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1. Introduction.

Continuous time Galton-Watson Processes.

> T': splitting time of a particle

P(T >t) =e

© @)
> {p’n}%ozla 0<pn<1, p1 #1, an: 1:

n=1

offspring distribution



O
> m = Z npn: expected offspring number

n=1

> N4: total population size at time ¢

Fact. (i) E [Ny = ec(m—1)t

(i) M;:= e ¢(m—tN, is a positive martingale
~ Theorem (L log L condition [KS66-1, KS66-2], [AN72]).~
If > "> {(nlogn)pn, < co, then

tli{go e c(Mm—DIN, € (0, oo) a.s.




Branching Brownian motions (BBMs).

> N¢(A): population size on a set A C R? at time ¢

> N := N¢(R?): total population size at time ¢

~ Theorem (Diffusivity [S. Watanabe]).
If S-°° . n?p, < oo, then

. N¢(+/tD) 1 ||
lim = /exp 5 dx a.s.
D

t— o0 Wt o (27T)d/2

\for any bounded domain D C R




BBMs in random environment (BBMsRE).

o (Time-space) random environment

~ Purpose.
(i) To introduce a model of BBMsRE

(ii) To study slow growth and localization property
N




Related models.

o Discrete time setting.

(i) [SW69], [AK71-1, AK71-2]: Branching processes in RE
(ii)) [YO08], [HYO09]: Branching random walks in RE

o Continuous time setting.

(ili) [K73]: Branching processes in RE

(iv) [EO8]: Branching Brownian motions in RE



2. Model.
> 77: Poisson random measure on R x R? (R := [0, 00)):

e n(dt dzx): Z,-valued measure on R} x R¢

e N(A1),n(A2),--- ,n(Ap) are independent for any dis-
joint and bounded sets Ay, Ag,--- , Ap € B(Ry x RY)

k
¢ Q((A) = k) = exp (|4 1, k= 0,12,



> M = ({Bt}t>o ; P): BM on R starting from the origin

o The idea of the following formulation comes from [CY05]:

> U(z): closed ball centered at € R? with unit volume
> V1= {(s,w) ERy xR¥|s € (0,8, x € U(BS)}

~ 1(V4): the number of Poisson points “hit” by the Brow-

nian particle



> P7: law of a BBM on R? with branching rate an (a > 0)
e At time ¢ = 0, a Brownian particle starts from the origin

e At time T, this particle splits into two Brownian parti-

cles, where

PT(T > t) = E [exp (—an(V))] |

e These offspring reproduce independently in a similar way

P(dw dn) := Q(dn)P"(dw)




3. Results.

3.1. Expected total population size

> N¢(A): population size on a set A C R? at time ¢

> Nt := N¢(R%): total population size at time ¢

ePi=2_—e N:=eP—1

Lemma.

_Nt] _ E {eﬁn(‘@)} ., E

Ny| = e




Fact. M, := e MNy is a P-martingale and E M| =1

> Moo := lim M; P-a.s.

t— o0

3.2. Regular growth and diffusivity.

Ni(dx)
Ny

> pe(dx) := : population density at time ¢




~ Theorem 1 (Regular growth and diffusivity).
Assume d > 3 and

E {exp ()\2 /O N U (B})nu (B?)] dt)

for independent BMs {Btl}t>0 and {Btz}t>0' Then

< oo (%)

(i) P(Mx € (0,00)) =1

ﬁ) pi(de) = [ Fl@)p(a) de

in P-probability, Vf € C,(R?).

(ii) lim y f(

t— o0




Remark. (i) (%) is equivalent to one of the following:

(a) supE [Mﬂ < 00;
t>0

] > o
(b) E |exp (A_/O (U (0) NU (By)| dt) < o0;

2

(c) (Gaugeability [C02], [T02])

1
inf{—/ IVu(z)|? da
2 JRd

2
A u(x)? |[U0) NU(x)|dz = 1} > 1.
2 JRrd

u € Cy° (Rd),

(ii) (%) does not hold for d = 1 and 2.



3.2. Slow growth and localization.

~ Theorem 2 (Slow growth).

N

38(d) > 0 s.t. P(Ms, = 0) = 1 holds for any 8 > 3(d).

Moreover,

for some positive constant c¢(3) > 0.

\

Note: Regular growth —> lim

log M ¢ B

t— o0 i



Remark. (i) 3(d) > 0 for any d > 3

(i) B(1) = B(2) = 0 by [B08, BO9]

> pg := sup pt(U(x)): density at the most populated site
xcR4

~ Theorem 3 (Localization).
For any 3 > 3(d),

limsup p; > c1(8) P-a.s.

t— o0

for some non-random positive constant c;(3) € (0,1).
N




4. Replica overlap.

> Ry := ’/dpt(U(w))2 dx: replica overlap
R

—> dc2 = ca(d) € (0,1) s.t. Czﬁ% < R < py

~ Theorem 4.
L ©. @
{Moo = O} = {/ Ry dt = oo} P-a.s.
0

Furthermore, if P (Mo = 0) = 1, then

t
—c3log M; < /0 Rsds < —cylog M; for all large t

N

J




Theorem 2 4+ Theorem 4 —> Theorem 3

Proof of Theorem 3.

1 [t Theorem 4 log M,
/ Rsds
0

lim inf — > —c3 lim sup
t—oo t t—oo t

Theorem 2

> c1(8)

—> limsup p; > limsup R; > c1(8)

t— o0 t— o0




5. Proof of Theorem 4.

s—t—0

> Aﬁt = Mt — Mt_

> [M]; := M(z) + Z (ADM 5)?: quadratic variation

0<s<t
ADM s£0

By Ito’s formula applied to — log M,

__ t1 t 1
—lothX—/ — MS"‘/ ) d[M]S
0o Ms— 0 M, _



Moo>0<:>/ d[M]; < oo

Mt—

> (M ): predictable quadratic variation

Fact ([HWY 92]).

()/ M < o <=>/ Ay, <

t

(i) If/ ]\; d{M); = oo, then

/_2 d[M]s N/ d(M)S ast — oo
S



- Proposition N

(i / d(M)s—)\2/des+(>\2 A)/—ds

(i) /O ﬁtdt < 0o

- J

e Assume first / R; dt < oo

Prop / d(M <ooFaCt()/ My < oo
Mt—



oo
e Assume next / R dt =
0

P
A2/ Rsds ~




