on p and the second equality
holds by Theorem 3.2 (iv) of [2]. Since F(-) is strictly convex and v, > v > 0, it holds that
F(1)-F(1-v) F(1)-F( —v,)
1-(1—-v)  1—(1—2)

u-a.e.,

which shows that v = u. p-a.e. Using (2.1), we have u = u, on X. O

Proposition 3.3. Suppose that P, (( < 00) =1 for any x € X. If sup,cx R(z) < oo and
ffXXX G'(z,y) p(dz)p(dy) < oo, then

{eg =0} ={Ms >0} Pg-a.s.
for any x € X.

Proof. Since A\; < 0 and
M; < M Zy| || oo, (3.6)

it holds that
{My >0} C{ep = 0}.

By the assumption on the lifetime,
P.(T = 00,60 =0) = E, [exp (—A’g) (= oo} = 0.

Noting that
{T =00} C{eg < 0} C {M =0},
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we see that
P, (Moo = 0) = Py(Moo = 0, T = 00) + Py(Mso = 0,T < )
— P, (T = 00) + Py(Mso = 0,T < 00)
¢
—-E, [exp (—Ag) (< oo] + B, U exp (—AM) F(P.(Mso = 0))(X;) dAY | |
0

that is, the function P, (M = 0) is a solution to (2.1). Since P, (M = 0) < 1, it follows from
Lemma 3.2 that P, (M = 0) = uc(x) for any z € X. Namely, P, (M > 0) = P, (eg = o0) for
any x € X, which completes the proof. ]

Theorem 3.4. Suppose that P, (( < oo) =1 for any xz € X.
(i) If sup,ex R(z) < o0 and [y,  G*(x,y) p(dz)p(dy) < co, then

P, (Myx € (0,00) |eg =00) =1, z € X. (3.7)

As a consequence,

t—o00

P, <lim inf e’\ltZt >0

GUZOO> =1, ze€X. (3.8)

(ii) If sup,ex R(x) < o0 and [[y,  G*(x,y) p(dx)u(dy) < oo, then for any k > Ay,

P, <lim e Z, = 0o
t—o0

eozoo> =1, ze€X. (3.9)

(iii) For any k < A1,

Z
P, <tlir& ert ;h(Xi) = o) =1, zeX (3.10)
1=
and
P, (litminf et 7, = o) 1, zeX. (3.11)
—00

Furthermore, if X is Green bounded for M, that is, if sup,cx Ey [(] < 00, then, for any k < A1,
P, (tlirélo ez, = o) ~1, zeX. (3.12)
Proof. The equation (3.7) follows from Proposition 3.3. Since
{Ms >0} € {liminf 7, > 0} < { 1im &7, = 00}

for k > A by (3.6), we have (3.8) and (3.9).
Suppose that £ < A. Then the equation (3.10) holds by Lemma 3.1. By (1.19),

"B, [Zi] = B, [exp (/it + A§Q‘1)“) it < C}
t (3.13)
=" E, [exp (—Af)/ exp (A9H) dA9M;t < C] + "B, Jexp (AN st < (].
0

Choose a positive constant € such that 0 < € < A\; — k. Then the last term above is not greater
than

¢
et [ e (0= e)s + a@0e) dA?ﬂhe“Ex exp (At <. (3.14)
0
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By the same argument as in Lemma 3.1, it follows that

¢
e [ (- 4 9] <
zeX 0

and thus the term of (3.14) converges to 0 as t — co. Hence by Fatou’s lemma,

E, [lim inf e“tZt] < lim "B, 2] =0,
—00

t—o00

which implies (3.11).
From now on, we assume that X is Green bounded for M. Let

ug(x) = E, [exp (/‘6€ + AéQfl)“)] .

Then sup,cx ux(r) < oo by Theorem 5.2 of [14] or Theorem 2.4 of [52]. Moreover, Jensen’s
inequality yields that

inf wu,(z) > exp </€ sup B [(] — sup E, [A’d) >0,
rzeX zeX zeX

where we note that sup,cy E; [A’é} < oo by (1.10). By the definition of u, and (1.19),

el{tEx

iu&(xé)] =e"E, [exp (A,EQ*D’Q u(Xy)st < C]

i=1
= e™ME, {exp (AgQil)“> Ex, [exp (FLC + AéQil)“ﬂ it < C} .
Then the last term above is equal to

E, [exp (HC + AéQ_l)“> it < C} < uk(x)

by the Markov property. Since e ZiZ:tl u,(X?%) is a nonnegative P -supermartingale such that

Zy
Zu,{(X%)] < sup ug(x) < oo,
i=1

sup e"E,
) zeX

(z,t)eX x[0,00

there exists a limit limy o €% 3> u,(Xi) < 0o Pg-a.s. for any z € X. Moreover, we see that
limsup,_, ., " Z; < oo Pg-a.s. because inf,ex ug(z) > 0 and

Zy
(;g}f( u,{(:z:)> e 7y < et ZuN(Xi)

i=1

Noting that x < A; is arbitrary, we have (3.12). O
We next study the exponential growth of the number of particles in every open set. In the

sequel, we assume that A\; := A\ ((Q — 1)u) < 0. Let A be an open set in X. Note that, if

P.(L4 = 00) > 0 for some z € X, then P,(L4 = 00) > 0 for any = € X by the irreducibility of
M.
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Lemma 3.5. Assume that the support of the branching rate p is compact. Then, for any non-
empty open set A in X,

P, (lim sup Zi(A) = oo) >0, reX. (3.15)

t—o00

Moreover, if Py(pa < 00) =1 for any x € X, then

P, (hmsup Zi(A) =0 or oo) =1, z€X. (3.16)

t—o0

Namely,

t—o00

{Ly =00} = {limsup Zi(A) = oo} P,-as., zeX.

To prove Lemma 3.5, we consider the following equation:

u(z) = B, {exp <—A?>} + E, [/OC exp (—A}) F(u)(Xy) dAéL] , 0<u<l. (3.17)

We can then prove the following by the same way as in Lemma 3.2.

Lemma 3.6. Assume that [[y G*(z,y) p(dx)u(dy) < oo. If the functions uy and uy are
solutions to (3.17) respectively, and u; < ug <1 on X, then u; = uz on X.

Proof of Lemma 3.5. Let O be a relatively compact open set in X such that O includes the
support of g and A1 < A\j(u, Q;0) < 0, where

Al(M,Q;O)—inf{EO(u,u)—/uz(Q—l)du:uEfO,/u2dm—1}.
o O

Since the measure p|o belongs to S, the branching process MO = (P2) does not extinct by
Theorem 2.4, and thus,

P, (tlim Z,(0) = oo) > po <tlim Z = oo) >0, z€O.

Furthermore, the left hand side above is positive for any x € X by the irreducibility of M.

Let us denote by ng_l)“(x, y) the integral kernel of the Feynman-Kac semigroup ng_l)“ as
defined in (1.14). Then pEQ_l)“(:c, A) = [, ng_l)“(m,y) m(dy) is bounded and continuous on
X by Theorem 1.4 (i) and

-— inf (Q-1)u A
pi= b T A)=0

by the irreducibility of M. Since
_ (@Y .
E,[Z/(A)] = E, [exp (At ) it < (, Xy € A]

by (1.19), it holds that

inf E, [Z,(A)] =
inf [Z1(A)] =p >0,

and thus
igg P.(Z1(A) >1)>0. (3.18)
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Let ¢ be a nonnegative constant such that

e~1 = sup E, [exp (— Z1(A)].
z€0

Then it holds that 0 < ¢ < p because the right hand side above is less than one by (3.18) and
sup E; [exp (—=Z1(A))] > exp < inf E, [Zl(A)]>
z€0 zcO

by Jensen’s inequality. Choose a positive constant § such that 0 < § < ¢. Then for any

x" = (2!, 22,23, 2") € O,

Py (Z1(A) < q20(0)) = Pxn (exp (=Z1(A)) > exp (=g Z0(0)))

< e’ﬁHEzi lexp (—Z1(A))]
i=1

by Chebyshev’s inequality. Since the last term above is not greater than @9 < 1 for any n > 1
by the definition of g, it holds that

sup Pxn(Z1(A) < 3Zp(0)) < 1.
n>1, xn€0™)

Namely,

inf Pxn(Zl(A) Z aZO(O)) > 0.
n>1, xrcO®)

Let us define
A, = {Zm(A) > aZm—l(O)}

for any positive integer m > 1 and

Qp = { lim Z,(0) = oo} . (3.19)

t—o00

Then by the Markov property,

Po(Amt1|Gm)(w) = Px,,)(Z1(4) =2 §20(0))

> inf  Pe(Z1(A) > qZ(0)) > 0
n>1,x7€0™)

for any x € X and w € g, and hence

Z P, (Amt1|Gm)(w) = oco.
m=0

Noting that
m=0 k=1m=k
by [25, p.237, Corollary 3.2], we obtain (3.15).

From now on, we assume that A is an open set in X such that P,(p4 < oo) = 1 for any
x € X. Set

ui(z) = P, (tlggo Zi(A) = o)
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and
uz(z) = Py (hm sup Z:(A) < oo> .

t—o0

We then see in a similar way to Proposition 3.3 that the functions u; and usy are solutions to
(3.17) respectively, by the assumption on A. Since it holds that u; < ug < 1 by definition,
Lemma 3.6 implies that u; = uz on X, which leads us to (3.16). O

Proposition 3.7. Assume that the support of the branching rate u is compact. Then, for any
non-empty open set A in X and k > A,

t—o0

P, <lim sup e™ Z;(A) = oo> >0, z€X. (3.20)
Moreover, if Py(pa < 00) =1 for any x € X, then
{Lg =00} = {li;nsupe”tZt(A) = oo} P,-as., zeX,
—o0
and

{La < o0} = {tliglo e Z,(A) = 0} P,-a.s., =€ X.

Proof. For any k > Ap, there exists a relatively compact open set O in X such that O
includes the support of p and A\ < A1(u, @; O) < k. Then, by Theorem 3.4 (ii),

P, (hm e Z,(0) = oo) > pO <lim etz = oo> >0, z€O0.
t—o0 t—o00

Moreover, the left hand side above is positive for any = € X by the irreducibility of M. If we
replace Qq defined in (3.19) with

{ lim e Z,(0) = oo} ,

t—o0
then (3.20) follows by the same way as in Lemma 3.5.
From now on, let A be an open set in X such that P,(pa < co0) =1 for any x € X. Set
wi(z) = P, (hm et Z,(A) = 0)
t—o0

and

uz(x) = Py <lim supe™Zi(A) < oo) .

t—o0

Then it follows from (3.20) that ua < u; < ug < 1 on X, where ug(z) = Py(La < o0).
Furthermore, by noting that w4, u; and wug are solutions to (3.17) respectively, Lemma 3.6
implies that uq = u; = ug on X, which completes the proof. ]

Theorem 3.8. (i) For any relatively compact open set A in X,

P, <limsup M Z(A) < oo) =1, ze€X. (3.21)

t—o00

As a consequence, for any k < Ay,

P, <lim et Z,(A) = 0) =1, zeX.
t—o00
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(ii) Assume that the support of the branching rate p is compact. Then, for any non-empty open
set A in X such that Py(pa < o00) =1 for any x € X and k > A,

P, <lim sup e Z,(A) = oo ‘ L= oo> 1, z€X. (3.22)

t—o0
Proof. Let A be a relatively compact open set in X. Then

1

MzA)y< — —
A S T

M;.

Since 1
li MZA)< ——— M., P,-as.
1£risoljpe +(A) < o (7] < 0o a.s.,
(3.21) holds. The equation (3.22) follows from Proposition 3.7. O

Remark 3.9. Engliander and Kyprianou [26] studied the exponential growth of the numbers
of particles in every relatively compact open set for branching diffusion processes such that the
branching rates are nonnegative, bounded and continuous functions. On the other hand, we
can take unbounded functions as branching rates in (3.20) of Proposition 3.7 and Theorem 3.8
(i). For instance, let us consider a branching Brownian motion on R®. Then, since the measure
p(dr) = 1/|z|x|3<1 dz belongs to ICEE’, we can take the measure p as branching rate. Moreover,
the ground state of \j(u; R?) satisfies (1.24) because the support of y is compact.

Assume that M is Harris recurrent. Let us consider the branching symmetric Hunt process
M = (P,) on X such that the branching rate u belongs to Ko.. Denote by T the first splitting
time of M. Since P,(Ah = o) =1 for any x € X (see [46, p.426, Proposition 3.11]), it follows
that
P,(T =00)=E;[exp(—AL)] =0

for any x € X. Using this fact, we can show Theorem 3.4 (i), (ii) and Theorem 3.8 by the same
argument. Here the condition [[y  G*(x,y) p(dz)u(dy) < oo is replaced with p(X) < oo and
the condition on the lifetime or the last exit times is not imposed.

Remark 3.10. Let M” be an absorbing symmetric a-stable process on an open set D in R¢
and assume that MP is transient. As we mentioned in Remark 2.12, any measure yu € S2
satisfies p|o € S for every bounded CY! domain O in D. Hence, if we take a branching rate
1 € SE such that [[,, , G*P(z,y) p(dz)u(dy) < oo, then the arguments from Lemma 3.5 to
Theorem 3.8 work, where G*P(z,y) is the Green function of the exp (—A}")-subprocess of MP,
that is,

| 6ttt iy = . [ [ exm (=t ) i

3.2 Examples

We apply Theorems 3.4 and 3.8 to branching Brownian motions and branching symmetric a-
stable processes. Let M be an absorbing symmetric a-stable process on an open set D and
(EP, FP) the associated Dirichlet form. Recall that

)\1(,u;D):inf{SD(u,u)—/Dquu:ueC’(‘)X’(D),/

ulde = 1}
D
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for p = pt —p= € K2 — K2. Let us denote by MP = (X;,P,) the branching symmetric
a-stable process such that the motion component is M and the branching rate u belongs to
the class 2.

Example 3.11. Let M® = (X;,P,) be a branching symmetric a-stable process on R with
branching rate dp. Assume that the branching mechanism satisfies po(0) + p2(0) = 1. Then
Q(0) = 2p2(0). Since the extinction probability is a minimal solution to (2.1) as can be proved
in a way similar to that yielding Proposition 2.1, we obtain

1, 0 < p(0) <1/2
(1 - p2(0))/p2(0),  1/2 < pa(0) < L.

Hence if 1/2 < p3(0) < 1, then it holds that
ey = oo> =1

eozoo)zl,

where the principal eigenvalue A\ (a) := A\ ((Q — 1)dp; R) and the corresponding ground state
h are the same as in Example 6.10 below with @ there replaced by Q(0), respectively. It also
holds that, for any relatively compact open set A,

Px(eo < OO) = {

Zt
: /\1(0{)15 7
P, (tlggo e z_; h(X%) € (0,00)

and
P, (lim inf eM(@tz, > 0

t—oo

P, (lim sup e (@ Z,(4) < oo) =1

t—o0

and

P, <lim sup e™ Z;(A) = oo ‘ La= oo> =1
t—o0
for any k > Aj ().

Example 3.12. Suppose that d = 1 and 1 < o < 2. Let us take first D = (=R, R) and
i =10q, a € (—R,R). We then see from Example 6.5 below and (1.17) that

A+ VA? + 4a?
2 )

A= {(a —1)2072 (;‘)2}1/(a_1) :

Note that limp_,o0 A\1(da; (—R, R)) = A1(d0;R) for each a € R. Let Ay = A\1(dq; (—R, R)) and
denote by h the corresponding ground state. Then

M (6a; (—R,R)) <0 < R> (3.23)

where

h(z) = G, (z,a)h(a),

where Gf)\l (z,y) is the —Aj-resolvent of the absorbing symmetric a-stable process on (—R, R).
It follows from (3) of [45] and (1.24) that, if 1 < o < 2, then

B O((R-2)?%), z—R
he) = {0 (R+2)*?), = — —R. (3:24)
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Let us consider the binary branching absorbing symmetric a-stable process on (—R, R) with
branching rate §,. Then this process does not extinct if and only if @ and R satisfies the right
hand side of (3.23) by Theorem 2.4. Note that (=R, R) is Green bounded because

2

P =

(R2 - x?)a/Z

as proved by Getoor [30, Section 5] or S. Watanabe [60, Theorem 2.1], where 7 is the exit time
of the one-dimensional symmetric a-stable process from (—R, R). Therefore, if a and R satisfies
(3.23), then (3.7), (3.9) and (3.12) hold for this process.

Next consider the binary branching absorbing symmetric a-stable process on (0,00) with
branching rate J,. Then

— <%>2 1/(a—1)

A (0q;(0,00)) <0 <= a > 5

(3.25)

by Example 6.5 below and (1.17). This condition is also equivalent to say that the branching
process does not extinct by Theorem 2.4. Denote by h the ground state corresponding to
A1(0g; (0,00)). Then it follows from (3) of [45] and (1.24) that

_JO (wa/Q) , r—0
h(z) = {O (=04 | 2 0.

Since (0, 00) is not Green bounded, (3.7), (3.9) and (3.11) hold if a satisfies (3.25).

Example 3.13. Suppose that 1 < a < 2 and d > a. Let us take D = R? and p = 0, the
surface measure on {z € R? : |x| = R}. Then it follows from Example 4.1 of [58] and (1.17) that

d+ « o
r -1)1 (%)
1 —
r( r d—o
2 2
Hence, the binary branching symmetric a-stable process on R? with branching rate éz does not

extinct locally if and only if R satisfies the right hand side of (3.26). Under this condition, (3.21)
and (3.22) hold for this process.

1/(a=1)

M0OrRY) <0 <= R> (3.26)
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Chapter 4

Limit theorems for branching
symmetric Markov processes

We establish limit theorems for branching symmetric Hunt processes by using the principal eigen-
values and the ground states of associated Schrédinger operators. We apply them to branching
Brownian motions and branching symmetric a-stable processes.

4.1 h-transform and ergodicity

Let X be a locally compact separable metric space and m a positive Radon measure on X with
full support. Let M = (X3, P;) be an m-symmetric Hunt process on X. In this section, we fix
a signed measure p which can be decomposed into g = pu* — = € Koo — Koo. Assume that M
satisfies Assumptions 1.3 and 1.5 and that \; := A\;(u) < 0. Let h be the normalized positive
eigenfunction corresponding to A\; with [ X h?dm = 1.

First recall the notations from Section 1.1: M}* is the martingale additive functional and N}*
is the continuous additive functional of zero energy for u € F, as appeared in (1.7). M,"‘ is
the continuous part of M and pipru.cy is the energy measure of M. The measure J(dz,dy)
is the jump measure of M defined in (1.6). We now suppose that ¢~ = 0. Since it holds that
h = G_x,(hp) on X, Fukushima’s decomposition (1.7) implies that for q.e. z € X, P,-a.s.

h(Xi) = h(Xo) = M+ N
t t
= Mth—)q/ h(Xs)ds—/ h(Xs)dA", ¢ >0.
0 0

Set

t
1
M, :/ dmh.,
"o h(Xe)

Then the solution R; to the stochastic differential equation
t

thl—i—/ Ry dM;,
0

is a positive local martingale, and thus a supermartingale. As a result, the formula

dP" = R;dP, on F,
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uniquely determines a family of probability measures {P;}, reX } on (Q,Fy). To emphasize,
the Hunt process M under probability measures {ng}, reX } will be denoted by M"; that is,

El [F(X1)] = Ba [Ri (X))

for t > 0 and f € B*(X). It follows from [16] that the process M" is h?m-symmetric and
irreducible because exp (A}) h(X;) is strictly positive. If u~ # 0, then we can also apply the

same argument as above to the exp (—Afi)—subprocess of M. Let (Sh, ]:h) be the symmetric

Dirichlet form on L?(X;h?m) associated with M". We then have by Theorems 2.6 and 2.8 of
[16] the following:

Theorem 4.1. (i) It holds that

2
)

where E (u,u) = E"(u,u) + [y u? h2dm.
(ii) The constant function 1 belongs to F"* and £"(1,1) = 0. Consequently, M" is recurrent.

1
EM(uyu) = /X h(@)? ey (do) + / /X o ) ) ) e ),

Note that, by Doléan-Dade’s formula (see [33, Theorem 9.39)),

where M is a continuous part of M;. Then, applying Ito’s formula [33, Theorem 9.35] to
log h(X}), we obtain for q.e. z € X, P,-a.s.

log h(X;) — log h(Xo) = My — %(Mc)t + Z <log h(g(X:_)) + h(Xsfz(;(:l_(;(s_)> — it — Al
Hence P Ot 4 A) h(X})
t = €Xp (A1 t h(Xo)’
that is, R
B 7] = 5y B o (A (X £ (4.1)

(4.1) implies that u € F" if and only if uh € F and that

EMu,u) = 5(uh,uh)—/(uh)(x)2(>\1m(dx)—|—u(dx))
X

= EM(uh,uh) — M\ /X (uh)(z)*m(dz).

In other words, ®" : u + uh is an isometry from (£, F*) onto (£#F*1™ F) and from L?(X; h?m)
onto L?(X;m).
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By Theorem 4.1 (ii),
inf {Sh(u, u):u € Fh / u?h?dm = 1} =0.
X
Let A% := \2(u) be the spectral gap for the self-adjoint operator associated with (£, F"),
() = inf {Eh(u,u) cu € Fh / u? h2dm =1, / uh?dm = 0} .
X X
Since all the spectra are invariant under the isometry ®", it follows that

A = Xa (1) — M () > 0, (4.2)

which leads us to the following Poincaré inequality:

_\h
Hp?QDHL%X;th) <e A2t”90HL2(X;h2m) (43)

for any ¢ € L*(X;h?m) with [y ¢ h?dm = 0. Here {p}!,t > 0} is the Markovian transition
semigroup of M",
pf@) = B[f(XP), f e BHX).
Note that p}' has the transition density kernel p}(z,y) with respect to the measure h%m given
. fe.0)
h _ At P\
P = hy)

Then

ot (o) (@)
6A1s

= /X P, y)pie(y)h(y) m(dy)

Mk (o) - ) (o)

— h(@) ||(pe) - hll 2 (xm)
6)\15 h
ho) 195 l|2,00 1P Pl L2 (x302m) -

p?ﬂ‘P(ﬂf)‘ =

HPI}ELSOHLZ(X;th)

Hence, for every ¢ € L*(X;h*m) with [y ¢ h*dm = 0, we see from (4.3) that the last term

above is not greater than
6)\13

—\b
h(x)Hpg”?,OOe 2t||S0||L2(X;h2m)'

Taking s = 1/2, we see that there exists a constant C' > 0 such that
_\h
(@)pf ()] < Ce ol 2 (xpemy  fort>1 (4.4)
for every ¢ € L?(X;h%*m) with [, ¢ h*dm = 0. For ¢ € L*(X;h%*m), we can write ¢(z)

[x ¢ h?dm + po(x), where @o(z) = p(z) — [y ¢ h*dm has the property that o € L*(X;h%m)
with [} ¢o h?dm = 0. As p'l = 1, we see from (4.4) that

tlim o) = / @ h*dm + tlim plpo(z) = / @ h?dm, reX (4.5)
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for any p € L?(X;h?m). This together with (4.1) yields that

lim M, [exp (AF) £(X)] = h(z) /X fhdm, zeX (4.6)

t—o00

for any f € L*(X;m).

4.2 Limit theorems

Throughout this section, we assume that M satisfies Assumptions 1.3 and 1.5. Let M =
(22,G,G:, X4, P,) be the branching symmetric Hunt process with motion component M, branch-
ing rate u € K and branching mechanism {p, (z)},>0. We assume that sup,cx Q(z) < oo and

A= M((Q — 1)) <0, where Q(z) = Y 07y npn(z).

Lemma 4.2. It holds that

lim eM'E, [Z;(f)] = h(z) /X fhdm, z€X (4.7)

t—o0
for any f € L*(X;m).

Proof. Since it follows from (1.19) that

ME, (Z(f)] = B, [exp (41°7) £(X0)] (4.8)

we get (4.7) from (4.6). O
Recall that

M; =eMZ,(h), t>0 (4.9)

and there exists a limit My, = limy_oo M; € [0,00) Pg-a.s. In the sequel, we assume that
sup,ex R(z) < co. We then obtain

Proposition 4.3. (i) It holds that

lim eM!Z;(f) = Moo/ fhdm in Pg-probability (4.10)
X

t—o0

for any f € L*(X;m) N By(X).
(i) Let {t,} be any sequence such that Y .o e " < oo for some positive € > 0 so that
0<e<(=A1)A2X\2. Then

n—oo

lim e/\lt"Ztn(f)_Moo/ fhdm — Pg-a.s. (4.11)
X

for any f € L2(X;m) N By(X).

Proof. Let f € L*(X;m) N By(X) and g(z) = f(z) — h(z) [y fhdm. Then

e)‘ltZt(f) = Mt/ fh dm + eAltZt(g).
X
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By (1.20),
E, [(e)‘ltZt(g))Q] —I411, (4.12)

where

I:= e”‘ltEx [exp (AﬁQfl)“> Q(Xt)z}

and
II:=E; [/Ot exp (2)\15 + AgQ_l)“) (e/\l(t_s)EXs [exp <A§?s_1)“) g(Xt,s)])2 dASR”} )

Recall that A} := M/((Q — 1)u) > 0 as we saw in (4.2). Then, since for any positive ¢ <
(=A1) A (203),

ol E [exp (20 + o)t + A7) < o0

by Theorem 5.1 of [14] or Theorem 2.4 of [52], it follows that

1< e B, |exp (20 + )t + A7) gl ) < €167 910 (xm

By (4.4),
t
II < &FE, [/ exp (2)\13 + AgQ_l)“) e 23 (t=s) dAf“} HgHig(X,m)
0 )
¢
< e E, [/ exp ((2>\1 +e)s+ Ag_”“) dAf”] 9172 (x m)-
0 )
Since
inf{g(u,u) —/ w?(Q — 1) dp — (2)\ —i—e)/ u?dm :u ef,/ u?dm = 1} =)\ —¢
X X X
>0
by the definition of A;, we deduce from Theorem 1.2 and [52, Lemma 3.5] that
¢
sup F, [/ exp ((2)\1 +e)s+ AgQ_l)“) dAf“} < 00,
zeX 0
and thus IT < cg e || g||200( x;m)- Combining these estimates implies that
A1t 2 —et 2
B, |(20)°| < (e ) gl iy (4.13)

Furthermore, by Chebyshev’s inequality,
At 1 At 2
P, (‘6 Zt(g)‘ > 5> < 672E:): (6 Zt(Q))

—et 112
< 53¢ gl zoe (x;m)

for any ¢ > 0, and the last term above goes to 0 as t — oo. Therefore (4.10) follows.
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Let f and g be the same as above, respectively. By (4.13),

ZE [( Aitn 7, ( ))2} < Cie—étn < 0.
n=1

By Borel-Cantelli’s lemma, we have lim,, .o e’ Z; (g) =0 P -a.s., and so (4.11) as lim; .o, M; =
My Py -as. ]

We will assume the following on X and the branching rate:

Assumption 4.4. Either (i) or (ii) holds:
(i) It holds that Py(¢ < oo) = 1 for every z € X and the branching rate p € Ko satisfies

[ xoxx G*(@,y) p(de)pu(dy) < co.
(ii) M is Harris recurrent and the branching rate p € Ko satisfies u(X) < oo.

Recall that we proved Lemma 3.1 and Proposition 3.3 that M; in (4.9) is a square integrable
martingale and that
{eg =00} ={My € (0,00)} Py-as., (4.14)

where e is the extinction time of M defined by

ep =1inf{t >0:Z; =0}.
We then get the following immediately from the above, Lemma 4.2 and Proposition 4.3.
Corollary 4.5. (i) It holds that

lim Zi(4) _ M
t—oo Eg [Z;(A)]  h(z)

in P, -probability

for every Borel subset A in X such that 0 < m(A) < co.
(ii) Suppose that Assumption 4.4 holds. If m(X) < oo, then

hd
lim Zi(A) _ Jahrdm
t—oo 7 Jx hdm

in PS-probability

for every Borel subset A in X, where PS(-) = P.(-|ep = 00).
(iii) Suppose that Assumption 4.4 holds. Let {t,} be any sequence as in Proposition 4.3. If
m(X) < oo, then

hd
lim Zn(4) = Jahdm P;-a.s.
n—00 Ztn fX hdm

for every Borel subset A in X.

Proof. Let A be a Borel subset in X such that 0 < m(A) < co. Then combining Proposition
4.3 with Lemma 4.2 implies that

lim 7Zt(A) = lim —AltZt(A)
t—oo K, [Zt (A)] t—o0 eAltE [Zt(A)]

M Jahdm My
= in P-probability,
fAhdm h) in probability
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whence (i) holds. We now that assume that Assumption 4.4 holds and that 0 < m(X) < oc.
Then, since the constant function belongs to L?(X;m), we obtain by Proposition 4.3 and (4.14),

At
lim Z(A) _ lim e Zy(4)
t—o00 Zt t—o0 eAltZt

B MoofAhdm B fAhdm
- Moothdm - thdm

in P¢-probability,

which yields (ii). By the same way, (iii) follows. O

Corollary 4.5 is an extension of the result for branching Brownian motions by S. Watanabe
[61, Corollary on p.397] to branching symmetric Hunt processes with state dependent branching
rates and branching mechanisms.

Remark 4.6. Let M® = (X;, P,) be the symmetric a-stable process on R?. Since (4.6) is
true for any f € By(R?) by [55, Corollary 4.7], Lemma 4.2 holds for any f € By(RY). We now
consider the branching symmetric a-stable process with motion component M® and branching
rate p € ICIS. Then for any f € B,(R%),

(m,t)@sglilz(l,oo) ‘eAltEx [exp <A£Q_1)#) f(Xt)} ‘ (4.15)

h < o0

L1(R4;h2dx)

’ 1

< CPHfHLOO(]Rd;da:) sup Hh(x)p}f(l’, ‘)HLP(Rd;h2da:)
TER?
for any p > 2+ n/a and ¢ = p/(p — 1) by Lemmas 4.4 and 4.6 of [55], where C), is a positive
constant depending on p. Thus II in the proof of Proposition 4.3 converges to 0 as t — oo for
any f € By(R?) by combining (4.15) with the dominated convergence theorem, instead of the
inequality (4.4). As a result, (4.10) holds for any f € By(RY), which leads us to that Corollary
4.5 (i) and (ii) hold for every Borel subset A in R%.

We are now in a position to establish the following almost sure convergence of eM!Z,(f).

Theorem 4.7. There exists a subspace o C  of full probability such that, for every w €
and for every bounded Borel measurable function f on X with compact support whose set of
discontinuous points has zero m-measure,

Jim MZ(f)(w) = Mao(w) /X fhdm. (4.16)

Observe that h is strictly positive and continuous on X. So every bounded Borel measurable
function f with compact support is bounded by ch for some ¢ > 0.

Our approach to Theorem 4.7 is similar to that to [4, Theorem 1’]. We now prove two
lemmas. Let § be a positive constant 0 < § < (—A1) A 2\4 and denote by X?é’i the particles at
time ¢ > nd such that whose parent is Xius. Let U be a nearly Borel subset of X, and for x € X
and € > 0,

US () = {y U hiy) > - igh(m)}-

Define
e

ni — M(X3,5)1 fyens :
, 14¢ {Xt teUs(Xi ;) for every te[né,(n-i-l)é]}

19 6
and Sy = e S 7ns Vi
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Lemma 4.8. It holds that

lim (5;}6 —E, |5%°

n—oo

gm;D =0 P,-a.s.

Proof. A direct calculation implies that

2 i 2 2
E, (52’6—Ez [52’6 gmsD —E, (Sff) —25°E, [Sff Qms] +E, [52’6 gm;}
= Ex Ex |:(S76176) gn5:| - EI |:S§z’6 gn6:| :
B (4.17)
Since
2 Zng 5.\ 2 0,40
B |(90)" || = eome S (00) 0 Y v e
Zn,
_ 9M\né 4 8, 2 221 nd 0,e e
— e ZE“*’ Y Gus| + e Z Ey |Y7 | Gns | Ex | Y, | Gns
=1 ISZJSZn&Z?é]
and
2 Zns 2
e st o] = (32 [t 0]
=1
Zns s 2 5 1
= €2>\1n62Ew [Ynf gné] + e2Mnd Z E, [Yn,’ie gn5] E,; [Yﬂj gné] ’
=1 1§’L’]§Zn5717£]

the last term of (4.17) is equal to

Zns 2 2 Zns 2
PN, Z(Ex [(Y,ff) ‘gms} -E, {Yf;f gms] )] < NUE; | ) B, [(Yf,’f) ‘gms”
i—1 =1

By the Markov property and (1.19), the last term above is equal to

— 52\ ? s | (Q-1)u 5.e)?
ZEX% (Yo,l) = e, exp (An§ )EXms (Yo,’1>

i=1 -

62)\1n5Ex

< PMMp, :exp (Aq(g_l)”> h(Xm;)z}

< B, fexp (A9 h(Xo0)] 1]l xm)

= ()[R Lo (x;m)-

o) 2
S | (807 - B |0° | 6] ) ] <o,
n=0

which yields the desired result by an application of Borel-Cantelli’s lemma. O

Therefore
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Lemma 4.9. It holds that

lim inf eM? Ziy(1yh) > Moo/ h?dm P,-a.s. (4.18)
U

t—o0
for every open subset U in X.

Proof. Since eM!Z;(1yh) > eMOSOE for any t € [nd, (n + 1)¢], the Markov property and
Lemma 4.8 yield that

litm inf et Z,(17h) > M0 lim inf S2¢
—00

n—oo
Zns
/\15 A1nd 0,
hnrr_l)loréfe ! ZEXZ [S }
i=1
Mo Zns
=112 hnnigf eMmo Zz; h( PXZ (Xt € U*(Xy) for every t € [0, 5])

By (4.11), the right hand side above is equal to

+(X¢ € U5(Xo), for every t € [0,4])h(z)?* m(dz)

_ e 2
71+5M /E 5,(5<T€}h(a¢) m(dz)

)\15
> T 5MOO/UEx e*Ag;é < Tg} h(x)* m(dz),

where 7. = inf {t > 0: Xy ¢ U*(Xp)}. Since X; is right continuous, the last term above converges
to Moo [;; h? dm by letting first § — 0 and then ¢ — 0, whence (4.18) holds. O

Proof of Theorem 4.7. Since X is a locally compact separable metric space, there exists a
countable base U of open set {Ug, k > 1} that is closed under finite union. By Lemma 4.9, there
exists o C Q of full probability so that for every w € g,

litm inf M Z, (17, h) (w) > Moo(w)/ h?* dm for every Uy € U.
—00 Uy

For any open set U, there exists a sequence of increasing open sets {U,,,k > 1} in U so that
Us 1 Up, = U. We have for every w € £,

liminf eM!Z; (1h)(w) > lim inf e/\ltZt(lUn h)(w)

t—00 t—o00
> Moo(w)/ h%dm for every k > 1.
Un,,
Passing k — oo yields that
lim inf M Z,(1ph)(w) > Moo (w) / h? dm. (4.19)
— 00 U
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We now consider (4.16) on {My, > 0}. For each fixed w € Q¢ N {Ms > 0}, define the
probability measures u; and p on X respectively, by

eMtz, w
plA)w) = 2 AT)

and u(A) = / h% dm, Ae B(X)
A

for every ¢t > 0. Note that the measure u; is well-defined for every ¢ > 0. The inequality (4.19)
tells us that u; converges weakly to p (for example, see [25, Theorem 9.1 on p.164]). Since h
is strictly positive and continuous on X, for every function f on X with compact support on

X whose discontinuity set has zero m-measure (equivalently zero p-measure), ¢ := f/h is a
bounded function having compact support with the same set of discontinuity with f. We thus
have
lim / pdu = / o du, (4.20)
which is equivalent to say that
tlim M Z(F)(w) = Moo(w)/ fhdm for every w € Qo N {My > 0}. (4.21)
— 0 X

Since, for every function f on X such that |f| is bounded by ch for some ¢ > 0,
AN Z(f)] < M Z(f]) < eMy,

(4.21) holds automatically on { M., = 0}. This completes the proof of the theorem. O

In a similar way to that yielding Corollary 4.5, we obtain from Theorem 4.7 and Lemma 4.2
the following:

Corollary 4.10. Let ¢ be the same as in Theorem 4.7.
(i) (A law of large numbers) It holds that
Zi(A)(w) _ Moo(w)

lim =

for every w € Qg and for every relatively compact Borel subset A in X having m(A) > 0 and
m(0A) = 0.
(ii) Suppose also that Assumption 4.4 holds. Then

lim Z1(A)(w) _ Jyhdm
t—oo Zy(B)(w)  [ghdm

for every w € Qo N{ey = oo} and for every pair of relatively compact Borel subsets A and B in
X having m(A),m(B) > 0 and m(0A) = m(0B) = 0 respectively.

4.3 Examples

We apply the results above to branching Brownian motions and branching symmetric a-stable
processes. Let M® = (X;, P;) be the symmetric a-stable process on R¢ and (£%, F®) the
associated Dirichlet form on L?(R%). Denote by MP = (X[, PP) the absorbing symmetric
a-stable process on an open set D in R? and by (£P, FP) the associated Dirichlet form. Let
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GP(x,y) and Gg (z,y) be the Green function and the S-resolvent density of M” respectively.
We set

Al(u;D):inf{ED(u,u)—/u2du:u€C’8°(D), /u2dﬂj‘:1}.
D D

Let MP = (XP,P,) be the branching symmetric a-stable process with motion component
MP and branching rate measure pu € 2. Let Q be the same as before. Suppose that \; :=
AM((Q — Du; D) < 0. If D is bounded, then Proposition 4.3, Corollary 4.5, Theorem 4.7 and
Corollary 4.10 hold. On the other hand, if D = R? then Proposition 4.3, Corollary 4.5 (i)
and (ii), Theorem 4.7 and Corollary 4.10 hold. Otherwise, Proposition 4.3, Theorem 4.7 and
Corollary 4.10 hold.

From now on, we use the following notation: for functions f and ¢ on a space F and a subset
F C E, we write f = g on F, if there exist positive constants ¢; > ¢z > 0 such that for any
rzeF,

e29(x) < f(@) < erg(a).

Example 4.11. Suppose that d = 1 and 1 < o < 2. Let D = (—R,R) for R > 0 and a € D.
Let A\1 = A1 (0q; (—R, R)), where §, is the Dirac measure at a. We denote by M? = (XP,P,)
the binary branching symmetric a-stable process with motion component MP and branching
rate dp. We first suppose that a« = 2. Note that we can calculate A\; and the corresponding
ground state in Example 6.8 below. Hence, if R > 0 satisfies the right hand side of (3.23), then
for any r € (a, R) and ¢ > 0, we have by Proposition 4.3 (ii) P-a.s.

Jirgoekmézné((—r, T’)C)
\/07 (smh{2\/ —2M1(R —a)} + sinh{2y/—2X\; (R + a) ) }) sinh®{1/—2X\1 (R —

and by Corollary 4.5 (iii)
ey = oo) =1,

where C1 = Ci(a, R, A1) is the positive constant which will be defined in (6.6) below and
sinh{2v/—2X\1 (R — a)} + sinh{2v/—2X\; (R + a)}

2 sinh{2v/—2)\1 R} sinh{y/=2X1 (R — a)} sinh{v/—2X1 (R + a)}

We also have by Theorem 4.7 P -a.s.

oo g

P, ( i 220U o Gan2 taa(R — )

02 - 02((1, R7 )\1) =

tll)rglo M Z((—r, 7)) :\/f’T <s1nh{2\/—2/\1 —a)} +sinh{2v/ -2\ (R + a) )

(smh2{\/ oM R} — sinh®{y/—2X (R — r)}> Mo
for any r € (a, R), and by Corollary 4.10 (i) P-a.s.

lim 7Zt(A)

1
Crsinh{2V/=2A1(R — )} sinh{2y/ =2\ (R + 2)} M, = € (=R,d]

Cq sinh{2v/ =2\ (R + a)} sinh{2v/ =2\ (R — z)}

My, z€(a,R)
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for every relatively compact Borel subset A in (—R, R) whose boundary has zero Lebesgue
measure. We next suppose that 1 < a < 2. Note that we already obtain the decay rate of the
ground state by (3.24). Hence, if R > 0 satisfies the right hand side of (3.23), then for any
r € (a,R) and § > 0, we have by Proposition 4.3 (ii) P-a.s.

lim M79Z,5((—r,7)) = O (R —1)@*2/12),

n—oo
ey = oo> = 1.
We also obtain by Theorem 4.7 P,-a.s.

lim eMUZ,((—r, 7)) = (/OO hdz — O ((R - r)(a”)/?)) Ma

—
t—o0 — o

and by Corollary 4.5

P, ( i, 211 _ g (g pyesoe)

oo g

for any r € (a, R), and by Corollary 4.10 (i) P,-a.s.

y Z1(A) (R4+2)"*?My as = — —R
im ————— &
t—oo By [Z(A)] (R—z)"*°?M,, as z— R

for every relatively compact Borel subset A in (—R, R) whose boundary has zero Lebesgue
measure.

Example 4.12. Suppose that d =1 and 1 < a < 2. Let A1(a) = A1(dp; R) and denote by h the
corresponding ground state. We can then obtain A\ («) and h explicitly in Example 6.10 below,
where @ = 2. We can also see the decay rate of h at infinity by (1.25) and (1.26).

Let M® = (X;,P,) be the branching symmetric a-stable process with motion component
M® and branching rate dy. If a = 2, then for any r > 0, we get by Proposition 4.3 (i) in
P_-probability

lim e /2 Z,((—=r,r)°) = 2" My,

t—o0

and by Corollary 4.5 (ii) in P,-probability

7Z.((— c

We also get by Theorem 4.7 P -a.s.
lim e "2 Z,((=r,7)) = 2(1 —e™") Mo

t—o0
for large r > 0, and by Corollary 4.10 (i) P, -a.s.

Z:(A
lim t( )

t—o0 Ky [Zt(ll)]

for every & € R and for every relatively compact Borel subset A in R whose boundary has zero
Lebesgue measure. On the other hand, if 1 < a < 2, then for large r > 0, we have by Proposition
4.3 (i) in Pg-probability

lim e)‘l(o‘)tZt((—r, r)) =0 (7’_0‘) Mo,

t—o00
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and by Corollary 4.5 (ii) and (1.26) in P,-probability

: Zt((—T, T,)c)
tliglo Zy

We also have by Theorem 4.7 P -a.s.

=0 (r %).

lim M@ Z, (=1, 1)) = < / h h(z)dz — O (ra)> My

t—o0 oo
for large r > 0, and by Corollary 4.10 P,-a.s.

lim 7Zt(A)

~ |z|'ToMy, as |z| — oo

for every relatively compact Borel subset A in R whose boundary has zero Lebesgue measure.

Example 4.13. Suppose that 1 < o < 2 and d > «. Let dg be the surface measure on 0Br =
{z € R?: |z| = R} and \; := M\ (0r;R?). Denote by M@ = (X;, P,) the binary branching
symmetric a-stable process with motion component M® and branching rate dz. Assume that
the radius R > 0 satisfies the right hand side of (3.26). Denote by B(r) the open ball with
radius 7 > 0 and centered at the origin, B(r) = {x € R? : |z| < r}. If a = 2, then for large
r > 0, we have by Proposition 4.3 (i) and Remark 4.6 in P, -probability

lim M Z,(B(r)¢) = o (e—v—%?") M,

t—oo

and by Corollary 4.5 (ii), Remark 4.6 and (1.25) in P -probability
i ZAB0) _ (v
t—o00 Zt
We also obtain by Theorem 4.7 P, -a.s.
lim Mt Z,(B(r)) = </ hdze — o (e—v—”ﬂ‘» Mo
Rd

t—o0
for large r > 0, and by Corollary 4.10 (i) P-a.s.

- Zi(A) (ol
B Z,0A] " ° (¢ ) Moo as || = o

for every relatively compact Borel subset A in R¢ whose boundary has zero Lebesgue measure.
On the other hand, if 1 < a < 2, then for large r > 0, we get by Proposition 4.3 (i) and Remark
4.6 in P -probability

Jim M Zy(B(r)) = O (r™%) Mo,

and by Corollary 4.5 (ii), Remark 4.6 and (1.26) in P -probability

. Z(B(r)Y) _ (o a
fm = =00,
We also get by Theorem 4.7 P -a.s.
lim eM!Z,(B(r)) = </ hdxr — O (Ta)> Mo
Rd

t—o00
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for large r > 0, and by Corollary 4.10 (i) P,-a.s.

lim Zi(4)

d+a
— x| My as |zr|— >
t—oo B, [Z;(A)] =1 ]

for every relatively compact subset A in R? whose boundary has zero Lebesgue measure.
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Chapter 5

Variational formula for Dirichlet
forms and its applications

In this chapter, we prove a variational formula for Dirichlet forms generated by general symmetric
Markov processes. As its applications, we obtain lower bound estimates of the bottoms of the
spectrum for symmetric Markov processes. Moreover, for a positive measure p charging no set
of zero capacity, we give a new proof of an L?(j)-estimate of functions in Dirichlet spaces.

5.1 Variational formula for Dirichlet forms

Let X be a locally compact separable metric space and m a positive Radon measure on X
with full support. In [24] Donsker-Varadhan proved a large deviation principle of occupation
distributions of conservative Markov processes on X with the so-called I-function as its rate
function: let £ be the Feller generator of a Markov process and D(L) the domain of £. Then
the I-function is defined by

I(p) =— inf /d,u, pne P(X), (5.1)

ue€DT+ (L

where DT(L) = {u € D(L) : inf,ex u(z) > 0} . Moreover, if the Markov process is m-symmetric,
then they identified the I-function with the associated Dirichlet form (&, F) as follows:

du

0, ot herw1se

([24, Theorem 5]). In other words, the Dirichlet form is expressed as
Lu
E(f,f)=— inf == 2 dm, eF. 5.2
() == _inf [ EEPam (52

Here we call the relation like (5.2) the variational formula for the Dirichlet form (€, F). In this
section, we extend this formula to general symmetric Markov processes with jumps and killings.

Let M = (X4, P;) be an m-symmetric Markov process on X with right continuous sample
paths. Denote by B*(X) the collection of universally measurable subsets,

= (] B

HeP(X)
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where P(X) is the set of probability measures on X and B*(X) is the completion of Borel sets
B(X) with respect to the measure p € P(X). A function f € B*(X) is then said to be finely
continuous, if

P, (f(X¢) is right continuous with respect to ¢t € [0,00)) =1 for any = € X.

Then any continuous function is finely continuous by the right continuity of sample paths.
Denote by C¥(X) the set of finely continuous functions on X. Let Cf'(X) be the set of bounded
finely continuous functions on X and Cf (X)) the set of nonnegative functions in CY(X).
Denote by p; the Markovian transition semigroup of M, p;f(x) = E.[f(X:)], f € B*(X). We
now define the extended generator of M as follows:

Definition 5.1. Let
t
D (E) = {u € Cr(X): g e CY(X) s.t. pru :u—l—/ psgds, YVt > O}.
0

Then g is uniquely determined for each u € D (ﬁ) The function g is denoted by Lu and L is
called the extended generator of M.

We learn the notion of extended generators from [63]. Note that, the function u € Cf(X)
belongs to D (ﬁ) if and only if there exists a function g € C(X) such that M; = u(X;) —

u(Xo) — fg 9(Xs)ds is a martingale. Moreover, we have

Lemma 5.2. ([63, §3 Theorem 1.2]) For any extended generator L, it holds that

D (c) = Go(CY(X)), a>0.

Proof. Take u € D (ﬁ) and let v = Lu. Then by definition,

t
pru = u + / psv ds. (5.3)
0

[ee) t [ee) o)
/ et (/ DsV ds) dt = / </ et dt) psv ds
0 0 0 s

1

0 1
= / e Y psvds = —Guv
« Jo (0%

Since

by Fubini’s theorem, we see from (5.3) that
1 1
Gou = —u+ —G,v.
o e

Thus u = Ga(ou — v) € Go(CF(X)), which yields that D (L) C Go(CP(X)).
Suppose that f € C(X). Then

pGaf — Gof = / e ppisfds — / e “psfds
0 0
= eo‘t/ e “psfds— / e “psfds.
t 0
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Since

d [e'e)
— (ptGaf — Gof) = ae™ / e ®psfds—pif
t

dt
= pt(aGaf - f),
it holds that .
PCof = Gaf = [ pi(0Gaf = 1) ds.
Noting that Go(C¥ (X)) C CF(X) by [9, §2], we have aGof — f € CF(X). Hence Gof € D (E)
and £Gof = aGof — f, which imply that G, (Cf (X)) C D (E) O

Let B;(X) denote the set of bounded B*(X )-measurable functions on X and BZ’+(X ) the set
of nonnegative functions in B;(X). Let D (ﬁ) be the set of nonnegative functions in D (ﬁ)

Taking account of killings or explosions, we define the function I on P(X) by

R Lu
I(p) =— inf / du. 5.4
(W) ueDt(L),e>0J/x U +e a (54)

The function I is a modification of the I-function defined in (5.1). By adding € > 0 on the
denominator of the integrand of I, the integral on the right hand side of (5.4) is finite for any
u € DT(L). We also define the function I, on P(X) by

I(p) = — inf /X log <aGau+5> du, a>0.

ueB; ™t (X),e>0 u+e

Next lemma is a resolvent version of Donsker and Varadhan [24, Lemma 3.1].

Lemma 5.3. It holds that A
ala(p) < I(p)

for any p € P(X) and a > 0.

Proof. For f € C’f’+(X) and 8 > 0, let u = 3Ggf € D (ﬁ) Put

aGou + €
= [ log (et TE) 4 0
() /X og ( Py > w, €>

aG?u — Gou = LG?u

for oo > 0. Since

as showed in the proof of Lemma 5.2 and

%Gau = —G?u,
it follows that N
do LGLu
— () = ——2——dpu. 5.5
da(a) /X aGau+ ¢ a (5:5)

63



As a direct calculation yields that

LG2u B LG2u  ?GPu+e— (aGau+¢) s
aGou+e  a2G2u+e  (aGau+e)(a?G2u+¢) @
R 2
(mgu)

= >
(aGou +€)(a2G2u+¢e) — 0

/ LG2u d >/ LG2u d
x aGau+¢€ o= x &?G2u—+¢ a

it holds that

1 —LG2u
a? Jx G2u+e/a? a
1 -
2 *@I(H)
By integrating both sides of (5.5) by «,
00 1.
(o) = [ $B)ds > i)

Therefore,

) o /log<aGau+€) p
a ueD+(£),e>0 Jx u+e

Since Ga(Cf’+(X)) c D" (ﬁ) by Lemma 5.2, it follows that aG,f € DT (ﬁ) for any f €
CI;P’JF(X). Furthermore, it holds that

aGo(BGaf)+e  PBGa(aGaf) +e . aGuf +¢
BGgf+e  BGaf+e f+e

because the fine continuity of f implies that

as [ —

lim aGyf(z) = lim aFE, [/ ea“f(Xu)du]
a— 00 a— 00 0

~ lim B, [/OOO e“f(Xu/a)du} — f(a).

a—00

. aGau+¢€ i aGau+ ¢
— inf log| ——— | du=— inf log | ——— | du.
weDH(L),e>0J X u+e weCP(X),e>0J x u+e

Define the measure p, on B*(X) by

Thus

o (A) = / aGalz, A) pldz), A€ B*(X).
X
Take a sequence {g,} C Cf""(X) such that

lim |grn, — v|d(pta + 1) =0
X

n—oo
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for each v € By (X). Then

/aGagn—aGav|du§/ aGalgn —v|du
X X

—/ lgn — v|dpe — 0, n — oo.
X

. aGagn + € aGav +¢€
lim log| ——— | du = log| —— | dpu.
n—oo [y gn +¢€ X v+¢€

As a result, we obtain

) aGau+ ¢ . aGau+ €
— inf log| —— | dup=— inf log | —— | du
uGCf’+(X),g>O X u—+e UEB;’+(X),E>O X u-+e

= Ia(:u))

Hence

which completes the proof. ]
Theorem 5.4. Let (€, F) be the Dirichlet form associated with M. Then it holds that

E(ff)=— inf Lu

2
dm 5.6
ueD+(L),e>0 XU+€f (5.6)

for any f € F with f >0 m-a.e. on X.

Proof. Let f € F with f > 0 m-a.e. on X and f,, = f An. Since x < —log(1 — z) for all
x € (—o0,1) and
Jn —aGafn

— < /<1
OO fnte ’
we have o o
/ fn_OZ afande_/ 10g<06 afn+5> dem
x Jate X fnte
By Lemma 5.3, the right hand side above is not greater than
I(f?.
«
Since
fn—aGofn| .o n—aGafn| 2 f—aGuafnl| 0
—_ =|—f"1 — | fA1
fnte ! n+e P oy f+e P lien
n+ aGan
< ?fQ—I—(f—i-aGaf)f

< f(3f + aGaf) € LY(X;m),

we obtain, by letting first n — oo and then € — 0,

/ o (f = aGuf) fdm < 1(f2-m).
X
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Noting that lim,—oo [y @ (f —aGof) fdm = E(f, f) by [29, Lemma 1.3.4], we get E(f, f) <
I(f?-m).
For any ¢ € Dt (ﬁ), put

A _
prf(x) =E b+e

Wexp( Lo S)ds) f(Xt)] .

Then it follows in a similar way to [51] and [52] that p} is (¢ 4 €)2m-symmetric and p{1 < 1.
Define
SPf(z) = B, |ex —/t £e (X,)ds | f(Xp)
t — L p 0 ¢ +e s t .
Since

5210(0) = (0(0) + 23 (52 ) @)

Schwarz’s inequality yields that

L et O e

{ } (¢ + &)*dm
5/Xp¢{<¢+e> }(¢+e)

By the (¢ + ¢)?m-symmetry of ﬁf’, the last term above is equal to

2
/“1)1 <¢f_> (¢+5)2dm§/f2dm.
X

Because L¢o/(¢ + ¢€) is bounded, we see from the Feynman-Kac formula ([1, Theorem 4.1]) that

1 v
< — —
O—H%t X<f Stf)fdm

io (5.7)
_ 2
=E(f, )+ bte —fd
which implies that € (f, f) > I(f2-m) and the equation (5.6) follows. O

Remark 5.5. In [24], Donsker and Varadhan assumed that the Markov process satisfies the
Feller property, that is, p;(Cy(X)) C Cp(X). Here Cy(X) stands for the set of bounded continu-
ous functions on X. In [52], the argument of [24] was modified by using the a-resolvent under the
assumption that M satisfies the strong Feller property, G (By(X)) C Cp(X). One of our main
objectives is to obtain the lower bounds of the principal eigenvalues for time changed processes;
however, it is difficult in general to prove the Feller property of time changed processes (see [47],
where one-dimensional diffusion processes are discussed). Here we would like to emphasize that
it always holds that G (Cy (X)) C Cf(X) as mentioned in the proof of Lemma 5.2. This is the
reason we modify the I-function by the a-resolvent and use the notion of extended generators
in our argument.
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Remark 5.6. Suppose that (£, F) is a local Dirichlet form. Then the corresponding process is
an m-symmetric diffusion process on X. Define

t
Dioe (ﬁ) = {u € C¥(X):7g € C¥(X) s.t. u(Xy) — u(Xo) —/ 9(Xs) ds is a local martingale,
0
Vi < ¢ and % € B;,"(X)}.
u

For u € Dy, (ﬁ), we denote by Lu the function g in the definition of Dy, (ﬁ) . Let D;gc (ﬁ)

be the set of nonnegative functions in Dy, (ﬁ) We then have

E(f.f)=—  inf LU 62 g, (5.8)

ueD} (£),e>0/x U+ €

Indeed, the upper estimate of E(f, f) is clear from (5.6) because D (/:') C Djf, (ﬁ) Since
ﬁfl <1 for ¢ € D;f </j> and ﬁé/((b + ¢) is bounded, the lower estimate follows by the same

loc
argument as Theorem 5.4. Hence we can take unbounded functions as test functions in the

right hand side of (5.8). For instance, let us consider the Ornstein-Uhlenbeck process on (0, co)
absorbed at 0. Then u(z) = x € D} (ﬁ) and

4 d*u du
Lu(x) = @(x) - x%(x) = —z.

5.2 Applications

In this section, we assume that M is transient. Let A9 be the bottom of the spectrum of the
Dirichlet form (&, F):

Ao :inf{é'(f,f)  f 6.7-",/ fzdm: 1}.
X
On account of Theorem 5.4 we have

Theorem 5.7. It holds that

Ao = inf sup / —Lu f2dm:f€}",/ fPdm=1}. (5.9)
ueD+(L),e>0/X ute X

Proof. Since E(f, f) > E(fI,|f|) for f € F (]29, p.5]), it holds that
Ao :inf{S(]f\,|f|) o f e]—“,/ frdm = 1}.
X
By applying Theorem 5.4 to E(|f|,|f]), the equation (5.9) follows. O

We now derive the generalized Barta’s inequality, a lower bound estimate of Ag. Set
C:{UEDJr (ﬁ) tu >0, —ﬁu>0}.

We then have
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Theorem 5.8. (Generalized Barta’s inequality) It holds that

Lu
Ag > inf | —— 1
0-;&( u)(a:) (5.10)
for any v € C. In particular, if there exist u € C and xk > 0 such that —Lu > Kku, then Ao > k.

Proof. Let u € C. From Theorem 5.4 and Fatou’s lemma, it follows that, for any f € F
with [y f2dm =1,

which implies (5.10). O

M. F. Chen [13, Theorem 1.1] obtained the same estimate as Theorem 5.8 for jump processes
on measurable spaces. For the case where the state spaces are locally compact, Theorem 5.8
becomes an extension of Chen’s result to general symmetric Markov processes.

We shall give another lower bound estimate of A. Define G%u := u and

G"u(z) = G (G™u) U G™u( } reX

for any nonnegative integer n > 0 and u € C}” +(X .

Proposition 5.9. For any n >0 and u € C{"(X), it holds that

G"u ntly,
i _ < i _— . .
;g)f( <G”+1u> (z) = xlg)f( <G”+2u> (@) (5:11)

Proof. Since

antly — @ < G"u G”Hu)

Gntly,
: Gnu n+2
2 <;2§< <G+1u> <”f>> G,
we get (5.11). O
Theorem 5.10. It holds that o
: "u
Ao = xlg)f( (G”“u) (2) (5.12)
for anyn >0 and u € CZD’+(X). In particular, it follows that, by taking u =1 and n = 0,
1
N> ————. 5.13
"2 Sprex Bl 1)
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Proof. Since, by the definition of L,
— LGy = G™u

for any u € Cf"7(X), it is clear that G"*'u € C. Applying Theorem 5.8 to G"*!u, we obtain
(5.12). O

Using Proposition 5.9 and Theorem 5.10, we have
Corollary 5.11. It holds that

Ao > lim inf <Gu> (x)

n—oozeX \ G"tly
for any u € C’f’+(X) O

Under some assumptions, S. Sato [48] gave the same estimate of the spectral radius for non-
symmetric right continuous strong Markov processes by using the dual operator of the resolvent.

From now on, we suppose in addition that the Dirichlet form (&, F) is regular. Using
Theorem 5.4, we shall prove the following;:

Theorem 5.12. ([7], [28], [50], [59]) For any p € S, it holds that

/X Pdu < |GullEf, f), [ € F. (5.14)

There are analytic and probabilistic approaches to prove (5.14): Vondracek [59, Theorem
1] derived (5.14) from the capacitary inequality; however, the constant of the right hand side
is 4||Gpllo instead of ||Gplleo. Stollmann and Voigt [50, Theorem 3.1] first proved (5.14) by
using the operator theory. Fitzsimmons [28, Example 1.17] also established (5.14) from Hardy’s
inequality for Dirichlet forms ([28, Theorem 1.9]). In [7, Corollary 3.1], Ben Amor showed (5.14)
by using the fact that the measure |u|-p is of finite energy integral for v € L?(X; u) ([7, Theorem
3.1]). Here we give a new proof of (5.14) by applying Theorem 5.4 to the time changed process
M of M with respect to the PCAF Al'. Recall that (5‘ JF ) is the Dirichlet form of M.

Proof. Since E(f, f) > E(|f|,|f]), it suffices to prove (5.14) for f € F with f > 0 p-a.e. on
X. The Dirichlet principle (1.9) implies that

g(fvf)zgv(f|Faf|F)7

where f|p is the restriction of f on F = supp[u]. Let £ be the extended generator of M. Then
it follows from Theorem 5.4 that

Lu
U+ e

Eflm flr) =—  inf /F (Fle)2d.

ueD+ (E), e>0

Let G be the O-resolvent of M. Since G1(z) = E, [Aﬂ, (1.5) yields that

1
Gl+e

1 / )
> i [ [fTdu.
1Glloe +€ JF
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Letting € | 0, we have (5.14). O

From now on, we assume in addition that the transition density of M is absolutely continuous
with respect to the measure m. Let u € K. Then it follows from (5.13) that, if

sup E, [A‘C‘] <1, (5.15)
reX

then A(u) > 1, where A() is the bottom of the spectrum for M as defined in (1.11). We thus
rediscover the Khas'minskii lemma [38, Lemma 3] by Theorem 1.2: the condition (5.15) implies
that

sup E, [exp (A’g)} < 0.
zeX
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Chapter 6

Principal eigenvalues for symmetric
a-stable processes

In this chapter, we estimate the principal eigenvalues for symmetric a-stable processes by us-
ing generalized Barta’s inequality. Furthermore, we calculate explicitly the principal eigenval-
ues for time changed processes of Brownian motions and symmetric a-stable processes, and of
Schrédinger operators.

6.1 Principal eigenvalues for time changed processes

6.1.1 In case of a =2

We first calculate the principal eigenvalues for time changed processes of killed Brownian mo-
tions. In this subsection, we denote by M = (B, P,) the Brownian motion on R?. For a measure
ve KR let MY = (BY, PY) be the exp (—A")-subprocess of the Brownian motion on R? and
GY(x,y) the Green function of M”. Define for a measure u € ICH(S,

1
)\(u,y)_inf{D(u,u)+/ uzdu:ungo(Rd),/ qu,u,_l}.
2 R4 Rd

Then the equation (1.9) implies that A(u, v) coincides with the principal eigenvalue for the time
changed process of M” with respect to A*.

For d = 1, the Dirac measure J, at a € R admits the local time [,(¢) at a under the Revuz
correspondence ([29, Examples 2.1.2 and 5.1.1]). For d > 2, since the space with codimension
one is of positive capacity, the surface measure also admits the local time on the surface.

Example 6.1. Assume that d = 1. If we set v(dr) = 13 dr for a < b, then AP =
afg 1(a)(Bs) ds for a > 0. By definition,

b
X(ﬁéz,al(ayb)dm) = inf {;D(u,u) + a/ uw?dr s u € CP(R), Bu?(z) = 1} . (6.1)

Let Cap be the 0-order capacity with respect to M. Then the infimum above is attained by

\}BP;W(JZ < o0) = \%Ew [eXp (-04 /OUZ L(a,p)(Bs) dé’)}
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because the right hand side of (6.1) coincides with Cap({z})/8. First suppose that z < a. Then
it follows from [11, p.167, 2.7.1] that

E, [exp <—a /0 " 1 (By) dsﬂ

L, r<z

V2a(a — x) sinh(v/2a(b — a)) + cosh(v2a(b — a)) s er<a

V2a(a — z)sinh(v2a(b — a)) + cosh(v2a(b — a))’ -
= cosh(v2a(b — x)) W< <h

V2a(a — z) sinh(v2a/(b n a) + cosh(v2a(b — a))’

V2a(a— 2)sinh(v2a(b— a)) 1 cosh(V2a(p—a) ="

Hence a direct calculation yields that

1 V2asinh(v2a(b — a))
203 cosh(v2a(b — a)) + v2a(a — z) sinh(v2a(b — a))

Next suppose that a < z < b. It also follows from [11, p.167, 2.7.1] that

A(B6-, al (g da) =

) 1
cosh(v2a(z — a))’ ree
COSh(\/ﬁ((E B CL)) a< <z
exp [ —a - s)| = cosh(v2a(z —a))”
Ey [ p ( /0 Liap)(Bs)d )] cosh(v2a(b — z)) s<2<b
cosh(v2a(b — 2))’ B
1
\cosh(\/ﬁ(b—z))’ =

Thereby,

. _ Va [sinh(2v2a(z —a))  sinh(2v2a(b — 2))
A(BO; @y ) = 425 {coshQ(\/ﬁ(z —a)) * cosh?(v2a(b — 2)) } '

Example 6.2. First suppose that d = 1. For n € N, let {a;}]", and {b;}]", be sequences
which satisfy ag < b1 < a1 < by < -+ < b, < a,. If we set v = Z?:o a;dq, for a; > 0, then
Ay =310 g aile, (t). Put =37 B;dp, for 3; > 0. Then

n n n n
A (Z Bib, » Zaiéch) = inf {S(U,u) + Zaiu(ai)Q tu € C°(R), Zﬁiu(bi)Q = 1} .
i=1 i=0 i=0 i=1
Note that the infimum above is attained by the harmonic function u, which satisfies

u(x) = Ey [exp (—Agﬁ) u(ng)}

u(by) By [exp (—aplay(01))] s x < by
~Ju(bi) By [exp (—aila, (03)) : 05 < 0i11]
- Fu(bi1) By [exp (—aila, (0i41)) 1 0ip1 < 03], by <2 <bitq
u(bp) Ey [exp (—anla, (0n))] b, < x.
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Here B = {b;}""; and o; is the hitting time of b;. Then it follows from [11, p.164, 2.3.1] that

1+ 2ap(z —a
By [exp (—aplay(01))] = 1+ 2a(())((bl — a(z)))’ ap <z <b
1+ 2ap(ay — )

T 1+ 20, (apn, — by)

E, lexp (—anla, (04))] , bn <z < ap.

It also follows from [11, p.174, 3.3.5] that

bi+1 —x + 20&2'(171'4_1 — ai)(al- — 1‘)

By fexp (—agla, (0) : 05 < 0] = 4 Vit ~ b+ 20i(bins =ai)(ai = i) B
bit1 — b + 205(bir1 — ai)(ai — b)) = ® < bty
and
r—bi b, <x<aqy
By exp (~aula,(0151)) s 0111 < oi] = § Pre i Boulbes i) =)
a; <x < big.

bit1 — bi + 20(biy1 — a;)(a; — b;)’
We thus have

1 " )
iD(Uy u) + ; a;u(a;)

n—1

1 1
2 ; bi+1 — bi + 20;(bit1 — a;)(a; — b;) (u(biy1) = u(bi))
o Oél(bg — al) > )
+ n .
<1+2a0(b1a0) by — b1 + 200 (b2 — a1) (a1 — by) u(by)

n—1
aj—1(ai—1 — bi—1) ai(bit1 — a;) 2
b;
+ ; (bi —bi—1 + 205(b; — a;—1)(a;—1 — bi_1) * bi+1 — bi + 2i(bit1 — a;)(ai — b;) ulbe)

O‘nfl(anfl - bnfl) Qo 2
bn)*.
+ <bn - bnfl + 2an71(bn - anfl)(anfl - bnfl) + 1+ 2an(an - bn)> U( )

(6.2)

Here we note that the right hand side of (6.2) is the Dirichlet form on L?(B;u) generated by
the time changed process of M with respect to A}. Moreover, its Q-matrix is

/3171 0 0 _Bl Al 0 0
0 Bt oo . 0 A =By A :

0 A2 -Bs
. . O _71 0 .. P P P ... P ’
0 6”01 5,1 coi Apo —Bnq1 A,

" 0 0 An_1 —By,
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where
1
(bkt1 — br + 20 (bg+1 — ax)(ar — br))

o™y
1 + 2040([)1 — ao) * 1( * 011( 2 al))

Bk == Ak_l(l + 2ak_1(ak_1 - bk—l)) + Ak(l + 2ak(bk+1 - ak)), 2 < k <n-— 1
Qn

T 1+ 20, (apn, — by)

A=

By

n

+ A, 1(1+20pn-1(an—1 — bn—1)).

Hence
n n
A (Zﬁi(sbiyzai(sai> = —max{m : \Q — /@I| = 0},
i=1 i=0
where [ is the n X n-unit matrix. When n = 1, we get

ao + a1 + 2001 (a1 — ag)
ﬁl(l + 20[0(b1 — ao))(l + 20[1((11 — bl)) '

A (B16p,, 0ay + 184,) =

In particular, if b1 — ag = a1 — b1 = r, then

. oo + a1 + 4dagaqr
A (B10b,, ¢00ag + 210,) = B1(1 + 2a07)(1 + 2017)

When n = 2 and a9 = as = 0, we obtain

S _ B+ 2ag(a1 — b1)) + Bo(1 + 201 (b — a1))
A (100, B2y, 0100,) = 461 82{bz — b1 + 2a1 (b2 — a1)(a1 — b1)}

V811 + 200 (a1 — b)) — B+ 200 (b2 — 1))} + 45152
- 451 62{b2 — b1 + 2a1(by — ar) (a1 — by)} '

Assume in addition that 8; = 82 = 8 and by — a; = a1 — b1 = r. Then

5\ (ﬁ((sbl + 51)2),0616@1) = m

Next suppose that d > 20 Let {r;}7_, and {R;}!; be sequences such that 0 < rop < R; <

r1 < Ry < --- < Ry, < ry. Denote by 4, the surface measure on 9B(r) = {x € R?: |z| = r}. We
now calculate the following:

n n
A (Z BidR,, Y aiéri>
i=1 i=0
= inf {;D(u,u) + gai/a

Because of the spherical symmetry, it suffices for us to consider the Bessel process, Wy = |By|.
Then the right hand side above is equal to

0 2 n .
inf {;/0 (Z;) 2% e + Z au(r;)*rd= s u € C§°([0,00)), ;@'U(Rif]%fl _ 1} .

=0

u? dé,, 1 u € C°(RY), Z&/
)

u2 déRi =1,.
i1 O0B(R;)

B(r;
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Hence we can calculate A (31, Bidr,, > 1o @idr;) by the same way as for the one-dimensional
case. For example, when d =2 and n =1,

apro + a1r1 + 20017071 (log T — IOg To)
B1R1 {1 + 2cpro(log Ry — logrg)} {1+ 2a17r1(logry —log Ry)}
On the other hand, when d > 3 and n =1,
1 { Vaorg”“ N 2v(v + ayry) RV }
ﬂlR%u-H v+ OzQT‘QV—H( Rl 21/) v+ al,rlR%y(Rl—ZV _ ,,,_—21/) )

AN (B10Ry s a0bry + 16,) =

5‘ (ﬁléRpaOdTo + 05157“1) =

where v = d/2 — 1.

6.1.2 Incaseof 0 <a <2

We next consider the principal eigenvalues for time changed processes of symmetric a-stable
processes. Let M® = (X;, P,) be the symmetric a-stable process on R% and M” the absorbing
a-stable process on an open set D in R?. Take p € K2 and let MP be the time changed process
of MP with respect to A}'. Let

A; D) :inf{ED(u,u):ueC’go(D),/DquM: 1}.

Then A(y; D) is the principal eigenvalue for M” as mentioned in Chapter 1.

Example 6.3. Let B(R) = {x € R? : |z| < R}. Denote by 7 the exit time from B(R),
Tr = inf{t > 0: X; ¢ B(R)}. Let M be the symmetric a-stable process killed outside B(R).
Since

d
ol=ap (=
B, [rr] = <2> (R2— |2)*?, z € B(R)

r<3+1)r<d;a>

by Section 5 of [30], we have by (5.13),
! d+«
r (5 +1)T ( ; )

ol—ap <d) R“

In [6, §3], the same estimate above was obtained in a similar fashion.

A(dz; B(R)) >

Example 6.4. For d > a, let j(dr) = 1p(gydr be the Lebesgue measure restricted on B(R).
Then the PCAF A} with Revuz measure p is given by

t
Ag = /0 1B(R)(XS) ds.

Then AL, is the lifetime of the time changed process of M® with respect to A¥. Let wy be the
surface area of a unit ball in R%. A direct calculation yields that

sup E,[A* :sup/ G(z,y)dy
z€B(R) z€B(R)

gl-ap (d 3 O‘) wg
= / G(0,y) dy = R
B(R)

3
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Here G(z,%) is the Green function of M in (1.22). Noting that wy = 27%2/T'(d/2), we obtain

al’ (;l) r (% + 1)
X(lB(R)dx,Rd) Z d—a .
2l-er < 5 > R*

In the reminder of this subsection, we assume that d = 1 and 1 < « < 2. Then, since one
point is of positive capacity, the Dirac measure §, at a € R admits the local time at a under the
Revuz correspondence.

Example 6.5. Let M be the absorbing symmetric a-stable process on (=R,R) and a €
(=R, R). Denote by Gf(z,y) the Green function of M¥. Since

GR(x, a) = E; [lo(TR)] = Ey [la(TR); 06 < TR]
=F, [EX% [lo(TR)]; 00 < TR}
= Py(0a < 7R)G%(a, a),
that is,

P.(o, <TR) = =5 —=

we see in a similar way to Example 6.1 that

5\(5(1; (_Ra R)) = ga(P(Ua < TR)aP'(Ua < TR))
= Gt (" (.0). G )

__ 1 " R 1
= GR(a.a)? /RG (z,a)0q(dz) = Glaa)’

It follows from Corollary 4 of [10] that, for |z| < R and |y| < R,

1 ? — a/2— a—
GR(;U,y): 5 2/ (u+1) 1/20/2 1du\x—y[ L
2

where z = (R? — |z|?)(R? — |y|?)/R?|z — y|*>. Hence

2 _ ,2)a-1
GR(CL, (I) = (Ra—2 )a 9 a—l,
(@ —1)2072T (5) R
and )
a—1)2072p ()" go-t
A0a; (~R. R)) = — (5)

(RQ _ a2)oz—l

Let M be the absorbing symmetric a-stable process on (0,00) and a € (0,00). Denote by
G*°(x,y) the Green function of M. Since

2 [ .
GX(a) = —y [ AR ety =)D s

r(3)

[\)
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by [45], we have
an 2
-1 (3)
@-1r (2
2q0—1 '

Example 6.6. Let M" be the absorbing a-stable process on R\ {0} and denote by G° the
Green function of M?. Getoor [31] then showed that

v
I'(«) cos <%>

(see also [44, p. 379]). Hence for a > 0,

5‘(&1? (07 OO)) =

Gz, y) = — (Jz]* P+ [yt = |z —y|*)

1
G%a,a)
T
F(e)cos (%)
- () cos 5
2q2—1 :
The following are three graphs of A(Jq;R \ {0}) with respect to o € (1,2]. If a is small, then

A(0a; R\ {0}) is increasing monotonously. However, A(6,; R\ {0}) takes the maximal value for
large a. We can guess that A(dq; R\ {0}) takes the maximal value for a > 1.5.

Mda; R\ {0}) =

10

0.3 0.1
8 0.25 0.08
6 0.2 0.06
4 0.15 0. 04
0.1
2 0.05 0. 02
1.2 1.4 1.6 1.8 2 1.2 1.4 1.6 1.8 2 1.2 1.4 1.6 1.8 2

Figure 6.1: A(dp.05; R\ {0})  Figure 6.2: A(61.5;R\ {0}) Figure 6.3: A(610;R \ {0})

We can also calculate A(0, +0_q; R\ {0}). In fact, the strong Markov property implies that
() + G2, ~a) = By [(la(00) + 1_a(00))]
=F, [(EX%M_@ la(o0)] + Exyuns_, [l_a(ag)]) 10 No_g < 09
= Ez[(Ea [la(00)] + Ea[l-a(00)]) ; 0a A 0—a < 00,04 < 0]
+ E, [(E—q[la(00)] + E—g[l—a(00)]) ;00 N O—g < 00,0—q < 04] .
By noting that G°(a,a) = G%(—a, —a) and G%(a, —a) = G°(—a, a), the right hand side above is
equal to
G%a,a) (Py(0a NO—q < 00,00 < 0_q) + Po(0a NO_oq < 00,0_a < 04))
+G%a,—a) (Py(0a No_g < 00,00 < 0_q) + Po(0a ANO_oq < 00,0_a < 04))
= (Go(a, a) + G%a, —a)) Py(oa No—q < 0p),

that is,
GO(z,a) + G°(z, —a)

Paloa 1 o—a < 00) = G0t a) 4 O(a, —a)

(6.3)
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A direct calculation implies that
M0y 4+ 6_a;R\ {0}) = inf {€%(u,u) 1 ue CFE(R\ {0}),u(a)? + u(—a)?* = 1}
= inf {Ea(u,u) cu € C°(R\ {0}),u(a) =u(—a) =

_ %inf (€%(u,u) : u € CP(R\ {0}), u(a) = u(—a) = 1}
- %ga(P.(aa Ao o < 00), P(0a Ao_a < 30)).

By (6.3), the last term above is equal to

1 o 0. a 0. —a 0/, a 0/ —a
2(G0(a,a)+G0(a,—a))25 (G°(,a) + G°(+,—a),G°(-,a) + G°(-, —a))
_ 1 O.TCL 013 —a " .
e T oy €0+ 67w =0) (Bl 6ol
1 F(a)cos(%)

- GY%a,a) +G%a, —a) (4 —20"1)go1"

Example 6.7. Let MP be the absorbing symmetric a-stable process on R\ {—p, p}. Denote by
GP(z,y) the Green function of MP. We then see from (2.9) of [44] that

GP(z,y) = Lyp(z) + Py(op < 0—p)aly —p) + Pu(0—p < 0p)a(y +p) —aly — x),

where

and L, is some function. Noting that GP(x,p) = GP(x, —p) = 0, we obtain

IP(2) = 5 (alw = p) + alx +p) — a(20)

Since Theorem 6.5 of [31] yields that

Px(o'j:p < O-ZFP) = -+
we get

GP(w,9) = (ax—p) + ale +1) +aly —p) +aly +p) ~ a(2p))

2a(2p) (a(x —p) —alx+p))(aly — p) —aly +p)) — alz —y).

Therefore,

MG R\ {—p,p}) = G?(q,q)

2T () cos (%) I2p|@L

4p —ql*Yp + ot = (Ip — g7t + [p + gt — [2plort)?
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for p # ¢q. In particular,

I'(«) cos (%)

A(0o; R\ {—p,p}) = — @ BT

We can also see that
. 1

A +0-RA=p.p}) = @ =g

I'(«) cos (%)

T 2p— g+ 2fp+ gl — [2ple T — [2g]0 T

6.2 Principal eigenvalues of Schrodinger operators

In this subsection, we calculate the principal eigenvalues of Schrédinger operators defined by

Al(u;D):inf{SD(u,u)—/Du2du:uEC§°(D),/

uw?dr = 1}
D

for p e K.

6.2.1 In case of o =2

Example 6.8. Suppose that d = 1. Let us take first D = (=R, R) for R > O0and p = Y ;" | ®iq,,
where a; > 0 and —R < a; < az < -+ < ap, < R. Denote by h the ground state corresponding
to the principal eigenvalue A := A\;(u; (—R, R)). We then see from (1.16) that

n

h(z) =Y Gl (2,a:)h(a:),

i=1
where Gg“(:n, y) is the S-resolvent of the absorbing Brownian motion on (—R, R). Let Gg be the

n X n-matrix defined by <ang(ai, aj)>1<A o Then the relation above implies that
<i,j<n

Al =min {x : ]Gi{fﬂ:o}.

First take p = d,. Since

2 . .
GR\ (,y) = Ve T e skl {V=2M(B-a)}sion {V=2u(R+y)}  (6.4)

for —R <y <z < R ([11, p.105]) and Gi\l(a,a) =1, A1 is a solution to

VoMV IR _ ~2V=BR)
¢2V-2AR | o-2V/-2AR _ g2V -Da _ -2V -2ra 1. (6.5)

Denote by h the ground state of A; so that f_RR h?dx = 1. Then

h(z) = Cisinh {2v/=2X\{(R — a)} sinh {2/=2X\{(R+ )}, —-R<z<a
| Cysinh {2¢/=2X((R + a)} sinh {2/ —2\{(R—z)}, a <z <R,
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where

Cl — Cl (CL, R’ )\1)

_ 2(—8)\1)1/4{ sinh? {2 "o (R + a)} (sinh {4 “oOM(R - a)} 4y 20 (R — a)>

+ sinh? {2 “oM(R - a)} (sinh {4\/—2)\1(R + a)} — 4/ =20 (R + a)) }_1/2.
(6.6)

For instance, suppose that a = 0. Since the equation (6.5) becomes

V2N (VTR )
e2V—2AR _ 1

we can find that if R > 1, then A1 is a unique solution to the equation above and —1/2 < A; < 0.
Otherwise, A; = 0.

Next take = d, + d_, for a € (0, R). Let h be the normalized ground state corresponding
to the principal eigenvalue A1 := A1 (dq + 0—g; (—R, R)) so that fFR h?dx = 1. Then it follows
from (6.4) that

V=21 sinh (2¢/=2A1 R) . 6.7)
2sinh {v/—2\ (R — a)} (sinh {2\ (R — a)} +sinh {v/ =2\ (R+a)}) '
and
h(z)

Cysinh {2v/=2X{(R + a) } sinh {2\/=2X{ (R — a) } sinh {2\/-2X{ (R + z)}, —-R<z<—a
= { Cysinh {2v/=2X{(R — a) } sinh {2¢/=2X{(R — 2) } sinh {2v/=2X\{(R+ 2)}, —a<z<a
Cy sinh {2¢/=2X{(R — a) } sinh {2y/=2X; (R + a) } sinh {2v/=2X\{ (R —2)}, a <z <R,

where Co = Cs(a, R, A1) is the normalizing positive constant. Assume that a = 1. If R > 3/2,
then the principal eigenvalue \; is a negative unique solution to (6.7). Otherwise, A\ =0

Example 6.9. Suppose that d = 1. Let us take first D = (0,00) and a € (0,00). Denote by
GY 5(,y) the B-resolvent of the absorbing Brownian motion on (0, co):

o) = g ()

for 0 <y < x ([11, p.107]). By the same way as in Example 6.8, it follows that the principal
eigenvalue A\ := A1(d4; (0, 00)) is a unique solution to

\/_72)\62\/—2)@
e2vV—2xa _ 1 =1L

A direct calculation implies that this equation has a negative unique solution —1/2 < A; < 0 if
a > 1/2. We denote by h the ground state corresponding to A; with normalization fooo h?dx = 1.
Then

B Cye V—2Maginh(vV=2Mz), 0<z<a

h(z) =
() {C’gevz)‘l‘”sinh( —2M\a), a<uw,
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where

Z9N8

(GQVT)‘W —(1+ 2\/T)qa)>

Next take D = (0,00) and p = §, + & for 0 < a < b. Put Ay = A1 (04 + 9; (0,00)). We then
see in a similar way to Example 6.8 that

G%, (a,0)* = (1 -G, (a,a))(1 — G2, (b,D)).

C3 = Cs(a,\) = —

12"

Denote by h the ground state corresponding to A\; with normalization fooo h?dxz = 1. Then

Cye~V72Mafe2v=2ha o o2V=2Mb(\/Z9X; — 1)} sinh(v/—2\1z), 0<z<a
h(z) = { Cpe V—2Mzl2V=2hw e2mb(\/T)\1 — 1)} sinh(v/=2X\1a), a<z<b
Cy/—2X1eV —2M(20-2) sinh(v/—2X\1a), b<ux,

where Cy = Cy(a,b, A1) is the positive normalizing constant. If we assume that a = 1/4, then
—2< )\ <O0forb>1/4.

6.2.2 Incaseof0<a <2
In this subsection, we assume that 0 < o < 2.

Example 6.10. Suppose that d =1 and 1 < o < 2. Let D = R and p = > | a;0,,, where
a; > 0and —oco < a1 < ag < -+ < ap < co. Denote by h the ground state corresponding to
A1(@) := A1(p; R) with normalization [* h?dz = 1. Let Gg(z,y), 3 > 0, be the S-resolvent of
M,

9l/a poo ol/ofp
[
Gp(z,y) = 7 /o
’ L oyl oo
V2[

We then see in a similar way to Example 6.8 that

h(z) =Y Gy, (o), ai)h(as)
i=1
and
A(a) =min{x: |G_, —I| =0},

where Gg is the n x n-matrix defined by (ang(ai,aj))1<ij<n. We now assume that n = 1,
ap=0and oy =Q —1>0. For 1 < a <2, since (Q —1)G_j,(4)(0,0) =1 and

21/a 00 1
G_)\l(a)<070) = (=1 (@))@-D/a /0 1+ 2@ dz
21/a
- . m a—1)/a’
asin <a) (=1 (a))le=b/
it follows that 1)
— 1)2Y/«

. s
Qs | —
(6
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This value is also true for a = 2. It also holds that

 cos(2Y/xz)
C ——=d 1 2
o= C )y S e 150

Q- 1)1/2 e~ @Dzl =2,

where C' = C(«, Q) is the positive normalizing constant. The following is the graph of A\ («a) for
1.4 < a < 2. We note that limg |3 A (o) = —o0.

1’4 1.5 1.6 1.7 1.8 1.9

Figure 6.4: \j(),14 < a <2
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Appendix A

Positivity of the Green functions for
symmetric a-stable processes

Let M® = (X;, P;) be the symmetric a-stable process on R? with 0 < a < 2 and MP =
(X, PP) the absorbing a-stable process on an open set D C R?. Suppose that M is transient
and denote its Green function by G (x,%). In this appendix we prove

Theorem A.1. For any open set D C R?, it holds that GP(x,y) > 0 for any z,y € D.

We first show some lemmas needed for Theorem A.1. Denote by m the d-dimensional
Lebesgue measure.

Lemma A.2. For any closed set F C D with m(F) > 0, it holds that PP (ocp < 00) > 0 for any
reD.

Proof. Let B(z,r) = {y € R?: |y —z|<r} for x € D and r > 0. Set F = FnB(z,r)°
and take r > 0 such that m(F) > 0. Then F'N B(z,r/2) = §. By using the notion of the Lévy
system (NP, t) for MP as defined in Chapter 1, it follows that for = € D,

t
B |37 Ly o) (Xe )1 5(X) | = EP [ /0 / 1B<x,r/2><xs>1p<y>ND<Xs,dy)ds}
A

s<t

t
> P [ [ [ tstaem NP (e ds}

= a2 | [0 ([ a0 ]
(A1)

Since m(F') > 0 implies that

1:(y)
F
Jo sy > 0. 2 €D

it holds that

EID ZlB(x,r/Z)(XS—)lﬁ‘(XS) > 0.

s<t
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Hence PP (07 < t) > 0, which implies that
PD(0F<oo)>PxD(F 00)

<
> PP(o;<t)>0, z€D.

Let GP(z,K) = GP1k(z) = [, GP(x,y) dy. We then have
Lemma A.3. For any set K C D with m(K) > 0, it holds that GP(x, K) > 0 for any x € D.

Proof. It holds that
m({z€D:G"(z,K)>0})>0

for any set K C D with m(K) > 0 because

/GDxK da:_/GDlK
:/ GP1(z) 1x(x)dx > 0.
D

Hence there exists a compact set F C {z € D : GP(x, K) > 0} with m(F) > 0 such that
GP(x,K) >0 for all z € F. On the other hand, it follows that for = € D,

GP(z,K)=EP [/OOO 1K(Xt)dt}

ZExD |:/ 1K(Xt)dt;ap<oo].

F

Then the right hand side above is equal to
(0.9}
EP {E)’?F [ / 15(X)) dt] sop < oo] EP [GP(Xop, K);op < 00
0
by the strong Markov property. Since X, € F', we see from Lemma A.2 that

GP(z,K) > EP [GP(Xy,,K);0p < 00| >0, z€D.
O

Remark A.4. It follows that GP(z,y) = GP(y,2) > 0 for any x € D and m-a.e. y € D because
the set K is arbitrary in Lemma A.3.

Proof of Theorem A.1. Denote by pP(x,7) the integral kernel of the Markovian transition
semigroup of MP. Since

PP (z,y) = /Dp?(w,sz(z,y) dz,

/toopsD(ﬂc,y) ds = /DptD(:U,z) (/Ooop?(«z’y) dS) dz

= / ptD(x,z)GD(z,y) dz.
D

it holds that
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Because [}, pP (x,y)dy > 0, there exists a set F C D such that p”(z,y) > 0 for m-a.e. y € E.
Combining this with Remark A.4, we obtain

o0

GP(z,y) > / pY(z,y)ds

t

> / i (2,2)GP(z,y)dz > 0
E

for any z,y € D. O

Remark A.5. Theorem 3.3 shows that the process MP? is irreducible for any open set D C R¢
even if D is disconnected.
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