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Berry–Esseen bound for the Brownian motions on
hyperbolic spaces
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Yuichi Shiozawa (Kyoto)

Abstract. We obtain the uniform convergence rate for the Gaussian fluctuation of
the radial part of the Brownian motion on a hyperbolic space. We also show that this
result is sharp if the dimension of the hyperbolic space is 2 or general odd. Our approach
is based on the repetitive use of the Millson formula and the integration by parts formula.

1. Introduction. We are concerned with the Gaussian fluctuation of
the radial part of the Brownian motion on a d-dimensional hyperbolic space.
In this note, we obtain the uniform convergence rate for the fluctuation in
distribution, the so-called Berry–Esseen bound, together with the sharpness
for d = 2 and general odd d ≥ 3.

For d ≥ 2, let Hd be the d-dimensional hyperbolic space with a pole o,
and let d = dHd be the associated distance function. Let ∆ = ∆Hd be
the Laplace–Beltrami operator, and X = ({Xt}t≥0, {Px}x∈Hd) the Brownian
motion on Hd generated by ∆/2. Let R

(d)
t = d(o,Xt) (t ≥ 0) be the radial

process and P = Po. Then by the Itô formula applied to R
(d)
t , we have

(1.1) R
(d)
t = Bt +

d− 1

2

t�

0

cothR(d)
s ds,

where Bt is the Brownian motion on R (see, e.g., [11, Example 3.3.3]). Since
limt→∞R

(d)
t = ∞, we obtain the law of large numbers:

(1.2) lim
t→∞

R
(d)
t

t
=

d− 1

2
, P -a.s.

(see also [7, Section 4.1] and [14] for the escape rate). Moreover, we realize
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the limiting behavior of the fluctuation in (1.2) as the central limit theorem:

(1.3) lim
t→∞

P

(
R

(d)
t − (d− 1)t/2√

t
≥ x

)
= Φ(x), x ∈ R

(see, e.g., [2, Corollary 3.1] and [13, Theorem 2.1]), where

Φ(x) =
1√
2π

∞�

x

e−u2/2 du, x ∈ R.

In connection with the heat equation in Hd, Vázquez [15, (5.5)] noted
that the limit in (1.3) is uniform in x ∈ R. Our purpose in this note is to
establish the uniform convergence rate in (1.3):

Theorem 1.1. For any d ≥ 2, there exists a constant c1 > 0 such that

(1.4) sup
x∈R

∣∣∣∣P(
R

(d)
t − (d− 1)t/2√

t
≥ x

)
− Φ(x)

∣∣∣∣ ≤ c1√
t
, t ≥ 1.

Moreover, if d = 2 or if d ≥ 3 is odd, then there exists a constant c2 > 0
such that

(1.5) P

(
R

(d)
t − (d− 1)t/2√

t
≥ 0

)
− Φ(0) ≥ c2√

t
, t ≥ 1.

That is, in these cases, the convergence rate of (1.4) is sharp.

Theorem 1.1 provides the convergence rate t−1/2, which is consistent
with the standard Berry–Esseen theorem for i.i.d. random variables (see,
e.g., [6, Theorem 3.4.17]). Note that for d = 1, X is the Brownian motion
on R started at the origin. Since the radial process R

(1)
t is the reflecting

Brownian motion, for any t > 0 we have

P

(
R

(1)
t√
t

≥ x

)
=

{
1 (x ≤ 0),

2Φ(x) (x > 0).

In other words, it is unnecessary to study the limiting behavior of the fluc-
tuation as in (1.3).

To prove Theorem 1.1, we make repetitive use of the Millson formula (see
(2.4) below) together with the integration by parts formula. By the Millson
formula, we reduce the calculation of the distribution under consideration to
d = 2 or d = 3. At present, the validity of (1.5) is unavailable for even d ≥ 4
because of implicit constants in the calculation (see Remark 4.3 below for
details).

Even though we know the matching bound on the transition density
function of X (see (2.5) below), this bound is insufficient for the estimate of
the distribution which would be necessary in the proof of (1.4). According
to (1.1) and (1.2), we can also regard R

(d)
t as the Brownian motion with
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linear drift asymptotically. Hence we might guess that the Girsanov theorem
(see, e.g., [12, Theorem 5.1 (p. 191) and Corollary 5.13 (p. 199)]) is effective
for (1.1); however, as the so-called Novikov condition fails (see (2.6) below),
it is unclear whether the Girsanov theorem is applicable to (1.1). Since no
information is available about the convergence rate in distribution of (1.2),
we do not know whether the expression (1.1) is applicable for the proof
of (1.4).

Concerning the law of large numbers (1.2), Cammarota–De Gregorio–
Macci [3, Proposition 3.2] and Hirao [10, Theorem 1.1] proved the large devi-
ation principle for the radial part by using (2.5). Moreover, Cammarota–De
Gregorio–Macci [3, Section 3, pp. 1560–1563] proved the moderate devia-
tion principle, together with the exponential decay order of the distribution
related to asymptotic normality. Theorem 1.1 establishes the asymptotic
normality in the suitable scaling factor.

Our motivation lies in clarifying how the structures of the volume and
spectrum determine the long time behavior of a symmetric Markov process.
Anker–Setti [1, Theorem 2] revealed the concentration behavior in distribu-
tion of the Brownian motion on a complete and non-compact Riemannian
manifold for which the volume growth rate is exponential and the bottom
of the L2-spectrum of the Laplacian is strictly positive. In particular, this
result characterizes the linear growth rate of the radial part of the Brownian
motion in terms of the exponential volume growth rate and the bottom of
the L2-spectrum. For a Riemannian manifold with a pole, Grigor’yan–Hsu
[7, Theorem 4.1] determined the linear growth rate exactly. Theorem 1.1
is an attempt to provide the second order asymptotic behavior of the lin-
ear growth phenomena for a symmetric Markov process in a quantitative
way.

We close this Introduction with some words on the contents and notation.
In Section 2, we collect basic facts about the Brownian motions on hyper-
bolic spaces. In Sections 3 and 4, we prove Theorem 1.1 for odd dimensions
and even dimensions, respectively. Two lemmas in elementary calculus are
postponed to the Appendix.

For a fixed constant T > 0, let f1(t) and f2(t) be positive functions
defined on [T,∞). We then write f1(t) ∼ f2(t) if f1(t)/f2(t) → 1 as t → ∞.
Let S be a set, and let g1(s) and g2(s) be positive functions defined on S.
We then write g1(s) ≲ g2(s) if there exists a constant c > 0 such that
g1(s) ≤ cg2(s) for all s ∈ S. We further write g1(s) ≍ g2(s) if g1(s) ≲ g2(s)
and g2(s) ≲ g1(s). We also make the conventions

∑0
n=1 = 0 and

∏0
n=1 = 1.

2. Preliminaries. In this section, we recall the Millson formula and
the estimates of the transition density function of the Brownian motion
on Hd.
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Let d ≥ 2. The d-dimensional hyperbolic space Hd is a spherically sym-
metric Riemannian manifold with the Riemannian distance given by

ds2 = dr2 + (sinh r)2 dθ2.

Here dθ2 is the distance on the (d−1)-dimensional surface Sd−1 = {θ ∈ Rd |
|θ| = 1}. We write ωd = 2πd/2/Γ (d/2) for the surface area of Sd−1. Let d and
dv denote the associated distance function and volume measure, respectively.

Let X = ({Xt}t≥0, {Px}x∈Hd) be the Brownian motion on Hd generated
by ∆/2, half of the Laplace–Beltrami operator on Hd. Then there exists a
Borel measurable function pd(t, x, y) : (0,∞)×Hd ×Hd → (0,∞) such that

Px(Xt ∈ A) =
�

A

pd(t, x, y) v(dy), x ∈ Hd, t > 0, A ∈ B(Hd).

Namely, pd(t, x, y) is the transition density function of X. Moreover, there
exists a Borel measurable function qd(t, r) : (0,∞) × (0,∞) → (0,∞) such
that pd(t, x, y) = qd(t, d(x, y)) for any x, y ∈ Hd and t > 0, and

(2.1) Px(d(x,Xt) ∈ B) = ωd

�

B

qd(t, r) sinh
d−1 r dr, t > 0, B ∈ B([0,∞))

(see, e.g., [3, §2.2] for details).
It is known that

q2(t, r) =
21/2e−t/8

(2πt)3/2

∞�

r

se−s2/(2t)

(cosh s− cosh r)1/2
ds,(2.2)

q3(t, r) =
e−t/2

(2πt)3/2
r

sinh r
e−r2/(2t)(2.3)

(see, e.g., [4, Section 5.7] or [9, Section 2] and references therein). The Millson
formula is a recursive relation between the transition density functions:

(2.4) qd(t, r) = −e−(d−2)t/2

2π sinh r

∂qd−2

∂r
(t, r), t > 0, r > 0

(see, e.g., [5, 8], [4, Section 5.7] and references therein). We also see by
[4, Theorem 5.7.2] that

qd(t, r) ≍
1

td/2
exp

(
−(d− 1)2

8
t− d− 1

2
r − r2

2t

)
(2.5)

× (1 + r + t)(d−3)/2(1 + r), t > 0, r > 0.

Remark 2.1. As mentioned in the Introduction, the Novikov condition
fails for (1.1), that is,

(2.6) E

[
exp

(
1

2

t�

0

coth2R(d)
s ds

)]
= ∞, t > 0.
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To verify this equality, it is enough to show that

(2.7) E
[ t�

0

coth2R(d)
s ds

]
= ∞, t > 0.

We show it by using (2.5). Fix t > 0. Then

E
[ t�

0

coth2R(d)
s ds

]
=

t�

0

E[coth2R(d)
s ] ds

= ωd

t�

0

(∞�

0

(coth2 r)qd(s, r) sinh
d−1 r dr

)
ds = ωdI(t).

By (2.5), there exists a constant c1 = c1(t) > 0 such that for any s ∈ [0, t]
and r ∈ [0,

√
s],

qd(s, r) ≥
c1e

−r2/(2s)

sd/2
.

By combining this with

sinh r ∼ r, coth r ∼ 1

r
(r → 0),

there exists a constant c2 = c2(t) > 0 such that for any s ∈ [0, t] and
r ∈ [0,

√
s],

(coth2 r)qd(s, r) sinh
d−1 r ≥ c2

r2
e−r2/(2s)

sd/2
rd−1 =

c2e
−r2/(2s)

sd/2
rd−3.

This implies that

I(t) ≥
t�

0

(√
s�

0

(coth2 r)qd(s, r) sinh
d−1 r dr

)
ds

≥ c2

t�

0

(√
s�

0

e−r2/(2s)rd−3 dr
) 1

sd/2
ds

= c2

t�

0

1

s
ds

( 1�

0

e−u2/2ud−3 du
)
= ∞.

At the first equality above, we used the change of variables formula with
r =

√
s u. We thus get (2.7).

Before the proof of Theorem 1.1 in the subsequent sections, we make a
comment on the range of x ∈ R in (1.4). Since R

(d)
t ≥ 0 for any t ≥ 0, we

have, for any x ≤ −(d− 1)
√
t/2,

P

(
R

(d)
t − (d− 1)t/2√

t
≥ x

)
= 1,
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which implies that∣∣∣∣P(
R

(d)
t − (d− 1)t/2√

t
≥ x

)
− Φ(x)

∣∣∣∣ = 1− Φ(x)

≤ 1− Φ

(
−d− 1

2

√
t

)
=

1√
2π

−(d−1)
√
t/2�

−∞
e−y2/2 dy.

We also note that for u > 0,
−u�

−∞
e−y2/2 dy =

∞�

u

e−y2/2 dy =

∞�

u

1

y
ye−y2/2 dy(2.8)

≤ 1

u

∞�

u

ye−y2/2 dy =
e−u2/2

u
,

which yields
−(d−1)

√
t/2�

−∞
e−y2/2 dy ≤ 2e−(d−1)2t/8

(d− 1)
√
t
.

Then there exists a constant c1 > 0 such that for any t ≥ 1,

sup
x≤−(d−1)

√
t/2

∣∣∣∣P(
R

(d)
t − (d− 1)t/2√

t
≥ x

)
− Φ(x)

∣∣∣∣ ≤ c1e
−(d−1)2t/8

√
t

≤ c1√
t
.

Hence for the proof of (1.4) it is enough to show that, for some c2 > 0,

(2.9) sup
x≥−(d−1)

√
t/2

∣∣∣∣P(
R

(d)
t − (d− 1)t/2√

t
≥ x

)
− Φ(x)

∣∣∣∣ ≤ c2√
t
, t ≥ 1.

3. Proof of Theorem 1.1 for odd dimensions. In this section, we
first prove Theorem 1.1 for d = 3. Using this assertion, we next prove the
theorem for general odd dimensions.

3.1. Proof of Theorem 1.1 for d = 3. We first prove (2.9) for d = 3.
We write Rt = R

(3)
t for simplicity. Since Rt ≥ 0 for any t ≥ 0 and ω3 = 4π,

it follows by (2.3) that for any x ≥ −
√
t,

P

(
Rt − t√

t
≥ x

)
= P (Rt ≥ t+ x

√
t)

=
ω3

(2πt)3/2

∞�

t+x
√
t

e−t/2e−u2/(2t)u sinhudu

=
1√
2π

2e−t/2

t
√
t

∞�

t+x
√
t

e−u2/(2t)u sinhu du.
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Then by the change of variables u = t+ v
√
t we obtain

2e−t/2

t
√
t

∞�

t+x
√
t

e−u2/(2t)u sinhudu

= 2e−t
∞�

x

e−v2/2e−v
√
t sinh(t+ v

√
t) dv

+
2e−t

√
t

∞�

x

e−v2/2e−v
√
tv sinh(t+ v

√
t) dv

= I1(t, x) + I2(t, x).

Therefore,

(3.1) P

(
Rt − t√

t
≥ x

)
−Φ(x) =

1√
2π

{(
I1(t, x)−

∞�

x

e−v2/2 dv
)
+ I2(t, x)

}
.

We have

(3.2) I1(t, x)−
∞�

x

e−v2/2 dv

=

∞�

x

e−v2/2(1− e−2(t+v
√
t)) dv −

∞�

x

e−v2/2 dv

= −
∞�

x

e−v2/2e−2(t+v
√
t) dv.

Then by the change of variables u = v + 2
√
t we get, for any t ≥ 1 and

x ≥ −
√
t,

(3.3)
∞�

x

e−v2/2e−2(t+v
√
t) dv =

∞�

x+2
√
t

e−u2/2 du ≤
∞�
√
t

e−u2/2 du ≤ e−t/2

√
t
.

In the last inequality above, we have used (2.8). Hence for any t ≥ 1 and
x ≥ −

√
t,

(3.4) 0 ≥ I1(t, x)−
∞�

x

e−u2/2 du ≥ −e−t/2

√
t
.

Since (e−v2/2)′ = −ve−v2/2, by integration by parts we have

I2(t, x) =
1√
t

∞�

x

ve−v2/2(1− e−2(t+v
√
t)) dv

=
e−x2/2

√
t

(1− e−2(t+x
√
t)) + 2

∞�

x

e−v2/2e−2(t+v
√
t) dv ≥ 0.

(3.5)



8 Y. Shiozawa

In particular, we see by (3.3) that for any t ≥ 1 and x ≥ −
√
t,

0 ≤ I2(t, x) ≤
e−x2/2

√
t

+
2e−t/2

√
t

≤ 3√
t
.

Combining this with (3.1) and (3.4), we get (2.9) for d = 3.
We next prove (1.5) for d = 3. If we take x = 0 in (3.1), then by a

calculation similar to (3.2) and (3.3), it follows that

I1(t, 0)−
∞�

0

e−u2/2 du = −
∞�

2
√
t

e−u2/2 du ≥ −e−2t

2
√
t
≥ − e−2

2
√
t
, t ≥ 1.

We also have, for any t ≥ 1,

I2(t, 0) =
1√
t

∞�

0

ve−v2/2(1− e−2(t+v
√
t)) dv

≥ 1− e−2

√
t

∞�

0

ve−v2/2 dv =
1− e−2

√
t

.

Hence by (3.1) with x = 0, for any t ≥ 1 we get

P

(
Rt − t√

t
≥ 0

)
− Φ(0) =

1√
2π

{(
I1(t, 0)−

∞�

0

e−u2/2 du
)
+ I2(t, 0)

}
≥ 1√

2π

(
− e−2

2
√
t
+

1− e−2

√
t

)
=

2− 3e−2

2
√
2π

1√
t
,

which implies (1.5) for d = 3.

3.2. Proof of (1.4) for odd dimensions. Let d ≥ 2. For t ≥ 1 and
x ≥ −(d− 1)

√
t/2, let

T = T (t, x) = x
√
t+

d− 1

2
t (≥ 0).

Since R
(d)
t ≥ 0, by (2.1) and (2.4) we have

(3.6) P

(
R

(d)
t − (d− 1)t/2√

t
≥ x

)
= ωd

∞�

T

qd(t, r) sinh
d−1 r dr

= −ωde
−(d−2)t/2

2π

∞�

T

∂qd−2

∂r
(t, r) sinhd−2 r dr.
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Then by integration by parts and (2.5),

−
∞�

T

∂qd−2

∂r
(t, r) sinhd−2 r dr

= [−qd−2(t, r) sinh
d−2 r]r=∞

r=T +

∞�

T

qd−2(t, r)

(
∂

∂r
sinhd−2 r

)
dr

= qd−2(t, T ) sinh
d−2 T +

∞�

T

qd−2(t, r)

(
∂

∂r
sinhd−2 r

)
dr.

In the same way, we have

∞�

T

qd−2(t, r)

(
∂

∂r
sinhd−2 r

)
dr

= −e−(d−4)t/2

2π

∞�

T

1

sinh r

∂qd−4

∂r
(t, r)

(
∂

∂r
sinhd−2 r

)
dr

=
e−(d−4)t/2

2π
qd−4(t, T )

(
1

sinh r

∂

∂r

)
sinhd−2 r

∣∣∣∣
r=T

+
e−(d−4)t/2

2π

∞�

T

qd−4(t, r)
∂

∂r

(
1

sinh r

∂

∂r

)
sinhd−2 r dr.

Repeating this procedure, for any n ≥ 2 with d ≥ 2n we see from (3.6) that

P

(
R

(d)
t − (d− 1)t/2√

t
≥ x

)(3.7)

= ωd

n−1∑
m=1

m∏
j=1

e−(d−2j)t/2

2π
qd−2m(t, T )

(
1

sinh r

∂

∂r

)m−1

sinhd−2 r

∣∣∣∣
r=T

+ ωd

n−1∏
j=1

e−(d−2j)t/2

2π

∞�

T

((
1

sinh r

∂

∂r

)n−1

sinhd−2 r

)
qd−2n+2(t, r) sinh r dr

= ωd

n−1∑
m=1

e−(d−(m+1))mt/2

(2π)m
qd−2m(t, T )

(
1

sinh r

∂

∂r

)m−1

sinhd−2 r

∣∣∣∣
r=T

+ ωd
e−(d−n)(n−1)t/2

(2π)n−1

∞�

T

((
1

sinh r

∂

∂r

)n−1

sinhd−2 r

)
qd−2n+2(t, r) sinh r dr.
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We now define J
(2n+1)
1 (t, x) and J

(2n+1)
2 (t, x) by (3.7)2 and (3.7)4, respec-

tively, with d = 2n+ 1:

(3.8) J
(2n+1)
1 (t, x)

= ω2n+1

n−1∑
m=1

e−(2n−m)mt/2

(2π)m
q2n+1−2m(t, T )

(
1

sinh r

∂

∂r

)m−1

sinh2n−1 r

∣∣∣∣
r=T

,

(3.9) J
(2n+1)
2 (t, x)

= ω2n+1
e−(n2−1)t/2

(2π)n−1

∞�

T

((
1

sinh r

∂

∂r

)n−1

sinh2n−1 r

)
q3(t, r) sinh r dr.

Then

(3.10)

P

(
R

(2n+1)
t − nt/2√

t
≥ x

)
−Φ(x) = J

(2n+1)
1 (t, x) + (J

(2n+1)
2 (t, x)−Φ(x)).

Let us give an upper bound of J (2n+1)
1 (t, x).

Lemma 3.1. There exists a constant c > 0 such that

(3.11) sup
x≥−n

√
t

J
(2n+1)
1 (t, x) ≤ c√

t
, t ≥ 1.

Proof. We give an upper bound of e−(d−m−1)mt/2qd−2m(t, T ); recall that
d = 2n+ 1. For m = 1, . . . , n− 1, we see by (2.5) that

(3.12) e−(d−m−1)mt/2qd−2m(t, T )

≍ 1

t(d−2m)/2
e−(d−m−1)mt/2

× exp

(
−(d− 2m− 1)2

8
t− (d− 2m− 1)T

2
− T 2

2t

)
× (1 + T + t)(d−2m−3)/2(1 + T ).

Then

(3.13) e−(d−m−1)mt/2 exp

(
−(d− 2m− 1)2

8
t− (d− 2m− 1)T

2
− T 2

2t

)
= e−(d−m−1)T e−x2/2.

We can also see that there exists a constant c1 > 0 such that for any t ≥ 1
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and x ≥ −(d− 1)
√
t/2,

(1 + T + t)(d−2m−3)/2(1 + T )

≤ (1 + T + t)(d−2m−1)/2 = (1 + x
√
t+ (d− 1)t/2 + t)(d−2m−1)/2

≤ c1(1 + (|x|
√
t)(d−2m−1)/2 + t(d−2m−1)/2).

Hence

(3.14) e−(d−m−1)mt/2qd−2m(t, T )

≤ c2

t(d−2m)/2
e−(d−m−1)T e−x2/2

(
1 + (|x|

√
t)(d−2m−1)/2 + t(d−2m−1)/2

)
≤ c3e

−(d−m−1)T

(
1

t(d−2m)/2
+

e−x2/2|x|(d−2m−1)/2

t(d−2m)/4+1/4
+

1√
t

)
≤ c4e

−(d−m−1)T

√
t

.

At the last inequality, we used the fact that supx∈R e−x2/2|x|(d−2m−1)/2 < ∞.
By (A.6), for any m (1 ≤ m ≤ n−1), there exists a constant c5 > 0 such

that (
1

sinh r

∂

∂r

)m−1

sinhd−2 r

∣∣∣∣
r=T

≤ c5e
(d−m−1)T .

By combining this with (3.14), there exists a constant c6 > 0 such that for
any t ≥ 1 and x ≥ −(d− 1)

√
t/2,

(3.15)
e−(d−m−1)mt/2

(2π)m
qd−2m(t, T )

(
1

sinh r

∂

∂r

)m−1

sinhd−2 r

∣∣∣∣
r=T

≤ c6e
−(d−m−1)T

√
t

· e(d−m−1)T =
c6√
t
.

Therefore, by the definition of J (2n+1)
1 (t, x) in (3.7)2, we arrive at (3.11).

We turn to the calculation of J (2n+1)
2 (t, x).

Lemma 3.2. Let n ≥ 1.

(i) For any t ≥ 1 and x ≥ −n
√
t,

J
(2n+1)
2 (t, x) = P

(
R

(3)
n2t

− n2t
√
n2t

≥ x

)
.

(ii) There exists a constant c > 0 such that

(3.16) sup
x≥−n

√
t

|J (2n+1)
2 (t, x)− Φ(x)| ≤ c√

t
, t ≥ 1.

Proof. We first prove (i). Let d = 2n + 1. For t ≥ 1 and x ≥ −n
√
t, we

then have T = x
√
t+ nt. By (2.3) and (A.9), it follows that
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(3.17)
((

1

sinh r

∂

∂r

)n−1

sinh2n−1 r

)
q3(t, r) sinh r

=
(2n− 1)!!

n
sinh(nr)

e−t/2

(2πt)3/2
r

sinh r
e−r2/(2t) sinh r

=
(2n− 1)!!

n

e−t/2

(2πt)3/2
re−r2/(2t) sinh(nr)

and thus

e−(n2−1)t/2

(2π)n−1

∞�

T

((
1

sinh r

∂

∂r

)n−1

sinh2n−1 r

)
q3(t, r) sinh r dr

=
e−(n2−1)t/2

(2π)n−1

(2n− 1)!!

n

e−t/2

(2πt)3/2

∞�

T

re−r2/(2t) sinh(nr) dr

=
1

(2π)n−1(2πt)3/2
(2n− 1)!!

n

∞�

T

re−n2t/2e−r2/(2t) sinh(nr) dr.

We also note that

ω2n+1 =
(2π)n−14π

(2n− 1)!!
=

(2π)n−1ω3

(2n− 1)!!
.

Then by (3.9) and (2.3),

J
(2n+1)
2 (t, x) =

ω2n+1

(2π)n−1(2πt)3/2
(2n− 1)!!

n

∞�

T

re−n2t/2e−r2/(2t) sinh(nr) dr

=
ω3

n(2πt)3/2

∞�

T

re−n2t/2e−r2/(2t) sinh(nr) dr

=
ω3

(2πn2t)3/2

∞�

x
√
n2t+n2t

u

sinhu
e−n2t/2e−u2/(2n2t) sinh2 udu

= ω3

∞�

x
√
n2t+n2t

q3(n
2t, u) sinh2 udu

= P

(
R

(3)
n2t

− n2t
√
n2t

≥ x

)
.

At the second equality above, we have used the change of variables u = nr.
We next prove (ii). By (i),

(3.18) J
(2n+1)
2 (t, x)− Φ(x) = P

(
R

(3)
n2t

− n2t
√
n2t

≥ x

)
− Φ(x).

Since (1.4) is already proved for d = 3 in Section 3.1, the proof is complete.



Berry–Esseen bound for the Brownian motions on hyperbolic spaces 13

We are now in a position to complete the proof of (1.4). By (3.10), (3.11)
and (3.16), we have

sup
x≥−n

√
t

∣∣∣∣P(
R

(2n+1)
t − nt√

t
≥ x

)
− Φ(x)

∣∣∣∣ ≲ 1√
t
, t ≥ 1.

The proof of (1.4) is complete for general odd dimensions.

3.3. Proof of (1.5) for odd dimensions. We start from (3.10) with
x = 0. Since T = T (t, 0) = nt, we see by (3.8) that

J
(2n+1)
1 (t, 0)

= ω2n+1

n−1∑
m=1

e−(2n−m)mt/2

(2π)m
q2n+1−2m(t, nt)

(
1

sinh r

∂

∂r

)m−1

sinh2n−1 r

∣∣∣∣
r=nt

.

By (3.12) with d = 2n+ 1 and T = nt, we have

e−(2n−m)mt/2q2n+1−2m(t, nt)

≍ 1

t(2n+1−2m)/2
× e−(2n−m)mt/2 exp

(
−(n−m)2

2
t− (n−m)nt− n2t

2

)
× (1 + nt+ t)n−m−1(1 + nt).

Then by (3.13) with d = 2n+ 1 and T = nt,

e−(2n−m)mt/2 exp

(
−(n−m)2

2
t− (n−m)nt− n2t

2

)
= e−(2n−m)nt.

For any t ≥ 1, since (1 + nt+ t)n−m−1(1 + nt) ≍ tn−m, we get

e−(2n−m)mt/2q2n+1−2m(t, nt) ≍ e−(2n−m)nt

√
t

.

On the other hand, it follows by (A.7) that for any m (1 ≤ m ≤ n−1), there
exists a constant c1 > 0 such that(

1

sinh r

∂

∂r

)m−1

sinh2n−1 r

∣∣∣∣
r=nt

≥ c1e
(2n−m)nt.

Hence by the argument above,

(3.19) J
(2n+1)
1 (t, 0) ≳

1√
t
, t ≥ 1.

Since (1.5) is already proved for d = 3, we see from (3.18) that

J
(2n+1)
2 (t, 0)− Φ(0) = P

(
R

(3)
n2t

− n2t
√
n2t

≥ 0

)
− Φ(0) ≳

1√
t
, t ≥ 1.
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Combining this with (3.10) (for x = 0) and (3.19), we have

P

(
R

(2n+1)
t − nt√

t
≥ 0

)
− Φ(0) ≳

1√
t
, t ≥ 1.

We have thus completed the proof of (1.5) for general odd dimensions.

4. Proof of Theorem 1.1 for even dimensions

4.1. Proof of (1.4) for even dimensions. Suppose that d = 2n for
some n ≥ 1. Then for any t ≥ 1 and x ≥ −(2n − 1)

√
t/2, we have T =

x
√
t+ (2n− 1)t/2. We define J

(2n)
1 (t, x) and J

(2n)
2 (t, x) as (3.7)2 and (3.7)4,

respectively, with d = 2n:

J
(2n)
1 (t, x)

= ω2n

n−1∑
m=1

e−(2n−1−m)mt/2

(2π)m
q2n−2m(t, T )

(
1

sinh r

∂

∂r

)m−1

sinh2n−2 r

∣∣∣∣
r=T

and

J
(2n)
2 (t, x)

= ω2n
e−n(n−1)t/2

(2π)n−1

∞�

T

((
1

sinh r

∂

∂r

)n−1

sinh2n−2 r

)
q2(t, r) sinh r dr,

where J (2)
1 (t, x) = 0 by the convention

∑0
m=1 = 0. In what follows, we simply

write J1(t, x) = J
(2n)
1 (t, x) and J2(t, x) = J

(2n)
2 (t, x). We have

(4.1) P

(
R

(2n)
t − (2n− 1)t/2√

t
≥ x

)
− Φ(x) = J1(t, x) + (J2(t, x)− Φ(x)).

We now estimate the right hand side of (4.1). For an upper bound of
J1(t, x), we can follow the proof of Lemma 3.1 to show

Lemma 4.1. There exists a constant c > 0 such that for any t ≥ 1,

(4.2) sup
x≥−(2n−1)

√
t/2

J1(t, x) ≤
c√
t
.

For J2(t, x), we have

Lemma 4.2. There exists a constant c > 0 such that for any t ≥ 1,

(4.3) sup
x≥−(2n−1)

√
t/2

|J2(t, x)− Φ(x)| ≤ c√
t
.

Proof. Let

an(t) = ω2n
e−n(n−1)t/2

(2π)n−1
=

πe−n(n−1)t/2

2n−2(n− 1)!



Berry–Esseen bound for the Brownian motions on hyperbolic spaces 15

and

(4.4) K(t, x) =

∞�

T

((
1

sinh r

∂

∂r

)n−1

sinh2n−2 r

)
q2(t, r) sinh r dr.

Then

(4.5) J2(t, x) = an(t)K(t, x).

By (2.2) and the Fubini theorem,

(4.6) K(t, x) =
21/2e−t/8

(2πt)3/2

∞�

T

se−s2/(2t)

×
{s�

T

((
1

sinh r

∂

∂r

)n−1

sinh2n−2 r

)
sinh r

(cosh s− cosh r)1/2
dr

}
ds.

By integration by parts,

s�

T

((
1

sinh r

∂

∂r

)n−1

sinh2n−2 r

)
sinh r

(cosh s− cosh r)1/2
dr

=

[
−2

((
1

sinh r

∂

∂r

)n−1

sinh2n−2 r

)
(cosh s− cosh r)1/2

]r=s

r=T

+ 2

s�

T

((
1

sinh r

∂

∂r

)n

sinh2n−2 r

)
(cosh s− cosh r)1/2 sinh r dr

= 2

((
1

sinh r

∂

∂r

)n−1

sinh2n−2 r

)∣∣∣∣
r=T

(cosh s− coshT )1/2

+ 2

s�

T

((
1

sinh r

∂

∂r

)n

sinh2n−2 r

)
(cosh s− cosh r)1/2 sinh r dr.

Inductively, we get

(4.7)
s�

T

((
1

sinh r

∂

∂r

)n−1

sinh2n−2 r

)
sinh r

(cosh s− cosh r)1/2
dr

=
n−1∑
k=1

2k

(2k − 1)!!

((
1

sinh r

∂

∂r

)n−2+k)
sinh2n−2 r

∣∣∣∣
r=T

(cosh s− coshT )k−1/2

+
2n−1

(2n− 3)!!

s�

T

((
1

sinh r

∂

∂r

)2n−2

sinh2n−2 r

)
× (cosh s− cosh r)n−3/2 sinh r dr.
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Since (A.8) yields(
1

sinh r

∂

∂r

)2n−2

sinh2n−2 r = (2n− 2)!,

we have
s�

T

((
1

sinh r

∂

∂r

)2n−2

sinh2n−2 r

)
(cosh s− cosh r)n−3/2 sinh r dr

= (2n− 2)!

s�

T

(cosh s− cosh r)n−3/2 sinh r dr

=
2(2n− 2)!

2n− 1
(cosh s− coshT )n−1/2

and thus

2n−1

(2n− 3)!!

s�

T

((
1

sinh r

∂

∂r

)2n−2

sinh2n−2 r

)
(cosh s− cosh r)n−3/2 sinh r dr

=
2n(2n− 2)!

(2n− 1)!!
(cosh s− coshT )n−1/2

=
22n−1(n− 1)!

2n− 1
(cosh s− coshT )n−1/2.

Combining this with (4.6) and (4.7), we obtain

(4.8) K(t, x)

=
21/2e−t/8

(2πt)3/2

n−1∑
k=1

2k

(2k − 1)!!

((
1

sinh r

∂

∂r

)n−2+k)
sinh2n−2 r

∣∣∣∣
r=T

×
∞�

T

se−s2/(2t)(cosh s− coshT )k−1/2 ds

+
22n−1(n− 1)!

2n− 1

21/2e−t/8

(2πt)3/2

∞�

T

se−s2/(2t)(cosh s− coshT )n−1/2 ds

= K1(t, x) +K2(t, x),

whence by (4.5),

J2(t, x)− Φ(x) = an(t)(K1(t, x) +K2(t, x))− Φ(x)

= an(t)K1(t, x) + (an(t)K2(t, x)− Φ(x)).

(4.9)

We first estimate an(t)K1(t, x). By (A.6), there exists a constant c1 > 0,
independent of t, T and k (1 ≤ k ≤ n− 1), such that
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0 ≤
((

1

sinh r

∂

∂r

)n−2+k)
sinh2n−2 r

∣∣∣∣
r=T

(4.10)

≤ c1e
(n−k)T = c1e

(n−k)(x
√
t+(2n−1)t/2).

On the other hand, for any s ≥ T ,

(4.11) 0 ≤ (cosh s− coshT )k−1/2 ≤ coshk−1/2 s ≤ e(k−1/2)s.

Then by the change of variables s = u
√
t+ (2n− 1)t/2,

∞�

T

se−s2/(2t)(cosh s− coshT )k−1/2 ds

≤
∞�

T

se−s2/(2t)e(k−1/2)s ds

=
√
t

∞�

x

(
u
√
t+

2n− 1

2
t

)
e−(u+(2n−1)

√
t/2)2/2e(k−1/2)(u

√
t+(2n−1)t/2) du

= t
√
tet/8e−(n2−2nk+k)t/2

∞�

x

(
u√
t
+

2n− 1

2

)
e−u2/2e−(n−k)u

√
t du.

Since

∞�

x

(
u√
t
+

2n− 1

2

)
e−u2/2e−(n−k)u

√
t du

≤ c2

∞�

x

e−(n−k)u
√
t du =

c2e
−(n−k)x

√
t

(n− k)
√
t

≤ c2e
−(n−k)x

√
t

√
t

,

we obtain

∞�

T

se−s2/(2t)(cosh s− coshT )k−1/2 ds

≤ c2te
t/8e−(n2−2nk+k)t/2e−(n−k)x

√
t,

which yields

21/2e−t/8

(2πt)3/2

∞�

T

se−s2/(2t)(cosh s− coshT )k−1/2 ds

≤ c3e
−(n2−2nk+k)t/2 e

−(n−k)x
√
t

√
t

.
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Combining this with (4.10), we get

0 ≤
((

1

sinh r

∂

∂r

)n−2+k)
sinh2n−2 r

∣∣∣∣
r=T

21/2e−t/8

(2πt)3/2

×
∞�

T

se−s2/(2t)(cosh s− coshT )k−1/2 ds

≤ c4e
(n−k)(x

√
t+(n−1/2)t)e−(n2−2nk+k)t/2 e

−(n−k)x
√
t

√
t

=
c4e

n(n−1)t/2

√
t

.

This implies that

0 ≤ K1(t, x) ≤
c5e

n(n−1)t/2

√
t

and thus

(4.12) an(t)K1(t, x) =
πe−n(n−1)t/2

2n−2(n− 1)!
K1(t, x) ≤

c6√
t
.

Let us next estimate |an(t)K2(t, x)− Φ(x)|. By definition,

an(t)K2(t, x) = bn(t)

∞�

T

se−s2/(2t)(cosh s− coshT )n−1/2 ds

= bn(t)

∞�

T

(
s− 2n− 1

2
t

)
e−s2/(2t)(cosh s− coshT )(2n−1)/2 ds

+
2n− 1

2
tbn(t)

∞�

T

e−s2/(2t)(cosh s− coshT )(2n−1)/2 ds,

(4.13)

where

(4.14) bn(t) =
2n

(2n− 1)
√
π

e−(2n−1)2t/8

t3/2
.

By the change of variables y = s/
√
t− (2n− 1)

√
t/2 we also have

Φ(x) =
1√
2π

∞�

x

e−y2/2 dy(4.15)

=
2n− 1

2
tbn(t)

∞�

T

e−s2/(2t)

(
es

2

)(2n−1)/2

ds.
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Then

an(t)K2(t, x)− Φ(x)

= bn(t)

∞�

T

(
s− 2n− 1

2
t

)
e−s2/(2t)(cosh s− coshT )n−1/2 ds

− 2n− 1

2
tbn(t)

∞�

T

e−s2/(2t)

{(
es

2

)(2n−1)/2

− (cosh s− coshT )(2n−1)/2

}
ds.

For s ≥ T , since es/2 ≥ cosh s− coshT , we have

(es/2)(2n−1)/2 ≥ (cosh s− coshT )(2n−1)/2.

Therefore,

(4.16) |an(t)K2(t, x)− Φ(x)|

≤ bn(t)

∞�

T

∣∣∣∣s− 2n− 1

2
t

∣∣∣∣e−s2/(2t)(cosh s− coshT )n−1/2 ds

+
2n− 1

2
tbn(t)

∞�

T

e−s2/(2t)

{(
es

2

)(2n−1)/2

− (cosh s− coshT )(2n−1)/2

}
ds

= bn(t)L1(t, x) +
2n− 1

2
tbn(t)L2(t, x).

By (4.11) and the change of variables s = u
√
t+ (2n− 1)t/2,

L1(t, x) ≤
∞�

T

∣∣∣∣s− 2n− 1

2
t

∣∣∣∣e−s2/(2t)e(2n−1)s/2 ds

= e(2n−1)2t/8t

∞�

x

|u|e−u2/2 du

≤ e(2n−1)2t/8t

∞�

−∞
|u|e−u2/2 du = 2e(2n−1)2t/8t.

Hence, by (4.14),

(4.17) bn(t)L1(t, x) ≤
2n+1

(2n− 1)
√
π

1√
t
.

On the other hand, for any s ≥ T ,

(cosh s− coshT )(2n−1)/2 = cosh(2n−1)/2 s

(
1− coshT

cosh s

)(2n−1)/2

=

(
es

2

)(2n−1)/2

(1 + e−2s)(2n−1)/2

(
1− coshT

cosh s

)(2n−1)/2



20 Y. Shiozawa

and so(
es

2

)(2n−1)/2

− (cosh s− coshT )(2n−1)/2

=

(
es

2

)(2n−1)/2(
1− (1 + e−2s)(2n−1)/2

(
1− coshT

cosh s

)(2n−1)/2)
≤

(
es

2

)(2n−1)/2(
1−

(
1− coshT

cosh s

)(2n−1)/2)
.

Note that for any p ≥ 0,

(4.18) 0 ≤ 1− (1− v)p ≤ pv, 0 ≤ v ≤ 1.

Then for any s ≥ T ,

0 ≤ 1−
(
1− coshT

cosh s

)(2n−1)/2

≤ 2n− 1

2

coshT

cosh s
≤ (2n− 1)e−(s−T ).

Hence(
es

2

)(2n−1)/2

− (cosh s− coshT )(2n−1)/2 ≤ (2n− 1)e(2n−1)s/2e−(s−T ),

which yields

L2(t, x) =

∞�

T

e−s2/(2t)

{(
es

2

)(2n−1)/2

− (cosh s− coshT )(2n−1)/2

}
ds

≤ (2n− 1)

∞�

T

e−s2/(2t)e(2n−1)s/2e−(s−T ) ds

= (2n− 1)e(2n−1)2t/8
∞�

T

e−(s−(2n−1)t/2)2/(2t)e−(s−T ) ds

≤ (2n− 1)e(2n−1)2t/8
∞�

T

e−(s−T ) ds = (2n− 1)e(2n−1)2t/8.

Therefore, by (4.14),
2n− 1

2
tbn(t)L2(t, x) ≤

2n−1(2n− 1)√
π

1√
t
.

Combining this with (4.16) and (4.17), for any t ≥ 1 we obtain

(4.19) sup
x≥−(2n−1)t/2

|an(t)K2(t, x)− Φ(x)| ≤ 2n−1

√
π

(
2n− 1 +

4

2n− 1

)
1√
t
.

This together with (4.9) and (4.12) leads to (4.3).

By (4.2) and (4.3), we have completed the proof of (1.4) for general even
dimensions.
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4.2. Proof of (1.5) for d = 2. We now prove that there exists a con-
stant c > 0 such that

P

(
R

(2)
t − t/2√

t
≥ 0

)
− Φ(0) ≥ c√

t
, t ≥ 1.

Let Rt = R
(2)
t . Then by (2.1) with ω2 = 2,

P

(
Rt − t/2√

t
≥ 0

)
= P

(
Rt ≥

t

2

)
= 2

∞�

t/2

q2(t, r) sinh r dr.

On the other hand, by (4.4) and (4.8) with n = 1 and x = 0,

2

∞�

t/2

q2(t, r) sinh r dr =
2e−t/8

t
√
πt

∞�

t/2

re−r2/(2t)(cosh r − cosh(t/2))1/2 dr.

Moreover, by integration by parts,

2e−t/8

t
√
πt

∞�

t/2

re−r2/(2t)(cosh r − cosh(t/2))1/2 dr

=
e−t/8

√
πt

∞�

t/2

e−r2/(2t) sinh r

(cosh r − cosh(t/2))1/2
dr.

Therefore,

P

(
Rt − t/2√

t
≥ 0

)
=

e−t/8

√
2πt

∞�

t/2

e−r2/(2t)

√
2 sinh r

(cosh r − cosh(t/2))1/2
dr.

On the other hand, by (4.15) with x = 0 and n = 1,

Φ(0) =
e−t/8

√
2πt

∞�

t/2

e−r2/(2t)er/2 dr.

We thus have

(4.20) P

(
Rt − t/2√

t
≥ 0

)
− Φ(0)

=
e−t/8

√
2πt

∞�

t/2

e−r2/(2t)er/2
( √

2 e−r/2 sinh r

(cosh r − cosh(t/2))1/2
− 1

)
dr

=
e−t/8

√
2πt

∞�

t/2

e−r2/(2t)er/2Ft(r) dr

with

Ft(r) =

√
2 e−r/2 sinh r

(cosh r − cosh(t/2))1/2
− 1.
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Then Ft(r) ≥ 0 for any t ≥ 1 and r ≥ t/2 because

(4.21) (
√
2 e−r/2 sinh r)2 − (cosh r − cosh(t/2))

=
e−3r − 3e−r

2
+

et/2 + e−t/2

2

≥ −3e−t/2

2
+

et/2 + e−t/2

2
=

et/2 − 2e−t/2

2
≥ 0.

Hence the right hand side of (4.20) is positive.
For t ≥ 1 and r ≥ t/2, let

(4.22) Ft(r) =

√
2 e−r/2 sinh r

cosh1/2 r

(
1− cosh(t/2)

cosh r

)−1/2

− 1

=

(
1− cosh(t/2)

cosh r

)−1/2

− 1−
(
1− cosh(t/2)

cosh r

)−1/2(
1−

√
2 e−r/2 sinh r

cosh1/2 r

)
.

Since
1√
1− v

− 1 ≥ 1−
√
1− v ≥ 1

2
v, 0 ≤ v < 1,

we obtain

(4.23)
(
1− cosh(t/2)

cosh r

)−1/2

− 1 ≥ 1

2

cosh(t/2)

cosh r
≥ 1

4
e−(r−t/2).

We also note that

0 ≤ 1− 1− v√
1 + v

=
3v − v2√

1 + v(
√
1 + v + 1− v)

≤ 3v, 0 ≤ v ≤ 1,

and so

(4.24)

0 ≤ 1−
√
2 e−r/2 sinh r

cosh1/2 r
= 1− er/2 − e−3r/2

√
er + e−r

= 1− 1− e−2r

√
1 + e−2r

≤ 3e−2r.

If we assume in addition that r ≥ 1 + t/2, then

1− cosh(t/2)

cosh r
≥ 1− cosh(t/2)

cosh(1 + t/2)
≥ 1− 1

e
> 0.

Combining this with (4.24) we have, for any r ≥ 1 + t/2,(
1− cosh(t/2)

cosh r

)−1/2(
1−

√
2 e−r/2 sinh r

cosh1/2 r

)
≤ 3(1− e−1)−1/2e−2r.(4.25)

Therefore, by (4.22), (4.23) and (4.25), for any r ≥ 1 + t/2 we have

(4.26) Ft(r) ≥
1

4
e−(r−t/2) − 3(1− e−1)−1/2e−2r.
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By (4.26), we get

(4.27)
∞�

t/2

e−r2/(2t)er/2Ft(r) du ≥
∞�

1+t/2

e−r2/(2t)er/2Ft(r) dr

≥ 1

4
et/2

∞�

1+t/2

e−r2/(2t)−r/2 dr

− 3(1− e−1)−1/2
∞�

1+t/2

e−r2/(2t)−3r/2 dr.

Note that for any c > 0, by (2.8) we have

(4.28)
∞�

1+t/2

e−r2/(2t)e−cr dr

= ec
2t/2

∞�

1+t/2

e−(r+ct)2/(2t) dr = ec
2t/2

√
t

∞�

(c+1/2)
√
t+1/

√
t

e−u2/2 du

≍ ec
2t/2e−(c+1/2)2t/2 = e−(4c+1)t/8.

At the second equality above, we have used the change of variables u =
(r + ct)/

√
t. Hence by (4.27), and taking c = 1/2 and c = 3/2 in (4.28), for

all large t ≥ 1 we get

(4.29)
∞�

t/2

e−r2/(2t)er/2Ft(r) du ≥ c1e
t/2 · e−3t/8 − c2e

−7t/8 ≥ c3e
t/8.

Recall that the integral above is positive for any t ≥ 1. By (4.20) and (4.29)
we then have

P

(
Rt − t/2√

t
≥ 0

)
− Φ(0) ≳

1√
t
, t ≥ 1.

Thus, we have arrived at the desired conclusion.

Remark 4.3. At the moment, it is unknown whether (1.5) is valid for
even d ≥ 4. To explain this, let us apply the argument for d = 2 to general
even dimension d = 2n with n ≥ 2. Fix x ≥ 0. Then by (4.1) and (4.9),

(4.30)

P

(
R

(2n)
t − (2n− 1)t/2√

t
≥ x

)
− Φ(x) = J1(t, x) + (J2(t, x)− Φ(x))

= J1(t, x) + an(t)K1(t, x) + (an(t)K2(t, x)− Φ(x)).
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By the expression in the first line of (4.13), and integration by parts,

an(t)K2(t, x) = bn(t)

∞�

T

se−s2/(2t)(cosh s− coshT )n−1/2 ds

=
2n− 1

2
tbn(t)

∞�

T

e−s2/(2t) sinh s (cosh s− coshT )n−3/2 ds.

Hence if we let

(4.31) Gt(s) = 1−
(

2

es

)(2n−1)/2

sinh s (cosh s− coshT )n−3/2

= 1− (1− e−2s)(1 + e−2s − 2e−s coshT )n−3/2, s ≥ T,

then by (4.15),

an(t)K2(t, x)− Φ(x) = −2n− 1

2
tbn(t)

∞�

T

e−s2/(2t)

(
es

2

)(2n−1)/2

Gt(s) ds.

If n = 1, then Gt(s) is negative by a similar calculation to (4.21) and so the
right hand side above is positive. On the other hand, if n ≥ 2, then we can
see by (4.31) that the function Gt(s) is positive and decreasing on [T,∞),
and such that Gt(T ) = 1 and Gt(s) → 0 as s → ∞. Therefore, (4.19) implies
that for any t ≥ 1,

an(t)K2(t, x)− Φ(x) ≥ −|an(t)K2(t, x)− Φ(x)|

≥ −2n−1

√
π

(
2n− 1 +

4

2n− 1

)
1√
t
= − c∗√

t
.

We also see that, by an argument similar to that for (3.19) and (4.12) to-
gether with (A.7), there exist positive constants c1 and c2 such that for any
t ≥ 1,

J1(t, x) ≥
c1√
t
, an(t)K1(t, x) ≥

c2√
t
.

Hence (4.30) yields, for any t ≥ 1,

P

(
R

(2n)
t − (2n− 1)t/2√

t
≥ x

)
− Φ(x) ≥ c1 + c2 − c∗√

t
.

However, since we could not get effective estimates for c1 and c2, it is un-
known whether the right hand side above is positive or not. We note that
the constants c1 and c2 come from (2.5) and (A.7), respectively.

A. Appendix. To prove Theorem 1.1, we establish the following two
lemmas.
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Lemma A.1. Let n ≥ 1 and r ̸= 0.

(i) For any k = 1, 2, . . . ,

(A.1)
(

1

sinh r

∂

∂r

)2k

sinh2n−1 r

=

k∑
l=0

(2k)!

2k−l(k − l)!(2l)!

(k+l−1∏
m=0

(2n− 1− 2m)
)

× cosh2l r sinh2n−1−(2k+2l) r.

For any k = 0, 1, . . . ,

(A.2)
(

1

sinh r

∂

∂r

)2k+1

sinh2n−1 r =
k+1∑
l=1

(2k + 1)!

2k+1−l(k + 1− l)!(2l − 1)!

×
(k+l−1∏

m=0

(2n− 1− 2m)
)
cosh2l−1 r sinh2n−1−(2k+2l) r.

(ii) For any k = 1, . . . , n,

(A.3)
(

1

sinh r

∂

∂r

)2k

sinh2n r

=

k∧(n−k)∑
l=0

(2k)!

2k−l(k − l)!(2l)!

(k+l−1∏
m=0

(2n−2m)
)
cosh2l r sinh2n−(2k+2l) r.

For any k = 0, 1, . . . , n− 1,

(A.4)
(

1

sinh r

∂

∂r

)2k+1

sinh2n r =

(k+1)∧(n−k)∑
l=1

(2k + 1)!

2k+1−l(k + 1− l)!(2l − 1)!

×
(k+l−1∏

m=0

(2n− 2m)
)
cosh2l−1 r sinh2n−(2k+2l) r.

Proof. Fix n ≥ 1. Since the proof of (i) is similar to that of (ii), we
present the former only.

We prove (A.1) by induction. For k = 1, we have(
1

sinh r

∂

∂r

)2

sinh2n−1 r

= (2n− 1) sinh2n−3 r + (2n− 1)(2n− 3) cosh2 r sinh2n−5 r,



26 Y. Shiozawa

whence (A.1) is valid for k = 1. Suppose that it holds for some k ≥ 1. Since

∂

∂r
(cosh2l r sinh2n−1−(2k+2l) r)

= 2l cosh2l−1 r sinh2n−(2k+2l) r

+ (2n− 1− (2k + 2l)) cosh2l+1 r sinh2n−2−(2k+2l) r,

we obtain

(A.5)
∂

∂r

(
1

sinh r

∂

∂r

)2k

sinh2n−1 r

=

k∑
l=0

(2k)!

2k−l(k − l)!(2l)!

(k+l−1∏
m=0

(2n− 1− 2m)
) ∂

∂r
(cosh2l r sinh2n−1−(2k+2l) r)

=

k∑
l=1

(2k)!

2k−l(k − l)!(2l − 1)!

(k+l−1∏
m=0

(2n− 1− 2m)
)
cosh2l−1 r sinh2n−(2k+2l) r

+

k∑
l=0

(2k)!

2k−l(k − l)!(2l)!

( k+l∏
m=0

(2n− 1− 2m)
)
cosh2l+1 r sinh2n−2−(2k+2l) r

=
k∑

l=1

(2k)!

2k−l(k − l)!(2l − 1)!

(k+l−1∏
m=0

(2n− 1− 2m)
)
cosh2l−1 r sinh2n−(2k+2l) r

+
k+1∑
l=1

(2k)!

2k−l+1(k − l + 1)!(2l − 2)!

×
(k+l−1∏

m=0

(2n− 1− 2m)
)
cosh2l−1 r sinh2n−(2k+2l) r

=

k+1∑
l=1

(2k + 1)!

2k+1−l(k + 1− l)!(2l − 1)!

(k+l−1∏
m=0

(2n− 1− 2m)
)

× cosh2l−1 r sinh2n−(2k+2l) r.

Therefore, (A.2) holds. Using it we obtain, in a similar way to (A.5),

∂

∂r

(
1

sinh r

∂

∂r

)2k+1

sinh2n−1 r

=
k+1∑
l=0

(2k + 2)!

2k+1−l(k + 1− l)!(2l)!

( k+l∏
m=0

(2n− 1− 2m)
)
cosh2l r sinh2n−2−(2k+2l) r
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and thus(
1

sinh r

∂

∂r

)2k+2

sinh2n−1 r

=
k+1∑
l=0

(2k + 2)!

2k+1−l(k + 1− l)!(2l)!

( k+l∏
m=0

(2n−1−2m)
)
cosh2l r sinh2n−3−(2k+2l) r.

That is, (A.1) is valid for k replaced with k + 1. Hence the induction is
complete. In particular, our argument above also implies (A.2) for k ≥ 1.
Since we can verify (A.2) for k = 0 by direct computation, the proof is
complete.

Remark A.2. Let m and n be positive integers with n ≥ 2m. Then by
Lemma A.1, we have the following two clauses:

• There exists a constant c1 > 0 such that

(A.6)
(

1

sinh r

∂

∂r

)m

sinhn r ≤ c1e
(n−m)r, r > 0.

Note that for even n we see from (A.3) and (A.4) that (A.6) is still valid
for n ≥ m.

• For any r0 > 0, there exists a constant c2 > 0 such that

(A.7)
(

1

sinh r

∂

∂r

)m

sinhn r ≥ c2e
(n−m)r, r ≥ r0.

Lemma A.3. Let r ̸= 0.

(i) For n ≥ 1,

(A.8)
(

1

sinh r

∂

∂r

)2n

sinh2n r = (2n)!.

(ii) For n ≥ 1,

(A.9)
(

1

sinh r

∂

∂r

)n

sinh2n+1 r =
(2n+ 1)!!

n+ 1
sinh((n+ 1)r).

Proof. (i) follows from (A.3). To show (ii), we calculate the left hand side
of (A.9) for odd n and even n separately. Namely, we will prove that for any
k ≥ 1,

(A.10)
(

1

sinh r

∂

∂r

)2k−1

sinh4k−1 r =
(4k − 1)!!

2k
sinh(2kr)

and

(A.11)
(

1

sinh r

∂

∂r

)2k

sinh4k+1 r =
(4k + 1)!!

2k + 1
sinh((2k + 1)r).
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By (A.2),(
1

sinh r

∂

∂r

)2k−1

sinh4k−1 r

=
k∑

l=1

(2k − 1)!

2k−l(k − l)!(2l − 1)!

(k+l−2∏
m=0

(4k − 1− 2m)
)
cosh2l−1 r sinh2k−2l+1 r

=

k−1∑
j=0

(2k − 1)!

2jj!(2k − 2j − 1)!

(2k−j−2∏
m=0

(4k − 1− 2m)
)
cosh2k−(2j+1) r sinh2j+1 r,

where we set j = k − l in the second equality above. If 0 ≤ j ≤ k − 1, then

(2k − 1)!

2jj!(2k − 2j − 1)!

2k−j−2∏
m=0

(4k − 1− 2m) =
(2k − 1)!

(2j)!!(2k − 2j − 1)!

2k∏
l=j+2

(2l − 1)

=
(4k − 1)!!

2k

(2k)!

(2j + 1)!(2k − (2j + 1))!
=

(4k − 1)!!

2k

(
2k

2j + 1

)
and thus(

1

sinh r

∂

∂r

)2k−1

sinh4k−1 r

=
(4k − 1)!!

2k

k−1∑
j=0

(
2k

2j + 1

)
cosh2k−(2j+1) r sinh2j+1 r =

(4k − 1)!!

2k
sinh 2kr.

The proof of (A.10) is complete.
By (A.1) and a similar argument to the above,(
1

sinh r

∂

∂r

)2k

sinh4k+1 r

=
k∑

l=0

(2k)!

2k−l(k − l)!(2l)!

(k+l−1∏
m=0

(4k + 1− 2m)
)
cosh2l r sinh2k−(2l−1) r

=
k∑

j=0

(2k)!

2jj!(2(k − j))!

( 2k∏
i=j+1

(2i+ 1)
)
cosh2(k−j) r sinh2j+1 r

=
(4k + 1)!!

2k + 1

k∑
j=0

(
2k + 1

2j + 1

)
cosh2(k−j) r sinh2j+1 r

=
(4k + 1)!!

2k + 1
sinh((2k + 1)r).

The proof of (A.11) is complete.
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