Branching Brownian motions in random environment

Yuichi Shiozawa

Graduate School of Natural Science and Technology Okayama University

Stochastic Analysis of Jump Processes and Related Topics Kyoto, July 10, 2009

1. Introduction.

Continuous time Galton-Watson Processes.

 $\triangleright T$: splitting time of a particle

$$\mathbb{P}(T>t)=e^{-ct}$$

$$ho \ \{p_n\}_{n=1}^\infty, \ 0 \le p_n \le 1, \ p_1 \ne 1, \ \sum_{n=1}^\infty p_n = 1:$$
 offspring distribution

$$\triangleright m = \sum_{n=1}^{\infty} np_n$$
: expected offspring number

 $\triangleright \overline{N}_t$: total population size at time t

Fact. (i)
$$\mathbb{E}\left[\overline{N}_t
ight] = e^{c(m-1)t}$$

(ii) $\overline{M}_t := e^{-c(m-1)t} \overline{N}_t$ is a positive martingale

Theorem ($L\log L$ condition [KS66-1, KS66-2], [AN72]). If $\sum_{n=1}^{\infty}(n\log n)p_n<\infty$, then

If
$$\sum_{n=1}^{\infty} (n \log n) p_n < \infty$$
, then

$$\lim_{t \to \infty} e^{-c(m-1)t} \overline{N}_t \in (0,\infty)$$
 a.s.

Branching Brownian motions (BBMs).

 $riangleright N_t(A)$: population size on a set $A\subset \mathbb{R}^d$ at time t

 $ho \ \overline{N}_t := N_t(\mathbb{R}^d)$: total population size at time t

Theorem (Diffusivity [S. Watanabe]). If
$$\sum_{n=1}^\infty n^2 p_n < \infty$$
, then
$$\lim_{t \to \infty} \frac{N_t(\sqrt{t}D)}{\overline{N}_t} = \frac{1}{(2\pi)^{d/2}} \int_D \exp\left(-\frac{|x|^2}{2}\right) \,\mathrm{d}x \quad \text{a.s.}$$

for any bounded domain $D \subset \mathbb{R}^d$

BBMs in random environment (BBMsRE).

o (Time-space) random environment

Purpose.

- (i) To introduce a model of BBMsRE
- (ii) To study slow growth and localization property

Related models.

- Discrete time setting.
- (i) [SW69], [AK71-1, AK71-2]: Branching processes in RE
- (ii) [Y08], [HY09]: Branching random walks in RE
- Continuous time setting.
- (iii) [K73]: Branching processes in RE
- (iv) [E08]: Branching Brownian motions in RE

2. Model.

 $\triangleright \eta$: Poisson random measure on $\mathbb{R}_+ \times \mathbb{R}^d$ $(\mathbb{R}_+ := [0, \infty))$:

- ullet $\eta(\mathrm{d} t\,\mathrm{d} x)\colon \mathbb{Z}_+ ext{-valued measure on }\mathbb{R}_+ imes\mathbb{R}^d$
- $\eta(A_1),\eta(A_2),\cdots,\eta(A_n)$ are independent for any disjoint and bounded sets $A_1,A_2,\cdots,A_n\in\mathcal{B}(\mathbb{R}_+ imes\mathbb{R}^d)$
 - $ullet \ Q(\eta(A)=k)=\exp{(-|A|)}rac{|A|^k}{k!}, \ k=0,1,2,\cdots$

- $hd
 hd \mathbf{M} = \left(\{B_t\}_{t \geq 0}\,, P
 ight)$: BM on \mathbb{R}^d starting from the origin
- The idea of the following formulation comes from [CY05]:
- riangleright U(x): closed ball centered at $x \in \mathbb{R}^d$ with unit volume

$$riangleright V_t := \left\{ (s,x) \in \mathbb{R}_+ imes \mathbb{R}^d \, | \, s \in (0,t], \,\, x \in U(B_s)
ight\}$$

 $ightarrow \eta(V_t)$: the number of Poisson points "hit" by the Brownian particle

 $hd \mathbb{P}^{\eta}$: law of a BBM on \mathbb{R}^d with branching rate $\alpha\eta$ (lpha>0)

- ullet At time t=0, a Brownian particle starts from the origin
- ullet At time T, this particle splits into two Brownian particles, where

$$\mathbb{P}^{\eta}\left(T>t
ight)=E\left[\exp\left(-lpha\eta(V_{t})
ight)
ight]$$

• These offspring reproduce independently in a similar way

$$\mathbb{P}(\mathrm{d}\omega\,\mathrm{d}\eta) := Q(\mathrm{d}\eta)\mathbb{P}^{\eta}(\mathrm{d}\omega)$$

3. Results.

3.1. Expected total population size

 $riangleright N_t(A)$: population size on a set $A\subset \mathbb{R}^d$ at time t

 $ho \ \overline{N}_t := N_t(\mathbb{R}^d)$: total population size at time t

$$e^eta := 2 - e^{-lpha}, \quad \pmb{\lambda} := e^eta - 1$$

Lemma.

$$\mathbb{E}^{\eta}\left[\overline{N}_{t}
ight]=E\left[e^{eta\eta(V_{t})}
ight],\quad\mathbb{E}\left[\overline{N}_{t}
ight]=e^{\lambda t}$$

 $\overline{M}_t := e^{-\lambda t} \overline{N}_t$ is a \mathbb{P} -martingale and $\mathbb{E}\left[\overline{M}_t\right] \equiv 1$

$$riangleright \overline{M}_\infty := \lim_{t o \infty} \overline{M}_t$$
 \mathbb{P} -a.s.

3.2. Regular growth and diffusivity.

 $riangleright
ho_t(\mathrm{d}x) := rac{N_t(\mathrm{d}x)}{\overline{N}_t}$: population density at time t

$$ho(x)=rac{1}{(2\pi)^{d/2}}\exp\left(-rac{|x|^2}{2}
ight)$$

Theorem 1 (Regular growth and diffusivity).

Assume $d \geq 3$ and

$$E\left[\exp\left(\lambda^2 \int_0^\infty \left|U\left(B_t^1\right) \cap U\left(B_t^2\right)\right| \, \mathrm{d}t\right)\right] < \infty \quad (\star)$$

for independent BMs $\{B_t^1\}_{t\geq 0}$ and $\{B_t^2\}_{t\geq 0}$. Then

(i)
$$\mathbb{P}\left(\overline{M}_{\infty}\in(0,\infty)
ight)=1$$

(i)
$$\mathbb{P}\left(\overline{M}_\infty\in(0,\infty)
ight)=1$$
 (ii) $\lim_{t o\infty}\int_{\mathbb{R}^d}f\left(rac{x}{\sqrt{t}}
ight)
ho_t(\mathrm{d}x)=\int_{\mathbb{R}^d}f(x)
ho(x)\,\mathrm{d}x$

in \mathbb{P} -probability, $orall f \in C_b(\mathbb{R}^d)$.

Remark. (i) (\star) is equivalent to one of the following:

(a)
$$\sup_{t>0}\mathbb{E}\left[\overline{M}_t^2\right]<\infty$$
;

(b)
$$E\left[\exp\left(rac{\lambda^2}{2}\int_0^\infty |U(0)\cap U(B_t)|\,\mathrm{d}t
ight)
ight]<\infty;$$

(c) (Gaugeability [C02], [T02])

$$egin{aligned} \inf\left\{rac{1}{2}\int_{\mathbb{R}^d}|
abla u(x)|^2\,\mathrm{d}x\,igg|\,u\in C_0^\infty(\mathbb{R}^d),\ &rac{\lambda^2}{2}\int_{\mathbb{R}^d}u(x)^2\,|U(0)\cap U(x)|\,\mathrm{d}x=1
ight\}>1. \end{aligned}$$

(ii) (\star) does not hold for d=1 and 2.

3.2. Slow growth and localization.

Theorem 2 (Slow growth).

$$\exists oldsymbol{eta}(oldsymbol{d}) \geq 0 ext{ s.t. } \mathbb{P}\left(\overline{M}_{\infty} = 0
ight) = 1 ext{ holds for any } eta > eta(oldsymbol{d}).$$

Moreover,

$$\limsup_{t o\infty}rac{\log\overline{M}_t}{t}<-c(eta)$$
 \mathbb{P} -a.s.

for some positive constant $c(\beta) > 0$.

Note: Regular growth $\Longrightarrow \lim_{t \to \infty} \frac{\log \overline{M}_t}{t} = 0$

Remark. (i) $\beta(d) > 0$ for any $d \ge 3$

(ii)
$$\beta(1) = \beta(2) = 0$$
 by [B08, B09]

 $rianglerightarrow \overline{
ho}_t := \sup_{x \in \mathbb{R}^d}
ho_t(U(x))$: density at the most populated site

Theorem 3 (Localization). —

For any $\beta > \beta(d)$,

$$\limsup_{t o\infty}\overline{
ho}_t>c_1(eta)$$
 \mathbb{P} -a.s.

for some non-random positive constant $c_1(\beta) \in (0,1)$.

4. Replica overlap.

$$riangleright R_t := \int_{\mathbb{R}^d}
ho_t(U(x))^2 \, \mathrm{d}x$$
: replica overlap

$$\implies \exists c_2 = c_2(d) \in (0,1) ext{ s.t. } c_2\overline{
ho}_t^2 \leq R_t \leq \overline{
ho}_t$$

Theorem 4.

$$\left\{\overline{M}_{\infty}=0
ight\}=\left\{\int_{0}^{\infty}R_{t}\,\mathrm{d}t=\infty
ight\}$$
 \mathbb{P} -a.s.

Furthermore, if $\mathbb{P}\left(\overline{M}_{\infty}=0
ight)=1$, then

$$-c_3 \log \overline{M}_t \leq \int_0^t R_s \, \mathrm{d}s \leq -c_4 \log \overline{M}_t$$
 for all large t

Theorem 2 + Theorem 4 \Longrightarrow Theorem 3

Proof of Theorem 3.

$$\liminf_{t o\infty}rac{1}{t}\int_0^t R_s\,\mathrm{d}s \overset{\mathrm{Theorem}}{\geq} rac{4}{-c_3\limsup_{t o\infty}rac{\log\overline{M}_t}{t}}{rac{1}{t}}$$

$$\Longrightarrow \limsup_{t \to \infty} \overline{\rho}_t \geq \limsup_{t \to \infty} R_t > c_1(\beta)$$

5. Proof of Theorem 4.

$$\triangleright \, \overline{M}_{t-} := \lim_{s \to t-0} \overline{M}_s$$

$$riangledown \Delta \overline{M}_t := \overline{M}_t - \overline{M}_{t-1}$$

$$ho \ [\overline{M}]_t := \overline{M}_0^2 + \sum_{\substack{0 < s \le t \ \Delta \overline{M}_s
eq 0}} (\Delta \overline{M}_s)^2$$
: quadratic variation

By Ito's formula applied to $-\log \overline{M}_t$,

$$-\log \overline{M}_t \asymp -\int_0^t \frac{1}{\overline{M}_{s-}} d\overline{M}_s + \int_0^t \frac{1}{\overline{M}_{s-}^2} d[\overline{M}]_s$$

$$\overline{M}_{\infty} > 0 \iff \int_{0}^{\infty} \frac{1}{\overline{M}_{t-}^{2}} d[\overline{M}]_{t} < \infty$$

 $\triangleright \langle \overline{M} \rangle_t$: predictable quadratic variation

Fact ([HWY 92]).

$$\text{(i)} \quad \int_0^\infty \frac{1}{\overline{M}_{t-}^2} \, \mathrm{d}[\overline{M}]_t < \infty \iff \int_0^\infty \frac{1}{\overline{M}_t^2} \, \mathrm{d}\langle \overline{M} \rangle_t < \infty$$

(ii) If
$$\int_0^\infty \frac{1}{\overline{M}_t^2} \mathrm{d} \langle \overline{M} \rangle_t = \infty$$
, then

$$\int_0^t rac{1}{\overline{M}_{s-}^2} \mathrm{d}[\overline{M}]_s \sim \int_0^t rac{1}{\overline{M}_s^2} \mathrm{d}\langle \overline{M}
angle_s \quad ext{as } t o \infty$$

(ii)
$$\int_0^\infty rac{1}{\overline{N}_t} \mathrm{d}t < \infty$$

• Assume first $\int_0^\infty R_t \, \mathrm{d}t < \infty$

$$\overset{\mathsf{Prop.}}{\Longrightarrow} \ \int_0^\infty \frac{1}{\overline{M}_t^2} \, \mathrm{d} \langle \overline{M} \rangle_t < \infty \overset{\mathsf{Fact (i)}}{\Longrightarrow} \int_0^\infty \frac{1}{\overline{M}_{t-}^2} \, \mathrm{d} [\overline{M}]_t < \infty$$

ullet Assume next $\int_0^\infty R_t \, \mathrm{d}t = \infty$

$$\lambda^2 \int_0^t R_s \, \mathrm{d}s \overset{\mathsf{Prop.}}{\sim} \int_0^t rac{1}{\overline{M}_s^2} \, \mathrm{d}\langle \overline{M}
angle_s$$
 Fact (ii) $\int_0^t rac{1}{\overline{M}_s^2} \, \mathrm{d}[\overline{M}]_s$

$$\implies -\log \overline{M}_t \asymp \int_0^t \frac{1}{\overline{M}_{s-}^2} d[\overline{M}]_s \asymp \int_0^t R_s ds$$