Maximal displacement of branching symmetric stable processes

available at arXiv:2106.15215

Yuichi Shiozawa

(Osaka University, Japan)

The 10th International Conference on Stochastic Analysis and its Applications

Kyoto University

September, 2021

1. Introduction

- \circ Reproduction only on a compact set in \mathbb{R}^d
- $\triangleright L_t$: forefront of the particle range at time t

ho $(\{X_t\}_{t\geq 0},\{P_x\}_{x\in \mathbb{R}^d})$: symm. lpha-stable proc. on \mathbb{R}^d generated by $-rac{1}{2}(-\Delta)^{lpha/2}$ $(lpha\in(0,2))$

$$\Rightarrow \; P_x(|X_t|>R) \sim rac{c_0 t}{R^lpha} \; (R o\infty) \;\;\; ext{(heavy tail)}$$

- \circ Branching RW on \mathbb{Z} with spatially homogeneous branching [Durrett(83), Bhattacharya-Hazra-Roy(17)]
- \circ (conti. time) Catalytic branching RW on \mathbb{Z} [Bulinskaya(21)] (reproduction only on finite points)

2. Model and results

- (1) μ -killed symm. stable proc.
- (2) binary branching at the lifetime
- (3) indep. reproduction

ho μ : positive Radon meas. on \mathbb{R}^d with compact support

 $hd G_{eta}(x,y)$: eta-resolvent of the symm. lpha-stable proc. on \mathbb{R}^d

$$\lim_{eta o\infty}\sup_{x\in\mathbb{R}^d}\int_{\mathbb{R}^d}G_{eta}(x,y)\,\mu(\mathrm{d}y)=0$$
 (Kato class)

$$ho \; \lambda := \inf \operatorname{Spec} \left(rac{1}{2} (-\Delta)^{lpha/2} - \mu
ight)$$
: intensity of branching

In what follows, we assume $\lambda < 0$

 \Rightarrow the ground state $h \in C_b^+(\mathbb{R}^d)$ exists and

$$h(x) \sim rac{C_0}{|x|^{d+lpha}} \int_{\mathbb{R}^d} h(y) \, \mu(\mathrm{d}y) \quad (|x| o \infty)$$

- $\triangleright Z_t := \mathsf{population} \ \mathsf{at} \ \mathsf{time} \ t$
- $\triangleright X_t^k$: position of the kth particle at time t $(1 \le k \le Z_t)$

$$\triangleright L_t := \max_{1 \le k \le Z_t} |\mathbf{X}_t^k|$$
:

maximal norm of particles alive at time t (forefront)

 $riangle M_t := e^{\lambda t} \sum_{k=1}^{Z_t} h(\mathbf{X}_t^k)$: nonneg. square integrable martingale

Theorem. $\exists c_* > 0$ (explicit), $\forall \kappa > 0$,

$$\lim_{t o\infty}\mathbb{P}_x\left(e^{\lambda t/lpha}L_t\leq\kappa
ight)=\mathbb{E}_x\left[\exp\left(-\kappa^{-lpha}c_*M_\infty
ight)
ight]$$

RHS: average over the Fréchet distribution with parameter lpha scaled by c_*M_∞ [Bovier(17), Thm 1.12]

Remark. [(Non)degeneracy of M_{∞}]

- ullet d=1, $lpha\in(1,2)\Rightarrow\lambda<0$ and $\mathbb{P}_x(M_\infty>0)=1$
- $ullet \ d>lpha \Rightarrow \mathbb{P}_x(M_\infty=0)\in (0,1)$

3. Comment on the proof of Theorem

$$ho R^{\kappa}(t) = \kappa e^{-\lambda t/\alpha} \quad (\kappa > 0: \text{ fixed})$$

By the Markov and branching properties at time $T(\leq t)$,

$$\mathbb{P}_x(L_t \leq R^\kappa(t)) = \mathbb{E}_x \left[\prod_{k=1}^{Z_T} \mathbb{P}_{\mathrm{X}^k_T}(L_{t-T} \leq R^\kappa(t))
ight] \cdots (\mathrm{A})$$

By the second moment method [Nishimori-S(21+)],

$$\mathbb{P}_{\mathbf{X}_T^k}(L_{t-T} \leq R^{\kappa}(t)) \asymp \exp\left(-\frac{c_*}{\kappa^{\alpha}}e^{\lambda T}h(\mathbf{X}_T^k)\right) \cdots (\mathbf{B})$$

By (A) and (B), we have as $t \to \infty$ and $T \to \infty$,

$$\mathbb{P}_x(L_t \leq R^{\kappa}(t)) symp \mathbb{E}_x \left| \exp\left(-rac{c_*}{\kappa^{lpha}} M_{\infty}
ight) \right| \cdots (\mathrm{C})$$

4. Tail probability and examples

 $\triangleright a(t)$: positive m'ble funct. s.t. $a(t) \to \infty$ $(t \to \infty)$

Theorem B. $\exists c_* > 0$ (as in Thm), loc. uniformly in $x \in \mathbb{R}^d$,

$$\left| \mathbb{P}_x \left(e^{\lambda t/\alpha} L_t > a(t) \right) \sim rac{c_*}{a(t)^{lpha}} h(x) \ (t o \infty)
ight|$$

Example. [Catalytic branching] $\triangleright d = 1$, $\alpha \in (1,2)$

 $\triangleright \mu = c\delta_0$ (c>0, δ_0 : Dirac meas. at the origin)

⇒ reproduction only at the origin

Theorems hold, λ and h(x) can be written explicitly [S(08)].