第4講 消費者行動の理論(3)予算制約と効用最大化

花子さんと太郎くんは、フルーツパーティの買い出しのため、スーパーに来ている.

予算は3.000 円. リンゴは1個200円, ミカンは1個100円で売られている.

花子さん「うーん. それぞれ 10 個ずつでどう」

太郎くん「リンゴ買い過ぎでしょ. リンゴ5個, みかん20個がベスト」

1. 予算制約式と予算線

与えられた所得,価格のもとで2つの財を消費する.消費可能な財の組合せ (x_1,x_2) はいくつもある.所得をm(円),財1の価格を p_1 (円),財2の価格を p_2 (円)とする.消費可能な組合せは,数式を用いると,

$$m \ge p_1 x_1 + p_2 x_2 \tag{1}$$

と表現できる. (1) 式を満たす第1象限および両軸上の領域を消費可能集合 (consumption possibility set) という. 特に, 所得を残らず消費するとき, 消費可能な組合せは,

$$m = p_1 x_1 + p_2 x_2 \tag{2}$$

と表現できる. (2) 式を予算制約式という¹. (2) 式を平面 (x_1, x_2) 上に描いたものを予算線という(図 2.7).

予算線の性質

- (i) 右下がり. 傾き $-p_1/p_2$.
- (ii) ヨコ軸との切片 m/p_1 , タテ軸との切片 m/p_2 .

比較静学

(i) 所得効果

所得mが増加したとする。予算線は右上に平行移動する。

(ii) 価格効果

価格 p_1 が上昇したとする. 予算線はタテ軸との切片を中心に内側に回転する.

価格 p_2 が上昇したとする. 予算線はヨコ軸との切片を中心に内側に回転する.

問題 1

 $(m, p_1, p_2) = (3000, 200, 100)$ のとき、予算制約式は、

$$3000 = 200x_1 + 100x_2$$

となる. x_1 はリンゴの消費量を, x_2 はみかんの消費量を表す.

- (1) 平面 (x_1, x_2) 上に予算線を図示せよ.
- (2) 価格が一定のもとで、所得が m=4000 になったときの予算線を図示せよ.
- (3) 所得が一定のもとで、リンゴの価格が $p_1=300$ になったときの予算線を図示せよ.

¹消費可能な領域の境界なので、消費可能フロンティア (consumption possibility frontier) ともいう.

2. 効用最大化

「消費者は、価格を所与として、予算制約のもとで効用が最大となるように財の消費量を決定する」 という消費者の最適化問題は、次のように定式化される2.

$$\max_{x_1, x_2} \quad u = U(x_1, x_2) \quad \text{subject to} \quad m = p_1 x_1 + p_2 x_2 \tag{3}$$

(3) の問題の解 (x_1^*, x_2^*) を主体的均衡という. 均衡は図 2.8 の点 P で表される. 最適化の条件は,

$$MRS_{21} = \frac{p_1}{p_2}$$
 (4)

$$m = p_1 x_1 + p_2 x_2 \tag{5}$$

である 3 .

- (5) 式は、均衡が予算線上にあることを意味する. (4) 式は、均衡において、無差別曲線と予算線 が接していることを意味する.
 - (4), (5) 式を x_1, x_2 の連立方程式とみなして解けば、均衡解 (x_1^*, x_2^*) が求められる.
- 3. 需要関数と間接効用関数

主体的均衡における消費量 x_1^*, x_2^* は、価格 p_1, p_2 と所得 m の関数となる、需要関数 (demand function) という.

$$x_1^* = D_1(p_1, p_2, m) (6)$$

$$x_2^* = D_2(p_1, p_2, m) (7)$$

需要関数を効用関数に代入すると、主体的均衡における効用水準も価格 p_1, p_2 と所得 m の関数と なる. 間接効用関数 (indirect utility function) という (54 ページ).

$$u^* = U(x_1^*, x_2^*) = V(p_1, p_2, m)$$
(8)

問題 2

次の効用関数のもとでの需要関数および間接効用関数を求めよ. 予算制約式は(2)式を用いよ.

- (1) $u = x_1^2 x_2$
- (2) $u = x_1 x_2^2$

「ふむ、彼女の効用関数は、 $u=x_1^2x_2$ 、彼の効用関数は、 $u=x_1x_2^2$ ってことか」

講義資料 http://www1.doshisha.ac.jp/~kmiyazaw/

²人の会話を聞いていた経済学者がつぶやいた.

² subject to は、「~の制約のもとで」の意味. 31 階の条件(first-order condition)という。 1 階の条件は,解であるための必要条件。十分かどうかを調べるには 2 階 の条件 (second-order condition) を利用する. 単調性と希少性から, 点 P において 2 階の条件が成立することを数学的に 証明できる.