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CHAPTER 1

モード整合法

　モード整合法を用いて，異なる導波路が接続される不連続部での電磁界の振る舞
いを解析する方法について説明する．特に，ガラーキン法を適用し，入射波と反射波
（散乱波）の複素振幅を行列形式で表現し，不連続部における電界と磁界の連続性や
境界条件を満足させていく．このような解析により，多重モード散乱行列が導出さ
れ，不連続部での反射・透過について，伝搬モードだけでなく遮断モードも含めて定
量的に評価できる．また，解析精度を評価するための複素電力の誤差の定義や、導波
路のサイズが異なる場合のステップ状不連続問題への応用、さらにはモード関数の内
積の計算方法についても詳細に解説しいてく．

1.1 ガラーキン法によるモード整合法（異なる単一導波路の
接続）

1.1.1 不連続部のある導波路

異なる 2 つの均一導波路#1（z ≤ 0）と#2（z ≥ 0）が z = 0 で接続された不連続問題
を，ガラーキン法によるモード整合法を適用し，試行関数（testing function）として通常
のモード関数を用いた解法について説明する．不連続部における入射波の波動振幅を a(i)

n ，
反射（散乱）波の波動振幅を b(i)

n とすると（i = 1, 2は導波路#1，#2に対応，nはモード
の次数），位置ベクトル r = zaz + ρ（az は z 方向の単位ベクトル）における横断面内電界
E

(1)
t ，E

(2)
t は，次のようになる．

E
(1)
t (ρ, z) =

∑
n

(
a(1)

n e−γ
(1)
n z + b(1)

n eγ
(1)
n z
)√

Z
(1)
n e(1)

n (ρ) (1.1)

E
(2)
t (ρ, z) =

∑
n

(
b(2)

n e−γ
(2)
n z + a(2)

n eγ
(2)
n z
)√

Z
(2)
n e(2)

n (ρ) (1.2)

1



ただし，Z(i)
n は導波路#iにおける n次モードの波動インピーダンス，γ(i)

n は伝搬定数，e(i)
n

は電界のモード関数を示す．また，横断面内磁界H
(1)
t ，H

(2)
t は，

H
(1)
t (ρ, z) =

∑
n

(
a(1)

n e−γ
(1)
n z − b(1)

n eγ
(1)
n z
)√

Y
(1)

n h(1)
n (ρ) (1.3)

H
(2)
t (ρ, z) =

∑
n

(
b(2)

n e−γ
(2)
n z − a(2)

n eγ
(2)
n z
)√

Y
(2)

n h(2)
n (ρ) (1.4)

ただし，Y (i)
n は導波路 #iにおける n次モードの波動アドミタンス，h(i)

n は磁界のモード関
数を示す．ここで，ベクトルモード関数 e(i)

n ，h(i)
n の関係は，

e(i)
n = h(i)

n × az (1.5)
h(i)

n = az × e(i)
n (1.6)

e(i)
m · e(i)

n = h(i)
m · h(i)

n (1.7)

このとき，モード関数の正規直交条件は，
¨

S

e(i)
m · e(i)

n dS =
¨

S

h(i)
m · h(i)

n dS = δmn (i = 1, 2) (1.8)

1.1.2 不連続部の境界条件

不連続部が開口面 S0，および（完全）導体面 S1（導波路#1側の z = 0−）, S2（導波路
#2側の z = 0+）とからなる場合，境界条件は次のようになる．

E
(1)
t (ρ, 0−) = E

(2)
t (ρ, 0+), H

(1)
t (ρ, 0−) = H

(2)
t (ρ, 0+), (開口面S0) (1.9)

E
(i)
t (ρ, 0∓) = 0 (i = 1, 2) (導体面Si) (1.10)

ただし，上側符号は i = 1，下側符号は i = 2．ここで，

E
(i)
t (ρ, 0∓) =

Ni∑
n

(
a(i)

n + b(i)
n

)√
Z

(i)
n e(i)

n (ρ) (1.11)

H
(i)
t (ρ, 0∓) = ±

Ni∑
n

(
a(i)

n − b(i)
n

)√
Y

(i)
n h(i)

n (ρ) (1.12)

1.1.3 ガラーキン法

開口面 S0 の電界の境界条件の両辺に e

(1
2

)
m (m = 1, 2, · · · , N(1

2

))で内積をとると，
¨

S0

e

(1
2

)
m (ρ) · E

(1)
t (ρ, 0−)dS =

¨
S0

e

(1
2

)
m (ρ) · E

(2)
t (ρ, 0+)dS (1.13)
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導体面 Si (i = 1, 2)の電界の境界条件の両辺に e(i)
m で内積をとると，¨

S1

e(1)
m (ρ) · E

(1)
t (ρ, 0−)dS = 0 (m = 1, 2, · · · , N1) (1.14)

¨
S2

e(2)
m (ρ) · E

(2)
t (ρ, 0+)dS = 0 (m = 1, 2, · · · , N2) (1.15)

式 (1.179)の上側と式 (1.181)より，
¨

S0+S1

e(1)
m (ρ) · E

(1)
t (ρ, 0−)dS =

¨
S0

e(1)
m (ρ) · E

(2)
t (ρ, 0+)dS (1.16)

これより，
N1∑
n

√
Z

(1)
n

(
a(1)

n + b(1)
n

)¨
S0+S1

e(1)
m · e(1)

n dS

=
N2∑
n

√
Z

(2)
n

(
b(2)

n + a(2)
n

)¨
S0

e(1)
m · e(2)

n dS (1.17)

また，式 (1.179)の下側と式 (1.183)より，
¨

S0

e(2)
m (ρ) · E

(1)
t (ρ, 0−)dS =

¨
S0+S2

e(2)
m (ρ) · E

(2)
t (ρ, 0+)dS (1.18)

これについても，
N1∑
n

√
Z

(1)
n

(
a(1)

n + b(1)
n

)¨
S0

e(2)
m · e(1)

n dS

=
N2∑
n

√
Z

(2)
n

(
b(2)

n + a(2)
n

)¨
S0+S2

e(2)
m · e(2)

n dS (1.19)

モード関数の正規直交性より，√
Z

(1)
m

(
a(1)

m + b(1)
m

)
=

N1∑
n

√
Z

(2)
n

(
b(2)

n + a(2)
n

)¨
S0

e(1)
m · e(2)

n dS (m = 1, 2, · · · , N1) (1.20)

N1∑
n

√
Z

(1)
n

(
a(1)

n + b(1)
n

)¨
S0

e(2)
m · e(1)

n dS

=
√
Z

(2)
m

(
b(2)

m + a(2)
m

)
(m = 1, 2, · · · , N2) (1.21)

一方，開口面 S0 の磁界の境界条件の両辺に h

(1
2

)
m で内積をとると，m = 1, 2, · · · , N(1

2

) の
とき，

∞∑
n

√
Y

(1)
n

(
a(1)

n − b(1)
n

)¨
S0

h

(1
2

)
m · h(1)

n dS

=
∞∑
n

√
Y

(2)
n

(
b(2)

n − a(2)
n

)¨
S0

h

(1
2

)
m · h(2)

n dS (1.22)
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ここで，モード関数の内積を次のようにおく．

I ij
mn

∣∣∣∣
S

≡
ˆ

S

e(i)
m · e(j)

n dS =
ˆ

S

h(i)
m · h(j)

n dS

=
ˆ

S

e(j)
n · e(i)

m dS =
ˆ

S

h(j)
n · h(i)

m dS = Iji
nm

∣∣∣∣
S

(1.23)

ただし，積分範囲 S は，これまでの式では，S0，S1，S2 などである．これより，e(1)
m ，h(1)

m

の内積を基にして求めた式は，
√
Z

(1)
m

(
a(1)

m + b(1)
m

)
=

N1∑
n

√
Z

(2)
n

(
b(2)

n + a(2)
n

)
I12

mn

∣∣∣∣
S0

(m = 1, 2, · · · , N1) (1.24)

N2∑
n

√
Y

(1)
n

(
a(1)

n − b(1)
n

)
I21

mn

∣∣∣∣
S0

=
N2∑
n

√
Y

(2)
n

(
b(2)

n − a(2)
n

)
I22

mn

∣∣∣∣
S0

(m = 1, 2, · · · , N2)

(1.25)

また，e(2)
m ，h(2)

m の内積を基にして求めた式は，

N2∑
n

√
Z

(1)
n

(
a(1)

n + b(1)
n

)
I21

mn

∣∣∣∣
S0

=
√
Z

(2)
m

(
b(2)

n + a(2)
n

)
(m = 1, 2, · · · , N2) (1.26)

N1∑
n

√
Y

(1)
n

(
a(1)

n − b(1)
n

)
I11

mn

∣∣∣∣
S0

=
N1∑
n

√
Y

(2)
n

(
b(2)

n − a(2)
n

)
I12

mn

∣∣∣∣
S0

(m = 1, 2, · · · , N1)

(1.27)

モード関数の内積を要素とする行列を次のように定義する（I ij
mn

∣∣∣∣
s0

= Iji
nm

∣∣∣∣
s0

）．

[
Pij

]
=



I ij
11

∣∣∣∣
s0

I ij
12

∣∣∣∣
s0

· · · I ij
1Nj

∣∣∣∣
s0

I ij
21

∣∣∣∣
s0

I ij
22

∣∣∣∣
s0

· · · I ij
2Nj

∣∣∣∣
s0... ... . . . ...

I ij
Ni1

∣∣∣∣
s0

I ij
Ni2

∣∣∣∣
s0

· · · I ij
NiNj

∣∣∣∣
s0


=
[
Pji

]
T

(i = 1, 2, j = 1, 2) (1.28)

また，
[√
Z1
]
，
[√
Y1
]
は，各々，対角要素を

√
Z

(1)
n ，

√
Y

(1)
n とするN1次の対角行列，

[√
Z2
]
，[√

Y2
]
は，各々，対角要素を

√
Z

(2)
n ，

√
Y

(2)
n とする N2 次の対角行列を示す．

[√
Zi

]
=



√
Z

(i)
1 0 · · · 0

0
√
Z

(i)
2 · · · ...

... ... . . . ...
0 0 · · ·

√
Z

(i)
Ni

 =
[√
Yi

]−1
(i = 1, 2) (1.29)
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また，列ベクトル（column matrix）ai，bi を，

a1 =


a

(1)
1
a

(1)
2
...
a

(1)
N1

 , b1 =


b

(1)
1
b

(1)
2
...
b

(1)
N1

 a2 =


a

(2)
1
a

(2)
2
...
a

(2)
N2

 , b2 =


b

(2)
1
b

(2)
2
...
b

(2)
N2

 (1.30)

とおくと，全てのm(= 1, 2, · · · )に対する式をまとめて行列表示して，
[√
Z1
](

a1 + b1
)

=
[
P12

][√
Z2
](

b2 + a2
)

(1.31)[
P21

][√
Y1
](

a1 − b1
)

=
[
P22

][√
Y2
](

b2 − a2
)

(1.32)

また，[
P21

][√
Z1
](

a1 + b1
)

=
[√
Z2
](

b2 + a2
)

(1.33)[
P11

][√
Y1
](

a1 − b1
)

=
[
P12

][√
Y2
](

b2 − a2
)

(1.34)

ただし，I12
mn

∣∣∣
S0

= I21
nm

∣∣∣
S0
，I21

mn

∣∣∣
S0

= I12
nm

∣∣∣
S0
より，

[
P21

]
T

=
[
P12

]
,

[
P12

]
T

=
[
P21

]
(1.35)

よって，([√
Y1
][
P12

][√
Z2
])

T
=
[√
Z2
]

T

([√
Y1
][
P12

])
T

=
[√
Z2
][
P12

]
T

[√
Y1
]

T

=
[√
Z2
][
P21

][√
Y1
]

(1.36)([√
Y2
][
P21

][√
Z1
])

T
=
[√
Z1
][
P12

][√
Y2
]

(1.37)

変形して，

a1 + b1 =
[√
Y1
][
P12

][√
Z2
](

b2 + a2
)

=
([√

Z2
][
P21

][√
Y1
])

T

(
b2 + a2

)
(1.38)[√

Z2
][
P21

][√
Y1
](

a1 − b1
)

=
([√

Y1
][
P12

][√
Z2
])

T

(
a1 − b1

)
=
[√
Z2
][
P22

][√
Y2
](

b2 − a2
)

(1.39)
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また，
[√
Y2
][
P21

][√
Z1
](

a1 + b1
)

=
([√

Z1
][
P12

][√
Y2
])

T

(
a1 + b1

)
= b2 + a2 (1.40)[√

Z1
][
P11

][√
Y1
](

a1 − b1
)

=
[√
Z1
][
P12

][√
Y2
](

b2 − a2
)

= (
[√
Y2
][
P21

][√
Z1
]
)T

(
b2 − a2

)
(1.41)

ここで，i = 1, 2，j = 1, 2として，
[
P̄ij

]
≡
[√
Zi

][
Pij

][√
Yj

]
(1.42)

とおくと，

a1 + b1 =
[
P̄21

]
T

(
b2 + a2

)
(1.43)[

P̄21
](

a1 − b1
)

=
[
P̄22

](
b2 − a2

)
(1.44)

および，[
P̄12

]
T

(
a1 + b1

)
= b2 + a2 (1.45)[

P̄11
](

a1 − b1
)

=
[
P̄12

](
b2 − a2

)
(1.46)

特別な場合として，積分範囲 S0 が導波菅#i（i = 1, 2）の断面と同じであれば，モードの正
規直交性より（

[
U
]
は単位行列），

[
P̄ii

]
=
[
U
]

(1.47)

が成り立ち，後述するように不連続部で Self-Reacionが連続となる．

1.1.4 規格化電圧，電流

規格化電圧の列ベクトル V̄i，規格化電流の列ベクトル Īi を（i = 1, 2），

V̄1 ≡ a1 + b1, V̄2 ≡ a2 + b2 (1.48)
Ī1 ≡ a1 − b1, −Ī2 ≡ a2 − b2 (1.49)

とおくと，モード整合法によって得られた式は次のようになる．

V̄1 =
[
P̄21

]
T

V̄2,
[
P̄21

]
Ī1 =

[
P̄22

]
Ī2 (1.50)[

P̄12
]

T
V̄1 = V̄2,

[
P̄11

]
Ī1 =

[
P̄12

]
Ī2 (1.51)
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ここで，
[
P̄22

]
=
[
U
]
が成り立つ場合，次式を解けばよい．

V̄1 =
[
P̄21

]
T

V̄2 (1.52)[
P̄21

]
Ī1 = Ī2 (1.53)

あるいは，
[
P̄11

]
=
[
U
]
が成り立つ場合，

[
P̄12

]
T

V̄1 = V̄2 (1.54)

Ī1 =
[
P̄12

]
Ī2 (1.55)

1.1.5 Self-Reactionの連続性

導波菅#iの Self-Reaction R(i) (i = 1, 2)を求めると，

R(i) =
¨

Si

(
E

(i)
t × H

(i)
t

)
· azdS =

¨
Si

 Ni∑
n=1

V̄ (i)
n e(i)

n ×
Ni∑

m=1
Ī(i)

m h(i)
n

 · azdS

=
Ni∑

n=1

Ni∑
m=1

V̄ (i)
n Ī(i)

m

¨
Si

(e(i)
n × h(i)

m ) · azdS =
Ni∑

n=1

Ni∑
m=1

V̄ (i)
n Ī(i)

m δnm

=
Ni∑

n=1
V̄ (i)

n Ī(i)
n = (V̄i)T Īi (1.56)

ただし，(V̄i)T は V̄i の転置を示す．これより，

R(1) = (V̄1)T Ī1 = (
[
P̄21

]
T

V̄2)T Ī1 = (V̄2)T

[
P̄21

]
Ī1 = (V̄1)T

[
P̄11

]−1[
P̄12

]
Ī2 (1.57)

R(2) = (V̄2)T Ī2 = (V̄2)T

[
P̄22

]−1[
P̄21

]
Ī1 = (

[
P̄12

]
T

V̄1)T Ī2 = (V̄1)T

[
P̄12

]
Ī2 (1.58)

よって，
[
P̄11

]
=
[
U
]
，あるいは

[
P̄22

]
=
[
U
]
のとき，R(1) = R(2)が成り立つ（Self-Reaction

の連続性）．
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1.2 不連続部の散乱行列

散乱行列を次式で定義する．
(

b1
b2

)
=
[
S
] (

a1
a2

)
,

[
S
]

=
[S11

] [
S12

][
S21

] [
S22

] (1.59)

ここで，i = 1, 2，j = 1, 2として

[
Sij

]
=



Sij,11 Sij,12 · · · Sij,1n · · ·
Sij,21 Sij,22 · · · Sij,2n · · ·

... ... . . . ...
Sij,m1 Sij,m2 · · · Sij,mn · · ·

... ... ... . . .

 , bi =



b
(i)
1
b

(i)
2
...
b(i)

m
...


, ai =



a
(i)
1
a

(i)
2
...
a(i)

m
...


(1.60)

先に示した式

a1 −
[
P̄21

]
T

a2 = −b1 +
[
P̄21

]
T

b2 (1.61)[
P̄21

]
a1 +

[
P̄22

]
a2 =

[
P̄21

]
b1 +

[
P̄22

]
b2 (1.62)

を行列表示すると， [
U
]

−
[
P̄21

]
T[

P̄21
] [

P̄22
] (a1

a2

)
=
−

[
U
] [

P̄21
]

T[
P̄21

] [
P̄22

] (b1
b2

)

=
−

[
U
] [

P̄21
]

T[
P̄21

] [
P̄22

]  [S] (a1
a2

)
(1.63)

よって，散乱行列
[
S
]
は，

[
S
]

=
−

[
U
] [

P̄21
]

T[
P̄21

] [
P̄22

] −1 [
U
]

−
[
P̄21

]
T[

P̄21
] [

P̄22
]  (1.64)

あるいは，次のように変形して計算すると，

b1 =
[
P̄21

]
T

(
b2 + a2

)
− a1

=
[
P̄21

]
T

{([
S21

]
a1 +

[
S22

]
a2
)

+ a2

}
− a1

=
{[
P̄21

]
T

[
S21

]
−
[
U
]}

a1 +
[
P̄21

]
T

{[
S22

]
+
[
U
]}

a2

≡
[
S11

]
a1 +

[
S12

]
a2 (1.65)
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また，

b2 =
[
P̄22

]−1[
P̄21

](
a1 − b1

)
+ a2

=
[
P̄22

]−1[
P̄21

]{
a1 −

([
S11

]
a1 +

[
S12

]
a2
)}

+ a2

=
[
P̄22

]−1[
P̄21

]{[
U
]

−
[
S22

]}
a1 +

{[
U
]

−
[
P̄22

]−1[
P̄21

][
S12

]}
a2

≡
[
S21

]
a1 +

[
S22

]
a2 (1.66)

さらに，第 1式を第 2式に代入すると，[
P̄22

]
b2 =

[
P̄21

](
a1 −

{[
P̄21

]
T

(
b2 + a2

)
− a1

})
+
[
P̄22

]
a2([

P̄22
]

+
[
P̄21

][
P̄21

]
T

)
b2 = 2

[
P̄21

]
a1 +

([
P̄22

]
−
[
P̄21

][
P̄21

]
T

)
a2 (1.67)

よって，

b2 =
([
P̄22

]
+
[
P̄21

][
P̄21

]
T

)−1{
2
[
P̄21

]
a1 +

([
P̄22

]
−
[
P̄21

][
P̄21

]
T

)
a2

}
≡
[
S21

]
a1 +

[
S22

]
a2 (1.68)

したがって，
[
S21

]
= 2

([
P̄22

]
+
[
P̄21

][
P̄21

]
T

)−1[
P̄21

]
(1.69)

これより，[
S11

]
=
[
P̄21

]
T

[
S21

]
−
[
U
]

(1.70)

逆に，第 2式を第 1式に代入して b2 を消去して整理すると次式が得られる，[
S12

]
= 2

([
U
]

+
[
P̄21

]
T

[
P̄22

]−1[
P̄21

])−1[
P̄21

]
T

(1.71)

ただし，散乱行列の対称性より
[
S12

]
は次のように転置で求めることができる．[

S12
]

=
[
S21

]
T

(1.72)

さらに，[
S22

]
=
[
U
]

−
[
P̄22

]−1[
P̄21

][
S12

]
(1.73)

積分範囲 S0が導波管#2の断面と同じ場合，[P̄22
]

=
[
U
]
となり，不連続部で Self-Reaction

が連続となる．同様にして，すでに求めた式[
P̄12

]
T

a1 − a2 = −
[
P̄12

]
T

b1 + b2 (1.74)[
P̄11

]
a1 +

[
P̄12

]
a2 =

[
P̄11

]
b1 +

[
P̄12

]
b2 (1.75)
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を行列表示して，[P̄12
]

T
−
[
U
][

P̄11
] [

P̄12
](a1

a2

)
=
−

[
P̄12

]
T

[
U
][

P̄11
] [

P̄12
](b1

b2

)

=
−

[
P̄12

]
T

[
U
][

P̄11
] [

P̄12
] [S] (a1

a2

)
(1.76)

よって，散乱行列
[
S
]
は，

[
S
]

=
−

[
P̄12

]
T

[
U
][

P̄11
] [

P̄12
]−1[P̄12

]
T

−
[
U
][

P̄11
] [

P̄12
] (1.77)

あるいは，次のように変形して計算すると，

b2 =
[
P̄12

]
T

(
a1 + b1

)
− a2

=
[
P̄12

]
T

{
a1 +

([
S11

]
a1 +

[
S12

]
a2
)}

− a2

=
[
P̄12

]
T

{[
U
]

+
[
S11

]}
a1 +

{[
P̄12

]
T

[
S12

]
−
[
U
]}

a2

≡
[
S21

]
a1 +

[
S22

]
a2 (1.78)

また，

b1 = −
[
P̄11

]−1[
P̄12

](
b2 − a2

)
+ a1

= −
[
P̄11

]−1[
P̄12

]{([
S21

]
a1 +

[
S22

]
a2
)

− a2

}
+ a1

=
{[
U
]

−
[
P̄11

]−1[
P̄12

][
S21

]}
a1 +

[
P̄11

]−1[
P̄12

]{[
U
]

−
[
S22

]}
a2

≡
[
S11

]
a1 +

[
S12

]
a2 (1.79)

さらに，第 1式を第 2式に代入すると，[
P̄11

]
b1 =

[
P̄12

](
a2 −

{[
P̄12

]
T

(
a1 + b1

)
− a2

})
+
[
P̄11

]
a1([

P̄11
]

+
[
P̄12

][
P̄12

]
T

)
b1 = 2

[
P̄12

]
a2 +

([
P̄11

]
−
[
P̄12

][
P̄12

]
T

)
a1 (1.80)

よって，

b1 =
([
P̄11

]
+
[
P̄12

][
P̄12

]
T

)−1{
2
[
P̄12

]
a2 +

([
P̄11

]
−
[
P̄12

][
P̄12

]
T

)
a1

}
≡
[
S12

]
a2 +

[
S11

]
a1 (1.81)

したがって，[
S12

]
= 2

([
P̄11

]
+
[
P̄12

][
P̄12

]
T

)−1[
P̄12

]
(1.82)
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これより，[
S22

]
=
[
P̄12

]
T

[
S12

]
−
[
U
]

(1.83)

逆に，第 2式を第 1式に代入して b1 を消去して整理すると次式が得られる，

[
S21

]
= 2

([
U
]

+
[
P̄12

]
T

[
P̄11

]−1[
P̄12

])−1[
P̄12

]
T

(1.84)

ただし，散乱行列の対称性より
[
S21

]
は次のように転置で求めることができる．

[
S21

]
=
[
S12

]
T

(1.85)

さらに，[
S11

]
=
[
U
]

−
[
P̄11

]−1[
P̄12

][
S21

]
(1.86)

積分範囲 S0が導波管#1の断面と同じ場合，[P̄11
]

=
[
U
]
となり，不連続部で Self-Reaction

が連続となる．

11



1.3 複素電力に係る誤差

1.3.1 複素電力

不連続部における導波菅#iの複素電力 S(i) (i = 1, 2)を求めると，

S(i) =
¨

Si

(
E

(i)
t × {H

(i)
t }∗

)
· azdS

=
¨

Si

 Ni∑
n=1

V̄ (i)
n e(i)

n ×


Ni∑

m=1
Ī(i)

m h(i)
n


∗ · azdS

=
Ni∑

n=1

Ni∑
m=1

V̄ (i)
n {Ī(i)

m }∗
¨

Si

(e(i)
n × h(i)

m ) · azdS =
Ni∑

n=1
V̄ (i)

n {Ī(i)
n }∗

= (V̄i)T Ī∗
i (1.87)

ただし，(V̄i)T は V̄i の転置を示す．いま，導波路#1（z ≤ 0）より一つの k 次モードだけ
が不連続部に入射する場合（a(1)

k 6= 0）を考え，それ以外の入射波を a
(1)
n6=k = 0, a(2)

n = 0と
おくと，

E
(1)
t (ρ, 0) =

∑
n

(
a(1)

n δnk + b(1)
n

)√
Z

(1)
n e(1)

n (ρ) (1.88)

E
(2)
t (ρ, 0) =

∑
n

b(2)
n

√
Z

(2)
n e(2)

n (ρ) (1.89)

また，

H
(1)
t (ρ, 0) =

∑
n

(
a(1)

n δnk − b(1)
n

)√
Y

(1)
n h(1)

n (ρ) (1.90)

H
(2)
t (ρ, 0) =

∑
n

b(2)
n

√
Y

(2)
n h(2)

n (ρ) (1.91)

散乱パラメータは，

S11,mk = b(1)
m

a
(1)
k

∣∣∣∣∣∣
a

(1)
n6=k=0, a

(2)
n =0

(1.92)

S21,mk = b(2)
m

a
(1)
k

∣∣∣∣∣∣
a

(1)
n6=k=0, a

(2)
n =0

(1.93)
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これより，複素電力 S(1) は，

S(1) =
¨

S1

{ N1∑
n=1

a
(1)
k

(
δnk + S11,nk

)√
Z

(1)
n e(1)

n

}

×
{ N1∑

m=1
a

(1)∗
k

(
δmk − S∗

11,mk

)(√
Y

(1)
m

)∗
h(1)

m

} · azdS

=
∣∣∣a(1)

k

∣∣∣2 N1∑
n=1

N1∑
m=1

(
δnk + S11,nk

)(
δmk − S∗

11,mk

)√
Z

(1)
n

(√
Y

(1)
m

)∗
δnm (1.94)

ここで，
¨

S1

(
e(1)

n × h(1)
m

)
· azdS = δnm (1.95)

同様にして，複素電力 S(2) は，

S(2) =
¨

S1

{ N2∑
n=1

a
(1)
k S21,nk

√
Z

(2)
n e(2)

n

}
×
{ N2∑

m=1
a

(1)∗
k S∗

21,mk

(√
Y

(2)
m

)∗
h(2)

m

} · azdS

=
∣∣∣a(1)

k

∣∣∣2 N2∑
n=1

N2∑
m=1

S21,nkS
∗
21,mk

√
Z

(2)
n

(√
Y

(2)
m

)∗
δnm (1.96)

ここで，
¨

S2

(
e(2)

n × h(2)
m

)
· azdS = δnm (1.97)

よって，

S(1) =
∣∣∣a(1)

k

∣∣∣2 N1∑
n=1

(
δnk + S11,nk

)(
δnk − S∗

11,nk

)√
Z

(1)
n

(√
Y

(1)
n

)∗
(1.98)

S(2) =
∣∣∣a(1)

k

∣∣∣2 N2∑
n=1

S21,nkS
∗
21,nk

√
Z

(2)
n

(√
Y

(2)
n

)∗
(1.99)

ここで，(
δnk + S11,nk

)(
δnk − S∗

11,nk

)
= δnk + δnk(S11,nk − S∗

11,nk) − |S11,nk|2

= δnk

(
1 + 2j=[S11,kk]

)
− |S11,nk|2 (1.100)

ただし，=[S11,kk]は S11,kk の虚部を示す．無損失な場合，伝搬モードでは，√
Z

(i)
n

(√
Y

(i)
n

)∗
= 1 (1.101)
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また，遮断モードでは，TEモードのとき，Z(i)
[n] = jωµ

γ
(i)
[n]
より，

√
Z

(i)
[n]

(√
Y

(i)
[n]

)∗

= +j (1.102)

TMモードのとき，Z(i)
(n) = γ

(i)
(n)

jωε より，

√
Z

(i)
(n)

(√
Y

(i)
(n)

)∗

= −j (1.103)

そこで，n次の（遮断）モードに関わる計算で生じる符号の違いを，

s(i)
n ≡

{
1 (TE mode)

−1 (TM mode) (1.104)

で定義すると，遮断モードについては，√
Z

(i)
n

(√
Y

(i)
n

)∗
= js(i)

n (1.105)

導波路#1, #2を伝搬モード数を Np1，Np2 とおくと，

S(1)∣∣∣a(1)
k

∣∣∣2 =
(

1 + j2=[S11,kk]
)√

Z
(1)
k

(√
Y

(1)
k

)∗
−

Np1∑
n=1

∣∣∣S11,nk

∣∣∣2 − j
N1∑

n=Np1+1
s(1)

n

∣∣∣S11,nk

∣∣∣2
(1.106)

S(2)∣∣∣a(1)
k

∣∣∣2 =
Np2∑
n=1

∣∣∣S21,nk

∣∣∣2 + j
N2∑

n=Np2+1
s(2)

n

∣∣∣S21,nk

∣∣∣2 (1.107)

入射波が伝搬モードのとき，

S(1)∣∣∣a(1)
k

∣∣∣2 = 1 + j2=[S11,kk] −
Np1∑
n=1

∣∣∣S11,nk

∣∣∣2 − j
N1∑

n=Np1+1
s(1)

n

∣∣∣S11,nk

∣∣∣2 (1.108)

また，入射波が遮断モードのとき，

S(1)∣∣∣a(1)
k

∣∣∣2 =
(

1 + j2=[S11,kk]
)
js

(1)
k −

Np1∑
n=1

∣∣∣S11,nk

∣∣∣2 − j
N1∑

n=Np1+1
s(1)

n

∣∣∣S11,nk

∣∣∣2

= js
(1)
k − 2s(1)

k 2=[S11,kk] −
Np1∑
n=1

∣∣∣S11,nk

∣∣∣2 − j
N1∑

n=Np1+1
s(1)

n

∣∣∣S11,nk

∣∣∣2 (1.109)
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1.3.2 誤差の定義

通常，展開モード数は有限ゆえ，両者は等しくならない．そこで，両者の差異に着目して
誤差を定義しよう．まず，入射波が伝搬モードのとき，

S(1) − S(2)∣∣∣a(1)
k

∣∣∣2 = 1 −
Np1∑
n=1

∣∣∣S11,nk

∣∣∣2 −
Np2∑
n=1

∣∣∣S21,nk

∣∣∣2 + j2=[S11,kk]

− j
N1∑

n=Np1+1
s(1)

n

∣∣∣S11,nk

∣∣∣2 − j
N2∑

n=Np2+1
s(2)

n

∣∣∣S21,nk

∣∣∣2 (1.110)

誤差の実部 εpr および虚部 εpi は，

εpr =

∣∣∣∣∣∣1 −
Np1∑
n=1

∣∣∣S11,nk

∣∣∣2 −
Np2∑
n=1

∣∣∣S21,nk

∣∣∣2
∣∣∣∣∣∣ (1.111)

εpi =

∣∣∣∣∣∣2=[S11,kk] −
N1∑

n=Np1+1
s(1)

n

∣∣∣S11,nk

∣∣∣2 −
N2∑

n=Np2+1
s(2)

n

∣∣∣S21,nk

∣∣∣2
∣∣∣∣∣∣ (1.112)

ただし，Ni は導波路#i（i = 1, 2）の展開モード数を示す．一方，入射波が遮断モードの
とき，

S(1) − S(2)∣∣∣a(1)
k

∣∣∣2 = −2s(1)
k =[S11,kk] −

Np1∑
n=1

∣∣∣S11,nk

∣∣∣2 −
Np2∑
n=1

∣∣∣S21,nk

∣∣∣2

+ js
(1)
k − j

N1∑
n=Np1+1

s(1)
n

∣∣∣S11,nk

∣∣∣2 − j
N2∑

n=Np2+1
s(2)

n

∣∣∣S21,nk

∣∣∣2 (1.113)

これより，誤差の実部 εcr および虚部 εci は，

εcr =

∣∣∣∣∣∣−2s(1)
k =[S11,kk] −

Np1∑
n=1

∣∣∣S11,nk

∣∣∣2 −
Np2∑
n=1

∣∣∣S21,nk

∣∣∣2
∣∣∣∣∣∣ (1.114)

εci =

∣∣∣∣∣∣s(1)
k −

N1∑
n=Np1+1

s(1)
n

∣∣∣S11,nk

∣∣∣2 −
N2∑

n=Np2+1
s(2)

n

∣∣∣S21,nk

∣∣∣2
∣∣∣∣∣∣ (1.115)

誤差が十分小さくなるようにモードの展開項数を決定しなければならない．
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1.4 Self-Reactionが連続となるステップ状不連続問題

不連続形状として，接続された 2つの導波路のうち，一方が完全に他方より大きい場合，
Self-Reactionが連続となるように計算できるので，残差がゼロになるように展開係数を決
定できる．

1.4.1 導波路#1が#2より大きい場合

導波路#1が#2より大きいステップ状不連続部では，S2 = 0．そして，S0 は導波路#2
の断面に一致する場合を考える．S0 を積分範囲とする内積の計算にはモード関数の直交性
を用いることができる．また，導波路#1，#2におけるモードの展開項数を N1，N2 とする
と，通常，N1 > N2 にとる．電界の境界条件の式に導波路#1のモード，磁界の境界条件の
式に導波路#2のモードを試行関数として用いれば，[

P̄22
]

=
[
U
]

(1.116)[
P̄11

]
6=
[
U
]

(1.117)

より次式が得られる

a1 + b1 =
[
P̄21

]
T

(
b2 + a2

)
(1.118)[

P̄21
](

a1 − b1
)

= b2 − a2 (1.119)

これより，
[
S21

]
= 2

([
U
]

+
[
P̄21

][
P̄21

]
T

)−1[
P̄21

]
(1.120)[

S12
]

=
[
S21

]
T

(1.121)

また，[
S11

]
=
[
P̄21

]
T

[
S21

]
−
[
U
]

(1.122)[
S22

]
=
[
U
]

−
[
P̄21

][
S12

]
(1.123)

1.4.2 導波路#2が#1より大きい場合

導波路#2が#1より大きいステップ状不連続部であれば（S1 = 0），通常，N1 < N2 に
とり，[

P̄22
]

6=
[
U
]

(1.124)[
P̄11

]
=
[
U
]

(1.125)
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より，[
P̄12

]
T

(
a1 + b1

)
= b2 + a2 (1.126)

a1 − b1 =
[
P̄12

](
b2 − a2

)
(1.127)

これより，

[
S12

]
= 2

([
U
]

+
[
P̄12

][
P̄12

]
T

)−1[
P̄12

]
(1.128)[

S21
]

=
[
S12

]
T

(1.129)

また，[
S11

]
=
[
U
]

−
[
P̄12

][
S21

]
(1.130)[

S22
]

=
[
P̄12

]
T

[
S12

]
−
[
U
]

(1.131)
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1.5 モード関数の内積について（TE-TE，TM-TM）

ここでは，一つの導波管の 2 つのモードを考える．両モードとも TE モード，あるいは
TMモードの場合，

Imn =
¨

S

em · en dS =
¨

S

hm · hn dS =
¨

S

(
∇tΨm

)
·
(
∇tΨn

)
dS (1.132)

2次元演算子∇t を用いたグリーンの第一定理，および Ψn の方程式（∇2
t Ψn + k2

c,nΨn = 0）
より，

Imn = −
¨

S

Ψm∇2
t ΨndS +

˛
C

Ψm
∂Ψn

∂n
dσ

= k2
c,n

¨
S

ΨmΨndS +
˛

C

Ψm
∂Ψn

∂n
dσ (1.133)

同一モードのとき（m = n），

Inn = k2
c,n

¨
S

Ψ2
ndS +

˛
C

Ψn
∂Ψn

∂n
dσ (1.134)

境界条件として C 上で Ψn = 0 あるいは ∂Ψn

∂n = 0 のとき，第 2項はゼロゆえ，

Inn = k2
c,n

¨
S

Ψ2
ndS (1.135)

Inn 6= 0 のとき，モード関数は次のように正規化して定義される．

Inn =
¨

S

en · en dS =
¨

S

hn · hn dS = k2
c,n

¨
S

Ψ2
ndS ≡ 1 (1.136)

一方，異なるモードのとき（m 6= n），Ψm と Ψn を交換してグリーンの第一定理を適用し
同様に求めると，

Imn = k2
c,m

¨
S

ΨnΨmdS +
˛

C

Ψn
∂Ψm

∂n
dσ (1.137)

これより，Imn を消去すると次の関係式が得られる．

k2
c,n

¨
S

ΨmΨndS +
˛

C

Ψm
∂Ψn

∂n
dσ = k2

c,m

¨
S

ΨnΨmdS +
˛

C

Ψn
∂Ψm

∂n
dσ (1.138)

変形して，

(
k2

c,m − k2
c,n

)¨
S

ΨmΨndS =
˛

C

(
Ψm

∂Ψn

∂n
− Ψn

∂Ψm

∂n

)
dσ (1.139)
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kc,m 6= kc,n のとき，
¨

S

ΨmΨndS = 1
k2

c,m − k2
c,n

˛
C

(
Ψm

∂Ψn

∂n
− Ψn

∂Ψm

∂n

)
dσ (1.140)

したがって，Imn は次のようになる（kc,m 6= kc,n）．

Imn = 1
k2

c,m − k2
c,n

(
k2

c,m

˛
C

Ψm
∂Ψn

∂n
dσ − k2

c,n

˛
C

Ψn
∂Ψm

∂n
dσ

)
(1.141)

境界条件として C 上で Ψm,Ψn = 0 あるいは ∂Ψm

∂n
,
∂Ψn

∂n
= 0 のとき，右辺はゼロとなり，

Imn = 0 が成立しモードの直交性を確認できる．一方，kc,m = kc,n のとき，
˛

C

Ψm
∂Ψn

∂n
dσ =

˛
C

Ψn
∂Ψm

∂n
dσ (1.142)

ロピタルの定理より †，

¨
S

ΨmΨndS = lim
kc,n→kc,m

d

dkc,n

˛
C

(
Ψm

∂Ψn

∂n
− Ψn

∂Ψm

∂n

)
dσ

d

dkc,n

(
k2

c,m − k2
c,n

)
= − 1

2kc,n

˛
C

(
Ψm

∂2Ψn

∂kc,n∂n
− ∂Ψn

∂kc,n

∂Ψm

∂n

)
dσ (1.143)

逆に，kc,m → kc,n としてロピタルの定理を用いると，
¨

S

ΨmΨndS = − 1
2kc,m

˛
C

(
Ψn

∂2Ψm

∂kc,m∂n
− ∂Ψm

∂kc,m

∂Ψn

∂n

)
dσ (1.144)

したがって，Imn は次のようになる．

Imn = −kc,m

2

˛
C

(
Ψn

∂2Ψm

∂kc,m∂n
− ∂Ψm

∂kc,m

∂Ψn

∂n

)
dσ +

˛
C

Ψn
∂Ψm

∂n
dσ

= −kc,n

2

˛
C

(
Ψm

∂2Ψn

∂kc,n∂n
− ∂Ψn

∂kc,n

∂Ψm

∂n

)
dσ +

˛
C

Ψm
∂Ψn

∂n
dσ (1.145)

境界条件として，C 上で Ψm,Ψn = 0 が与えられていれば，

Imn = kc,m

2

˛
C

∂Ψm

∂kc,m

∂Ψn

∂n
dσ = kc,n

2

˛
C

∂Ψn

∂kc,n

∂Ψm

∂n
dσ (1.146)

あるいは，境界条件として，C 上で ∂Ψm

∂n , ∂Ψn

∂n = 0 が与えられていれば，

Imn = −kc,m

2

˛
C

Ψn
∂2Ψm

∂kc,m∂n
dσ = −kc,n

2

˛
C

Ψm
∂2Ψn

∂kc,n∂n
dσ (1.147)

これより，特別な場合として m = nのとき，つまり同一モードでは，Ψm = Ψn とおいて
正規化係数の計算が行える．
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1.6 モード関数の内積について（TE-TM）

1.6.1 ストークスの定理を用いた計算

TEモードと TMモードの場合，

I[m](n) =
¨

S

e[m] · e(n) dS =
¨

S

(
az × ∇tΨ[m]

)
·
(

− ∇tΨ(n)
)
dS

=
¨

S

(
∇tΨ(n) × ∇tΨ[m]

)
· azdS (1.148)

ここで，

∇t ×
(
Ψ(n)∇tΨ[m]

)
= ∇tΨ(n) × ∇tΨ[m] + Ψ(n)∇t × ∇tΨ[m]

= ∇tΨ(n) × ∇tΨ[m] (1.149)

これを面積分して，
¨

S

{
∇ ×

(
Ψ(n)∇tΨ[m]

)}
· azdS

=
¨

S

{(
∇t + ∂

∂z
az

)
×
(
Ψ(n)∇tΨ[m]

)}
· azdS

=
¨

S

{
∇t ×

(
Ψ(n)∇tΨ[m]

)}
· azdS (1.150)

ストークスの定理
¨

S

{
∇ ×

(
Ψ(n)∇tΨ[m]

)}
· azdS =

˛
C

Ψ(n)∇tΨ[m] · dσ (1.151)

より，
¨

S

{
∇t ×

(
Ψ(n)∇tΨ[m]

)}
· azdS =

˛
C

Ψ(n)
∂Ψ[m]

∂σ
dσ (1.152)

ただし，面 S は az が法線方向となる平面（導波管断面），dσ は周回積分路のベクトル線要
素，+σ 方向は az に対して右ねじの方向である．よって，これらの結果より次式が得られる

I[m](n) =
¨

S

(
∇tΨ(n) × ∇tΨ[m]

)
· azdS =

˛
C

Ψ(n)
∂Ψ[m]

∂σ
dσ (1.153)

式 (3.143)∼式 (3.146)において，Ψ[m] と Ψ(n) を交換して同様に求めると，
¨

S

{
∇t ×

(
Ψ[m]∇tΨ(n)

)}
· azdS =

˛
C

Ψ[m]
∂Ψ(n)

∂σ
dσ

¨
S

(
∇tΨ[m] × ∇tΨ(n)

)
· azdS =

˛
C

Ψ[m]
∂Ψ(n)

∂σ
dσ (1.154)
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よって，

−I[m](n) =
˛

C

Ψ[m]
∂Ψ(n)

∂σ
dσ (1.155)

また，
¨

S

h[m] · h(n) dS =
¨

S

(
− ∇tΨ[m]

)
·
(

− az × ∇tΨ(n)
)

· dS

=
¨

S

(
∇tΨ(n) × ∇tΨ[m]

)
· azdS (1.156)

まとめると，

I[m](n) =
¨

S

e[m] · e(n) dS =
¨

S

h[m] · h(n) dS

=
˛

C

∂Ψ[m]

∂σ
Ψ(n)dσ = −

˛
C

Ψ[m]
∂Ψ(n)

∂σ
dσ (1.157)

モードの直交性は Imn = 0のときで，境界条件によって上式はゼロとなる．

1.6.2 ガウスの発散定理を用いた別の導出

ベクトル公式∇ · (wA) = w∇ · A + A · ∇w を変形して，

A · ∇w = ∇ · (wA) − w∇ · A (1.158)

これより，w ≡ Ψ(n)，A ≡ az × ∇tΨ[m] とおくと，(
az × ∇tΨ[m]

)
· ∇Ψ(n) = ∇ ·

(
Ψ(n)az × ∇tΨ[m]

)
− Ψ(n)∇ ·

(
az × ∇tΨ[m]

)
(1.159)

上式右辺の第 2項について，ベクトル公式

∇ ·
(
B × C

)
= C ·

(
∇ × B

)
− B ·

(
∇ × C

)
(1.160)

より，B ≡ az，C ≡ ∇tΨ[m] とおくと次式が得られる（勾配の回転はゼロ）．

∇ ·
(
az × ∇tΨ[m]

)
=
(
∇tΨ[m]

)
·
(
∇ × az

)
− az ·

(
∇ × ∇tΨ[m]

)
= 0 (1.161)

よって，(
az × ∇tΨ[m]

)
· ∇tΨ(n) = ∇t ·

(
Ψ(n)az × ∇tΨ[m]

)
(1.162)
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2次元の ∇t に関するガウスの発散定理より，
¨

s

(
az × ∇tΨ[m]

)
· ∇tΨ(n)dS

=
¨

s

∇t ·
(
Ψ(n)az × ∇tΨ[m]

)
dS =

˛
C

(
Ψ(n)az × ∇tΨ[m]

)
· ndσ

=
˛

C

Ψ(n)
(
n × az

)
· ∇tΨ[m]dσ =

˛
C

Ψ(n)(−aσ) · ∇tΨ[m]dσ

= −
˛

C

Ψ(n)
∂Ψ[m]

∂σ
dσ (1.163)

ただし，n は面 S 上（導波管断面）における周回積分路の外向き法線単位ベクトルを示し，
周回積分路に沿う方向の単位ベクトルを aσ ≡ az × n とおいている．したがって，

I[m](n) = −
¨

s

(
az × ∇tΨ[m]

)
· ∇tΨ(n)dS =

˛
C

Ψ(n)
∂Ψ[m]

∂σ
dσ (1.164)
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1.7 ガラーキン法によるモード整合法（２線路からなる導波路
と単一導波路の接続）

1.7.1 不連続部のある導波路

均一導波路 #I（z ≤ 0）として，同軸導波管のように２線路となる場合を考え，一方は
肩文字 (1)，他方を肩文字 (3) で表す．このような導波路 #I（z ≤ 0）と単一導波路 #II
（z ≥ 0）が z = 0で接続された不連続問題に対して，ガラーキン法によるモード整合法を適
用する．まず，位置ベクトル r = zaz + ρ（az は z 方向の単位ベクトル）における横断面
内電界 E

(I)
t ，E

(II)
t は，

E
(I)
t (ρ, z) =


∑
n

(
a(1)

n e−γ
(1)
n z + b(1)

n eγ
(1)
n z
)√

Z
(1)
n e(1)

n (ρ)

∑
n

(
a(3)

n e−γ
(3)
n z + b(3)

n eγ
(3)
n z
)√

Z
(3)
n e(3)

n (ρ)
(1.165)

E
(II)
t (ρ, z) =

∑
n

(
b(2)

n e−γ
(2)
n z + a(2)

n eγ
(2)
n z
)√

Z
(2)
n e(2)

n (ρ) (1.166)

ただし，i = 1, 2のとき，Z(i)
n は導波路#Iにおける n次モードの波動インピーダンス，γ(i)

n

は伝搬定数，e(i)
n は電界のモード関数を示し，i = 3のとき，Z(3)

n ，γ(3)
n ，e(3)

n は#Iの他方
の線路に関わる関数を示す．また，横断面内磁界H

(I)
t ，H

(II)
t は，

H
(I)
t (ρ, z) =


∑
n

(
a(1)

n e−γ
(1)
n z − b(1)

n eγ
(1)
n z
)√

Y
(1)

n h(1)
n (ρ)

∑
n

(
a(3)

n e−γ
(3)
n z − b(3)

n eγ
(3)
n z
)√

Y
(3)

n h(3)
n (ρ)

(1.167)

H
(II)
t (ρ, z) =

∑
n

(
b(2)

n e−γ
(2)
n z − a(2)

n eγ
(2)
n z
)√

Y
(2)

n h(2)
n (ρ) (1.168)

ただし，i = 1, 2のとき，Y (i)
n は導波路 #iにおける n次モードの波動アドミタンス，h(i)

n

は磁界のモード関数を示し，i = 3のとき，Y (3)
n ，h(3)

n は#Iの他方の線路に関わる関数を示
す．ここで，ベクトルモード関数 e(i)

n ，h(i)
n の関係は（i = 1, 2, 3），

e(i)
n = h(i)

n × az (1.169)
h(i)

n = az × e(i)
n (1.170)

e(i)
m · e(i)

n = h(i)
m · h(i)

n (1.171)

このとき，モード関数の正規直交条件は，
¨

S

e(i)
m · e(i)

n dS =
¨

S

h(i)
m · h(i)

n dS = δmn (i = 1, 2, 3) (1.172)
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1.7.2 不連続部の境界条件

不連続部が開口面 S0，および（完全）導体面 S1（導波路#I側の z = 0−）, S2（導波路
#II側の z = 0+）とからなる場合，境界条件は次のようになる．

E
(I)
t (ρ, 0−) = E

(II)
t (ρ, 0+), (開口面S0) (1.173)

H
(I)
t (ρ, 0−) = H

(II)
t (ρ, 0+), (開口面S0) (1.174)

また，

E
(I)
t (ρ, 0−) = 0 (導体面S1, S3) (1.175)

E
(II)
t (ρ, 0+) = 0 (導体面S2) (1.176)

ここで，

E
(i)
t (ρ, 0∓) =

Ni∑
n

(
a(i)

n + b(i)
n

)√
Z

(i)
n e(i)

n (ρ) (1.177)

H
(i)
t (ρ, 0∓) = ±

Ni∑
n

(
a(i)

n − b(i)
n

)√
Y

(i)
n h(i)

n (ρ) (1.178)

ただし，上側符号は i = 1, 3，下側符号は i = 2．

1.7.3 ガラーキン法

開口面 S0（i = 1のとき S0,1，i = 3のとき S0,3）の電界の境界条件の両辺に e

(1,3
2

)
m (m =

1, 2, · · · , N(1,3
2

))で内積をとると，
¨

S0,1

e

(1
2

)
m (ρ) · E

(1)
t (ρ, 0−)dS =

¨
S0,1

e

(1
2

)
m (ρ) · E

(2)
t (ρ, 0+)dS (1.179)

¨
S0,3

e

(3
2

)
m (ρ) · E

(1)
t (ρ, 0−)dS =

¨
S0,3

e

(3
2

)
m (ρ) · E

(2)
t (ρ, 0+)dS (1.180)

導体面 Si（i = 1, 2, 3）の電界の境界条件の両辺に e(i)
m で内積をとると，¨

S1

e(1)
m (ρ) · E

(1)
t (ρ, 0−)dS = 0 (m = 1, 2, · · · , N1) (1.181)

¨
S3

e(3)
m (ρ) · E

(1)
t (ρ, 0−)dS = 0 (m = 1, 2, · · · , N3) (1.182)

¨
S2

e(2)
m (ρ) · E

(2)
t (ρ, 0+)dS = 0 (m = 1, 2, · · · , N2) (1.183)

式 (1.179)の上側と式 (1.181)より，
¨

S0,1+S1

e(1)
m (ρ) · E

(1)
t (ρ, 0−)dS =

¨
S0,1

e(1)
m (ρ) · E

(2)
t (ρ, 0+)dS (1.184)
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これより，
N1∑
n

√
Z

(1)
n

(
a(1)

n + b(1)
n

)¨
S0,1+S1

e(1)
m · e(1)

n dS

=
N2∑
n

√
Z

(2)
n

(
b(2)

n + a(2)
n

)¨
S0,1

e(1)
m · e(2)

n dS (1.185)

同様にして，式 (1.180)の上側と式 (1.182)より，
¨

S0,3+S11

e(3)
m (ρ) · E

(1)
t (ρ, 0−)dS =

¨
S0,3

e(3)
m (ρ) · E

(2)
t (ρ, 0+)dS (1.186)

これより，
N3∑
n

√
Z

(3)
n

(
a(3)

n + b(3)
n

)¨
S0,3+S3

e(3)
m · e(3)

n dS

=
N2∑
n

√
Z

(2)
n

(
b(2)

n + a(2)
n

)¨
S0,3

e(3)
m · e(2)

n dS (1.187)

また，式 (1.179)の下側と式 (1.183)より，
¨

S0,1

e(2)
m (ρ) · E

(1)
t (ρ, 0−)dS =

¨
S0,1+S2

e(2)
m (ρ) · E

(2)
t (ρ, 0+)dS (1.188)

これについても，
N1∑
n

√
Z

(1)
n

(
a(1)

n + b(1)
n

)¨
S0,1

e(2)
m · e(1)

n dS

=
N2∑
n

√
Z

(2)
n

(
b(2)

n + a(2)
n

)¨
S0,1+S2

e(2)
m · e(2)

n dS (1.189)

同様にして，式 (1.180)の下側と式 (1.183)より，
¨

S0,3

e(2)
m (ρ) · E

(1)
t (ρ, 0−)dS =

¨
S0,3+S2

e(2)
m (ρ) · E

(2)
t (ρ, 0+)dS (1.190)

これより，
N3∑
n

√
Z

(3)
n

(
a(3)

n + b(3)
n

)¨
S0,3

e(2)
m · e(3)

n dS

=
N2∑
n

√
Z

(2)
n

(
b(2)

n + a(2)
n

)¨
S0,3+S2

e(2)
m · e(2)

n dS (1.191)

モード関数の正規直交性を用いると，式 (1.185)は，√
Z

(1)
m

(
a(1)

m + b(1)
m

)
=

N1∑
n

√
Z

(2)
n

(
b(2)

n + a(2)
n

)¨
S0,1

e(1)
m · e(2)

n dS (m = 1, 2, · · · , N1) (1.192)
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同様にして，式 (1.187)は，√
Z

(3)
m

(
a(3)

m + b(3)
m

)
=

N3∑
n

√
Z

(2)
n

(
b(2)

n + a(2)
n

)¨
S0,3

e(3)
m · e(2)

n dS (m = 1, 2, · · · , N3) (1.193)

また，式 (1.189)は，

N1∑
n

√
Z

(1)
n

(
a(1)

n + b(1)
n

)¨
S0,1

e(2)
m · e(1)

n dS

=
√
Z

(2)
m

(
b(2)

m + a(2)
m

)
(m = 1, 2, · · · , N2) (1.194)

同様にして，式 (1.191)は，

N3∑
n

√
Z

(3)
n

(
a(3)

n + b(3)
n

)¨
S0,3

e(2)
m · e(3)

n dS

=
√
Z

(2)
m

(
b(2)

m + a(2)
m

)
(m = 1, 2, · · · , N2) (1.195)

一方，開口面 S0,1，S0,3 の磁界の境界条件の両辺に h

(1,3
2

)
m で内積をとると，m =

1, 2, · · · , N(1,3
2

) のとき，
∞∑
n

√
Y

(1)
n

(
a(1)

n − b(1)
n

)¨
S0,1

h

(1
2

)
m · h(1)

n dS

=
∞∑
n

√
Y

(2)
n

(
b(2)

n − a(2)
n

)¨
S0,1

h

(1
2

)
m · h(2)

n dS (1.196)

∞∑
n

√
Y

(3)
n

(
a(3)

n − b(3)
n

)¨
S0,3

h

(3
2

)
m · h(3)

n dS

=
∞∑
n

√
Y

(2)
n

(
b(2)

n − a(2)
n

)¨
S0,3

h

(3
2

)
m · h(2)

n dS (1.197)

ここで，モード関数の内積を次のようにおく．

I ij
mn

∣∣∣∣
S

≡
ˆ

S

e(i)
m · e(j)

n dS =
ˆ

S

h(i)
m · h(j)

n dS

=
ˆ

S

e(j)
n · e(i)

m dS =
ˆ

S

h(j)
n · h(i)

m dS = Iji
nm

∣∣∣∣
S

(1.198)

ただし，積分範囲 S は，これまでの式では，開口面 S0,1，S0,3，導体面 S1，S2，S3 である．
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これより，e(1)
m ，h(1)

m の内積を基にして求めた式は，

√
Z

(1)
m

(
a(1)

m + b(1)
m

)
=

N1∑
n

√
Z

(2)
n

(
b(2)

n + a(2)
n

)
I12

mn

∣∣∣∣
S0,1

(m = 1, 2, · · · , N1) (1.199)

N2∑
n

√
Y

(1)
n

(
a(1)

n − b(1)
n

)
I21

mn

∣∣∣∣
S0,1

=
N2∑
n

√
Y

(2)
n

(
b(2)

n − a(2)
n

)
I22

mn

∣∣∣∣
S0,1

(m = 1, 2, · · · , N2)

(1.200)

同様にして，e(3)
m ，h(3)

m の内積を基にして求めた式は，

√
Z

(3)
m

(
a(3)

m + b(3)
m

)
=

N3∑
n

√
Z

(2)
n

(
b(2)

n + a(2)
n

)
I32

mn

∣∣∣∣
S0,3

(m = 1, 2, · · · , N3) (1.201)

N2∑
n

√
Y

(3)
n

(
a(3)

n − b(3)
n

)
I23

mn

∣∣∣∣
S0,3

=
N2∑
n

√
Y

(2)
n

(
b(2)

n − a(2)
n

)
I22

mn

∣∣∣∣
S0,3

(m = 1, 2, · · · , N2)

(1.202)

また，e(2)
m ，h(2)

m の内積を基にして求めた式は，

N2∑
n

√
Z

(1)
n

(
a(1)

n + b(1)
n

)
I21

mn

∣∣∣∣
S0,1

=
√
Z

(2)
m

(
b(2)

n + a(2)
n

)
(m = 1, 2, · · · , N2) (1.203)

N1∑
n

√
Y

(1)
n

(
a(1)

n − b(1)
n

)
I11

mn

∣∣∣∣
S0,1

=
N1∑
n

√
Y

(2)
n

(
b(2)

n − a(2)
n

)
I12

mn

∣∣∣∣
S0,1

(m = 1, 2, · · · , N1)

(1.204)

そして，

N2∑
n

√
Z

(3)
n

(
a(3)

n + b(3)
n

)
I23

mn

∣∣∣∣
S0,3

=
√
Z

(2)
m

(
b(2)

n + a(2)
n

)
(m = 1, 2, · · · , N2) (1.205)

N3∑
n

√
Y

(3)
n

(
a(3)

n − b(3)
n

)
I33

mn

∣∣∣∣
S0,3

=
N3∑
n

√
Y

(2)
n

(
b(2)

n − a(2)
n

)
I32

mn

∣∣∣∣
S0,3

(m = 1, 2, · · · , N3)

(1.206)

モード関数の内積を要素とする行列を次のように定義する（I ij
mn

∣∣∣∣
s0,l

= Iji
nm

∣∣∣∣
s0,l

）．

[
Pij,l

]
=



I ij
11

∣∣∣∣
s0,l

I ij
12

∣∣∣∣
s0,l

· · · I ij
1Nj

∣∣∣∣
s0,l

I ij
21

∣∣∣∣
s0,l

I ij
22

∣∣∣∣
s0,l

· · · I ij
2Nj

∣∣∣∣
s0,l

... ... . . . ...
I ij

Ni1

∣∣∣∣
s0,l

I ij
Ni2

∣∣∣∣
s0,l

· · · I ij
NiNj

∣∣∣∣
s0,l


=
[
Pji,l

]
T

(i = 1, 2, 3, j = 1, 2, 3, l = 1, 3) (1.207)
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ただし，i = 1，j = 3やその逆の積分はない．また，
[√
Zi

]
，
[√
Yi

]
（i = 1, 2, 3）は，各々，

対角要素を
√
Z

(i)
n ，

√
Y

(i)
n とする Ni 次の対角行列を示す．

[√
Zi

]
=



√
Z

(i)
1 0 · · · 0

0
√
Z

(i)
2 · · · ...

... ... . . . ...
0 0 · · ·

√
Z

(i)
Ni

 =
[√
Yi

]−1
(i = 1, 2, 3) (1.208)

また，列ベクトル（column matrix）ai，bi を，

ai =


a

(i)
1
a

(i)
2
...
a

(i)
Ni

 , bi =


b

(i)
1
b

(i)
2
...
b

(i)
Ni

 (i = 1, 2, 3) (1.209)

とおくと，全てのm(= 1, 2, · · · )に対する式をまとめて行列表示して，
[√
Z1
](

a1 + b1
)

=
[
P12,1

][√
Z2
](

b2 + a2
)

(1.210)[
P21,1

][√
Y1
](

a1 − b1
)

=
[
P22,1

][√
Y2
](

b2 − a2
)

(1.211)

そして，[√
Z3
](

a3 + b3
)

=
[
P32,3

][√
Z2
](

b2 + a2
)

(1.212)[
P23,3

][√
Y3
](

a3 − b3
)

=
[
P22,3

][√
Y2
](

b2 − a2
)

(1.213)

また，[
P21,1

][√
Z1
](

a1 + b1
)

=
[√
Z2
](

b2 + a2
)

(1.214)[
P11,1

][√
Y1
](

a1 − b1
)

=
[
P12,1

][√
Y2
](

b2 − a2
)

(1.215)

最後に，[
P23,3

][√
Z3
](

a3 + b3
)

=
[√
Z2
](

b2 + a2
)

(1.216)[
P11,3

][√
Y3
](

a3 − b3
)

=
[
P12,3

][√
Y2
](

b2 − a2
)

(1.217)

先に求めたように，([√
Y1
][
P12,1

][√
Z2
])

T
=
[√
Z2
][
P21,1

][√
Y1
]

(1.218)([√
Y2
][
P21,1

][√
Z1
])

T
=
[√
Z1
][
P12,1

][√
Y2
]

(1.219)
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これより変形して，

a1 + b1 =
[√
Y1
][
P12,1

][√
Z2
](

b2 + a2
)

=
([√

Z2
][
P21,1

][√
Y1
])

T

(
b2 + a2

)
(1.220)[√

Z2
][
P21,1

][√
Y1
](

a1 − b1
)

=
([√

Y1
][
P12,1

][√
Z2
])

T

(
a1 − b1

)
=
[√
Z2
][
P21,1

][√
Y2
](

b2 − a2
)

(1.221)

また，
[√
Y2
][
P21,1

][√
Z1
](

a1 + b1
)

=
([√

Z1
][
P12,1

][√
Y2
])

T

(
a1 + b1

)
= b2 + a2 (1.222)[√

Z1
][
P11,1

][√
Y1
](

a1 − b1
)

=
[√
Z1
][
P12,1

][√
Y2
](

b2 − a2
)

= (
[√
Y2
][
P21,1

][√
Z1
]
)T

(
b2 − a2

)
(1.223)

ここで，[
P̄ij,l

]
≡
[√
Zi

][
Pij,l

][√
Yj

]
(1.224)

とおくと，

a1 + b1 =
[
P̄21,1

]
T

(
b2 + a2

)
(1.225)[

P̄21,1
](

a1 − b1
)

=
[
P̄22,1

](
b2 − a2

)
(1.226)

および，[
P̄12,1

]
T

(
a1 + b1

)
= b2 + a2 (1.227)[

P̄11,1
](

a1 − b1
)

=
[
P̄12,1

](
b2 − a2

)
(1.228)

同様にして，

a3 + b3 =
[
P̄23,3

]
T

(
b2 + a2

)
(1.229)[

P̄23,3
](

a3 − b3
)

=
[
P̄22,3

](
b2 − a2

)
(1.230)

および，[
P̄32,3

]
T

(
a3 + b3

)
= b2 + a2 (1.231)[

P̄33,3
](

a3 − b3
)

=
[
P̄32,3

](
b2 − a2

)
(1.232)
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列ベクトル a1，a3 を一つの列ベクトル â1，列ベクトル b1，b3 を一つの列ベクトル b̂1 に
まとめて，

â1 =
(

a1
a3

)
, b̂1 =

(
b1
b3

)
(1.233)

より，

â1 + b̂1 =
[
P̄2I,I

]
T

(
b2 + a2

)
(1.234)[

P̄2I,I
](

â1 − b̂1
)

=
[
P̄22,I

](
b2 − a2

)
(1.235)

ここで，

[
P̄2I,I

]
=

[
P̄21,1

]
[
P̄23,3

]
 , [

P̄22,I
]

=

[
P̄22,1

]
[
P̄22,3

]
 (1.236)

および，[
P̄I2,I

]
T

(
â1 + b̂1

)
= b2 + a2 (1.237)[

P̄II,I
](

â1 − b̂1
)

=
[
P̄I2,I

](
b2 − a2

)
(1.238)

ここで，

[
P̄I2,I

]
=

[
P̄12,1

]
[
P̄32,3

]
 , [

P̄II,I
]

=

[
P̄11,1

]
[
P̄33,3

]
 (1.239)

特別な場合として，積分範囲 S0, i（i = 1, 3）が導波菅断面と同じであれば，モードの正規
直交性より（

[
U
]
は単位行列），

[
P̄ii,i

]
=
[
U
]

(1.240)

が成り立ち，後述するように不連続部で Self-Reacionが連続となる．

1.7.4 散乱行列の変形

散乱行列 [S]を次式で定義する．

b1
b2
b3

 =
[
S
]a1

a2
a3

 , [
S
]

=


[
S11

] [
S12

] [
S13

]
[
S21

] [
S22

] [
S23

]
[
S31

] [
S32

] [
S33

]
 (1.241)
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いま，ポート 3-3’（a3，b3）にモード毎の負荷を接続し，反射係数の対角行列を
[
Γ3
]

d
とす

ると，次式が成り立つ．

a3 =
[
Γ3
]

d
b3 (1.242)

これを用いて，a3 を消去すると，

b1 =
[
S11

]
a1 +

[
S12

]
a2 +

[
S13

][
Γ3
]

d
b3 (1.243)

b2 =
[
S21

]
a1 +

[
S22

]
a2 +

[
S23

][
Γ3
]

d
b3 (1.244)

b3 =
[
S31

]
a1 +

[
S32

]
a2 +

[
S33

][
Γ3
]

d
b3 (1.245)

上の第 3式より，

b3 =
([
U
]

−
[
Γ3
]

d

[
S33

])−1([
S31

]
a1 +

[
S32

]
a2

)
(1.246)

これを第 1式に代入して b3 を消去すると，

b1 =
[
S11

]
a1 +

[
S12

]
a2 +

[
S13

][
Γ3
]

d

([
U
]

−
[
Γ3
]

d

[
S33

])−1([
S31

]
a1 +

[
S32

]
a2

)
=
{[
S11

]
+
[
S13

][
Γ3
]

d

([
U
]

−
[
Γ3
]

d

[
S33

])−1[
S31

]}
a1

+
{[
S12

]
+
[
S13

][
Γ3
]

d

([
U
]

−
[
Γ3
]

d

[
S33

])−1[
S31

]}
a2

≡
[
R
]
a1 +

[
T ′
]
a2 (1.247)

よって，

R = S11 + S13S31

1 − Γ3S33
Γ3 (1.248)

T ′ = S12 + S13S32

1 − Γ3S33
Γ3 (1.249)

同様にして，第 2式に代入して b3 を消去すると，

b2 = S21a1 + S22a2 + S23Γ3
S31a1 + S32a2

1 − Γ3S33

=
(
S21 + S23S31

1 − Γ3S33
Γ3

)
a1 +

(
S22 + S23S32

1 − Γ3S33
Γ3

)
a2 ≡ Ta1 +R′a2 (1.250)

よって，

T = S21 + S23S31

1 − Γ3S33
Γ3, R′ = S22 + S23S32

1 − Γ3S33
Γ3 (1.251)

よって，

[Ŝ] =
(
R T ′

T R′

)
=
S11 + S13S31

1−Γ3S33
Γ3 S12 + S13S32

1−Γ3S33
Γ3

S21 + S23S31
1−Γ3S33

Γ3 S22 + S23S32
1−Γ3S33

Γ3

 (1.252)
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CHAPTER 2

方形導波菅の不連続問題

　方形導波管の不連続問題に焦点を当て，特にモード関数とそれらの内積の計算方法
を詳述する．導波管の断面が変化する際に生じる電磁波の振る舞いを解析するため，
TEモードと TMモードという異なる伝送モードの特性と，それらが不連続部でどの
ように相互作用するかを数学的に定式化している．具体的例として，H 面ステップ
状不連続，E面ステップ状不連続，さらにはダブルステップ不連続問題を取り上げ，
モード整合法に必要な計算プロセスを詳細に解説し，不連続部における透過・反射特
性の電磁界解析の基礎を示している．

2.1 方形導波菅の不連続問題

2.1.1 方形導波菅のモード関数

方形導波管 #1（a1 × b1）の TEmn モードのスカラ関数 Ψ#1
[mn]，方形導波管 #2（a2 × b2）

の TEm′n′ モードのスカラ関数 Ψ#2
[m′n′] を，

Ψ#1
[mn] ≡ A#1

[mn]h
#1
x[m](x)h#1

y[n](y) (2.1)

Ψ#2
[m′n′] ≡ A#2

[m′n′]h
#2
x[m′](x)h#2

y[n′](y) (2.2)

TEモードの境界条件より，

dh#1
x[m]

dx

∣∣∣∣∣∣
x=0,a1

= 0,
dh#2

x[m′]

dx

∣∣∣∣∣∣
x=−x2,a2−x2

= 0 (2.3)

dh#1
y[n]

dy

∣∣∣∣∣∣
y=0,b1

= 0,
dh#2

y[n′]

dy

∣∣∣∣∣∣
y=−y2,b2−y2

= 0 (2.4)
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よって，

h#1
x[m](x) = cos

(
kxmx

)
, h#2

x[m′](x) = cos
{
k̂xm′(x+ x2)

}
(2.5)

h#1
y[n](y) = cos

(
kyny

)
, h#2

y[n′](y) = cos
{
k̂yn′(y + y2)

}
(2.6)

ただし（一様分布は存在しない），

kxm = mπ

a1
, kyn = nπ

b1
(m,n = 0, 1, 2, · · · , m = n 6= 0) (2.7)

k̂xm′ = m′π

a2
, k̂yn′ = n′π

b2
(m′, n′ = 0, 1, 2, · · · , m′ = n′ 6= 0) (2.8)

また，A#1
[mn]，A

#2
[m′n′] は TEモードの正規化係数を示し，

A#1
[mn] = 1

π

√
a1b1εmεn

(mb1)2 + (na1)2 (2.9)

A#2
[m′n′] = 1

π

√
a2b2εm′εn′

(m′b2)2 + (n′a2)2 (2.10)

ただし，

εm =
{

1 (m = 0)
2 (m = 1, 2, · · · ) , εm′ =

{
1 (m′ = 0)
2 (m′ = 1, 2, · · · ) (2.11)

εn =
{

1 (n = 0)
2 (n = 1, 2, · · · ) , εn′ =

{
1 (n′ = 0)
2 (n′ = 1, 2, · · · ) (2.12)

また，導波管 #1の TMmn モードと導波管 #2の TMm′n′ モードを，

Ψ#1
(mn) ≡ A#1

(mn)h
#1
x(m)(x)h#1

y(n)(y) (2.13)

Ψ#2
(m′n′) ≡ A#2

(mn)h
#2
x(m′)(x)h#2

y(n′)(y) (2.14)

TMモードの境界条件より，

h#1
x(m)

∣∣∣
x=0,a1

= 0, h#2
x(m′)

∣∣∣
x=−x2,a2−x2

= 0 (2.15)

h#1
y(n)

∣∣∣
y=0,b1

= 0, h#2
y(n′)

∣∣∣
y=−y2,b2−y2

= 0 (2.16)

よって，

h#1
x(m)(x) = sin

(
kxmx

)
, h#2

x(m′)(x) = sin
{
k̂xm′(x+ x2)

}
(2.17)

h#1
y(n)(y) = sin

(
kyny

)
, h#2

y(n′)(y) = sin
{
k̂yn′(y + y2)

}
(2.18)
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ただし，kxm，kynの定義は先に示したものと変わらないが，m,m′, n, n′ = 1, 2, · · · となる，
また，A#1

(mn)，A
#2
(m′n′) は TMモードの正規化係数を示し，

A#1
(mn) = 2

π

√
a1b1

(mb1)2 + (na1)2 (2.19)

A#2
(m′n′) = 2

π

√
a2b2

(m′b2)2 + (n′a2)2 (2.20)

TMモードの場合は，x，y方向ともに分布をもつ．なお，TEmnモードは添字 [mn]，TMmn

モードは添字 (mn) を用い，TE モードと TM モードの区別なく mn 次のモードを表す場
合，次のように表すことにする．

Ψ#1
mn ≡ A#1

mnh
#1
xm(x)h#1

yn (y) (2.21)

Ψ#2
m′n′ ≡ A#2

m′n′h
#2
xm′(x)h#2

yn′(y) (2.22)

2.1.2 モード関数の内積（#1，#2）

Ψ#1
[mn] で求められる TEmn モードと Ψ#2

[m′n′] で求められる TEm′n′ モードの内積，あるい
は，Ψ#1

(mn) で求められる TMmn モードと Ψ#2
(m′n′) で求められる TMm′n′ モードの内積は次

のようになる．¨
SA

∇tΨ#1
mn · ∇tΨ#2

m′n′dS

=
¨

SA

∂Ψ#1
mn

∂x

∂Ψ#2
m′n′

∂x
+ ∂Ψ#1

mn

∂y

∂Ψ#2
m′n′

∂y

 dxdy
= A#1

mnA
#2
m′n′

ˆ
ly

ˆ
lx

dh#1
xm

dx

dh#2
xm′

dx
h#1

yn h
#2
yn′ +h#1

xmh
#2
xm′

dh#1
yn

dy

dh#2
yn′

dy

 dxdy
= A#1

mnA
#2
m′n′

[ˆ
lx

(h#1
xm)′(h#2

xm′)′dx

ˆ
ly

h#1
yn h

#2
yn′dy +

ˆ
lx

h#1
xmh

#2
xm′dx

ˆ
ly

(h#1
yn )′(h#2

yn′)′dy

]
(2.23)

ただし，SA は導波管断面内の一部あるいは全部の領域，lx，ly は x，y の積分範囲を示す．
両者ともTEモードの場合，m,n = 0, 1, 2, · · · (m 6= 0 or n 6= 0），m′, n′ = 0, 1, 2, · · · (m′ 6=

0 or n′ 6= 0）について，
¨

SA

e#1
[mn] · e#2

[m′n′]dS

= A#1
[mn]A

#2
[m′n′]

[ˆ
lx

(h#1
x[m])

′(h#2
x[m′])

′dx

ˆ
ly

h#1
y[n]h

#2
y[n′]dy

+
ˆ

lx

h#1
x[m]h

#2
x[m′]dx

ˆ
ly

(h#1
y[n])

′(h#2
y[n′])

′dy

]
(2.24)
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また，両者とも TMモードの場合，m,n = 1, 2, 3, · · ·，m′, n′ = 1, 2, 3, · · · について，
¨

SA

e#1
(mn) · e#2

(m′n′)dS

= A#1
(mn)A

#2
(m′n′)

[ˆ
lx

(h#1
x(m))

′(h#2
x(m′))

′dx

ˆ
ly

h#1
y(n)h

#2
y(n′)dy

+
ˆ

lx

h#1
x(m)h

#2
x(m′)dx

ˆ
ly

(h#1
y(n))

′(h#2
y(n′))

′dy

]
(2.25)

一方，Ψ#1
[mn] で求められる TEmn モードと Ψ#2

(m′n′) で求められる TMm′n′ モードでは，
¨

SA

e#1
[mn] · e#2

(m′n′)dS

=
¨

SA

(
∇tΨ#1

[mn] × az

)
· ∇tΨ#2

(m′n′)dS

=
¨

SA

−ay

∂Ψ#1
[mn]

∂x
+ ax

∂Ψ#1
[mn]

∂y

 ·

ax

∂Ψ#2
[m′n′]

∂x
+ ay

∂Ψ#2
[m′n′]

∂y

 dS
=
¨

SA

∂Ψ#1
[mn]

∂y

∂Ψ#2
(m′n′)

∂x
−
∂Ψ#1

[mn]

∂x

∂Ψ#2
(m′n′)

∂y

 dxdy
= A#1

[mn]A
#2
(m′n′)

ˆ
ly

ˆ
lx

h#1
x[m]

dh#1
y[n]

dy

dh#2
x(m′)

dx
h#2

y(n′) −
dh#1

x[m]

dx
h#1

y[n]h
#2
x(m′)

dh#2
y(n′)

dy

 dxdy
= A#1

[mn]A
#2
(m′n′)

[ˆ
lx

h#1
x[m](h

#2
x(m′))

′dx

ˆ
ly

(h#1
y[n])

′h#2
y(n′)dy

−
ˆ

lx

(h#1
x[m])

′h#2
x(m′)dx

ˆ
ly

h#1
y[n](h

#2
y(n′))

′dy

]
(2.26)

逆に，Ψ#1
(mn) で求められる TMmn モードと Ψ#2

[m′n′] で求められる TEm′n′ モードでは，
¨

SA

e#1
(mn) · e#2

[m′n′]dS

= A#1
(mn)A

#2
[m′n′]

[ˆ
lx

(h#1
x(m))

′h#2
x[m′]dx

ˆ
ly

h#1
y(n)(h

#2
y[n′])

′dy

−
ˆ

lx

h#1
x(m)(h

#2
x[m′])

′dx

ˆ
ly

(h#1
y(n))

′h#2
y[n′]dy

]
(2.27)

これらの式中の x，y に関する微分は，導波菅 #1の TEモードについては，

(h#1
x[m](x))′ = d

dx

{
cos

(
kxmx

)}
= −kxm sin

(
kxmx

)
(2.28)

(h#1
y[n](y))′ = d

dy

{
cos

(
kyny

}}
= −kyn sin

(
kyny

)
(2.29)
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また，TMモードについては，

(h#1
x(m)(x))′ = d

dx

{
sin

(
kxmx

)}
= kxm cos

(
kxmx

)
(2.30)

(h#1
y(n)(y))′ = d

dy

{
sin

(
kyny

)}
= kyn cos

(
kyny

)
(2.31)

導波菅 #2も同様にして，

(h#2
x[m′](x))′ = −k̂xm′ sin

{
k̂xm′(x+ x2)

}
(2.32)

(h#2
y[n′](y))′ = −k̂yn′ sin

{
k̂yn′(y + y2)

}
(2.33)

(h#2
x(m′)(x))′ = k̂xm′ cos

{
k̂xm′(x+ x2)

}
(2.34)

(h#2
y(n′)(y))′ = k̂yn′ cos

{
k̂yn′(y + y2)

}
(2.35)

いま，

X̂12,s
mm′ ≡

ˆ
Lx

sin
(
kxmx

)
sin

{
k̂xm′(x+ x2)

}
dx (2.36)

Ŷ 12,c
nn′ ≡

ˆ
Ly

cos
(
kyny

)
cos

{
k̂yn′(y + y2)

}
dy (2.37)

X̂12,c
mm′ ≡

ˆ
Lx

cos
(
kxmx

)
cos

{
k̂xm′(x+ x2)

}
dx (2.38)

Ŷ 12,s
nn′ ≡

ˆ
Ly

sin
(
kyny

)
sin

{
k̂yn′(y + y2)

}
dy (2.39)

とおくと，両者とも TEモードの場合，および両者とも TMモードの場合，
ˆ

lx

(h#1
x[m])

′(h#2
x[m′])

′dx =
ˆ

lx

kxmk̂xm′ sin
(
kxmx

)
sin

{
k̂xm′(x+ x2)

}
dx

= kxmk̂xm′X̂12,s
mm′ (2.40)ˆ

ly

h#1
y[n]h

#2
y[n′]dy =

ˆ
ly

cos
(
kyny

)
cos

{
k̂yn′(y + y2)

}
dy = Ŷ 12,c

nn′ (2.41)
ˆ

lx

h#1
x[m]h

#2
x[m′]dx =

ˆ
lx

cos
(
kxmx

)
cos

{
k̂xm′(x+ x2)

}
dx = X̂12,c

mm′ (2.42)
ˆ

ly

(h#1
y[n])

′(h#2
y[n′])

′dy =
ˆ

ly

kynk̂yn′ sin
(
kyny

)
sin

{
k̂yn′(y + y2)

}
dy = kynk̂yn′Ŷ 12,s

nn′

(2.43)
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また，両者とも TMモードの場合，
ˆ

lx

(h#1
x(m))

′(h#2
x(m′))

′dx =
ˆ

lx

kxmk̂xm′ cos
(
kxmx

)
cos

{
k̂xm′(x+ x2)

}
dx

= kxmk̂xm′X̂12,c
mm′ (2.44)ˆ

ly

h#1
y(n)h

#2
y(n′)dy =

ˆ
ly

sin
(
kyny

)
sin

{
k̂yn′(y + y2)

}
dy = Ŷ 12,s

nn′ (2.45)
ˆ

lx

h#1
x(m)h

#2
x(m′)dx =

ˆ
lx

sin
(
kxmx

)
sin

{
k̂xm′(x+ x2)

}
dx = X̂12,s

mm′ (2.46)
ˆ

ly

(h#1
y(n))

′(h#2
y(n′))

′dy =
ˆ

ly

kynk̂yn′ cos
(
kyny

)
cos

{
k̂yn′(y + y2)

}
dy = kynk̂yn′Ŷ 12,c

nn′

(2.47)

TEモードと TMモードの場合，
ˆ

lx

h#1
x[m](h

#2
x(m′))

′dx =
ˆ

lx

k̂xm′ cos
(
kxmx

)
cos

{
k̂xm′(x+ x2)

}
dx = kxmX̂

12,c
mm′ (2.48)

ˆ
ly

(h#1
y[n])

′h#2
y(n′)dy =

ˆ
ly

−kyn sin
(
kyny

)
sin

{
k̂yn′(y + y2)

}
dy = −kynŶ

12,s
nn′ (2.49)

ˆ
lx

(h#1
x[m])

′h#2
x(m′)dx =

ˆ
lx

−kxm sin
(
kxmx

)
sin

{
k̂xm′(x+ x2)

}
dx = −kxmX̂

12,s
mm′

(2.50)ˆ
ly

h#1
y[n](h

#2
y(n′))

′dy =
ˆ

ly

k̂yn′ cos
(
kyny

)
cos

{
k̂yn′(y + y2)

}
dy = k̂yn′Ŷ 12,c

nn′ (2.51)

TMモードと TEモードの場合，
ˆ

lx

(h#1
x(m))

′h#2
x[m′]dx =

ˆ
lx

kxm cos
(
kxmx

)
cos

{
k̂xm′(x+ x2)

}
dx = kxmX̂

12,c
mm′ (2.52)

ˆ
ly

h#1
y(n)(h

#2
y[n′])

′dy =
ˆ

ly

−k̂yn′ sin
(
kyny

)
sin

{
k̂yn′(y + y2)

}
dy = −k̂yn′Ŷ 12,s

nn′ (2.53)
ˆ

lx

h#1
x(m)(h

#2
x[m′])

′dx =
ˆ

lx

−k̂xm′ sin
(
kxmx

)
sin

{
k̂xm′(x+ x2)

}
dx = −k̂xm′X̂12,s

mm′

(2.54)ˆ
ly

(h#1
y(n))

′h#2
y[n′]dy =

ˆ
ly

kyn cos
(
kyny

)
cos

{
k̂yn′(y + y2)

}
dy = kynŶ

12,c
nn′ (2.55)
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モード関数の内積は次のようになる．
¨

SA

e#1
[mn] · e#2

[m′n′]dS = A#1
[mn]A

#2
[m′n′]

(
kxmk̂xm′X̂12,s

mm′Ŷ
12,c

nn′ + kynk̂yn′X̂12,c
mm′Ŷ

12,s
nn′

)
(2.56)¨

SA

e#1
(mn) · e#2

(m′n′)dS = A#1
(mn)A

#2
(m′n′)

(
kynk̂yn′X̂12,s

mm′Ŷ
12,c

nn′ + kxmk̂xm′X̂12,c
mm′Ŷ

12,s
nn′

)
(2.57)¨

SA

e#1
[mn] · e#2

(m′n′)dS = A#1
[mn]A

#2
(m′n′)

(
kxmk̂yn′X̂12,s

mm′Ŷ
12,c

nn′ − k̂xm′kynX̂
12,c
mm′Ŷ

12,s
nn′

)
(2.58)¨

SA

e#1
(mn) · e#2

[m′n′]dS = A#1
(mn)A

#2
[m′n′]

(
k̂xm′kynX̂

12,s
mm′Ŷ

12,c
nn′ − kxmk̂yn′X̂12,c

mm′Ŷ
12,s

nn′

)
(2.59)
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2.2 H面ステップ状不連続（y方向寸法 bが一定の場合）

2つの導波路断面の y方向の内径が等しく，x方向の内径が異なる不連続部に，TE10モー
ドが入射した場合を考える（H面ステップ状不連続）．y方向のモードの次数 n = 0ゆえ，x
方向のモードの次数は m = 1, 2, · · · である．TMモードは次数 0のモードは存在しないた
め，y 方向の関数の直交性より TMモードは発生しない．TEモードについても，直交性よ
り y 方向の次数が異なるモードも発生しない．したがって，TEm0 モード（m = 1, 2, · · ·）
で展開してモード整合を行えばよい．
まず，導波管 #1（a1 × b）の TEm0 モードと導波管 #2（a2 × b）の TEm′0 モードを求
めるためのスカラ関数は，

Ψ#1
[m0] ≡ A#1

[m0]h
#1
x[m](x), Ψ#2

[m′0] ≡ A#2
[m′0]h

#2
x[m′](x) (2.60)

ここで，

h#1
x[m](x) = cos

(
kxmx

)
, h#2

x[m′](x) = cos
{
k̂xm′(x+ x2)

}
(2.61)

ただし，

kxm = mπ

a1
(m = 1, 2, · · · ), k̂xm′ = m′π

a2
(m′ = 1, 2, · · · ) (2.62)

モード関数の内積は，ky0 = 0，k̂y0 = 0，Ŷ 12,c
nn′ = b より，

¨
SA

e#1
[m0] · e#2

[m′0]dS = A#1
[m0]A

#2
[m′0]bkxmk̂xm′X̂12,s

mm′ (2.63)

ただし，a1 < a2 で SA が導波管 #1 の断面形状と一致する不連続のとき，導波管 #2 の
モードの内積では，SA が x方向について #2の断面の一部となる．いま，不連続部の開口
面 SA を 0 ≤ x ≤ a1，0 ≤ y ≤ b とすると，kxm 6= k̂xm′ のとき，

X̂
12,{s

c
mm′ =

ˆ a1

0

sin
cos (kxmx) · sin

cos
{
k̂xm′(x+ x2)

}
dx

=
∓

sin
{
kxmx+ k̂xm′(x+ x2)

}
2(kxm + k̂xm′)

+
sin

{
kxmx− k̂xm′(x+ x2)

}
2(kxm − k̂xm′)

a1

0

= ∓
sin

{
(kxm + k̂xm′)a1 + k̂xm′x2

}
− sin(k̂xm′x2)

2(kxm + k̂xm′)

+
sin

{
(kxm − k̂xm′)a1 − k̂xm′x2

}
+ sin(k̂xm′x2)

2(kxm − k̂xm′)
(2.64)
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また，kxm = k̂xm′ 6= 0 のとき，

X̂
12,{s

c
mm′ =

ˆ a1

0

sin
cos (kxmx) · sin

cos
{
kxm(x+ x2)

}
dx

=
∓

sin
[
kxm(2x+ x2)

]
4kxm

+
x cos

{
kxm(−x2)

}
2

a1

0

= ∓
sin

{
kxm(2a1 + x2)

}
− sin(kxmx2)

4kxm
+ a1 cos(kxmx2)

2 (2.65)

ここで解析している構造の不連続を縦続接続する場合，基本 TE10 モードのみを入力側から
入射させたとしても，最初の不連続部によって高次 TEm0モードが発生し，これらは次の隣
接する不連続部への入射波となるとともに，隣接する不連続部で生じた反射波が再び最初の
不連続部の出力側に入射するため，このような縦続接続を行う場合には，TEm0 モード入射
を考えて最初からモード整合法で解析する必要がある．ただし，TEモードの n = 0 の次数
のモードから TMモードは直交性があるため発生しない．
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2.3 E面ステップ状不連続（y方向寸法 bが一定の場合）

不連続部の形状は同じで，TE01 モードが入射した場合を考える（E 面ステップ状不連
続）．y 方向の導波菅形状は均一ゆえ，関数の直交性によって次数 n = 1 のみである．一
方，x 方向はステップ状不連続ゆえ，TEm1 モード（m = 0, 1, 2, · · ·）と TMm1 モード
（m = 1, 2, · · ·）で展開してモード整合を行えばよい．
まず，導波管 #1（a1 × b）の TEm1 モードと導波管 #2（a2 × b）の TEm′1 モードを求
めるためのスカラ関数は，

Ψ#1
[m1] ≡ A#1

[m1]h
#1
x[m](x)hy[1](y), Ψ#2

[m′1] ≡ A#2
[m′1]h

#2
x[m′](x)hy[1](y) (2.66)

ここで，

h#1
x[m](x) = cos

(
kxmx

)
, h#2

x[m′](x) = cos
{
k̂xm′(x+ x2)

}
(2.67)

hy[1](y) = cos
(
ky1y

)
(2.68)

ただし，

kxm = mπ

a1
(m = 0, 1, 2, · · · ), k̂xm′ = m′π

a2
(m′ = 0, 1, 2, · · · ) (2.69)

ky1 = π

b
(2.70)

また，導波管 #1の TMm1 モードと導波管 #2の TMm′1 モードを，

Ψ#1
(mn) ≡ A#1

(mn)h
#1
x(m)(x)hy(1)(y), Ψ#2

(m′n′) ≡ A#2
(m′n′)h

#2
x(m′)(x)hy(1)(y) (2.71)

ここで，

h#1
x(m)(x) = sin

(
kxmx

)
, h#2

x(m′)(x) = sin
{
k̂xm′(x+ x2)

}
(2.72)

hy(1)(y) = sin
(
ky1y

)
(2.73)

ただし，

kxm = mπ

a1
(m = 1, 2, · · · ), k̂xm′ = m′π

a2
(m′ = 1, 2, · · · ) (2.74)

ky1 = π

b
(2.75)

この場合も導波管 #1と #2のモードの内積に関わる積分は，y 方向は直交性があるので，
次数 n = 1 以外は考える必要がない．y 方向の導波管幅は一定ゆえ，kyn 6= k̂yn′ のとき，

Ŷ
12,{s

c
nn′ =

ˆ b

0

sin
cos (kyny) · sin

cos (kyn′y)dy

=
∓

sin
{
(kyn + kyn′)y

}
2(kyn + kyn′) +

sin
{
(kyn − kyn′)y

}
2(kyn − kyn′)

b

0

= 0 (2.76)
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また，kyn = k̂yn′ 6= 0 のとき，

Ŷ
12,{s

c
nn′ =

ˆ b

0

sin2

cos2 (kyny)dy

= 1
2

ˆ b

0

{
1 ∓ cos 2(kyny)

}
dy =

[
∓sin 2(kyny)

4kyn
+ y

2

]b

0
= b

2 (2.77)

モード関数の内積は，n = n′ = 1 で考えればよく，
¨

SA

e#1
[m1] · e#2

[m′1]dS = A#1
[m1]A

#2
[m′1]

b

2

(
kxmk̂xm′X̂12,s

mm′ + k2
y1X̂

12,c
mm′

)
(2.78)

¨
SA

e#1
[m1] · e#2

(m′1)dS = A#1
[m1]A

#2
(m′1)

b

2ky1

(
kxmX̂

12,s
mm′ − k̂xm′X̂12,c

mm′

)
(2.79)

同じ構造の不連続を縦続接続する場合，発生したモードは次の隣接する不連続部への入射波
となるとともに，隣接する不連続部で発生したモードの反射波は最初の不連続の出力側の入
射波となるので，両方の不連続部のモード整合法では，次のようなモード関数の内積も計算
する必要がある．

¨
SA

e#1
(m1) · e#2

(m′1)dS = A#1
(m1)A

#2
(m′1)

b

2

(
k2

y1X̂
12,s
mm′ + kxmk̂xm′X̂12,c

mm′

)
(2.80)

¨
SA

e#1
(m1) · e#2

[m′1]dS = A#1
(m1)A

#2
[m′1]

b

2ky1

(
k̂xm′X̂12,s

mm′ − kxmX̂
12,c
mm′

)
(2.81)

したがって，このような縦続接続を行う場合には，TEm1 モード入射，および TMm1 モー
ド入射を考える必要がある．式 (2.79)に示した TEモードと TMモードの内積に関しては，
kxm 6= k̂xm′ のとき，

kxmX̂
12,s
mm′ − k̂xm′X̂12,c

mm′

= kxm

{
− C1 − C0

2(kxm + k̂xm′)
+ C2 + C0

2(kxm − k̂xm′)

}

− k̂xm′

{
C1 − C0

2(kxm + k̂xm′)
+ C2 + C0

2(kxm − k̂xm′)

}

= −C1 − C0

2 + C2 + C0

2
= −C1 + C2

2 + C0 = 1
2
(

− sinA+ sinB
)

+ C0

= − cos
(
A+B

2

)
sin

(
A−B

2

)
+ C0

= − cos
(
kxma1

)
sin

{
k̂xm′(a1 + x2)

}
+ C0

= −(−1)m sin
{
k̂xm′(a1 + x2)

}
+ sin

(
k̂xm′x2

)
(2.82)
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あるいは，式 (2.79)は，次のように計算することもできる．
¨

SA

e#1
[mn] · e#2

(m′n′)dS

= A#1
[mn]A

#2
(m′n′)

[ˆ
lx

h#1
x[m](h

#2
x(m′))

′dx ·
(

− kynŶ
sin

nn′

)
−
ˆ

lx

(h#1
x[m])

′h#2
x(m′)dx ·

(
kynŶ

cos
nn′

)]
(2.83)

n 6= 0 のとき（n′ 6= 0は TMモードゆえ），
¨

SA

e#1
[mn] · e#2

(m′n′)dS

= −A#1
[mn]A

#2
(m′n′)kyn

b

2δnn′

ˆ
lx

(
h#1

x[m](h
#2
x(m′))

′ + (h#1
x[m])

′h#2
x(m′)

)
dx

= −A#1
[mn]A

#2
(m′n′)kyn

b

2δnn′

[
h#1

x[m]h
#2
x(m′)

]a1

0

= −A#1
[mn]A

#2
(m′n′)kyn

b

2δnn′

[
cos

(
kxmx

)
sin

{
k̂xm′(x+ x2)

}]a1

0

= −A#1
[mn]A

#2
(m′n′)kyn

b

2δnn′

(
(−1)m sin

{
k̂xm′(a1 + x2)

}
− sin

(
k̂xm′x2

))
(2.84)
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2.4 E面ステップ状不連続（x方向寸法 aが一定の場合）

逆に，x 方向の導波菅形状は均一とし，y 方向にステップ状不連続がある場合の E 面ス
テップ状不連続問題を説明する．この場合，入射波は TE10 モードを考える．x方向の形状
は均一ゆえ，関数の直交性によって次数 m = 1 のみである．一方，y 方向はステップ状不
連続ゆえ，TE1n モード（n = 0, 1, 2, · · ·）と TM1n モード（n = 1, 2, · · ·）で展開してモー
ド整合を行えばよい．
まず，導波管 #1（a× b1）の TE1n モードと導波管 #2（a× b2）の TE1n′ モードを求め
るためのスカラ関数は，

Ψ#1
[1n] ≡ A#1

[1n]hx[1](x)h#1
y[n](y), Ψ#2

[1n′] ≡ A#2
[1n′]hx[1](x)h#2

y[n′](y) (2.85)

ここで，

hx[1](x) = cos
(
kx1x

)
(2.86)

h#1
y[n](y) = cos

(
kyny

)
, h#2

y[n′](y) = cos
{
k̂yn′(y + y2)

}
(2.87)

ただし，

kx1 = π

a
(2.88)

kyn = nπ

b1
(n = 0, 1, 2, · · · ), k̂yn′ = n′π

b2
(n′ = 0, 1, 2, · · · ) (2.89)

また，導波管 #1の TM1n モードと導波管 #2の TM1n′ モードを，

Ψ#1
(1n) ≡ A#1

(1n)hx(1)(x)h#1
y(n)(y), Ψ#2

(1n′) ≡ A#2
(1n′)hx(1)(x)h#2

y(n′)(y) (2.90)

ここで，

hx(1)(x) = sin
(
kx1x

)
(2.91)

h#1
y(n)(y) = sin

(
kyny

)
, h#2

y(n′)(y) = sin
{
k̂yn′(y + y2)

}
(2.92)

ただし，

kx1 = π

a
(2.93)

kyn = nπ

b1
(n = 1, 2, · · · ), k̂yn′ = n′π

b2
(n′ = 1, 2, · · · ) (2.94)

この場合も導波管 #1 と #2 のモードの内積に関わる積分は，x 方向は直交性があるの
で，次数 m = 1 以外は考える必要がない．x 方向の導波管幅は一定ゆえ，kxm 6= k̂xm′ の
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とき，X̂12,{s
c

mm′ = 0．また，kxm = k̂xm′ 6= 0 のとき，X̂12,{s
c

mm′ = a/2．モード関数の内積は，
m = m′ = 1 で考えればよく，

¨
SA

e#1
[1n] · e#2

[1n′]dS = A#1
[1n]A

#2
[1n′]

a

2

(
k2

x1Ŷ
12,c

nn′ + kynk̂yn′Ŷ 12,s
nn′

)
(2.95)

¨
SA

e#1
[1n] · e#2

(1n′)dS = A#1
[1n]A

#2
(1n′)

a

2kx1

(
k̂yn′Ŷ 12,c

nn′ − kynŶ
12,s

nn′

)
(2.96)

同様にして，同じ構造の不連続を縦続接続する場合，次のようなモード関数の内積も計算す
る必要がある．

¨
SA

e#1
(1n) · e#2

(1n′)dS = A#1
(1n)A

#2
(1n′)

a

2

(
kynk̂yn′Ŷ 12,c

nn′ + k2
x1Ŷ

12,s
nn′

)
(2.97)

¨
SA

e#1
(1n) · e#2

[1n′]dS = A#1
(1n)A

#2
[1n′]

a

2kx1

(
kynŶ

12,c
nn′ − k̂yn′Ŷ 12,s

nn′

)
(2.98)

したがって，このような縦続接続を行う場合には，TE1n モード入射，および TM1n モード
入射を考える必要がある．あるいは，

¨
SA

e#1
[mn] · e#2

(m′n′)dS

= A#1
[mn]A

#2
(m′n′)

[(
kxmX̂

cos
mm′

)
·
ˆ

ly

(h#1
y[n])

′h#2
y(n′)dy

−
(

− kxmX̂
sin
mm′

)
·
ˆ

ly

h#1
y[n](h

#2
y(n′))

′dy

]
(2.99)

m 6= 0 のとき（TMモードゆえm′ 6= 0），
¨

SA

e#1
[mn] · e#2

(m′n′)dS

= A#1
[mn]A

#2
(m′n′)kxm

a

2δmm′

ˆ
ly

(
h#1

y[n](h
#2
y(n′))

′ + (h#1
y[n])

′h#2
y(n′)

)
dy

= A#1
[mn]A

#2
(m′n′)kxm

a

2δmm′

[
h#1

y[n]h
#2
y(n′)

]b1

0

= A#1
[mn]A

#2
(m′n′)kxm

a

2δmm′

[
cos

(
kyny

)
sin

{
k̂yn′(y + y2)

}]b1

0

= A#1
[mn]A

#2
(m′n′)kxm

a

2δmm′

(
(−1)m sin

{
k̂yn′(b1 + y2)

}
− sin

(
k̂yn′y2

))
(2.100)

2.4.1 E面ステップとH面ステップの縦続接続

初段に E面ステップ（a一定）があれば（TE10 モード入射），TE1n モード，TM1n モー
ドを考え，2段目に H面ステップ（b一定）があって，これらのモードが入射するとともに，
2段目の不連続部による反射波が初段に入射する．したがって，初段の解析は TE1n モード
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入射，および TM1n モード入射を考える必要がある．もちろん，2 段目の解析も同様にし
て，TE1n モード入射，および TM1n モード入射を考えると，モード変換によって TEmn

モード，および TMmn モードが生じる．その結果，このような縦続接続に対しては，初段，
2段目ともに，モード整合法では全ての TEモード，TMモードが必要である．
逆に，初段が H面ステップ（b一定），2段目が E面ステップ（a一定）の場合でも，同
様に考えていけば，全ての TEモード，TMモードが必要となる．これを，初段が E面ス
テップ（b一定），2段目が H面ステップ（a一定），あるいは，初段が H面ステップ（a一
定），2段目が E面ステップ（b一定）としても同様であり，全ての TEモード，TMモード
が必要となる．
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2.5 シングルステップ不連続（b一定）

2つの導波路断面の y 方向の内径が等しく，x方向の内径が異なる不連続問題を考える．
まず，導波管 #1（a1 × b）の TEmn モードと導波管 #2（a2 × b）の TEm′n′ モードを，

Ψ#1
[mn] ≡ A#1

[mn]h
#1
x[m](x)hy[n](y), Ψ#2

[m′n′] ≡ A#2
[m′n′]h

#2
x[m′](x)hy[n′](y) (2.101)

ここで，

h#1
x[m](x) = cos

(
kxmx

)
, h#2

x[m′](x) = cos
{
k̂xm′(x+ x2)

}
(2.102)

hy[n](y) = cos
(
kyny

)
, hy[n′](y) = cos

(
kyn′y

)
(2.103)

ただし，

kxm = mπ

a1
, kyn = nπ

b
(m,n = 0, 1, 2, · · · , m = n 6= 0) (2.104)

k̂xm′ = m′π

a2
, kyn′ = n′π

b
(m′, n′ = 0, 1, 2, · · · , m′ = n′ 6= 0) (2.105)

また，導波管 #1の TMmn モードと導波管 #2の TMm′n′ モードを，

Ψ#1
(mn) ≡ A#1

(mn)h
#1
x(m)(x)hy(n)(y), Ψ#2

(m′n′) ≡ A#2
(m′n′)h

#2
x(m′)(x)hy(n′)(y) (2.106)

ここで，

h#1
x(m)(x) = sin

(
kxmx

)
, h#2

x(m′)(x) = sin
{
k̂xm′(x+ x2)

}
(2.107)

hy(n)(y) = sin
(
kyny

)
, hy(n′)(y) = sin

(
kyn′y

)
(2.108)

ただし，

kxm = mπ

a1
, kyn = nπ

b
(m,n = 1, 2, · · · ) (2.109)

k̂xm′ = m′π

a2
, kyn′ = n′π

b
(m′, n′ = 1, 2, · · · ) (2.110)

導波管 #1と #2のモードの内積に関わる積分は，y 方向は直交性がある．SA は導波管#1
の断面形状と一致し，導波管 #2のモードの内積では，SA が x方向について #2の断面の
一部となる．
モード関数の内積は，まず，
¨

SA

e#1
(mn) · e#2

(m′n′)dS = A#1
(mn)A

#2
(m′n′)δnn′

b

2

(
kynkyn′X̂12,s

mm′ + kxmk̂xm′X̂12,c
mm′

)
(2.111)
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TEm0 モードを除外すれば（TEmn モードにおいて n 6= 0），
¨

SA

e#1
[mn] · e#2

[m′n′]dS = A#1
[mn]A

#2
[m′n′]δnn′

b

2

(
kxmk̂xm′X̂12,s

mm′ + kynkyn′X̂12,c
mm′

)
(2.112)

¨
SA

e#1
[mn] · e#2

(m′n′)dS = A#1
[mn]A

#2
(m′n′)δnn′

b

2

(
kxmkyn′X̂12,s

mm′ − k̂xm′kynX̂
12,c
mm′

)
(2.113)

¨
SA

e#1
(mn) · e#2

[m′n′]dS = A#1
(mn)A

#2
[m′n′]δnn′

b

2

(
k̂xm′kynX̂

12,s
mm′ − kxmkyn′X̂12,c

mm′

)
(2.114)

TEm0 モード（m 6= 0）（TEmn モードにおいて n = 0）に対しては，
¨

SA

e#1
[m0] · e#2

[m′0]dS = A#1
[m0]A

#2
[m′0]bkxmk̂xm′X̂12,s

mm′ (2.115)
¨

SA

e#1
[m0] · e#2

(m′0)dS = 0 (2.116)
¨

SA

e#1
(mn) · e#2

[m′0]dS = 0 (2.117)

積分範囲 SA は，導波管#1の断面 0 ≤ x ≤ a1，0 ≤ y ≤ bと一致しているので，導波管 #1
のモードの正規直交性より（n = n′），

¨
SA

e#1
[mn] · e#1

[m′n]dS = δmm′ (2.118)
¨

SA

e#1
(mn) · e#1

(m′n)dS = δmm′ (2.119)
¨

SA

e#1
[mn] · e#1

(m′n)dS = 0 (2.120)
¨

SA

e#1
(mn) · e#1

[m′n]dS = 0 (2.121)

導波管 #2のモードの内積については，積分範囲 SA が導波管 #2の断面の一部となり，
¨

SA

e#2
[mn] · e#2

[m′n]dS = A#2
[mn]A

#2
[m′n]

b

2

(
k̂xmk̂xm′X̂22,s

mm′ + k2
ynX̂

22,c
mm′

)
(2.122)

¨
SA

e#2
(mn) · e#2

(m′n)dS = A#2
(mn)A

#2
(m′n)

b

2

(
k2

ynX̂
22,s
mm′ + k̂xmk̂xm′X̂22,c

mm′

)
(2.123)

¨
SA

e#2
[mn] · e#2

(m′n)dS = A#2
[mn]A

#2
(m′n)

b

2kyn

(
k̂xmX̂

22,s
mm′ − k̂xm′X̂22,c

mm′

)
(2.124)

¨
SA

e#2
(mn) · e#2

[m′n]dS = A#2
(mn)A

#2
[m′n]

b

2kyn

(
k̂xm′X̂22,s

mm′ − k̂xmX̂
22,c
mm′

)
(2.125)
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2.6 ダブルステップ不連続

積分範囲が導波路 #1の断面と一致している場合，導波管 #1（a1 × b1）の管壁 C の境
界条件を適用して積分できる．そこで，導波管 #1の TEmn モードと導波管 #2（a2 × b2）
の TEm′n′ モードを，

Ψ#1
[mn] ≡ A#1

[mn]h
#1
x[m](x)h#1

y[n](y), Ψ#2
[m′n′] ≡ A#2

[m′n′]h
#2
x[m′](x)h#2

y[n′](y) (2.126)

ここで，

h#1
x[m](x) = cos

(
kxmx

)
, h#2

x[m′](x) = cos
{
k̂xm′(x+ x2)

}
(2.127)

h#1
y[n](y) = cos

(
kyny

)
, h#2

y[n′](y) = cos
{
k̂yn′(y + y2)

}
(2.128)

ただし，

kxm = mπ

a1
, kyn = nπ

b1
(m,n = 0, 1, 2, · · · , m = n 6= 0) (2.129)

k̂xm′ = m′π

a2
, k̂yn′ = n′π

b2
(m′, n′ = 0, 1, 2, · · · , m′ = n′ 6= 0) (2.130)

また，導波管 #1の TMmn モードと導波管 #2の TMm′n′ モードを，

Ψ#1
(mn) ≡ A#1

(mn)h
#1
x(m)(x)h#1

y(n)(y), Ψ#2
(m′n′) ≡ A#2

(mn)h
#2
x(m′)(x)h#2

y(n′)(y) (2.131)

ここで，

h#1
x(m)(x) = sin

(
kxmx

)
, h#2

x(m′)(x) = sin
{
k̂xm′(x+ x2)

}
, (2.132)

h#1
y(n)(y) = sin

(
kyny

)
, h#2

y(n′)(y) = sin
{
k̂yn′(y + y2)

}
(2.133)

ただし，

kxm = mπ

a1
, kyn = nπ

b1
(m,n = 1, 2, · · · ) (2.134)

k̂xm′ = m′π

a2
, k̂yn′ = n′π

b2
(m′, n′ = 1, 2, · · · ) (2.135)
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導波管 #2のモードの内積については，積分範囲 SA が導波管 #2の断面の一部となり，
¨

SA

e#2
[mn] · e#2

[m′n′]dS = A#2
[mn]A

#2
[m′n′]

(
k̂xmk̂xm′X̂22,s

mm′Ŷ
22,c

nn′ + k̂ynk̂yn′X̂22,c
mm′Ŷ

22,s
nn′

)
(m,n = 0, 1, 2, · · · (m 6= 0 or n 6= 0), m′, n′ = 0, 1, 2, · · · (m′ 6= 0 or n′ 6= 0))

(2.136)¨
SA

e#2
(mn) · e#2

(m′n′)dS = A#2
(mn)A

#2
(m′n′)

(
k̂ynk̂yn′X̂22,s

mm′Ŷ
22,c

nn′ + k̂xmk̂xm′X̂22,c
mm′Ŷ

22,s
nn′

)
(m,n = 1, 2, 3, · · · , m′, n′ = 1, 2, 3, · · · ) (2.137)¨

SA

e#2
[mn] · e#2

(m′n′)dS = A#2
[mn]A

#2
(m′n′)

(
k̂xmk̂yn′X̂22,s

mm′Ŷ
22,c

nn′ − k̂xm′ k̂ynX̂
22,c
mm′Ŷ

22,s
nn′

)
(m,n = 0, 1, 2, · · · (m 6= 0 or n 6= 0), m′, n′ = 1, 2, 3, · · · ) (2.138)¨

SA

e#2
(mn) · e#2

[m′n′]dS = A#2
(mn)A

#2
[m′n′]

(
k̂xm′ k̂ynX̂

22,s
mm′Ŷ

22,c
nn′ − k̂xmk̂yn′X̂22,c

mm′Ŷ
22,s

nn′

)
(m,n = 1, 2, 3, · · · , m′, n′ = 0, 1, 2, · · · (m′ 6= 0 or n′ 6= 0)) (2.139)

積分範囲 SA は，導波管 #1の断面 0 ≤ x ≤ a1，0 ≤ y ≤ b1 と一致しているので，導波管
#1のモードの正規直交性より，

¨
SA

e#1
[mn] · e#1

[m′n′]dS = δmm′δnn′ (2.140)
¨

SA

e#1
(mn) · e#1

(m′n′)dS = δmm′δnn′ (2.141)
¨

SA

e#1
[mn] · e#1

(m′n′)dS = 0 (2.142)
¨

SA

e#1
(mn) · e#1

[m′n′]dS = 0 (2.143)

また，導波管 #1と #2のモードの内積については，
¨

SA

e#1
[mn] · e#2

[m′n′]dS = A#1
[mn]A

#2
[m′n′]

(
kxmk̂xm′X̂12,s

mm′Ŷ
12,c

nn′ + kynk̂yn′X̂12,c
mm′Ŷ

12,s
nn′

)
(2.144)¨

SA

e#1
(mn) · e#2

(m′n′)dS = A#1
(mn)A

#2
(m′n′)

(
kynk̂yn′X̂12,s

mm′Ŷ
12,c

nn′ + kxmk̂xm′X̂12,c
mm′Ŷ

12,s
nn′

)
(2.145)¨

SA

e#1
[mn] · e#2

(m′n′)dS = A#1
[mn]A

#2
(m′n′)

(
kxmk̂yn′X̂12,s

mm′Ŷ
12,c

nn′ − k̂xm′kynX̂
12,c
mm′Ŷ

12,s
nn′

)
(2.146)¨

SA

e#1
(mn) · e#2

[m′n′]dS = A#1
(mn)A

#2
[m′n′]

(
k̂xm′kynX̂

12,s
mm′Ŷ

12,c
nn′ − kxmk̂yn′X̂12,c

mm′Ŷ
12,s

nn′

)
(2.147)
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CHAPTER 3

一般的な伝送方程式

　テーパ導波管などの断面形状が軸方向に変化する導波路に対する解析として，モー
ド展開した一般的な伝送方程式を取り上げ説明する．まず，マクスウェルの方程式を
横断面内成分と管軸方向成分に電磁界を分解し，それぞれの成分をモード電圧とモー
ド電流で展開する．また，管壁が完全導体である場合の境界条件を考慮に入れ，これ
らの要素を基に多重モード伝送方程式を導出する．さらに，伝送方程式の各係数につ
いて，TEモードと TMモード間の相互作用や，TE-TEおよび TM-TMモード間の
関係性を面積分や周回積分を用いて詳細に計算し，円形テーパ導波管に特化した係数
も具体的に提示している．そして，モード電圧，モード電流と散乱パラメータの関係
について，基本行列から散乱行列への変換式を導き出し，その応用を示している．

3.1 モード関数による展開

3.1.1 Maxwell の方程式

電界 E，磁界H は次のMaxwell の方程式を満足する．

∇ × E = −jωµH (3.1)
∇ × H = jωεE (3.2)

テーパ導波管の管軸方向を z 軸とし，z 軸方向に沿う電磁界 Ez，Hz とそれに直交する横
断面内成分 Et，Ht で次のように表す．

E = Et + Ez (3.3)
H = Ht + Hz (3.4)
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また，

∇ = ∇t + az
∂

∂z
(3.5)

を用いると，Maxwell の方程式は次のようになる．(
∇t + az

∂

∂z

)
× (Et + Ez) = −jωµH (3.6)(

∇t + az
∂

∂z

)
× (Ht + Hz) = jωεE (3.7)

これより，

∇t × Et + ∇t × Ez + az × ∂Et

∂z
= −jωµH (3.8)

∇t × Ht + ∇t × Hz + az × ∂Ht

∂z
= jωεE (3.9)

ただし，az は z 軸方向の単位ベクトル，∇t は 2次元微分演算子を示す．

3.1.2 モード関数による展開

横断面内成分 Et，Ht は，導波管のモード関数 en，hn を用いて次のように展開する．

Et =
∑
n

V TE
n eTE

n +
∑
n

V TM
n eTM

n =
∑
n

Vnen (3.10)

Ht =
∑
n

ITEn hTE
n +

∑
n

ITMn hTM
n =

∑
n

Inhn (3.11)

ただし，Vn はモード電圧，In はモード電流，肩文字で TEモード，TMモードを区別して
いる．ここで，

en =
{

eTE
n = az × ∇tΨTE

n (TE mode)
eTM

n = −∇tΨTM
n (TM mode) (3.12)

hn =
{

hTE
n = −∇tΨTE

n (TE mode)
hTM

n = −az × ∇tΨTM
n (TM mode) (3.13)

ただし，ΨTE
n およ ΨTM

n は変数分離した z に依らないスカラー関数を示し，次の 2次元スカ
ラヘルムホルツ方程式を満たす．

∇2
t ΨTE

n + (kTEc,n)2ΨTE
n = 0 (3.14)

∇2
t ΨTM

n + (kTMc,n)2ΨTM
n = 0 (3.15)
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ただし，kTEc,n，kTMc,n は TE，TMモードの遮断波数，両者をまとめて kc,n で示している．ま
た，z 軸方向に沿う電磁界の成分 Ez，Hz は，次のように展開される．

Ez =
∑
n

CTM
n ΨTM

n (3.16)

Hz =
∑
n

CTE
n ΨTE

n (3.17)

ただし，CTM
n ，CTE

n は z の関数である．

3.1.3 境界条件

管壁が完全導体の場合，管壁に沿う電界成分がゼロでなければならない．モード関数は横
断面が一様な場合の境界条件を満足するものであるので，横断面内ではすでにこの境界条件
を満足しているが，それ以外の方向では，モード展開によって境界条件を満足させる必要が
ある．
いま，管軸に直交する断面内における断面周縁の閉曲線の法線ベクトルを n，管軸と母線
のなす角を ϑとおくと，この母線方向に沿う電界成分 Eg は，次式で表される．

Eg = Ez cosϑ+ (Et · n) sinϑ (3.18)

境界条件より Eg = 0 (on C) ゆえ，管壁 C 上の電界の z 成分を Ez,c とおくと，

Ez,c = −(Et · n) tanϑ (3.19)

これらの式を基にして，等方等質で管軸が直線の場合の多重モード伝送方程式を求めてみ
よう．

3.1.4 モード展開したMaxwell の方程式

式 (3.8)，式 (3.9)にモード展開した Et，Ht を代入すると，

∇t ×
(∑

n

Vnen

)
+ ∇t × Ez + az × ∂

∂z

(∑
n

Vnen

)

= −jωµ
{(∑

n

Inhn

)
+ Hz

}
(3.20)

∇t ×
(∑

n

Inhn

)
+ ∇t × Hz + az × ∂

∂z

(∑
n

Inhn

)

= jωε

{(∑
n

Vnen

)
+ Ez

}
(3.21)

ただし，管壁が管軸に沿って変化する場合を考えているので，モード関数を z の関数とみ
なし，z に関する微分も計算していく．まず，式 (3.20)の第 3項を整理すると，次のように
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なる．

az × ∂

∂z

(∑
n

Vnen

)
=
∑
n

{
az × ∂

∂z
(Vnen)

}

=
∑
n

{
az ×

(
dVn

dz
en + Vn

∂en

∂z

)}

=
∑
n

(
dVn

dz
hn + Vnaz × ∂en

∂z

)
(3.22)

同様にして，式 (3.21)の第 3項は，

az × ∂

∂z

(∑
n

Inhn

)
=
∑
n

{
az × ∂

∂z
(Inhn)

}

=
∑
n

{
az ×

(
dIn

dz
hn + In

∂hn

∂z

)}

=
∑
n

{
dIn

dz
(−en) + Inaz × ∂hn

∂z

}
(3.23)

全体としても微分演算を項別に行うと，式 (3.20)および式 (3.21)は次のようになる．

∑
n

Vn (∇t × en) + ∇t × Ez +
∑
n

dVn

dz
hn +

∑
n

Vnaz × ∂en

∂z

= −jωµ
∑
n

Inhn − jωµHz (3.24)

∑
n

In (∇t × hn) + ∇t × Hz +
∑
n

dIn

dz
(−en) +

∑
n

Inaz × ∂hn

∂z

= jωε
∑
n

Vnen + jωεEz (3.25)

この後，式 (3.26) については，この式の両辺に hTM
l ，hTE

l あるいは ΨTE
l az を，また，式

(3.27) については，この式の両辺に eTM
l ，eTE

l あるいは ΨTM
l az を用いてスカラ積をとり，

各々面積分し，モード関数の直交性を用いて計算していく．いま，媒質は等方性（向きに依
らない），等質（場所に依らない）を考えているので，ε，µは単なる定数となり，Vn が積分
に依らない z のみの関数となることを考えて計算していけば，テーパ導波菅に対する一般
的な伝送方程式が得られる*1

*1 一般的な伝送方程式の主要な参考文献は次のとおり．
• S. A. Schelkunoff, “Generalized telegraphist’s equation for waveguides,” Bell Syst. Tech. J., vol.31,

no.4, pp.784-801, July 1952.
• 飯口 真一，“導波管に対する一般的な伝送方程式,” 信学誌，vol.44，no.6，pp.944-963，May 1961．
• 飯口 真一，石原 藤夫，“直線テーパ導波管の基本モードと高次モード,” 研実報，vol.16，no.4，pp.669-689，

Apr. 1967．
• 石原 藤夫，須賀 隆，飯口 真一，“テーパ導波管が多段に接続された回路の解析法” 信学論 (C-I)，

vol.J74-C-I，pp.14-20，Jan. 1991．
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3.2 伝送方程式の導出

先に求めたモード展開したMaxwell の方程式を再記して，

∑
n

Vn (∇t × en) + ∇t × Ez +
∑
n

dVn

dz
hn +

∑
n

Vnaz × ∂en

∂z

= −jωµ
∑
n

Inhn − jωµHz (3.26)

∑
n

In (∇t × hn) + ∇t × Hz +
∑
n

dIn

dz
(−en) +

∑
n

Inaz × ∂hn

∂z

= jωε
∑
n

Vnen + jωεEz (3.27)

¨
(式(3.26)) · hTM

l dS の計算

式 (3.26)の両辺にhTM
l のスカラ積をとり，導波管断面にわたって積分すると，Hz·hTM

l = 0
より， ∑

n

Vn

¨
(∇t × en) · hTM

l dS +
¨

(∇t × Ez) · hTM
l dS

+
∑
n

dVn

dz

¨
hn · hTM

l dS +
∑
n

Vn

¨ (
az × ∂en

∂z

)
· hTM

l dS

= −jωµ
∑
n

In

¨
hn · hTM

l dS (3.28)

式 (3.28)の第 1項の被積分関数 (∇t × en) · hTM
l を計算するにあたって，若干の準備をして

おく．　 TMモードのとき，en = eTM
n とおき，ベクトル公式

∇ × (∇Φ) = 0 (3.29)

より，2次元演算子∇t においても成り立ち，次のようになる．

∇t × eTM
n = ∇t × (−∇tΨTM

n ) = 0 (3.30)

また，TEモードのとき，en = eTE
n とおき，ベクトル公式

∇ × (az × a) = az(∇ · a) − (az · ∇)a (3.31)

より，

∇t × eTE
n = ∇t × (az × ∇tΨTE

n )
= az (∇t · ∇tΨTE

n ) − (az · ∇t) ∇tΨTE
n

= az∇2
t ΨTE

n (3.32)
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これより，

(∇t × eTE
n ) · hTM

l =
(
∇2

t ΨTE
n az

)
· hTM

l = 0 (3.33)

まとめると，式 (3.28)の第 1項の被積分関数は，次のように TE，TMモードともにゼロに
なる．

(∇t × en) · hTM
l = 0 (3.34)

　次に，式 (3.28)の第 2項は，ベクトル公式

∇ · (a × b) = b · ∇ × a − a · ∇ × b (3.35)

より，¨
hTM

l · (∇t × Ez) dS

=
¨

{∇t · (Ez × hTM
l ) + Ez · (∇t × hTM

l )} dS (3.36)

上式の右辺の第 1項に，ガウスの発散定理を用いて 2次元演算子について求めた結果¨
S

∇t · vtdS =
˛

σ

vt · ndσ (3.37)

を適用すると，次のようになる．¨
∇t · (Ez × hTM

l ) dS =
˛

σ

(Ez × hTM
l ) · ndσ

=
˛

σ

(n × Ez) · hTM
l dσ

=
˛

σ

Ez (n × az) · hTM
l dσ (3.38)

先に示した管壁上の境界条件を考慮した Ez,c

Ez,c = −(Et · n) tanϑ (3.39)

を用いて Ez = Ez,c とし，また，断面周縁に沿う単位ベクトルを σ ≡ az × n とおくと，次
のようになる．˛

σ

Ez (n × az) · hTM
l dσ =

˛
σ

−(Et · n) tanϑ(−σ) · hTM
l dσ

=
˛

σ

tanϑ
∑
n

Vn(en · n) (σ · hTM
l ) dσ (3.40)

ここで，

σ · hTM
l = σ · (az × eTM

l )
= eTM

l · (σ × az)
= eTM

l · n (3.41)
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より，
˛

σ

tanϑ
∑
n

Vn(en · n) (σ · hTM
l ) dσ

=
∑
n

Vn

˛
σ

tanϑ(en · n) (eTM
l · n) dσ (3.42)

管壁上の境界条件より，en · σ = 0 ゆえ，

en · eTM
l = [(en · n)n + (en · σ)σ] · [(eTM

l · n)n + (eTM
l · σ)σ]

= (en · n)(eTM
l · n) (3.43)

よって，

∑
n

Vn

˛
σ

tanϑ(en · n) (eTM
l · n) dσ =

∑
n

Vn

˛
σ

tanϑ en · eTM
l dσ (3.44)

　次に，式 (3.36)の第 2項であるが，まず準備として，

∇t × hTM
l = ∇t × (−az × ∇tΨTM

l )
= −az (∇t · ∇tΨTM

l ) + (az · ∇t) ∇tΨTM
l

= −az∇2
t ΨTM

l

= az(kTMc,l )2ΨTM
l (3.45)

これより，
¨

Ez · (∇t × hTM
l ) dS =

¨ (∑
n

CnΨn

)
(kTMc,l )2ΨTM

l dS

=
∑
n

Cn · (kTMc,l )2
¨

ΨnΨTM
l dS (3.46)

したがって，式 (3.28)の第 2項は，次のようになる．
¨

hTM
l · (∇t × Ez) dS

=
∑
n

Vn

ˆ
σ

tanϑ en · eTM
l dσ +

∑
n

Cn · (kTMc,l )2
¨

ΨnΨTM
l dS (3.47)

また，式 (3.28)の第 4項の被積分関数は，(
az × ∂en

∂z

)
· hTM

l = (hTM
l × az) · ∂en

∂z

= eTM
l · ∂en

∂z
(3.48)
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以上の結果より，式 (3.28)は次のようになる．

∑
n

Vn

˛
σ

tanϑ en · eTM
l dσ +

∑
n

Cn

(
(kTMc,l )2

¨
ΨnΨTM

l dS

)

+
∑
n

dVn

dz

(¨
hn · hTM

l dS

)
+
∑
n

Vn

¨
eTM

l · ∂en

∂z
dS

= −jωµ
∑
n

In

(¨
hn · hTM

l dS

)
(3.49)

モードの正規直交条件を用いれば，

∑
n

Vn

˛
σ

tanϑ en · eTM
l dσ + CTM

l + dV TM
l

dz

+
∑
n

Vn

¨
∂en

∂z
· eTM

l dS = −jωµITMl (3.50)

¨
(式(3.26)) · hTE

l dS の計算

式 (3.26)の両辺に hTE
l のスカラ積をとり，面積分を求めればよいが，式 (3.49)の第 2項

にあたる項については結果が異なるので注意が必要である．これは，式 (3.45)にあたる計
算が，次のようにベクトル公式よりゼロになるからである．

∇t × hTE
l = ∇t × (−∇tΨTE

l )
= 0 (3.51)

このことを考慮して次式が得られる（導出省略）．

∑
n

Vn

ˆ
σ

tanϑ en · eTE
l dσ +

∑
n

dVn

dz

(¨
hn · hTE

l dS

)

+
∑
n

Vn

¨
eTE

l · ∂en

∂z
dS = −jωµ

∑
n

In

(¨
hn · hTE

l dS

)
(3.52)

モードの正規直交条件を用いれば，次のようになる．

∑
n

Vn

˛
σ

tanϑ en · eTE
l dσ + dV TE

l

dz
+
∑
n

Vn

¨
∂en

∂z
· eTE

l dS

= −jωµITEl (3.53)
¨

(式(3.26)) · ΨTE
l azdS の計算

60



式 (3.26)の両辺に ΨTE
l az のスカラ積をとり，面積分すると次のようになる．

∑
n

Vn

¨
(∇t × en) · (ΨTE

l az) dS +
¨

{∇t × (Ezaz)} · (ΨTE
l az) dS

+
∑
n

dVn

dz

¨
hn · (ΨTE

l az) dS +
∑
n

Vn

¨ (
az × ∂en

∂z

)
· (ΨTE

l az) dS

= −jωµ
¨

(Hzaz) · (ΨTE
l az) dS

見通しがよくなるように変形すると，

∑
n

Vn

¨
ΨTE

l (∇t × en) · azdS +
¨

ΨTE
l (az × az) · (∇tEz) dS

+
∑
n

dVn

dz

¨
ΨTE

l (hn · az) dS +
∑
n

Vn

¨
ΨTE

l (az × az) · ∂en

∂z
dS

= −jωµ
¨

HzΨTE
l dS (3.54)

上式の左辺第 2，3，4項は，スカラー積，ベクトル積がゼロとなって，第 1項と右辺だけに
なる．式 (3.30)および式 (3.32)を再記して，

∇t × eTM
n = ∇t × (−∇tΨTM

n )
= 0 (3.55)

∇t × eTE
n = az∇2

t ΨTE
n (3.56)

これより，

∑
n

V TE
n

¨
ΨTE

l

(
∇2

t ΨTE
n

)
az · azdS = −jωµ

¨
HzΨTE

l dS

−
∑
n

V TE
n (kTEc,n)2

¨
ΨTE

l ΨTE
n dS = −jωµ

∑
n

CTE
n

¨
ΨTE

n ΨTE
l dS (3.57)

直交性より，

V TE
l = jωµCTE

l

1
(kTEc,l )2 (3.58)

よって，CTE
l は次のようになる．

CTE
l =

(kTEc,l )2

jωµ
V TE

l (3.59)

¨
(式(3.27)) · eTM

l dS の計算

式 (3.27)の両辺に eTM
l のスカラ積をとり，各々面積分を実行すればよいが，Hz の取り

扱いが式 (3.26) の Ez のように境界条件を考慮したものではない点が異なってくる（導出
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省略）．

∑
n

CTE
n

(¨
−eTE

n · eTM
l dS

)
+
∑
n

dIn

dz

(¨
−en · eTM

l dS

)

+
∑
n

In

¨
∂hn

∂z
· (−hTM

l ) dS

= jωε
∑
n

Vn

(¨
en · eTM

l dS

)
(3.60)

モード関数の直交性より，

−dITMl

dz
−
∑
n

In

¨
∂hn

∂z
· hTM

l dS = jωεV TM
l (3.61)

¨
(式(3.27)) · eTE

l dS の計算

同様にして，式 (3.27)の両辺に eTE
l のスカラ積をとり，各々面積分を実行すると，次の

ようになる（導出省略）．

∑
n

CTE
n

(¨
−eTE

n · eTE
l dS

)
+
∑
n

dIn

dz

(¨
−en · eTE

l dS

)

+
∑
n

In

¨
∂hn

∂z
· (−hTE

l ) dS

= jωε
∑
n

Vn

(¨
en · eTE

l dS

)
(3.62)

モード関数の直交性より，

−CTE
l − dITEl

dz
−
∑
n

In

¨
∂hn

∂z
· hTE

l dS = jωεV TE
l (3.63)

¨
(式(3.27)) · ΨTM

l azdS の計算

同様にして，式 (3.27)の両辺に ΨTM
l az のスカラ積をとり，各々面積分を実行すると，次

のようになる（導出省略）．

∑
n

ITMn (kTMc,n)2
¨

ΨTM
l ΨTM

n dS = jωε
∑
n

CTM
n

¨
ΨTM

n ΨTM
l dS (3.64)

モード関数の直交性より，

CTM
l =

(kTMc,l )2

jωε
ITMl (3.65)
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3.2.1 伝送方程式

式 (3.59)，式 (3.65)より CTE
l ，CTM

l を消去すると，次のような 4つの式が得られる．

∑
n

Vn

˛
σ

tanϑ en · eTM
l dσ +

(kTMc,l )2

jωε
ITMl + dV TM

l

dz

+
∑
n

Vn

¨
∂en

∂z
· eTM

l dS = −jωµITMl (3.66)

∑
n

Vn

˛
σ

tanϑ en · eTE
l dσ + ∂V TE

l

∂z
+
∑
n

Vn

¨
∂en

∂z
· eTE

l dS

= −jωµITEl (3.67)

− ∂ITMl

∂z
−
∑
n

In

¨
∂hn

∂z
· hTM

l dS = jωεV TM
l (3.68)

−
(kTEc,l )2

jωµ
V TE

l − ∂ITEl

∂z
−
∑
n

In

¨
∂hn

∂z
· hTE

l dS = jωεV TE
l (3.69)

これらの式を整理すると次のようになる．

dV TM
l

dz
= −

(
(kTMc,l )2

jωε
+ jωµ

)
ITMl

−
∑
n

Vn

(˛
σ

tanϑ en · eTM
l dσ +

¨
∂en

∂z
· eTM

l dS

)
(3.70)

dV TE
l

dz
= −jωµITEl

−
∑
n

Vn

(˛
σ

tanϑ en · eTE
l dσ +

¨
∂en

∂z
· eTE

l dS

)
(3.71)

dITMl

dz
= −jωεV TM

l −
∑
n

In

¨
∂hn

∂z
· hTM

l dS (3.72)

dITEl

dz
= −

(
(kTEc,l )2

jωµ
+ jωε

)
V TE

l −
∑
n

In

¨
∂hn

∂z
· hTE

l dS (3.73)

ここで，TE，TMモードの添字は省略するが，

β2
l + χ2

l ≡ k2 (3.74)
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を定義すると，

(kTMc,l )2

jωε
+ jωµ =

(kTMc,l )2 − ω2εµ

jωε

=
(kTMc,l )2 − k2

jωε

= −
(βTM

c,l )2

jωε
(3.75)

(kTEc,l )2

jωµ
+ jωε =

(kTEc,l )2 − ω2εµ

jωµ

=
(kTEc,l )2 − k2

jωµ

= −
(βTE

c,l )2

jωµ
(3.76)

また，

Z ≡ jωµ, Y ≡ jωε (3.77)

ZTM
l ≡ −(βTM

l )2

jωε
, Y TE

l ≡ −(βTE
l )2

jωµ
(3.78)

TV,ln ≡
¨

∂en

∂z
· eldS +

˛
σ

tanϑ en · eldσ (3.79)

TI,ln ≡
¨

∂hn

∂z
· hldS =

¨
∂en

∂z
· eldS (3.80)

とおくと，伝送方程式は次のようになる．
dV TM

l

dz
= −ZTM

l ITMl −
∑
n

T TM-TM
V,ln V TM

n −
∑
n

T TM-TE
V,ln V TE

n (3.81)

dITMl

dz
= −Y V TM

l −
∑
n

T TM-TM
I,ln ITMn −

∑
n

T TM-TE
I,ln ITEn (3.82)

dV TE
l

dz
= −ZITEl −

∑
n

T TE-TE
V,ln V TE

n −
∑
n

T TE-TM
V,ln V TM

n (3.83)

dITEl

dz
= −Y TE

l V TE
l −

∑
n

T TE-TE
I,ln ITEn −

∑
n

T TE-TM
I,ln ITMn (3.84)
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3.3 伝送方程式の係数（TE-TM）

TEと TMモードのモード関数の面積分は先に示したように周回積分に変換できる*2．¨
S

eTE
n · eTM

l dS = −
¨

S

(
∇tΨTE

n × ∇tΨTM
l

)
· azdS

= −
˛

C

ΨTE
n

∂ΨTM
l

∂σ
dσ

=
˛

C

∂ΨTE
n

∂σ
ΨTM

l dσ (3.85)

TEモードの電界モード関数の微分と TMモードの電界モード関数の面積分の場合，上式
において eTE

n → ∂eTEn

∂z とすると，ΨTE
n → ∂ΨTE

n

∂z ，さらに TMモードの境界条件 ΨTM
l = 0 (on

C)ゆえ，
¨

S

∂eTE
n

∂z
· eTM

l dS = −
¨

S

(
∇t
∂ΨTE

n

∂z
× ∇tΨTM

l

)
· azdS(

= −
˛

C

∂ΨTE
n

∂z

∂ΨTM
l

∂σ
dσ

)

=
˛

C

∂

∂σ

(
∂ΨTE

n

∂z

)
ΨTM

l dσ = 0 (3.86)

よって，

TTM:TE
I,ln =

¨
∂eTE

n

∂z
· eTM

l dS =
˛

C

∂

∂σ

(
∂ΨTE

n

∂z

)
ΨTM

l dσ = 0 (3.87)

TTE:TM
V,ln = −

¨
eTM

n · ∂eTE
l

∂z
dS = −

˛
C

∂

∂σ

(
∂ΨTE

l

∂z

)
ΨTM

n dσ = 0 (3.88)

一方，TMモードの電界モード関数の微分と TEモードの場合，eTM
l → ∂eTMl

∂z とすると，
ΨTM

l → ∂ΨTM
l

∂z より，
¨

S

eTE
n · ∂eTM

l

∂z
dS = −

¨
S

(
∇tΨTE

n × ∇t
∂ΨTM

l

∂z

)
· azdS

= −
˛

C

ΨTE
n

∂

∂σ

(
∂ΨTM

l

∂z

)
dσ

=
˛

C

∂ΨTE
n

∂σ

∂ΨTM
l

∂z
dσ (3.89)

*2 G. Figlia and G. G. Gentili, ”On the Line-Integral Formulation of Mode-Matching Technique,” IEEE
Trans. Microwave Theory Tech., vol.MTT-50, no.2, pp.578-579, 2002.
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この場合はゼロにはならない．よって，

TTE:TM
V,ln = −

¨
eTE

n · ∂eTM
l

∂z
dS = −

˛
C

∂ΨTE
n

∂σ

∂ΨTM
l

∂z
dσ = −TTE:TM

I,nl (3.90)

nと lを入れ替えて，

TTE:TM
V,nl = −

¨
eTE

l · ∂eTM
n

∂z
dS = −

˛
C

∂ΨTE
l

∂σ

∂ΨTM
n

∂z
dσ = −TTE:TM

I,ln (3.91)

ここで，a = z(z)より，

∂el

∂z
= ∂a

∂z
· ∂el

∂a
,

∂en

∂z
= ∂a

∂z
· ∂en

∂a
(3.92)
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3.4 伝送方程式の係数（TE-TE, TM-TM）

3.4.1 面積分による計算

伝送方程式の係数 TI,ln，TV,nl は，

TI,ln =
¨

∂en

∂z
· eldS =

¨
∂hn

∂z
· hldS = −TV,nl (3.93)

電界，磁界のモード関数の関係 e = h × az，h = az × e より，
∂e

∂z
= ∂

∂z

(
h × az

)
= ∂h

∂z
× az (3.94)

∂h

∂z
= ∂

∂z

(
az × e

)
= az × ∂e

∂z
(3.95)

これより，
∂en

∂z
· el = ∂en

∂z
· (hl × az)

= hl ·
(

az × ∂en

∂z

)

= hl · ∂hn

∂z
= ∂hn

∂z
· hl (3.96)

ここで，モード関数はスカラ関数 ΨTE，ΨTM より，

hTE = −∇tΨTE (3.97)
eTM = −∇tΨTM (3.98)

よって，電界，磁界のモード関数の関係は，

eTE = hTE × az = −∇tΨTE × az (3.99)
hTM = az × eTM = az × (−∇tΨTE) (3.100)

これより，両者とも TEモードの場合，
∂eTE

n

∂z
· eTE

l = ∂

∂z

(
az × ∇tΨTE

n

)
· eTE

l

=
(

az × ∇t
∂ΨTE

n

∂z

)
· eTE

l

=
(

eTE
l × az

)
· ∇t

∂ΨTE
n

∂z

= −hTE
l · ∇t

∂ΨTE
n

∂z

=
(

∇tΨTE
l

)
·
(

∇t
∂ΨTE

n

∂z

)
(3.101)
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両者とも TMモードの場合も，次のように同じ形となる．
∂eTM

n

∂z
· eTM

l = ∂

∂z

(
− ∇tΨTM

n

)
·
(

− ∇tΨTM
l

)
=
(

∇tΨTM
l

)
·
(

∇t
∂ΨTM

n

∂z

)
(3.102)

比較のため，TEモードと TMモードの場合を求めてみると，
∂eTE

n

∂z
· eTM

l = ∂

∂z

(
− ∇tΨTE

n × az

)
·
(

− ∇tΨTM
l

)
=
(

∇t
∂ΨTE

n

∂z
× az

)
·
(

∇tΨTM
l

)

=
{(

∇tΨTM
l

)
×
(

∇t
∂ΨTE

n

∂z

)}
· az

= −
{(

∇t
∂ΨTE

n

∂z

)
×
(

∇tΨTM
l

)}
· az (3.103)

∂eTM
n

∂z
· eTE

l = ∂

∂z

(
− ∇tΨTM

n

)
·
(

− ∇tΨTE
l × az

)
=
(

∇t
∂ΨTM

n

∂z

)
·
(

∇tΨTE
l × az

)

=
{(

∇t
∂ΨTM

n

∂z

)
×
(

∇tΨTE
l

)}
· az (3.104)

さて，伝送方程式の係数 TI,lnをスカラ関数より求めることを考えよう．両者とも同じ TE
モード（TE-TE），および両者とも同じ TMモード（TM-TM）の場合，

TI,ln =
¨

∂en

∂z
· eldS =

¨ (
∇t
∂Ψn

∂z

)
·
(

∇tΨl

)
dS (3.105)

2次元演算子∇t を用いたグリーンの第一定理
¨

S

(
Φ∇2

t Ψ + ∇tΦ · ∇tΨ
)
dS =

˛
C

Φ∂Ψ
∂n

dσ (3.106)

より，
¨

S

∇tΦ · ∇tΨdS = −
¨

S

Φ∇2
t ΨdS +

˛
C

Φ∂Ψ
∂n

dσ (3.107)

いま，Φ → ∂Ψn

∂z ，Ψ → Ψl とおくと，

TI,ln =
¨ (

∇t
∂Ψn

∂z

)
·
(

∇tΨl

)
dS

= −
¨

S

∂Ψn

∂z
∇2

t ΨldS +
˛

C

∂Ψn

∂z

∂Ψl

∂n
dσ (3.108)
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スカラヘルムホルツ方程式 ∇2
t Ψl + k2

c,lΨl = 0 を用いれば，

TI,ln = −
¨

S

∂Ψn

∂z
(−k2

c,lΨl)dS +
˛

C

∂Ψn

∂z

∂Ψl

∂n
dσ

= k2
c,l

¨
S

∂Ψn

∂z
ΨldS +

˛
C

∂Ψn

∂z

∂Ψl

∂n
dσ (3.109)

両者とも TEモードのとき，境界条件 ∂ΨTE
l

∂n = 0 (on C) より，面積分を用いて，

TTE:TE
I,ln = (kTEc,l )2

¨
S

∂ΨTE
n

∂z
ΨTE

l dS (3.110)

上式は，n = l，および n 6= lの両方に対して計算が行えるが，面積分が必要となる．また，
グリーンの第一定理に Φ → Ψl，Ψ → ∂Ψn

∂z として求めれば，

TI,ln =
¨ (

∇tΨl

)
·
(

∇t
∂Ψn

∂z

)
dS

= −
¨

S

Ψl∇2
t

∂Ψn

∂z
dS +

˛
C

Ψl
∂

∂n

(
∂Ψn

∂z

)
dσ (3.111)

スカラヘルムホルツ方程式 ∇2
t Ψn + k2

c,nΨn = 0 の両辺を z で微分すると，

∂

∂z

(
∇2

t Ψn + k2
c,nΨn

)
= ∇2

t

∂Ψn

∂z
+ 2kc,n

∂kc,n

∂z
Ψn + k2

c,n

∂Ψn

∂z
= 0 (3.112)

これより，

TI,ln =
¨

S

Ψl

(
2kc,n

∂kc,n

∂z
Ψn + k2

c,n

∂Ψn

∂z

)
dS

+
˛

C

Ψl
∂

∂n

(
∂Ψn

∂z

)
dσ

= 2kc,n
∂kc,n

∂z

¨
S

ΨlΨndS + k2
c,n

¨
S

Ψl
∂Ψn

∂z
dS

+
˛

C

Ψl
∂

∂n

(
∂Ψn

∂z

)
dσ (3.113)

ここで，
¨

S

el · endS = k2
c,n

¨
S

ΨlΨndS = δln (3.114)

これより，

TI,ln = 2
kc,n

∂kc,n

∂z
δln + k2

c,n

¨
S

Ψl
∂Ψn

∂z
dS +

˛
C

Ψl
∂

∂n

(
∂Ψn

∂z

)
dσ (3.115)
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両者とも TMモードのとき，TMモードの境界条件 ΨTM
l = 0 (on C) より，

TTM:TM
I,ln = (kTMc,n)2

¨
S

ΨTM
l

∂ΨTM
n

∂z
dS + 2

kTMc,n

∂kTMc,n

∂z
δln (3.116)

両者とも TMモードの場合も，n = lおよび n 6= lの両方に対して計算が行えるが，面積分
が必要である．

3.4.2 面積分から周回積分への変換

次に，面積分を周回積分に変換することを考える．まず，式 (3.109)，式 (3.115)より，
¨

S

Ψl
∂Ψn

∂z
dS = 1

k2
c,l

(
TI,ln −

˛
C

∂Ψn

∂z

∂Ψl

∂n
dσ

)

= 1
k2

c,n

(
TI,ln −

˛
C

Ψl
∂

∂n

(
∂Ψn

∂z

)
dσ − 2

kc,n

∂kc,n

∂z
δln

)

k2
c,n

(
TI,ln −

˛
C

∂Ψn

∂z

∂Ψl

∂n
dσ

)

= k2
c,l

(
TI,ln −

˛
C

Ψl
∂

∂n

(
∂Ψn

∂z

)
dσ − 2

kc,n

∂kc,n

∂z
δln

)
(3.117)

よって，

TI,ln = 1
k2

c,l − k2
c,n

{
−k2

c,n

˛
C

∂Ψn

∂z

∂Ψl

∂n
dσ

+k2
c,l

˛
C

Ψl
∂

∂n

(
∂Ψn

∂z

)
dσ +

2k2
c,l

kc,n

∂kc,n

∂z
δln

}
(3.118)

モードの次数が異なる場合（n 6= l），k2
c,n 6= k2

c,l，δln = 0（モード直交性）より，

TI,ln = 1
k2

c,l − k2
c,n

{
−k2

c,n

˛
C

∂Ψn

∂z

∂Ψl

∂n
dσ

+k2
c,l

˛
C

Ψl
∂

∂n

(
∂Ψn

∂z

)
dσ

}
(3.119)

両者とも TEモードのとき（kTEc,l = χ′
l

a，k
TE
c,n = χ′

n

a ），
∂ΨTE

l

∂n = 0，∂ΨTE
n

∂n = 0 (on C) ゆえ，

T TE-TE
I,ln =

(kTEc,l )2

(kTEc,l )2 − (kTEc,n)2

˛
C

ΨTE
l

∂

∂n

(
∂ΨTE

n

∂z

)
dσ (3.120)
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また，両者とも TM モードのとき（kTMc,l = χl

a，k
TM
c,n = χn

a ），ΨTM
l = 0，ΨTM

n = 0 (on C)
ゆえ，

T TM-TM
I,ln =

−(kTMc,n)2

(kTMc,l )2 − (kTMc,n)2

˛
C

∂ΨTM
n

∂z

∂ΨTM
l

∂n
dσ (3.121)

同じモードを計算する場合，モードの次数が等しい n = lとおいて，曲線テーパ構造に対
してガウスの発散定理を適用すると次式が得られる．

¨
S

∂en

∂z
· endS = −1

2

˛
σ

tanϑ en · en dσ (3.122)

両者とも TEモードのとき，

eTE
n · eTE

n = hTE
n · hTE

n = (−∇tΨTE
n ) · (−∇tΨTE

n )
= (∇tΨTE

n ) · (∇tΨTE
n ) (3.123)

また，両者とも TMモードのとき，

hTM
n · hTM

n = eTM
n · eTM

n = (−∇tΨTM
n ) · (−∇tΨTM

n )
= (∇tΨTM

n ) · (∇tΨTM
n ) (3.124)

したがって，
¨

S

∂eTE
n

∂z
· eTE

n dS = −1
2

˛
σ

tanϑ (∇tΨTE
n ) · (∇tΨTE

n ) dσ (3.125)
¨

S

∂eTM
n

∂z
· eTM

n dS = −1
2

˛
σ

tanϑ (∇tΨTM
n ) · (∇tΨTM

n ) dσ (3.126)
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3.5 モード関数の積分（TE-TE, TM-TM）について

3.5.1 面積分

2つのモード関数とも TEモード，あるいは TMモードのスカラー積の面積分は，¨
Sa

em · en dS =
¨

Sa

hm · hn dS

=
¨

Sa

(
∇tΨm

)
·
(
∇tΨn

)
dS (3.127)

ただし，Sa は管軸に直交する導波管断面全体あるいは一部の面を示す．2次元演算子∇t を
用いたグリーンの第一定理，およびスカラヘルムホルツ方程式 ∇2

t Ψn + k2
c,nΨn = 0 より，

上式は次のようになる．¨
Sa

(
∇tΨm

)
·
(
∇tΨn

)
dS = −

¨
Sa

Ψm∇2
t ΨndS +

˛
Ca

Ψm
∂Ψn

∂n
dσ

= k2
c,n

¨
Sa

ΨmΨndS +
˛

Ca

Ψm
∂Ψn

∂n
dσ (3.128)

同一モードのとき，m = n とおき，
¨

Sa

(
∇tΨn

)
·
(
∇tΨn

)
dS = k2

c,n

¨
S

Ψ2
ndS +

˛
Ca

Ψn
∂Ψn

∂n
dσ (3.129)

面 Sa として導波管段面全体の面 S をとると，境界条件として導波管の管壁 C 上で Ψn = 0
あるいは ∂Ψn

∂n = 0 のとき，第 2項はゼロゆえ，
¨

S

(
∇tΨn

)
·
(
∇tΨn

)
dS = k2

c,n

¨
S

Ψ2
ndS (3.130)

したがって，モード関数を正規化するための積分は次のようになる．¨
S

en · en dS =
¨

S

hn · hn dS

= k2
c,n

¨
S

Ψ2
ndS ≡ 1 (3.131)

一方，異なるモードのとき，m 6= n とみなし，Ψm と Ψn を交換してグリーンの第一定理を
適用して同様に求めると，

¨
Sa

(
∇tΨn

)
·
(
∇tΨm

)
dS = k2

c,m

¨
Sa

ΨnΨmdS +
˛

Ca

Ψn
∂Ψm

∂n
dσ (3.132)
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これより，次の関係式が得られる．

k2
c,n

¨
Sa

ΨmΨndS +
˛

Ca

Ψm
∂Ψn

∂n
dσ

= k2
c,m

¨
Sa

ΨnΨmdS +
˛

Ca

Ψn
∂Ψm

∂n
dσ (3.133)

変形して，
(
k2

c,m − k2
c,n

)¨
Sa

ΨmΨndS =
˛

Ca

(
Ψm

∂Ψn

∂n
− Ψn

∂Ψm

∂n

)
dσ (3.134)

kc,m 6= kc,n のとき，
¨

Sa

ΨmΨndS = 1
k2

c,m − k2
c,n

˛
Ca

(
Ψm

∂Ψn

∂n
− Ψn

∂Ψm

∂n

)
dσ (3.135)

逆に，スカラ関数の面積分の項を消去すると，¨
Sa

(
∇tΨm

)
·
(
∇tΨn

)
dS

= 1
k2

c,m − k2
c,n

(
k2

c,m

˛
Ca

Ψm
∂Ψn

∂n
dσ − k2

c,n

˛
Ca

Ψn
∂Ψm

∂n
dσ

)
(3.136)

面 Sa として導波管段面全体の面 S をとると，境界条件として導波管の管壁境界条件として
管壁 C 上で Ψm,Ψn = 0 あるいは ∂Ψm

∂n
,
∂Ψn

∂n
= 0 のとき，上式右辺はゼロとなり，次のよ

うにモードの直交性が得られる．¨
S

em · en dS =
¨

S

hm · hn dS

=
¨

S

(
∇tΨm

)
·
(
∇tΨn

)
dS = 0 (3.137)

3.5.2 周回積分

一方，kc,m = kc,n のとき，式 (3.136)は不定となるがロピタルの定理を用いれば次のよう
に計算できる*3．

¨
Sa

ΨmΨndS = lim
kc,n→kc,m

d

dkc,n

˛
Ca

(
Ψm

∂Ψn

∂n
− Ψn

∂Ψm

∂n

)
dσ

d

dkc,n

(
k2

c,m − k2
c,n

)
= −1

2kc,m

˛
Ca

(
Ψm

∂2Ψn

∂kc,n∂n
− ∂Ψn

∂kc,n

∂Ψm

∂n

)
dσ

∣∣∣∣∣
kc,n=kc,m

(3.138)

*3 G. Figlia and G. G. Gentili, ”On the Line-Integral Formulation of Mode-Matching Technique,” IEEE
Trans. Microwave Theory Tech., vol.MTT-50, no.2, pp.578-579, 2002.
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逆に，kc,m → kc,n としてロピタルの定理を用いると，
¨

Sa

ΨmΨndS = −1
2kc,n

˛
Ca

(
Ψn

∂2Ψm

∂kc,m∂n
− ∂Ψm

∂kc,m

∂Ψn

∂n

)
dσ

∣∣∣∣∣
kc,m=kc,n

(3.139)

したがって，
¨

Sa

(
∇tΨm

)
·
(
∇tΨn

)
dS

=
[
−kc,m

2

˛
Ca

(
Ψm

∂2Ψn

∂kc,n∂n
− ∂Ψn

∂kc,n

∂Ψm

∂n

)
dσ +

˛
Ca

Ψn
∂Ψm

∂n
dσ

]
kc,n=kc,m

面 Sa として導波管段面全体の面 S をとると，両者とも TMモードのモード関数の場合，管
壁 C 上で ΨTM

m = 0，ΨTM
n = 0 ゆえ，

¨
S

(
∇tΨTM

m

)
·
(
∇tΨTM

n

)
dS =

kTMc,m

2

˛
C

∂ΨTM
n

∂kTMc,n

∂ΨTM
m

∂n
dσ

∣∣∣∣∣
kTMc,n =kTMc,m

(3.140)

また，両者とも TMモードのモード関数の場合，管壁 C 上で ∂ΨTE
m

∂n = 0，∂ΨTE
n

∂n = 0 ゆえ，
¨

S

(
∇tΨTE

m

)
·
(
∇tΨTE

n

)
dS = −

kTEc,m

2

˛
C

ΨTE
m

∂2ΨTE
n

∂kTEc,n∂n
dσ

∣∣∣∣∣
kTEc,n=kTEc,m

(3.141)

これより，正規化係数の計算を周回積分によって行うこともできる．
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3.6 モード関数の積分（TE-TM）について

3.6.1 ストークスの定理による周回積分への変換

TEモードと TMモードの場合，¨
Sa

eTE
m · eTM

n dS =
¨

Sa

(
az × ∇tΨTE

m

)
·
(

− ∇tΨTM
n

)
dS

=
¨

Sa

(
∇tΨTM

n × ∇tΨTE
m

)
· azdS (3.142)

ただし，Saは管軸に直交する導波管断面全体あるいは一部の面を示す．ここで，∇×(∇ϕ) = 0
より，

∇t ×
(
ΨTM

n ∇tΨTE
m

)
= ∇tΨTM

n × ∇tΨTE
m + ΨTM

n ∇t × ∇tΨTE
m

= ∇tΨTM
n × ∇tΨTE

m (3.143)

これを面積分して，¨
Sa

{
∇ ×

(
ΨTM

n ∇tΨTE
m

)}
· azdS

=
¨

Sa

{(
∇t + ∂

∂z
az

)
×
(
ΨTM

n ∇tΨTE
m

)}
· azdS

=
¨

Sa

{
∇t ×

(
ΨTM

n ∇tΨTE
m

)}
· azdS (3.144)

ストークスの定理
¨

Sa

{
∇ ×

(
ΨTM

n ∇tΨTE
m

)}
· azdS =

˛
Ca

ΨTM
n ∇tΨTE

m · dσ (3.145)

より，
¨

Sa

{
∇t ×

(
ΨTM

n ∇tΨTE
m

)}
· azdS =

˛
Ca

ΨTM
n

∂ΨTE
m

∂σ
dσ (3.146)

ただし，面 S は az が法線方向となる平面，dσ は周回積分路のベクトル線要素，+σ 方向
は az に対して右ねじの方向である．よって，これらの結果より次式が得られる¨

Sa

eTE
m · eTM

n dS =
¨

Sa

(
∇tΨTM

n × ∇tΨTE
m

)
· azdS

=
˛

Ca

ΨTM
n

∂ΨTE
m

∂σ
dσ (3.147)
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式 (3.143), 式 (3.144)，式 (3.146)において，ΨTE
m と ΨTM

n を交換して同様に求めると，
¨

Sa

{
∇t ×

(
ΨTE

m ∇tΨTM
n

)}
· azdS =

˛
Ca

ΨTE
m

∂ΨTM
n

∂σ
dσ

¨
Sa

(
∇tΨTE

m × ∇tΨTM
n

)
· azdS =

˛
Ca

ΨTE
m

∂ΨTM
n

∂σ
dσ (3.148)

よって，

−
¨

Sa

eTE
m · eTM

n dS = −
¨

Sa

(
∇tΨTM

n × ∇tΨTE
m

)
· azdS

=
˛

Ca

ΨTE
m

∂ΨTM
n

∂σ
dσ (3.149)

また，¨
S

hTE
m · hTM

n dS =
¨

S

(
− ∇tΨTE

m

)
·
(

− az × ∇tΨTM
n

)
· dS

=
¨

S

(
∇tΨTE

m × ∇tΨTM
n

)
· azdS

= −
¨

S

eTE
m · eTM

n dS (3.150)

まとめると，¨
Sa

eTE
m · eTM

n dS = −
¨

S

hTE
m · hTM

n dS

=
˛

Ca

∂ΨTE
m

∂σ
ΨTM

n dσ

= −
˛

Ca

ΨTE
m

∂ΨTM
n

∂σ
dσ (3.151)

積分範囲 Sa が導波管の断面 S と一致している場合，周回積分路 Ca は導波管の管壁 C ゆ
え，ΨTM

n = 0 (on C) より上式はゼロとなる．これが TE モードと TM モードの直交性で
ある．¨

S

eTE
m · eTM

n dS = 0 (3.152)

3.6.2 ガウスの発散定理による周回積分への変換

ガウスの発散定理を用いた別の導出を示そう*4．まず，ベクトル公式 ∇ · (wA) =
w∇ · A + A · ∇w を変形して，

A · ∇w = ∇ · (wA) − w∇ · A (3.153)

*4 小口文一，” マイクロ波およびミリ波回路,” 丸善, 1964.
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これより，w ≡ ΨTM
n ，A ≡ az × ∇tΨTE

m とおくと，(
az × ∇tΨTE

m

)
· ∇ΨTM

n

= ∇ ·
(
ΨTM

n az × ∇tΨTE
m

)
− ΨTM

n ∇ ·
(
az × ∇tΨTE

m

)
(3.154)

上式右辺の第 2項について，ベクトル公式

∇ ·
(
B × C

)
= C ·

(
∇ × B

)
− B ·

(
∇ × C

)
(3.155)

より，B ≡ az，C ≡ ∇tΨTE
m とおくと次式が得られる（勾配の回転はゼロ）．

∇ ·
(
az × ∇tΨTE

m

)
=
(
∇tΨTE

m

)
·
(
∇ × az

)
− az ·

(
∇ × ∇tΨTE

m

)
= 0 (3.156)

よって，(
az × ∇tΨTE

m

)
· ∇tΨTM

n = ∇t ·
(
ΨTM

n az × ∇tΨTE
m

)
(3.157)

2次元の ∇t に関するガウスの発散定理より，¨
Sa

(
az × ∇tΨTE

m

)
· ∇tΨTM

n dS =
¨

Sa

∇t ·
(
ΨTM

n az × ∇tΨTE
m

)
dS

=
˛

Ca

(
ΨTM

n az × ∇tΨTE
m

)
· ndσ

=
˛

Ca

ΨTM
n

(
n × az

)
· ∇tΨTE

m dσ

=
˛

Ca

ΨTM
n (−aσ) · ∇tΨTE

m dσ

= −
˛

Ca

ΨTM
n

∂ΨTE
m

∂σ
dσ (3.158)

ただし，nは面 S（管軸に直交する面）上における周回積分路の外向き法線単位ベクトルを
示し，周回積分路に沿う方向の単位ベクトルを aσ ≡ az × nとおいている．したがって，¨

Sa

eTE
m · eTM

n dS = −
¨

Sa

(
az × ∇tΨTE

m

)
· ∇tΨTM

n dS

=
˛

Ca

ΨTM
n

∂ΨTE
m

∂σ
dσ (3.159)

その他も同様である．
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3.7 曲線テーパ構造に対するガウスの発散定理

3.7.1 3次元のガウスの発散定理の応用

任意のベクトルA に対して通常の 3次元のガウスの発散定理を表すと，˚
V

∇ · A dV =
¨

S

A · n dS (3.160)

ただし，nは閉曲面 S の外向き単位法線ベクトルである．いま，図のように，管軸は直線
にとり z 軸と一致させ，面 S1，S2 は管軸に直交する断面にとり，面 S3 を管壁にとる．こ

図 3.1. 単位ベクトルの定義

のような座標系においては，式 (3.160)の右辺は次のようになる．
¨

S1+S2+S3

A · n dS

= −
¨

S1

A · azdS +
¨

S2

A · azdS +
¨

S3

A · νdS3 (3.161)

ただし，ν は S3 の単位法線ベクトルを示す．一方，ν に直交する単位ベクトルを νz，面
S1 と S2 との間において管軸方向に沿う単位ベクトルを az，これに直交する導波菅断面上
の管壁（閉曲線 C）の外向き単位法線ベクトルを an とおき，管壁の局所的な傾きを ϑ とす
ると，次のようになる．

az · νz = an · ν = cosϑ (3.162)

さらに，

dS3 = dz

cosϑdσ (3.163)

dV = dSdz (3.164)
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したがって，式 (3.160)は次のようになる．
ˆ (¨

S

∇ · A dS

)
dz

= −
¨

S1

A · azdS +
¨

S2

A · azdS +
ˆ (˛

σ

A · ν

cosϑ dσ
)
dz (3.165)

z → 0 のとき，上式右辺の第１項と第２項はキャンセルして，次式が得られる．
¨

S

∇ · A dS =
˛

σ

A · ν

cosϑ dσ (3.166)

ここで，

Az = A · az (3.167)
At = A − Azaz (3.168)
ν = (ν · an)an + (ν · az)az

= cosϑan − sinϑaz (3.169)

とおき，

∇ · A = ∇t · At + ∂Az

∂z
(3.170)

A · ν

cosϑ = A · (cosϑan − sinϑaz)
cosϑ

= At · an − tanϑAz (3.171)

より式 (3.166)は次のようになる．
¨

S

∇t · AtdS +
¨

S

∂Az

∂z
dS =

˛
σ

At · andσ −
˛

σ

tanϑAzdσ (3.172)

上式において，Aが az(管軸方向)成分をもたない場合，A · az = Az = 0 より，
¨

S

∇t · AtdS =
˛

σ

At · andσ (3.173)

これは，2次元のガウスの発散定理と一致する．

3.7.2 テーパ構造における面積分と周回積分の関係

一方，Aが az（管軸方向）成分 Az のみ（At = 0）の場合を考えると，
¨

S

∂Az

∂z
dS = −

˛
σ

tanϑAzdσ (3.174)
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導波管のモード関数 en，el の内積を Az = en · el とおくと，
¨

S

∂

∂z
(en · el)dS = −

˛
σ

tanϑ(en · el)dσ (3.175)

∴
¨

S

∂en

∂z
· eldS +

¨
S

en · ∂el

∂z
dS = −

˛
σ

tanϑ en · el dσ (3.176)

n = l のときは次のようになる．

2
¨

S

∂en

∂z
· endS = −

˛
σ

tanϑ en · en dσ (3.177)
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3.8 伝送方程式のまとめ

伝送方程式は次のようになる．
dV TM

l

dz
= −ZTM

l ITMl −
∑
n

TTM:TM
V,ln V TM

n −
∑
n

TTM:TE
V,ln V TE

n (3.178)

dITMl

dz
= −Y V TM

l −
∑
n

TTM:TM
I,ln ITMn (3.179)

dV TE
l

dz
= −ZITEl −

∑
n

TTE:TE
V,ln V TE

n (3.180)

dITEl

dz
= −Y TE

l V TE
l −

∑
n

TTE:TE
I,ln ITEn −

∑
n

TTE:TM
I,ln ITMn (3.181)

ここで，

Z ≡ jωµ, Y ≡ jωε (3.182)

ZTM
l ≡ −(βTM

l )2

jωε
, Y TE

l ≡ −(βTE
l )2

jωµ
(3.183)

TV,ln ≡
¨

∂en

∂z
· eldS +

˛
σ

tanϑ en · eldσ (3.184)

TI,ln ≡
¨

∂hn

∂z
· hldS =

¨
∂en

∂z
· eldS (3.185)

曲線テーパ構造に対してガウスの発散定理を適用して求めた式
¨

S

∂en

∂z
· eldS +

¨
S

en · ∂el

∂z
dS = −

˛
σ

tanϑ en · el dσ (3.186)

より，伝送方程式の係数 TV,ln は，次のように変形できる．

TV,ln =
¨

∂en

∂z
· eldS +

˛
σ

tanϑ en · eldσ = −
¨

en · ∂el

∂z
dS (3.187)

nと lを入れ換えると，

TV,nl = −
¨

el · ∂en

∂z
dS = −

¨
∂en

∂z
· eldS = −TI,ln (3.188)

さらに nと lを入れ換えて，

TV,ln = −
¨

en · ∂el

∂z
dS = −

¨
∂el

∂z
· endS = −TI,nl (3.189)
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3.9 円形テーパ導波管

導波菅のモード関数は，

en =
{

eTE
n = az × ∇tΨTE

n (TE mode)
eTM

n = −∇tΨTM
n (TM mode) (3.190)

hn =
{

hTE
n = −∇tΨTE

n (TE mode)
hTM

n = −az × ∇tΨTM
n (TM mode) (3.191)

ただし，スカラ関数 ΨTE
n および ΨTM

n は変数分離した z に依らないスカラー関数を示し，ス
カラヘルムホルツ方程式を満足する．ここでは，半径 aの円形導波菅の場合を考え，TEMn

モードのスカラ関数 ΨTE
n ，および TMMn モードのスカラ関数 ΨTM

n は，

ΨTE
n = ATE

n JM (kTEc,nρ)ΦTE
M (φ), kTEc,n = χ′

n

a
, J ′

M (χ′
n) = 0 (3.192)

ΨTM
n = ATM

n JM (kTMc,nρ)ΦTM
M (φ), kTMc,n = χn

a
, JM (χn) = 0 (3.193)

ただし，ΦTE
M (φ)，ΦTM

M (φ)は次式で表され，TEモードと TMモードは，同じ正弦モード間，
同じ余弦モード間で結合する（両者をまとめて ΦM (φ)とする）．

ΦTE
M (φ) =

{
sin(Mφ)
cos(Mφ) , ΦTM

M (φ) =
{

− cos(Mφ)
sin(Mφ) (3.194)

3.9.1 伝送方程式の係数（TE-TE, TM-TM）

スカラ関数の微分について，TE，TMモードをまとめて kc,l = χ̄l

a，kc,n = χ̄n

a とおき，

∂Ψn

∂z
= ∂

∂z

(
AnJM (kc,nρ)ΦM (φ)

)
= An

dkc,n

dz
ρJ ′

M (kc,nρ)ΦM (φ)

= An

(
−1
a

da

dz
kc,n

)
ρJ ′

M (kc,nρ)ΦM (φ) (3.195)

∂Ψn

∂z

∣∣∣∣∣
ρ=a

= −An
da

dz
kc,nJ

′
M (χ̄n)ΦM (φ) (3.196)

∂Ψl

∂n
= ∂

∂ρ

(
AlJM (kc,lρ)ΦM (φ)

)
= Alkc,lJ

′
M (kc,lρ)ΦM (φ) (3.197)

∂Ψl

∂n

∣∣∣∣∣
ρ=a

= ∂

∂ρ

(
AlJM (kc,lρ)ΦM (φ)

)
= Alkc,lJ

′
M (χ̄l)ΦM (φ) (3.198)
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さらに，

∂

∂n

(
∂Ψn

∂z

)
= ∂

∂ρ

{
An

(
−1
a

da

dz
kc,n

)
ρJ ′

M (kc,nρ)ΦM (φ)
}

= −An
1
a

da

dz
kc,n

{
J ′

M (kc,nρ) + ρkc,nJ
′′
M (kc,nρ)

}
ΦM (φ) (3.199)

∂

∂n

(
∂Ψn

∂z

)∣∣∣∣∣
ρ=a

= −An
1
a

da

dz
kc,n

{
J ′

M (χ̄n) + χ̄nJ
′′
M (χ̄n)

}
ΦM (φ) (3.200)

ここで，

J ′′
M (χ̄n) =

(
M2

χ̄2
n

− 1
)
JM (χ̄n) − J ′

M (χ̄n)
χ̄n

(3.201)

これより，

∂

∂n

(
∂Ψn

∂z

)∣∣∣∣∣
ρ=a

= −An
da

dz

χ̄n

a2
M2 − χ̄2

n

χ̄n
JM (χ̄n)ΦM (φ)

= −An
da

dz

M2 − χ̄2
n

a2 JM (χ̄n)ΦM (φ) (3.202)

よって，異なるモードの場合（n 6= l），TEモードのとき，

T TE-TE
I,ln =

(kTEc,l )2

(kTEc,l )2 − (kTEc,n)2

˛
C

ΨTE
l

∂

∂n

(
∂ΨTE

n

∂z

)
dσ

=
(kTEc,l )2

(kTEc,l )2 − (kTEc,n)2A
TE
l JM (χ′

l)(−ATE
n )

·da
dz

M2 − χ′2
n

a2 JM (χ′
n)
ˆ 2π

0

(
ΦTE(φ)

)2
adφ

= ATE
l ATE

n

1
a

da

dz
(χ′2

n −M2)

=
(kTEc,l )2

(kTEc,l )2 − (kTEc,n)2JM (χ′
l)JM (χ′

n) 2π
εM

(3.203)

ここで，絶対値をとらない TEMl，TEMn モードの正規化係数 ATE
l ，ATE

n より，

ATE
l ATE

n =
√√√√ εM

π
(
χ′2

l −M2
) 1
JM (χ′

l)
·
√√√√ εM

π
(
χ′2

n −M2
) 1
JM (χ′

n)

= εM
π

1√
χ′2

l −M2

1√
χ′2

n −M2

1
JM (χ′

l)
1

JM (χ′
n) (3.204)
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よって，

T TE-TE
I,ln = 1

a

da

dz

2(kTEc,l )2

(kTEc,l )2 − (kTEc,n)2

√√√√χ′2
n −M2

χ′2
l −M2

= 1
a

da

dz

2χ′2
l

χ′2
l − χ′2

n

√√√√χ′2
n −M2

χ′2
l −M2

= −1
a

da

dz

2χ′2
l

χ′2
n − χ′2

l

√√√√χ′2
n −M2

χ′2
l −M2 (3.205)

また，TMモードのとき，Ψl = 0，Ψn = 0 (on C)ゆえ，

T TM-TM
I,ln =

−(kTMc,n)2

(kTMc,l )2 − (kTMc,n)2

˛
C

∂ΨTM
n

∂z

∂ΨTM
l

∂n
dσ

=
−(kTMc,n)2

(kTMc,l )2 − (kTMc,n)2 (−ATM
n )

·da
dz
kTMc,nJ

′
M (χ̄n)ATM

l kTMc,l J
′
M (χ̄l)

ˆ 2π

0

(
ΦTE(φ)

)2
adφ

= ATM
n ATM

l

da

dz

(kTMc,n)2

(kTMc,l )2 − (kTMc,n)2
χnχl

a2 J ′
M (χn)J ′

M (χl)a
2π
εM

(3.206)

ここで，絶対値をとらない TMMl，TMMn モードの正規化係数 ATM
l ，ATM

n より，

ATM
l ATM

n =
√
εM
π

1
χlJ ′

M (χl)
·
√
εM
π

1
χnJ ′

M (χn)

= εM
π

1
χlχn

1
J ′

M (χl)
1

J ′
M (χn) (3.207)

よって，

T TM-TM
I,ln = 1

a

da

dz

2(kTMc,n)2

(kTMc,l )2 − (kTMc,n)2

= 1
a

da

dz

2χ2
n

χ2
l − χ2

n

= −1
a

da

dz

2χ2
n

χ2
n − χ2

l

(3.208)

同じモードの場合（n = l），円形導波菅モードを TEモードと TMモードをまとめて，

Ψn = AnJM (kc,nρ)ΦM (φ) (3.209)

とすると，

∇tΨn = An

{
∂JM (kc,nρ)

∂ρ
ΦM (φ)aρ + JM (kc,nρ)

∂ΦM (φ)
ρ∂φ

aφ

}
(3.210)
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(∇tΨn) · (∇tΨn)

= A2
n


(
∂JM (kc,nρ)

∂ρ
ΦM (φ)

)2

+
(
JM (kc,nρ)

∂ΦM (φ)
ρ∂φ

)2


= A2
n

J ′2
M (kc,nρ)k2

c,nΦ2
M (φ) + J2

M (kc,nρ)
1
ρ2

(
∂ΦM (φ)
∂φ

)2
 (3.211)

(∇tΨn) · (∇tΨn)
∣∣∣∣
ρ=a

= A2
n

J ′2
M (χn)k2

c,nΦ2
M (φ) + J2

M (χn) 1
a2

(
∂ΦM (φ)
∂φ

)2
 (3.212)

軸対称ゆえ，ϑを定数として da
dz = tanϑ．よって，

¨
S

∂en

∂z
· endS = −1

2
da

dz

ˆ
σ

(∇tΨn) · (∇tΨn) dσ (3.213)

周回積分は，半径 aの円形導波管の管壁に沿う積分経路ゆえ，ˆ
σ

(∇tΨn) · (∇tΨn)dσ

=
ˆ 2π

0
(∇tΨn) · (∇tΨn)ρ

∣∣∣∣
ρ=a

dφ

= A2
na

{
J ′2

M (χn)k2
c,n

ˆ 2π

0
Φ2

M (φ)dφ

+J2
M (χn) 1

a2

ˆ 2π

0

(
∂ΦM (φ)
∂φ

)2

dφ


= A2

na
{
J ′2

M (χn)k2
c,n

2π
εM

+ J2
M (χn) 1

a2M
2 2π
εM

}
= A2

n

2π
εM

1
a

{
χ2

nJ
′2
M (χn) +M2J2

M (χn)
}

(3.214)

ここで，
ˆ 2π

0
Φ2

M (φ)dφ = 2π
εM

(3.215)
ˆ 2π

0

(
∂ΦM (φ)
∂φ

)2

dφ = M2 2π
εM

(3.216)
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両者とも TEモードのとき，J ′
M (χ′

n) = 0 より，
˛

σ

(∇tΨTE
n ) · (∇tΨTE

n )dσ = (ATE
n )2 2π

εM

1
a

·M2J2
M (χ′

n)

= εM

π
(
χ′2

n −M2
) 1
J2

M (χ′
n)

2π
εM

1
a

·M2J2
M (χ′

n)

= 1
a

2M2

χ′2
n −M2 (3.217)

よって，

T TE-TE
I,nn =

¨
S

∂eTE
n

∂z
· eTE

n dS

= −1
2
da

dz

˛
σ

(∇tΨTE
n ) · (∇tΨTE

n ) dσ

= −1
a

da

dz

M2

χ′2
n −M2 (3.218)

また，両者とも TMモードのとき，JM (χn) = 0より，
˛

σ

(∇tΨTM
n ) · (∇tΨTM

n )dσ = (ATM
n )2 2π

εM

1
a

· χ2
nJ

′2
M (χn)

= εM
π

1
χ2

nJ
′2
M (χn)

2π
εM

1
a

· χ2
nJ

′2
M (χn)

= 2
a

(3.219)

よって，

T TM-TM
I,nn =

¨
S

∂eTM
n

∂z
· eTM

n dS

= −1
2
da

dz

˛
σ

(∇tΨTM
n ) · (∇tΨTM

n ) dσ

= −1
a

da

dz
(3.220)

比較のため，面積分表示の式でも求め，同様の結果が得られることを確認する．まず，
a = a(z)として，

∂kc,n

∂z
= ∂a

∂z

∂kc,n

∂a
= ∂a

∂z

∂

∂a

(
χn

a

)
= −da

dz

χn

a2 = −1
a

da

dz
kc,n (3.221)

2kc,n
∂kc,n

∂z

¨
S

ΨlΨndS = 2kc,n

(
−1
a

da

dz
kc,n

)
δln

k2
c,n

= −2
a

da

dz
δln (3.222)
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n = l のとき，

T TE-TE
I,nn = (kTEc,n)2

¨
S

∂ΨTE
n

∂z
ΨTE

n dS (3.223)

T TM-TM
I,nn = (kTMc,n)2

¨
S

∂ΨTM
n

∂z
ΨTM

n dS − 2
a

da

dz
(3.224)

ここで，式 (3.209)，式 (3.195)を再記して，

Ψn = AnJM (kc,nρ)ΦM (φ) (3.225)
∂Ψn

∂z
= An

(
−1
a

da

dz
kc,n

)
ρJ ′

M (kc,nρ)ΦM (φ) (3.226)

面積分について，両者をまとめると，
¨

S

∂Ψn

∂z
ΨndS = −1

a

da

dz
A2

nkc,n

ˆ a

0
J ′

M (kc,nρ)JM (kc,nρ)ρ2dρ · 2π
εM

(3.227)

ベッセル関数の積分については，まず，

d

dρ

{
ρ2J2

M (kc,nρ)
}

= 2ρJ2
M (kc,nρ) + ρ2 · 2JM (kc,nρ)J ′

M (kc,nρ)kc,n (3.228)

不定積分して，ˆ
d

dρ

{
ρ2J2

M (kc,nρ)
}
dρ

= ρ2J2
M (kc,nρ)

= 2
ˆ
ρJ2

M (kc,nρ)dρ+ 2kc,n

ˆ
ρ2JM (kc,nρ)J ′

M (kc,nρ)dρ (3.229)

よって，

kc,n

ˆ
ρ2JM (kc,nρ)J ′

M (kc,nρ)dρ = 1
2ρ

2J2
M (kc,nρ) −

ˆ
ρJ2

M (kc,nρ)dρ (3.230)

右辺の第 2項は不定積分公式
ˆ
ρJ2

M (kc,nρ)dρ = 1
2

{
ρ2J ′2

M (kc,nρ) +
(
ρ2 − M2

k2
c,n

)
J2

M (kc,nρ)
}

(3.231)

より，

kc,n

ˆ
ρ2JM (kc,nρ)J ′

M (kc,nρ)dρ

= −1
2

{
ρ2J ′2

M (kc,nρ) − M2

k2
c,n

J2
M (kc,nρ)

}
(3.232)
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よって，新たに次の不定積分公式が得られる．
ˆ
JM (kc,nρ)J ′

M (kc,nρ)ρ2dρ

= 1
2k3

c,n

{
− (kc,nρ)2J ′2

M (kc,nρ) +M2J2
M (kc,nρ)

}
(3.233)

半径 aの円形導波管に対して定積分して，
ˆ a

0
JM (kc,nρ)J ′

M (kc,nρ)ρ2dρ

= 1
2k3

c,n

[
−χ2

nJ
′2
M (χn) +M2

{
J2

M (χn) − J2
M (0)

}]
(3.234)

両者とも TEMn モードのとき（M 6= 0），
ˆ
JM (kTEc,nρ)J ′

M (kTEc,nρ)ρ2dρ = M2

2(kTEc,n)3J
2
M (χ′

n) (3.235)

また，両者とも TMMn モードのとき，ˆ
JM (kTMc,nρ)J ′

M (kTMc,nρ)ρ2dρ = − χ2
n

2(kTMc,n)3J
′2
M (χn)

= − a2

2kTMc,n

J ′2
M (χn) (3.236)

よって，

T TE-TE
I,nn = (kTEc,n)2

¨
S

∂ΨTE
n

∂z
ΨTE

n dS

= (kTEc,n)2
(

−1
a

da

dz
(ATE

n )2kTEc,n

)
M2

2(kTEc,n)3J
2
M (χ′

n) 2π
εM

= −(ATE
n )2 1

a

da

dz
M2J2

M (χ′
n) π
εM

= − εM

π
(
χ′2

n −M2
) 1
J2

M (χ′
n)

1
a

da

dz
M2J2

M (χ′
n) π
εM

= −1
a

da

dz

M2

χ′2
n −M2 (3.237)
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線積分表示の式より求めた結果と一致する．また，

T TM-TM
I,nn = (kTMc,n)2

¨
S

∂ΨTM
n

∂z
ΨTM

n dS − 2
a

da

dz

= (kTMc,n)2
(

−1
a

da

dz
(ATM

n )2kTMc,n

)(
− χ2

n

2(kTMc,n)3J
′2
M (χn)

)
2π
εM

−2
a

da

dz

= (ATM
n )2 1

a

da

dz
χ2

nJ
′2
M (χn) π

εM
− 2
a

da

dz

= εM
π

1
χ2

nJ
′2
M (χn) · 1

a

da

dz
χ2

nJ
2
M (χn) π

εM
− 2
a

da

dz

= 1
a

da

dz
− 2
a

da

dz

= −1
a

da

dz
(3.238)

これについても，線積分表示の式より求めた結果と一致する．

3.9.2 伝送方程式の係数（TE-TM, TM-TE）

TMモードの電界モード関数の微分と TEモードの場合，先に示したように eTM
l → ∂eTMl

∂z

とすると，ΨTM
l → ∂ΨTM

l

∂z より（J ′
M (χ′

n) = 0，JM (χl) = 0），
˛

C

∂ΨTE
n

∂σ

∂ΨTM
l

∂z
dσ = ATE

n JM (χ′
n)ATM

l

da

dz
kc,lJ

′
M (χl)

ˆ 2π

0

dΦTE
M (φ)
adφ

ΦTM
M (φ)adφ (3.239)

ここで，
ˆ 2π

0

dΦTE
M (φ)
dφ

ΦTM
M (φ)dφ =

ˆ 2π

0
M

cos(Mφ)
− sin(Mφ)

(− cos(Mφ))
sin(Mφ) dφ

= −2Mπ

εM
(3.240)

TEMn モードの正規化係数 ATE
n ，TMMl モードの正規化係数 ATM

l

ATE
n =

√√√√ εM

π
(
χ′2

n −M2
) 1
JM (χ′

n) (3.241)

ATM
l =

√
εM
π

1
χlJ ′

M (χl)
(3.242)

より，

ATE
n ATM

l = εM
π

1√
χ′2

n −M2

1
JM (χ′

n)
1

χlJ ′
M (χl)

(3.243)
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これより，

−T TM-TE
V,ln = T TE-TM

I,nl = εM
π

1√
χ′2

n −M2

1
a

da

dz

(
−2Mπ

εM

)

= −1
a

da

dz

2M√
χ′2

n −M2
(3.244)

3.9.3 伝送方程式

以上をまとめると，

T TE-TM
I,nl = −T TM-TE

V,ln = −1
a

da

dz

2M√
χ′2

n −M2
(3.245)

T TE-TE
I,nn = −T TE-TE

V,nn = −1
a

da

dz

M2

χ′2
n −M2 (3.246)

T TM-TM
I,nn = −T TM-TM

V,nn = −1
a

da

dz
(3.247)

T TE-TE
I,ln = −T TE-TE

V,nl = −1
a

da

dz

2χ′2
l

χ′2
n − χ′2

l

√√√√χ′2
n −M2

χ′2
l −M2 (n 6= l) (3.248)

T TM-TM
I,ln = −T TM-TM

V,nl = −1
a

da

dz

2χ2
n

χ2
n − χ2

l

(n 6= l) (3.249)

n と l を入れ換えて，

T TE-TM
I,ln = −T TM-TE

V,nl = −1
a

da

dz

2M√
χ′2

l −M2
(3.250)

T TE-TE
I,nl = −T TE-TE

V,ln = −1
a

da

dz

2χ′2
n

χ′2
l − χ′2

n

√√√√χ′2
l −M2

χ′2
n −M2 (l 6= n) (3.251)

T TM-TM
I,nl = −T TM-TM

V,ln = −1
a

da

dz

2χ2
l

χ2
l − χ2

n

(l 6= n) (3.252)
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展開モード数を TE，TMについて NTE，NTM とすると，

dV TM
l

dz
= −ZTM

l ITMl −
NTM∑

n

T TM-TM
V,ln V TM

n −
NTE∑

n

T TM-TE
V,ln V TE

n

(l = 1, 2, · · · , NTM) (3.253)

dITMl

dz
= −Y V TM

l +
NTM∑

n

T TM-TM
V,nl ITMn (l = 1, 2, · · · , NTM) (3.254)

dV TE
l

dz
= −ZITEl −

NTE∑
n

T TE-TE
V,ln V TE

n (l = 1, 2, · · · , NTE) (3.255)

dITEl

dz
= −Y TE

l V TE
l +

NTE∑
n

T TE-TE
V,nl ITEn + T TM-TE

V,−l

NTM∑
n

ITMn

(l = 1, 2, · · · , NTE) (3.256)

ここで，

T TM-TM
V,ln = 1

a

da

dz

2χ2
l

χ2
l − χ2

n

(l 6= n) (3.257)

T TM-TM
V,ll = 1

a

da

dz
(3.258)

T TM-TE
V,ln = 1

a

da

dz

2M√
χ′2

n −M2
(3.259)

T TM-TM
V,nl = 1

a

da

dz

2χ2
n

χ2
n − χ2

l

(n 6= l) (3.260)

T TE-TE
V,ln = 1

a

da

dz

2χ′2
n

χ′2
l − χ′2

n

√√√√χ′2
l −M2

χ′2
n −M2 (l 6= n) (3.261)

T TE-TE
V,ll = 1

a

da

dz

M2

χ′2
l −M2 (3.262)

T TE-TE
V,nl = 1

a

da

dz

2χ′2
l

χ′2
n − χ′2

l

√√√√χ′2
n −M2

χ′2
l −M2 (n 6= l) (3.263)

T TM-TE
V,nl = 1

a

da

dz

2M√
χ′2

l −M2
≡ T TM-TE

V,−l (3.264)
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3.10 モード電圧，電流と散乱パラメータ

3.10.1 多モード基本行列から散乱行列への変換

散乱行列を，基本行列 [F ]の要素 A，B，C，D を用いて表す式を導出しよう．ただし，
入出力の２ポートは各々，多モードとする．まず，端子 1-1′，2-2′ の基準インピーダンスを
対角行列 Z01，Z02 とすると，列ベクトルのモード電圧 V1，V2 は，

V1 =
√
Z01(a1 + b1) (3.265)

V2 =
√
Z02(a2 + b2) (3.266)

また，モード電流 I1，I2 は，+z 方向を電流の正方向にとると，

I1 =
√
Y01(a1 + b1) (3.267)

I2 = −
√
Y02(a2 + b2) (3.268)

このとき，基本行列 [F ]は，(
V1
I2

)
= [F ]

(
V2
I2

)
, [F ] =

(
A B
C D

)
(3.269)

ゆえ，基本行列 [F ]の電圧の列ベクトル V1，V2，電流の列ベクトル I1，I2 を，入射波の波
動振幅の列ベクトル a1，a2，反射波の波動振幅の列ベクトル b1，b2 によって表すと，(√

Z01(a1 + b1)√
Y01(a1 − b1)

)
= [F ]

( √
Z02(a2 + b2)

−
√
Y02(a2 − b2)

)
(3.270)

ただし，Z01，Z02 は，端子 1-1′，2-2′ の基準インピーダンスを示す．(√
Z01 0
0

√
Y01

)(
a1 + b1
a1 − b1

)
= [F ]

(√
Z02 0
0

√
Y02

)(
b2 + a2
b2 − a2

)
(3.271)

整理して，(
a1 + b1
a1 − b1

)
=
(√

Y01 0
0

√
Z01

)
[F ]

(√
Z02 0
0

√
Y02

)(
b2 + a2
b2 − a2

)
(3.272)

ここで，(
Ā B̄
C̄ D̄

)
≡
(√

Y01 0
0

√
Z01

)(
A B
C D

)(√
Z02 0
0

√
Y02

)
(3.273)

とおくと，(
a1 + b1
a1 − b1

)
=
(
Ā B̄
C̄ D̄

)(
b2 + a2
b2 − a2

)
, [F̄ ] =

(
Ā B̄
C̄ D̄

)
(3.274)

92



すなわち，

a1 + b1 = Ā(b2 + a2) + B̄(b2 − a2) = (Ā+ B̄)b2 + (Ā− B̄)a2

a1 − b1 = C̄(b2 + a2) + D̄(b2 − a2) = (C̄ + D̄)b2 + (C̄ − D̄)a2 (3.275)

列ベクトル b1 を消去するため，両者の和より，

2a1 =
(
Ā+ B̄ + C̄ + D̄

)
b2 +

(
Ā− B̄ + C̄ − D̄

)
a2 (3.276)

ここで，

∆̄F ≡ Ā+ B̄ + C̄ + D̄ (3.277)

とおいて，

b2 = ∆̄−1
F

{
2a1 −

(
Ā− B̄ + C̄ − D̄

)
a2
}

= S21a1 + S22a2 (3.278)

したがって，散乱行列要素 S11，S12 は，

S21 = 2∆̄−1
F (3.279)

S22 = ∆̄−1
F

(
Ā+ B̄ − C̄ − D̄

)
(3.280)

また，列ベクトル b2 を消去するため，

(Ā+ B̄)−1(a1 + b1) = b2 + (Ā+ B̄)−1(Ā− B̄)a2

(C̄ + D̄)−1(a1 − b1) = b2 + (C̄ + D̄)−1(C̄ − D̄)a2 (3.281)

両者の差より，

(Ā+ B̄)−1(a1 + b1) − (C̄ + D̄)−1(a1 − b1)
= (Ā+ B̄)−1(Ā− B̄)a2 − (C̄ + D̄)−1(C̄ − D̄)a2 (3.282)

整理して，{
(Ā+ B̄)−1 − (C̄ + D̄)−1

}
a1 +

{
(Ā+ B̄)−1 + (C̄ + D̄)−1

}
b1

=
{

(Ā+ B̄)−1(Ā− B̄) − (C̄ + D̄)−1(C̄ − D̄)
}
a2 (3.283)

よって，

b1 = −
{

(Ā+ B̄)−1 + (C̄ + D̄)−1
}−1{

(Ā+ B̄)−1 − (C̄ + D̄)−1
}
a1

+
{

(Ā+ B̄)−1 + (C̄ + D̄)−1
}−1{

(Ā+ B̄)−1(Ā− B̄) − (C̄ + D̄)−1(C̄ − D̄)
}
a2

= S11a1 + S12a2 (3.284)
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ここで，{
(Ā+ B̄)−1 + (C̄ + D̄)−1

}−1
= (C̄ + D̄)(Ā+ B̄ + C̄ + D̄)−1(Ā+ B̄)

= (C̄ + D̄)∆̄−1
F (Ā+ B̄) (3.285)

また，

(Ā+ B̄)−1 − (C̄ + D̄)−1 = (Ā+ B̄)−1(−Ā− B̄ + C̄ + D̄)(C̄ + D̄)−1 (3.286)

これより，{
(Ā+ B̄)−1 + (C̄ + D̄)−1

}−1{
(Ā+ B̄)−1 − (C̄ + D̄)−1

}
= (C̄ + D̄)∆̄−1

F (Ā+ B̄)(Ā+ B̄)−1(−Ā− B̄ + C̄ + D̄)(C̄ + D̄)−1

= (C̄ + D̄)∆̄−1
F (−Ā− B̄ + C̄ + D̄)(C̄ + D̄)−1

= (C̄ + D̄)∆̄−1
F

{
1 − (Ā+ B̄)(C̄ + D̄)−1

}
(3.287)

また，{
(Ā+ B̄)−1 + (C̄ + D̄)−1

}−1{
(Ā+ B̄)−1(Ā− B̄) − (C̄ + D̄)−1(C̄ − D̄)

}
= (C̄ + D̄)∆̄−1

F (Ā+ B̄)
{

(Ā+ B̄)−1(Ā− B̄) − (C̄ + D̄)−1(C̄ − D̄)
}

= (C̄ + D̄)∆̄−1
F

{
(Ā− B̄) − (Ā+ B̄)(C̄ + D̄)−1(C̄ − D̄)

}
(3.288)

したがって，散乱行列要素 S11，S12 は，

S11 = −
{

(Ā+ B̄)−1 + (C̄ + D̄)−1
}−1{

(Ā+ B̄)−1 − (C̄ + D̄)−1
}

= −(C̄ + D̄)∆̄−1
F

{
1 − (Ā+ B̄)(C̄ + D̄)−1

}
(3.289)

S12 =
{

(Ā+ B̄)−1 + (C̄ + D̄)−1
}−1{

(Ā+ B̄)−1(Ā− B̄) − (C̄ + D̄)−1(C̄ − D̄)
}

= (C̄ + D̄)∆̄−1
F

{
(Ā− B̄) − (Ā+ B̄)(C̄ + D̄)−1(C̄ − D̄)

}
(3.290)

なお，相反定理より，AD −BC = 1 ゆえ，

ĀD̄ − B̄C̄ =
√
Y01Z02A

√
Z01Y02D −

√
Y01Y02B

√
Z01Z02C

= AD −BC = 1 (3.291)

ここで，(
Ā B̄
C̄ D̄

)
=
(√

Y01Z02A
√
Y01Y02B√

Z01Z02C
√
Z01Y02D

)
(3.292)
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3.10.2 多モード基本行列の逆行列から散乱行列への変換

基本行列の逆行列の関係より，

[F ]−1
(
V1
I2

)
=
(
V2
I2

)
, [F ]−1 ≡

(
A′ B′

C ′ D′

)
(3.293)

入射波の波動振幅 a1，a2，反射波の波動振幅 b1，b2 によって表すと，( √
Z02(a2 + b2)

−
√
Y02(a2 − b2)

)
= [F ]−1

(√
Z01(a1 + b1)√
Y01(a1 − b1)

)
(3.294)

ただし，Z01，Z02 は，端子 1-1′，2-2′ の基準インピーダンスを示す．(√
Z02 0
0

√
Y02

)(
b2 + a2
b2 − a2

)
= [F ]−1

(√
Z01 0
0

√
Y01

)(
a1 + b1
a1 − b1

)
(3.295)

整理して，(
b2 + a2
b2 − a2

)
=
(√

Y02 0
0

√
Z02

)
[F ]−1

(√
Z01 0
0

√
Y01

)(
a1 + b1
a1 − b1

)
(3.296)

ここで，(
Ā′ B̄′

C̄ ′ D̄′

)
≡
(√

Y02 0
0

√
Z02

)(
A′ B′

C ′ D′

)(√
Z01 0
0

√
Y01

)
(3.297)

とおくと，(
b2 + a2
b2 − a2

)
=
(
Ā′ B̄′

C̄ ′ D̄′

)(
a1 + b1
a1 − b1

)
(3.298)

すなわち，

b2 + a2 = Ā′(a1 + b1) + B̄′(a1 − b1) = (Ā′ + B̄′)a1 + (Ā′ − B̄′)b1

b2 − a2 = C̄ ′(a1 + b1) + D̄′(a1 − b1) = (C̄ ′ + D̄′)a1 + (C̄ ′ − D̄′)b1 (3.299)

列ベクトル b2 を消去するため，両者の差より，

2a2 =
(
Ā′ + B̄′ − C̄ ′ − D̄′

)
a1 +

(
Ā′ − B̄′ − C̄ ′ + D̄′

)
b1 (3.300)

ここで，

∆̄′
F ≡ Ā′ − B̄′ − C̄ ′ + D̄′ (3.301)

とおいて，

b1 = (∆̄′
F )−1

{
2a2 −

(
Ā′ + B̄′ − C̄ ′ − D̄′

)
a1
}

(3.302)
= S11a1 + S12a2 (3.303)

95



したがって，散乱行列要素 S11，S12 は，

S11 = (∆̄′
F )−1

(
−Ā′ − B̄′ + C̄ ′ + D̄′

)
(3.304)

S12 = 2(∆̄′
F )−1 (3.305)

また，列ベクトル b1 を消去するため，

(Ā′ − B̄′)−1(b2 + a2) = (Ā′ − B̄′)−1(Ā′ + B̄′)a1 + b1

(C̄ ′ − D̄′)−1(b2 − a2) = (C̄ ′ − D̄′)−1(C̄ ′ + D̄′)a1 + b1 (3.306)

両者の差より，

(Ā′ − B̄′)−1(b2 + a2) − (C̄ ′ − D̄′)−1(b2 − a2)
= (Ā′ − B̄′)−1(Ā′ + B̄′)a1 − (C̄ ′ − D̄′)−1(C̄ ′ + D̄′)a1 (3.307)

整理して，{
(Ā′ − B̄′)−1 − (C̄ ′ − D̄′)−1

}
b2 +

{
(Ā′ − B̄′)−1 + (C̄ ′ − D̄′)−1

}
a2

=
{

(Ā′ − B̄′)−1(Ā′ + B̄′) − (C̄ ′ − D̄′)−1(C̄ ′ + D̄′)
}
a1 (3.308)

よって，

b2 =
{

(Ā′ − B̄′)−1 − (C̄ ′ − D̄′)−1
}−1{

(Ā′ − B̄′)−1(Ā′ + B̄′) − (C̄ ′ − D̄′)−1(C̄ ′ + D̄′)
}
a1

−
{

(Ā′ − B̄′)−1 − (C̄ ′ − D̄′)−1
}−1{

(Ā′ − B̄′)−1 + (C̄ ′ − D̄′)−1
}
a2

= S21a1 + S22a2 (3.309)

ここで，{
(Ā′ − B̄′)−1 − (C̄ ′ − D̄′)−1

}−1
= (C̄ ′ − D̄′)(−Ā′ + B̄′ + C̄ ′ − D̄′)−1(Ā′ − B̄′)

= −(C̄ ′ − D̄′)(∆̄′
F )−1(Ā′ − B̄′) (3.310)

また，

(Ā′ − B̄′)−1 + (C̄ ′ − D̄′)−1 = (Ā′ − B̄′)−1(Ā′ − B̄′ + C̄ ′ − D̄′)(C̄ ′ − D̄′)−1 (3.311)

これより，{
(Ā′ − B̄′)−1 − (C̄ ′ − D̄′)−1

}−1{
(Ā′ − B̄′)−1 + (C̄ ′ − D̄′)−1

}
= −(C̄ ′ − D̄′)(∆̄′

F )−1(Ā′ − B̄′)(Ā′ − B̄′)−1(Ā′ − B̄′ + C̄ ′ − D̄′)(C̄ ′ − D̄′)−1

= −(C̄ ′ − D̄′)(∆̄′
F )−1(Ā′′ − B̄′ + C̄ ′ − D̄′)(C̄ ′ − D̄′)−1

= −(C̄ ′ − D̄′)(∆̄′
F )−1

{
1 + (Ā′ − B̄′)(C̄ ′ − D̄′)−1

}
(3.312)

96



また，{
(Ā′ − B̄′)−1 − (C̄ ′ − D̄′)−1

}−1{
(Ā′ − B̄′)−1(Ā′ + B̄′) − (C̄ ′ − D̄′)−1(C̄ ′ + D̄′)

}
= −(C̄ ′ − D̄′)(∆̄′

F )−1(Ā′ − B̄′)
{

(Ā′ − B̄′)−1(Ā′ + B̄′) − (C̄ ′ − D̄′)−1(C̄ ′ + D̄′)
}

= −(C̄ ′ − D̄′)(∆̄′
F )−1

{
(Ā′ + B̄′) − (Ā′ − B̄′)(C̄ ′ − D̄′)−1(C̄ ′ + D̄′)

}
(3.313)

したがって，散乱行列要素 S21，S22 は，

S21 =
{

(Ā′ − B̄′)−1 − (C̄ ′ − D̄′)−1
}−1{

(Ā′ − B̄′)−1(Ā′ + B̄′) − (C̄ ′ − D̄′)−1(C̄ ′ + D̄′)
}

= −(C̄ ′ − D̄′)(∆̄′
F )−1

{
(Ā′ + B̄′) − (Ā′ − B̄′)(C̄ ′ − D̄′)−1(C̄ ′ + D̄′)

}
(3.314)

S22 = −
{

(Ā′ − B̄′)−1 − (C̄ ′ − D̄′)−1
}−1{

(Ā′ − B̄′)−1 + (C̄ ′ − D̄′)−1
}

= (C̄ ′ − D̄′)(∆̄′
F )−1

{
1 + (Ā′ − B̄′)(C̄ ′ − D̄′)−1

}
(3.315)

なお，相反定理より，AD −BC = 1 ゆえ，

Ā′D̄′ − B̄′C̄ ′ =
√
Y02Z01A

√
Z02Y01D −

√
Y02Y01B

√
Z02Z01C

= AD −BC = 1 (3.316)

ここで，(
Ā′ B̄′

C̄ ′ D̄′

)
=
(√

Y02Z01A
′ √

Y02Y01B
′

√
Z02Z01C

′ √
Z02Y01D

′

)
(3.317)

いま，A′ = D，D′ = A，B′ = −B，C ′ = −C とおくと，

Ā′ =
√
Y02Z01A

′ =
√
Z01Y02D = D̄ (3.318)

D̄′ =
√
Z02Y01D

′ =
√
Y01Z02A = Ā (3.319)

B̄′ =
√
Y02Y01B

′ =
√
Y01Y02(−B) = −B̄ (3.320)

C̄ ′ =
√
Z02Z01C

′ =
√
Z01Z02(−C) = −C̄ (3.321)

より，前半で求めた結果と一致する．
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CHAPTER 4

円筒波展開

　円筒座標系におけるヘルムホルツ方程式の解法と，それを用いた電磁界の導出につ
いて説明する．まず，ヘルムホルツ方程式を変数分離法によって解き，その一般解が
ベッセル関数と調和関数の積で表されることを示す．次に，この解を用いて，TM波
（磁界の z 成分がゼロ）と TE波（電界の z 成分がゼロ）それぞれの電界および磁界
成分を円筒座標系で導出する．その際，ベッセル関数の微分関係式を活用して，各成
分を具体的に求めていく．

4.1 円筒座標系におけるヘルムホルツ方程式

ベクトルポテンシャルを ψaz とおくと，次のスカラーヘルムホルツ方程式が得られる．

∇2ψ + k2ψ = 0 (4.1)

これを，円筒座標系 (ρ, φ, z)によって表せば，

1
ρ

∂

∂ρ

(
ρ
∂ψ

∂ρ

)
+ 1
ρ2
∂2ψ

∂φ2 + ∂2ψ

∂z2 + k2ψ = 0 (4.2)

いま，ψ を変数分離形によって

ψ = R(ρ)Φ(φ)Z(z) (4.3)

とおき，スカラーヘルムホルツ方程式に代入すると，次のようになる．

ΦZ 1
ρ

d

dρ

(
ρ
dR
dρ

)
+ RZ 1

ρ2
d2Φ
dφ2 + RΦd

2Z
dz2 + k2RΦZ = 0 (4.4)

両辺を ψ = RΦZ で割って，

1
ρR

d

dρ

(
ρ
dR
dρ

)
+ 1
ρ2Φ

d2Φ
dφ2 + 1

Z
d2Z
dz2 + k2 = 0 (4.5)
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第 3項は，ρ, φに対して独立，他の項は z に対して独立であるから，

1
Z
d2Z
dz2 = −k2

z (4.6)

とおける．これを代入して，

1
ρR

d

dρ

(
ρ
dR
dρ

)
+ 1
ρ2Φ

d2Φ
dφ2 − k2

z + k2 = 0 (4.7)

両辺に ρ2 を乗じて，

ρ

R
d

dρ

(
ρ
dR
dρ

)
+ 1

Φ
d2Φ
dφ2 +

(
k2 − k2

z

)
ρ2 = 0 (4.8)

第 2項は ρ，z に対して独立，他の項は φ に対して独立であるから，

1
Φ
d2Φ
dφ2 = −m2 (4.9)

とおける．これを代入すると，ρのみの方程式が得られる．

ρ

R
d

dρ

(
ρ
dR
dρ

)
−m2 +

(
k2 − k2

z

)
ρ2 = 0 (4.10)

両辺にRを乗じて，

ρ
d

dρ

(
ρ
dR
dρ

)
+
{(
k2 − k2

z

)
ρ2 −m2

}
R = 0 (4.11)

いま，

k2
ρ ≡ k2 − k2

z (4.12)

とおくと，次式を得る．

ρ
d

dρ

(
ρ
dR
dρ

)
+ {(kρρ)2 −m2}R = 0 [Bessel’s equation of order m] (4.13)

また,

d2Φ
dφ2 +m2Φ = 0 [Harmonic equation] (4.14)

d2Z
dz2 + k2

zZ = 0 [Harmonic equation] (4.15)

これらの方程式の解を各々求めれば ψ の一般解 ψkρ,m,kz（elementary wave function）が得
られ，次のようになる．

ψkρ,m,kz = Bm(kρρ)H (mφ)H (kzz) (4.16)
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ここで，Bm(kρρ)はm次の（広義）ベッセル関数を示し，

Bm(kρρ) ∼ Jm(kρρ), Nm(kρρ), H(1)
m (kρρ), H(2)

m (kρρ) (4.17)

ただし，Jm(kρρ)は第 1種ベッセル関数，Nm(kρρ)は第 2種ベッセル関数，H(1)
m (kρρ)は第

1種ハンケル関数，H(2)
m (kρρ)は第 2種ハンケル関数を示し，次のような関係がある．

H(1)
m (kρρ) = Jm(kρρ) + iNm(kρρ) (4.18)

H(2)
m (kρρ) = Jm(kρρ) − iNm(kρρ) (4.19)

また，H (mφ)，H (kzz)は調和関数を示し，次のようになる．

H (mφ) ∼ cosmφ, sinmφ, ejmφ, e−jmφ (4.20)
H (kzz) ∼ cos kzz, sin kzz, e

jkzz, e−jkzz (4.21)

4.1.1 ベッセル関数

図 4.1. 第 1 種ベッセル関数 J0(z), J1(z), J2(z), J3(z)
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図 4.2. 第 2 種ベッセル関数 N0(z), N1(z), N2(z), N3(z), N4(z)

4.1.2 ヘルムホルツ方程式の解

先に示した ψkρ,m,kz の線形結合もヘルムホルツ方程式を満たし，例えば，m，kρ が離散
値となる場合，次のようになる．

ψ =
∑
m

∑
kρ

Cm,kρψkρ,m,kz

=
∑
m

∑
kρ

Cm,kρBm(kρρ)H (mφ)H (kzz) (4.22)

ここで，

k2 = k2
ρ + k2

z (4.23)

ただし，係数 Cm,kρ は境界条件によって決められる定数である．また，kρ が連続的な値を
とる場合，積分形で表して，

ψ =
∑
m

ˆ
kρ

fm(kρ)ψkρ,m,kzdkρ

=
∑
m

ˆ
kρ

fm(kρ)Bm(kρρ)H (mφ)H (kzz)dkρ (4.24)

ただし，fm(kρ)は境界条件によって決定される．
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4.2 ベクトルポテンシャルを用いた解析

TM（no Hz）波の電磁界HTM，ETM は，ベクトルポテンシャルをA = ψaz とおいて求
められ，次のようになる．

HTM = ∇ × A

= ∇ × (ψaz)
= ∇ψ × az + ψ∇ × az

= ∇ψ × az

=
(
∂ψ

∂ρ
aρ + 1

ρ

∂ψ

∂φ
aφ + ∂ψ

∂z
az

)
× az

= −∂ψ

∂ρ
aφ + 1

ρ

∂ψ

∂φ
aρ

≡ HTM
ρ aρ +HTM

φ aφ +HTM
z az (4.25)

ETM = −jωµA + 1
jωε

∇(∇ · A)

= −jωµ(ψaz) + 1
jωε

∇{∇ · (ψaz)}

= −jωµ(ψaz) + 1
jωε

∇(az · ∇ψ)

= −jωµ(ψaz) + 1
jωε

∇∂ψ

∂z

= −jωµ(ψaz) + 1
jωε

(
∂2ψ

∂ρ∂z
aρ + 1

ρ

∂2ψ

∂φ∂z
aφ + ∂2ψ

∂z2 az

)

= 1
jωε

∂2ψ

∂ρ∂z
aρ + 1

jωε

1
ρ

∂2ψ

∂φ∂z
aφ + 1

jωε

(
∂2

∂z2 + k2
)
ψaz

≡ ETM
ρ aρ + ETM

φ aφ + ETM
z az (4.26)
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これより，TM波の電磁界 ETM，HTM の円筒座標系の各成分は，

ETM
ρ = 1

jωε

∂2ψ

∂ρ∂z
(4.27)

ETM
φ = 1

jωε

1
ρ

∂2ψ

∂φ∂z
(4.28)

ETM
z = 1

jωε

(
∂2

∂z2 + k2
)
ψ (4.29)

HTM
ρ = 1

ρ

∂ψ

∂φ
(4.30)

HTM
φ = −∂ψ

∂ρ
(4.31)

HTM
z = 0 (4.32)

同様にして，TE（no Ez）波の電磁界 ETE，HTE は電気的ベクトルポテンシャル（ETE =
−∇ × F）を F = ψaz とおいて得られ，各成分は（導出省略），

ETE
ρ = −1

ρ

∂ψ

∂φ
(4.33)

ETE
φ = ∂ψ

∂ρ
(4.34)

ETE
z = 0 (4.35)

HTE
ρ = 1

jωµ

∂2ψ

∂ρ∂z
(4.36)

HTE
φ = 1

jωµ

1
ρ

∂2ψ

∂φ∂z
(4.37)

HTE
z = 1

jωµ

(
∂2

∂z2 + k2
)
ψ (4.38)

これらの方程式の解を各々求めれば ψ の一般解 ψkρ,m,kz（elementary wave functions）が
得られ，次のようになる．

ψγ,m,h(ρ, φ, z) = Jm(γρ) sin
cos mφ · e−jhz ρ = 0 included (4.39)

ここで，

k2 = h2 + γ2 (4.40)

ただし，h(mφ)は ψ(φ) = ψ(φ + 2π)を満たす周期関数であるから，mは整数となる．そ
して，次式が得られる．

∂ψγ,m,h

∂z
= −jhψγ,m,h (4.41)(

∂2

∂z2 + k2
)
ψγ,m,h = (−h2 + k2)ψγ,m,h = γ2ψγ,m,h (4.42)
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4.3 TE波

TE波の電界の z 成分は ETE
z = 0，磁界の z 成分 HTE

z は，

HTE
z = 1

jωε

(
∂2

∂z2 + k2
)
ψ

=
∑
m

ˆ
γ

fTE
m (γ) 1

jωµ

(
∂2

∂z2 + k2
)
ψγ,m,hdγ

=
∑
m

ˆ
γ

fTE
m (γ) γ

2

jωµ
ψγ,m,hdγ (4.43)

ただし，fTE
m (γ)は TE波の円筒波スペクトラムを示す．また，z 軸に直交する横断面内電界

成分は，

ETE
ρ = −1

ρ

∂ψ

∂φ
=
∑
m

ˆ
γ

fTE
m (γ)

(
−1
ρ

∂ψγ,m,h

∂φ

)
dγ (4.44)

ETE
φ = ∂ψ

∂ρ
=
∑
m

ˆ
γ

fTE
m (γ)∂ψγ,m,h

∂ρ
dγ (4.45)

TE波の横断面内磁界成分は，

HTE
ρ = 1

jωµ

∂2ψ

∂ρ∂z

=
∑
m

ˆ
γ

fTE
m (γ) 1

jωµ

∂2ψγ,m,h

∂ρ∂z
dγ

=
∑
m

ˆ
γ

fTE
m (γ)−jh

jωµ

∂ψγ,m,h

∂ρ
dγ

=
∑
m

ˆ
γ

fTE
m (γ)Y TE

(
−∂ψγ,m,h

∂ρ

)
dγ (4.46)

HTE
φ = 1

jωµ

1
ρ

∂2ψ

∂φ∂z

=
∑
m

ˆ
γ

fTE
m (γ) 1

jωµ

1
ρ

∂2ψγ,m,h

∂φ∂z
dγ

=
∑
m

ˆ
γ

fTE
m (γ)−jh

jωµ

1
ρ

∂ψγ,m,h

∂φ
dγ

=
∑
m

ˆ
γ

fTE
m (γ)Y TE

(
−1
ρ

∂ψγ,m,h

∂φ

)
dγ (4.47)
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ここで，

Y TE ≡ h

ωµ
= k

ωµ
· h
k

= Yw
h

k

(
≡ 1
ZTE

)
(4.48)

Yw = k

ωµ
=
√
ε

µ
= 1
Zw

(4.49)

ベッセル関数の関係式

dJm(γρ)
dρ

= γ

2{Jm−1(γρ) − Jm+1(γρ)} (4.50)

Jm(γρ) = γρ

2m{Jm−1(γρ) + Jm+1(γρ)} (4.51)

を用いて微分等を行うと，

∂ψγ,m,h

∂ρ
= ∂Jm(γρ)

∂ρ
· sin
cos mφ · e−jhz

= γ

2{Jm−1(γρ) − Jm+1(γρ)} · sin
cos mφ · e−jhz (4.52)

1
ρ

∂ψγ,m,h

∂φ
= 1
ρ
Jm(γρ) ·m cos

− sin mφ · e−jhz

= 1
ρ

[
γρ

2m{Jm−1(γρ) + Jm+1(γρ)}
]
m

cos
− sin mφ · e−jhz

= γ

2{Jm−1(γρ) + Jm+1(γρ)} · cos
− sin mφ · e−jhz (4.53)
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これより，TE（no Ez）波の各成分は，

ETE
ρ = ∓

∑
m

ˆ
γ

fTE
m (γ)γ2{Jm−1(γρ) + Jm+1(γρ)}

·cos
sin mφ · e−jhzdγ (4.54)

ETE
φ = ±

∑
m

ˆ
γ

fTE
m (γ)γ2{Jm−1(γρ) − Jm+1(γρ)}

· sin
− cos mφ · e−jhzdγ (4.55)

HTE
ρ = ∓Yw

∑
m

ˆ
γ

fTE
m (γ)h

k

γ

2{Jm−1(γρ) − Jm+1(γρ)}

· sin
− cos mφ · e−jhzdγ (4.56)

HTE
φ = ∓Yw

∑
m

ˆ
γ

fTE
m (γ)h

k

γ

2{Jm−1(γρ) + Jm+1(γρ)}

·cos
sin mφ · e−jhzdγ (4.57)

HTE
z = ± 1

jωµ

∑
m

ˆ
γ

fTE
m (γ)γ2Jm(γρ) sin

− cos mφ · e−jhzdγ (4.58)

ここで，

cos
(
mφ− π

2

)
= cosmφ cos π2 + sinmφ sin π2
= sinmφ (4.59)

より，

cos(mφ+ αm) ≡ cos
sin mφ

(αm = 0)
(αm = −π/2) (4.60)

ここで，

f̄TE
m ≡ ∓1

k
fTE

m (4.61)

とおく．また，

sin
(
mφ− π

2

)
= sinmφ cos π2 + cosmφ sin π2
= − cosmφ (4.62)

ゆえ，

sin(mφ+ αm) = sin
− cos mφ

(αm = 0)
(αm = −π/2) (4.63)
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また，

Ywf
TE
m

h

k
= ∓Ywf̄

TE
m h (4.64)

これより，

ETE
ρ =

∑
m

ˆ
γ

f̄TE
m (γ)kγ2{Jm−1(γρ) + Jm+1(γρ)}

· cos(mφ+ αm)e−jhzdγ (4.65)

ETE
φ = −

∑
m

ˆ
γ

f̄TE
m (γ)kγ2{Jm−1(γρ) − Jm+1(γρ)}

· sin(mφ+ αm)e−jhzdγ (4.66)

HTE
ρ = Yw

∑
m

ˆ
γ

f̄TE
m (γ)hγ2{Jm−1(γρ) − Jm+1(γρ)}

· sin(mφ+ αm)e−jhzdγ (4.67)

HTE
φ = Yw

∑
m

ˆ
γ

f̄TE
m (γ)hγ2{Jm−1(γρ) + Jm+1(γρ)}

· cos(mφ+ αm)e−jhzdγ (4.68)

HTE
z = jYw

∑
m

ˆ
γ

f̄TE
m (γ)γ2Jm(γρ) sin(mφ+ αm)e−jhzdγ (4.69)
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4.4 TM波

TM波の磁界の z 成分は HTM
z = 0，電界の z 成分 ETM

z は，

ETM
z = 1

jωε

(
∂2

∂z2 + k2
)
ψ

=
∑
m

ˆ
γ

fTM
m (γ) 1

jωε

(
∂2

∂z2 + k2
)
ψγ,m,hdγ

=
∑
m

ˆ
γ

fTM
m (γ) γ

2

jωε
ψγ,m,hdγ (4.70)

ただし，fTM
m (γ)は TM波の円筒波スペクトラムを示す．また，z 軸に直交する横断面内磁

界成分は，

HTM
ρ = 1

ρ

∂ψ

∂φ
=
∑
m

ˆ
γ

fTM
m (γ)1

ρ

∂ψγ,m,h

∂φ
dγ (4.71)

HTM
φ = −∂ψ

∂ρ
=
∑
m

ˆ
γ

fTM
m (γ)

(
−∂ψγ,m,h

∂ρ

)
dγ (4.72)

TM波の横断面内電界成分は，

ETM
ρ = 1

jωε

∂2ψ

∂ρ∂z

=
∑
m

ˆ
γ

fTM
m (γ) 1

jωε

∂2ψγ,m,h

∂ρ∂z
dγ

=
∑
m

ˆ
γ

fTM
m (γ)−jh

jωε

∂ψγ,m,h

∂ρ
dγ

=
∑
m

ˆ
γ

fTM
m (γ)ZTM

(
−∂ψγ,m,h

∂ρ

)
dγ (4.73)

ETM
φ = 1

jωε

1
ρ

∂2ψ

∂φ∂z

=
∑
m

ˆ
γ

fTM
m (γ) 1

jωε

1
ρ

∂2ψγ,m,h

∂φ∂z
dγ

=
∑
m

ˆ
γ

fTM
m (γ)−jh

jωε

1
ρ

∂ψγ,m,h

∂φ
dγ

=
∑
m

ˆ
γ

fTM
m (γ)ZTM

(
−1
ρ

∂ψγ,m,h

∂φ

)
dγ (4.74)
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ここで，

ZTM ≡ h

ωε
= k

ωε
· h
k

= Zw
h

k

(
≡ 1
Y TM

)
(4.75)

Zw = k

ωε
=
√
µ

ε
= 1
Yw

(4.76)

これより，TM（no Hz）波の各成分は，

ETM
ρ = −Zw

∑
m

ˆ
γ

fTM
m (γ)h

k

γ

2{Jm−1(γρ) − Jm+1(γρ)}

·sincos mφ · e−jhzdγ (4.77)

ETM
φ = −Zw

∑
m

ˆ
γ

fTM
m (γ)h

k

γ

2{Jm−1(γρ) + Jm+1(γρ)}

· cos
− sin mφ · e−jhzdγ (4.78)

E
TM
z = 1

jωε

∑
m

ˆ
γ

f
TM
m (γ)γ2Jm(γρ) sin

cos mφ · e−jhzdγ (4.79)

HTM
ρ =

∑
m

ˆ
γ

fTM
m (γ)γ2{Jm−1(γρ) + Jm+1(γρ)}

· cos
− sin mφ · e−jhzdγ (4.80)

HTM
φ = −

∑
m

ˆ
γ

fTM
m (γ)γ2{Jm−1(γρ) − Jm+1(γρ)}

·sincos mφ · e−jhzdγ (4.81)
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上側と下側を入れ換えて，

ETM
ρ = −Zw

∑
m

ˆ
γ

fTM
m (γ)h

k

γ

2{Jm−1(γρ) − Jm+1(γρ)}

·cos
sin mφ · e−jhzdγ (4.82)

ETM
φ = −Zw

∑
m

ˆ
γ

fTM
m (γ)h

k

γ

2{Jm−1(γρ) + Jm+1(γρ)}

·− sin
cos mφ · e−jhzdγ (4.83)

E
TM
z = 1

jωε

∑
m

ˆ
γ

f
TM
m (γ)γ2Jm(γρ) cos

sin mφ · e−jhzdγ (4.84)

HTM
ρ =

∑
m

ˆ
γ

fTM
m (γ)γ2{Jm−1(γρ) + Jm+1(γρ)}

·− sin
cos mφ · e−jhzdγ (4.85)

HTM
φ = −

∑
m

ˆ
γ

fTM
m (γ)γ2{Jm−1(γρ) − Jm+1(γρ)}

·cos
sin mφ · e−jhzdγ (4.86)

また，

cos(mφ+ αm) ≡ cos
sin mφ

(αm = 0)
(αm = −π/2) (4.87)

f̄TM
m ≡ Zw

k
fTM

m (4.88)

とおくと，

− sin(mφ+ αm) = − sin
cos mφ

(αm = 0)
(αm = −π/2) (4.89)

fTM
m = k

Zw
f̄TM

m = Ywf̄
TM
m k (4.90)
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これより，

ETM
ρ = −

∑
m

ˆ
γ

f̄TM
m (γ)hγ2{Jm−1(γρ) − Jm+1(γρ)}

· cos(mφ+ αm)e−jhzdγ (4.91)

ETM
φ =

∑
m

ˆ
γ

f̄TM
m (γ)hγ2{Jm−1(γρ) + Jm+1(γρ)}

· sin(mφ+ αm)e−jhzdγ (4.92)

ETM
z = −j

∑
m

ˆ
γ

f̄TM
m (γ)γ2Jm(γρ) cos(mφ+ αm)e−jhzdγ (4.93)

HTM
ρ = −Yw

∑
m

ˆ
γ

f̄TM
m (γ)kγ2{Jm−1(γρ) + Jm+1(γρ)}

· sin(mφ+ αm)e−jhzdγ (4.94)

HTM
φ = −Yw

∑
m

ˆ
γ

f̄TM
m (γ)kγ2{Jm−1(γρ) − Jm+1(γρ)}

· cos(mφ+ αm)e−jhzdγ (4.95)
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CHAPTER 5

ビームモード展開法

　ビームモードによって電磁界を展開し，アンテナの設計・解析に応用する方法につ
いて説明する．まず，任意の電磁界が TE波と TM波の合成として表現できること
を示し，それらの成分を円筒波スペクトラムとラゲルの多項式で展開する基礎理論
を詳細に解説する．さらに，平面波面の近似を行い，波面の曲率半径やビーム半径と
いったビームモードの重要なパラメータがどのように定義され，計算されるかを示
す．そして，これらの理論をホーンアンテナの設計に応用し，軸長最小化や位相中心
の決定など，実践的な設計例を通じてその有用性を示していく．

5.1 TE波とTM波の合成

任意の電磁界は，TE波と TM波の合成によって表すことができるので，まず，電界を次
のように定義する．

E = ETE + ETM

=
(
ETE

ρ aρ + ETE
φ aφ

)
+
(
ETM

ρ aρ + ETM
φ aφ + ETM

z az

)
=
(
ETE

ρ + ETM
ρ

)
aρ +

(
ETE

φ + ETM
φ

)
aφ + ETM

z az

= Eρaρ + Eφaφ + Ezaz (5.1)

同様にして，磁界は

H = HTE + HTM

=
(
HTE

ρ aρ +HTE
φ aφ +HTE

z az

)
+
(
HTM

ρ aρ +HTM
φ aφ

)
=
(
HTE

ρ +HTM
ρ

)
aρ +

(
HTE

φ +HTM
φ

)
aφ +HTE

z az

= Hρaρ +Hφaφ +Hzaz (5.2)
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これより，電界の ρ方向に沿う成分 Eρ，および φ方向に沿う成分 Eφ は，次のようになる．

Eρ = ETE
ρ + ETM

ρ

=
∑
m

{ˆ
γ

γ

2
(
f̄TE

m (γ)RTE
Eρ + f̄TM

m (γ)RTM
Eρ

)
e−jhzdγ

}
· cos(mφ+ αm) (5.3)

Eφ = ETE
φ + ETM

φ

=
∑
m

{ˆ
γ

γ

2
(
f̄TE

m (γ)RTE
Eφ + f̄TM

m (γ)RTM
Eφ

)
e−jhzdγ

}
· sin(mφ+ αm) (5.4)

ここで，

R

{TE
TM
}

Eρ ≡ ±
{
k

h

}
{Jm−1(γρ) ± Jm+1(γρ)} (5.5)

R

{TE
TM
}

Eφ ≡ ∓
{
k

h

}
{Jm−1(γρ) ∓ Jm+1(γρ)} (5.6)

とおくと，

f̄TE
m RTE

E
{

ρ
φ

} + f̄TM
m RTM

E
{

ρ
φ

}
≡ f (+)

m

(
RTE

E
{

ρ
φ

} +RTM
E
{

ρ
φ

})+ f (−)
m

(
RTE

E
{

ρ
φ

} −RTM
E
{

ρ
φ

})
≡ f (+)

m R
(+)
E
{

ρ
φ

} + f (−)
m R

(−)
E
{

ρ
φ

}
=
(
f (+)

m + f (−)
m

)
RTE

E
{

ρ
φ

} +
(
f (+)

m − f (−)
m

)
RTM

E
{

ρ
φ

} (5.7)

ただし，f̄TE
m ，f̄TM

m は，TE波，TM波の円筒波スペクトラムを示し，新たに，スペクトラム
f (+)

m ，f (−)
m を定義している．

f̄TE
m = f (+)

m + f (−)
m (5.8)

f̄TM
m = f (+)

m − f (−)
m (5.9)

よって，

f (+)
m = f̄TE

m + f̄TM
m (5.10)

f (−)
m = f̄TE

m − f̄TM
m (5.11)

ここで，

R
(+)
E
{

ρ
φ

} = RTE
E
{

ρ
φ

} +RTM
E
{

ρ
φ

} (5.12)

R
(−)
E
{

ρ
φ

} = RTE
E
{

ρ
φ

} −RTM
E
{

ρ
φ

} (5.13)
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これより，

R
(+)
Eρ RTE

Eρ +RTM
Eρ

= k{Jm−1(γρ) + Jm+1(γρ)} − h{Jm−1(γρ) − Jm+1(γρ)}
= (k + h)Jm+1(γρ) + (k − h)Jm−1(γρ) (5.14)

R
(−)
Eρ = RTE

Eρ −RTM
Eρ

= k{Jm−1(γρ) + Jm+1(γρ)} + h{Jm−1(γρ) − Jm+1(γρ)}
= (k − h)Jm+1(γρ) + (k + h)Jm−1(γρ) (5.15)

R
(+)
Eφ = RTE

Eφ +RTM
Eφ

= −k{Jm−1(γρ) − Jm+1(γρ)} + h{Jm−1(γρ) + Jm+1(γρ)}
= (k + h)Jm+1(γρ) − (k − h)Jm−1(γρ) (5.16)

R
(−)
Eφ = RTE

Eφ −RTM
Eφ

= −k{Jm−1(γρ) − Jm+1(γρ)} − h{Jm−1(γρ) + Jm+1(γρ)}
= (k − h)Jm+1(γρ) − (k + h)Jm−1(γρ) (5.17)

また，磁界の ρ方向に沿う成分 Hρ，および φ方向に沿う成分 Hφ は，

Hρ = HTE
ρ +HTM

ρ

= Yw

∑
m

{ˆ
γ

γ

2
(
f̄TE

m (γ)RTE
Hρ + f̄TM

m (γ)RTM
Hρ

)
e−jhzdγ

}
· sin(mφ+ αm)

≡ Yw

∑
m

{ˆ
γ

γ

2
(
f (+)

m (γ)R(+)
Hρ + f (−)

m (γ)R(−)
Hρ

)
e−jhzdγ

}
· sin(mφ+ αm) (5.18)

ここで，

R

{TE
TM
}

Hρ ≡ ±
{
h

k

}
{Jm−1(γρ) ∓ Jm+1(γρ)} (5.19)

これより，

R
(+)
Hρ = RTE

Hρ +RTM
Hρ

= h{Jm−1(γρ) − Jm+1(γρ)} − k{Jm−1(γρ) + Jm+1(γρ)}
= −(k + h)Jm+1(γρ) − (k − h)Jm−1(γρ)
= −R(+)

Eρ (5.20)

R
(−)
Hρ = RTE

Hρ −RTM
Hρ

= h{Jm−1(γρ) − Jm+1(γρ)} + k{Jm−1(γρ) + Jm+1(γρ)}
= (k − h)Jm+1(γρ) + (k + h)Jm−1(γρ)
= R

(−)
Eρ (5.21)
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また，

Hφ = HTE
φ +HTM

φ

= Yw

∑
m

{ˆ
γ

γ

2
(
f̄TE

m (γ)RTE
Hφ + f̄TM

m (γ)RTM
Hφ

)
e−jhzdγ

}
· cos(mφ+ αm)

≡ Yw

∑
m

{ˆ
γ

γ

2
(
f (+)

m (γ)R(+)
Hφ + f (−)

m (γ)R(−)
Hφ

)
e−jhzdγ

}
· cos(mφ+ αm) (5.22)

ここで，

R

{TE
TM
}

Hφ ≡ ±
{
h

k

}
{Jm−1(γρ) ± Jm+1(γρ)} (5.23)

これより，

R
(+)
Hφ = RTE

Hφ +RTM
Hφ

= h{Jm−1(γρ) + Jm+1(γρ)} − k{Jm−1(γρ) − Jm+1(γρ)}
= (k + h)Jm+1(γρ) − (k − h)Jm−1(γρ)
= R

(+)
Eφ (5.24)

R
(−)
Hφ = RTE

Hφ −RTM
Hφ

= h{Jm−1(γρ) + Jm+1(γρ)} + k{Jm−1(γρ) − Jm+1(γρ)}
= −(k − h)Jm+1(γρ) + (k + h)Jm−1(γρ)
= −R(−)

Eφ (5.25)

z 成分については，

Ez = ETM
z = −j

∑
m

{ˆ
γ

f̄TM
m (γ)γ2Jm(γρ)e−jhzdγ

}
cos(mφ+ αm)

= −j
∑
m

{ˆ
γ

(
f (+)

m (γ) − f (−)
m (γ)

)
γ2Jm(γρ)e−jhzdγ

}
cos(mφ+ αm)

=
∑
m

(
E(+)

zm + E(−)
zm

)
cos(mφ+ αm)

ここで，

E(±)
zm = ∓j

ˆ
γ

f (±)
m (γ)e−jhzJm(γρ)γ2dγ (5.26)
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また，

Hz = HTE
z = jYw

∑
m

{ˆ
γ

f̄TE
m (γ)γ2Jm(γρ)e−jhzdγ

}
sin(mφ+ αm)

= jYw

∑
m

{ˆ
γ

(
f (+)

m (γ) + f (−)
m (γ)

)
γ2Jm(γρ)e−jhzdγ

}
sin(mφ+ αm)

≡
∑
m

(
H(+)

zm +H(−)
zm

)
sin(mφ+ αm)

ここで，

H(±)
zm = jYw

ˆ
γ

f (±)
m (γ)e−jhzJm(γρ)γ2dγ = ∓YwE

(±)
zm (5.27)

これより，

Eρ =
∑
m

(
E(+)

ρm + E(−)
ρm

)
cos(mφ+ αm) ≡

∑
m

(
Ê(+)

ρm,c + Ê(−)
ρm,c

)
(5.28)

Eφ =
∑
m

(
E

(+)
φm + E

(−)
φm

)
sin(mφ+ αm) ≡

∑
m

(
Ê

(+)
φm,c + Ê

(−)
φm,c

)
(5.29)

Ez =
∑
m

(
E(+)

zm + E(−)
zm

)
cos(mφ+ αm) ≡

∑
m

(
Ê(+)

zm,c + Ê(−)
zm,c

)
(5.30)

ここで，

E(±)
ρm = 1

2

ˆ ∞

0
f (±)

m (γ)
{

(k ± h)Jm+1(γρ) + (k ∓ h)Jm−1(γρ)
}

·e−jhzγdγ (5.31)

E
(±)
φm = 1

2

ˆ ∞

0
f (±)

m (γ)
{

(k ± h)Jm+1(γρ) − (k ∓ h)Jm−1(γρ)
}

·e−jhzγdγ (5.32)

E(±)
zm = ∓j

ˆ ∞

0
f (±)

m (γ)e−jhzJm(γρ)γ2dγ (5.33)

また，

Hρ =
∑
m

(
H(+)

ρm +H(−)
ρm

)
sin(mφ+ αm) ≡

∑
m

(
Ĥ(+)

ρm,c + Ĥ(−)
ρm,c

)
= Yw

∑
m

(
−E(+)

ρm + E(−)
ρm

)
sin(mφ+ αm) (5.34)

Hφ =
∑
m

(
H

(+)
φm +H

(−)
φm

)
cos(mφ+ αm) ≡

∑
m

(
Ĥ

(+)
φm,c + Ĥ

(−)
φm,c

)
= Yw

∑
m

(
E

(+)
φm − E

(−)
φm

)
cos(mφ+ αm) (5.35)

Hz =
∑
m

(
H(+)

zm +H(−)
zm

)
sin(mφ+ αm) ≡

∑
m

(
Ĥ(+)

zm,c + Ĥ(−)
zm,c

)
= Yw

∑
m

(
−E(+)

zm + E(−)
zm

)
sin(mφ+ αm) (5.36)
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ここで，

Ê(±)
ρm,c = E(±)

ρm cos(mφ+ αm) (5.37)

Ê
(±)
φm,c = E

(±)
φm sin(mφ+ αm) (5.38)

Ê(±)
zm,c = E(±)

zm cos(mφ+ αm) (5.39)

また，

Ĥ(±)
ρm,c = ∓

√
ε

µ
E(±)

ρm sin(mφ+ αm) (5.40)

Ĥ
(±)
φm,c = ±

√
ε

µ
E

(±)
φm cos(mφ+ αm) (5.41)

Ĥ(±)
zm,c = ∓

√
ε

µ
E(±)

zm sin(mφ+ αm) (5.42)
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5.2 平面波面の近似

TE波と TM波を合成した電界分布 E(±)
ρm を再記して，

E(±)
ρm = 1

2

ˆ ∞

0
f (±)

m (γ)
{

(k ± h)Jm+1(γρ) + (k ∓ h)Jm−1(γρ)
}

·e−jhzγdγ (5.43)

ここでは，波面が平面波に近い場合を考え，z 方向の波数成分 hを次のように近似する．

h =
√
k2 − γ2 ' k − γ2

2k (5.44)

変形して，

k ± h '
{

2k
0

}
∓ γ2

2k (5.45)

これより，式 (5.43)を近似すると次のようになる．

E(±)
ρm ' 1

2e
−jkz

ˆ ∞

0
f (±)

m (γ)

·
[
2kJm±1(γρ) ∓ γ2

2k {Jm+1(γρ) − Jm−1(γρ)}
]
ej γ2

2k
zγdγ (5.46)

さらに，第 2項を無視して次式が得られる．

E(±)
ρm ' ke−jkz

ˆ ∞

0
f (±)

m (γ)Jm±1(γρ)ej γ2
2k

zγdγ (5.47)

同様にして，

E
(±)
φm = 1

2

ˆ ∞

0
f (±)

m (γ){(k ± h)Jm+1(γρ) − (k ∓ h)Jm−1(γρ)}e−jhzγdγ

' 1
2e

−jkz

ˆ ∞

0
f (±)

m (γ)

·
[
±2kJm±1(γρ) ∓ γ2

2k {Jm+1(γρ) + Jm−1(γρ)}
]
ej γ2

2k
zγdγ

' ±ke−jkz

ˆ ∞

0
f (±)

m (γ)Jm±1(γρ)ej γ2
2k

zγdγ (5.48)

これより，電界の ρ成分と φ成分の関係は，

E(±)
ρm = ±E(±)

φm (5.49)
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また, 同様にして，z 成分についても，

E(±)
zm = ∓j

ˆ ∞

0
f (±)

m (γ)e−jhzJm(γρ)γ2dγ

' ∓jke−jkz

ˆ ∞

0
f (±)

m (γ)Jm(γρ)ej γ2
2k

z γ
2

k
dγ (5.50)

ただし，係数 f (±)
m (γ)は円筒波スペクトラムを示す．
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5.3 ラゲルの多項式による電磁界の展開

5.3.1 電磁界の展開

円筒波スペクトラム f (±)
m (γ) を，次のラゲルの多項式 Ln,l(x) を用いて展開する．まず，

すでに求めた E(±)
ρm，E

(±)
φm の式

E(±)
ρm = ±E(±)

φm = ke−jkz

ˆ ∞

0
f (±)

m (γ)Jm±1(γρ)ej γ2
2k

zγdγ (5.51)

における円筒波スペクトラム f (±)
m (γ)を，正規直交化したラゲルの多項式

e
− 1

2

(
γ2

γ2
0

) (
γ

γ0

)m±1

Ln,m±1

(
γ2

γ2
0

)
(5.52)

により次のように展開する.

f (±)
m (γ) =

∞∑
n=0

g(±)
n,m

(
γ

γ0

)m±1

Ln,m±1

(
γ2

γ2
0

)
e

− 1
2

(
γ2

γ2
0

)
(5.53)

係数 α(±)
n,m を求めるため，上に示した f (±)

m (γ)の両辺に

(
γ

γ0

)m±1+1

Ln′,m±1

(
γ2

γ2
0

)
e

− 1
2

(
γ2

γ2
0

)
(5.54)

を乗じ，(γ/γ0)について積分すると，直交性を用いて次式が得られる．

α(±)
n,m = 2 · n!

(n+m± 1)!

·
ˆ ∞

0
f (±)

m (γ)
(
γ

γ0

)m±1+1

Ln,m±1

(
γ2

γ2
0

)
e

− 1
2

γ2

γ2
0 d

(
γ

γ0

)
(5.55)

なお，n′ は nに置き換えている．ラゲルの多項式で展開した式 (5.53)の f (±)
m (γ) を E(±)

ρm に
代入すると，

E(±)
ρm = ke−jkz

∞∑
n=0

g(±)
n,m

·
ˆ ∞

0

(
γ

γ0

)m±1

Ln,m±1

(
γ2

γ2
0

)
Jm±1(γρ)e

− 1
2

(
1−j

γ2
0 z

k

)
γ2

γ2
0 γdγ (5.56)

いま，

m̄ ≡ m± 1 (5.57)
X ≡ γ/γ0 (5.58)
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とおき，上式の積分項を，

I =
ˆ ∞

0
Xm̄Ln,m̄(X2)Jm̄(γ0ρX)e− 1

2 (1−j
γ2

0 z

k
)X2(γ0X)γ0dX (5.59)

とすると，E(±)
ρm は次のようになる．

E(±)
ρm = ke−jkz

∞∑
n=0

g(±)
n,mI (5.60)

この積分を実行すると次のようになる（問題参照）．

I = (−1)n γm̄+2
0

(1 − jv)m̄+1 e
j2n tan−1 vρm̄Ln,m̄

(
γ2

0ρ
2

1 + v2

)
e− 1

2
γ2

0 ρ2

1−jv (5.61)

ここで，

v = γ2
0z

k
(5.62)

したがって，E(±)
ρm は次のようになる．

E(±)
ρm = ke−jkz

∞∑
n=0

g(±)
n,m(−1)n γm̄+2

0
(1 − jv)m̄+1 e

j2n tan−1 vρm̄

·Ln,m̄

(
γ2

0ρ
2

1 + v2

)
e− 1

2
γ2

0 ρ2

1−jv (5.63)

ここで，

v = γ2
0z

k
(5.64)

m̄ = m± 1 (5.65)

より，式は複雑になるが次の形にもかける．

E(±)
ρm = ke−jkz

∞∑
n=0

α(±)
n,m(−1)n γm±1+2

0(
1 − j

γ2
0z
k

)m±1+1 · ej2n tan−1 γ2
0 z

k ρm±1

·Ln,m±1

 γ2
0ρ

2

1 +
(

γ2
0z
k

)2

 e− 1
2

γ2
0 ρ2

1−j
γ2

0 z

k (5.66)

いま，E(±)
ρm を次のようにおく．

E(±)
ρm =

∞∑
n=0

g(±)
n,mE

(±)
ρm,n (5.67)
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の形で表すと，E(±)
ρm,n（elementary beams）は次のようになる．

E(±)
ρm,n = ke−jkz(−1)n γm±1+2

0(
1 − j

γ2
0z
k

)m±1+1 · ej2n tan−1 γ2
0 z

k ρm±1

·Ln,m±1

 γ2
0ρ

2

1 +
(

γ2
0z
k

)2

 e− 1
2

γ2
0 ρ2

1−j
γ2

0 z

k (5.68)

あるいは，

E(±)
ρm,n = e−jkz(−1)nγ2

0k
um±1

(1 − jv)m±1+1 e
j2n tan−1 v

·Ln,m±1

(
u2

1 + v2

)
e− 1

2
u2

1−jv (5.69)

これを，ビームモード（beam-mode）という．ここで，

u ≡ γ0ρ =
(
γ0

k

)
kρ (5.70)

v = γ2
0
k
z =

(
γ0

k

)2
kz (5.71)

さらに，

1 − jv =
(
1 + v2

) 1
2 e−j tan−1 v (5.72)

u2

1 − jv
= u2(1 + jv)

1 + v2 = u2

1 + v2 + j
u2v

1 + v2 (5.73)

より，

E(±)
ρm,n = e−jkz(−1)nγ2

0k
um±1

(1 + v2) 1
2 (m±1+1)e−j(m±1+1) tan−1 v

·ej2n tan−1 vLn,m±1

(
u2

1 + v2

)
e

− 1
2

(
u2

1+v2 +j u2v

1+v2

)
(5.74)

いま，ビームモードの正規化係数を

A(±)
m,n ≡ (−1)nγ2

0k (5.75)

とおき，若干変形すると，E(±)
ρm,n は次のようになる．

E(±)
ρm,n = e−jkzA(±)

m,n

um±1

(1 + v2) 1
2 (m±1+1)

·Ln,m±1

(
u2

1 + v2

)
· e− 1

2
u2

1+v2 +j{(2n+m±1+1) tan−1 v− 1
2

u2v

1+v2 } (5.76)
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同様に E
(±)
φm についても展開すると，

E
(±)
φm =

∞∑
n=0

g(±)
n,mE

(±)
φm,n (5.77)

このようにして定義した E
(±)
φm,n は，

E
(±)
φm,n = ±E(±)

ρm,n (5.78)

磁界についても，H(±)
ρm,n，H

(±)
φm,n を同様に定義すると，次のようになる．

H(±)
ρm,n = ∓

√
ε

µ
E(±)

ρm,n = −
√
ε

µ
E

(±)
φm,n = ∓H(±)

φm,n (5.79)

そこで，

E(±)
m,n ≡ E(±)

ρm,n (5.80)

とおくと，

E
(±)
φm,n = ±E(±)

m,n (5.81)

H(±)
ρm,n = ∓

√
ε

µ
E(±)

m,n = ∓H(±)
φm,n (5.82)

これより，次数 m，n のビームモードをベクトル表示した E(±)
m,n，H(±)

m,n は，次のように
なる．

E(±)
m,n = E(±)

ρm,n cos(mφ+ αm)aρ + E
(±)
φm,n sin(mφ+ αm)aφ

= E(±)
m,n [cos(mφ+ αm)aρ ± sin(mφ+ αm)aφ] (5.83)

H(±)
m,n = H(±)

ρm,n sin(mφ+ αm)aρ +H
(±)
φm,n cos(mφ+ αm)aφ

= ∓
√
ε

µ
E(±)

m,n [sin(mφ+ αm)aρ ∓ cos(mφ+ αm)aφ] (5.84)

このとき，異なるビームモードのスカラー積は，

E(±)
m,n · E

(±)∗
m′,n′ = E(±)

m,nE
(±)∗
m′,n′ cos{(m−m′)φ+ (αm − αm′)} (5.85)

E(±)
m,n · E

(∓)∗
m′,n′ = E(±)

m,nE
(∓)∗
m′,n′ cos{(m+m′)φ+ (αm + αm′)} (5.86)
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5.3.2 ビームモードの正規化

伝送電力に関わる積分は次のようになる．¨
{E(±)

m,n × H
(±)∗
m′,n′} · azdS

=
√
ε

µ

¨
E(±)

m,n · E
(±)∗
m′,n′dS

=
√
ε

µ

ˆ 2π

0
cos{(m−m′)φ+ (αm − αm′)}dφ

ˆ ∞

0
E(±)

m,nE
(±)∗
m′,n′ρdρ

=
√
ε

µ
2πδm,m′

ˆ ∞

0
E(±)

m,nE
(±)∗
m,n′ρdρ

=
√
ε

µ
A(±)

m,nA
(±)∗
m′,n′

π

γ2
0

(n+m± 1)!
n! δn,n′δm,m′ (5.87)

ここで，上式の積分項は，
ˆ ∞

0
E(±)

m,nE
(±)∗
m,n′ρdρ = 1

2γ2
0
A(±)

m,nA
(±)∗
m,n′δn,n′

(n+m± 1)!
n! (5.88)

これより，異なるビームモードの間には直交性があることがわかる．

5.3.3 ビームモードの電力

ビームモードの電力 P (±)
n,m は，

P (±)
n,m = 1

2

¨
{E(±)

m,n × H(±)∗
m,n } · azdS (5.89)

によって求められるから，m 6= 0 のとき，

P (±)
n,m = 1

2

√
ε

µ
A(±)

m,nA
(±)∗
m,n

π

γ2
0

(n+m± 1)!
n! (5.90)

m = 0 のとき,

P
(+)
n,0 = 1

2

√
ε

µ
A

(+)
0,nA

(+)∗
0,n

π

γ2
0

(n± 1)!
n! (5.91)

伝送電力は，このようにして得られた各々のビームモードの電力の和により求めることがで
きる．ビームモードの正規化条件を次のようにする．

P (±)
n,m = 1

2

√
ε

µ
(5.92)

125



正規化条件より，

1 =
∣∣∣A(±)

m,n

∣∣∣2 π

γ2
0

(n+m± 1)!
n! (5.93)

これより，正規化係数 A(±)
m,n は次のように決まる．

A(±)
m,n = γ0

√
n!

π(n+m± 1)! (5.94)

したがって，E(±)
ρm,n , E(±)

φm,n は次のようになる．

E(±)
m,n = γ0

√
n!

π(n+m± 1)!
um±1

(1 + v2) 1
2 (m±1+1)Ln,m±1

(
u2

1 + v2

)

·e− 1
2

u2
1+v2 +j{(2n+m±1+1) tan−1 v− 1

2
u2v

1+v2 }
e−jkz (5.95)

問題

　式 (5.61)を導出せよ．

� 略解 まず，b ≡ γ0ρ，a2 ≡ 1
2(1 − j

γ2
0z
k ) とおくと, 積分項 I は次のようになる.

I = γ2
0

ˆ ∞

0
Xm̄+1Ln,m̄(X2)Jm̄(bX)e−a2X2

dX (5.96)

ここで,

Ln,m̄(X2) =
n∑

i=0

(
n+ m̄
n− i

)
(−1)i

i! X2i (5.97)

これより,

I = γ2
0

n∑
i=0

(
n+ m̄
n− i

)
(−1)i

i!

ˆ ∞

0
Xm̄+1+2iJm̄(bX)e−a2X2

dX (5.98)

いま，積分項 I ′ を

I ′ =
ˆ ∞

0
Xm̄+1+2iJm̄(bX)e−a2X2

dX (5.99)

とおき，次の積分公式を適用する．
ˆ ∞

0
e−a2x2

Jν(bx)xµ−1dx

=
Γ(µ+ν

2 )bν

2ν+1aµ+νΓ(ν + 1)1F1

(
µ+ ν

2 , ν + 1,− b2

4a2

)
(5.100)
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ここで，

1F1(α, β, z) =
∞∑

r=0

Γ(α + r)
Γ(α)

Γ(β)
Γ(β + r)

zr

r! (5.101)

よって

µ = m̄+ 1 + 2i+ 1 (5.102)
ν = m̄ (5.103)

とすれば,

α = µ+ ν

2 = m̄+ i+ 1 (5.104)

β = ν + 1 = m̄+ 1 (5.105)

これより, 積分項 I ′ は次のようになる.

I ′ =
ˆ ∞

0
Xm̄+1+2iJm̄(bX)e−a2X2

dX

= Γ(m̄+ i+ 1)bm̄

2m̄+1(a2)m̄+i+1Γ(m̄+ 1)

·
∞∑

r=0

Γ(m̄+ i+ 1 + r)
Γ(m̄+ i+ 1)

Γ(m̄+ 1)
Γ(m̄+ 1 + r)

1
r!

(
− b2

4a2

)r

= (m̄+ i)!bm̄

2m̄+1(a2)m̄+i+1m̄!

∞∑
r=0

(m̄+ i+ r)!
(m̄+ i)!

m̄!
(m̄+ r)!

1
r!

(
− b2

4a2

)r

= bm̄

(2a2)m̄+1(a2)i

∞∑
r=0

(m̄+ i+ r)!
(m̄+ r)!

1
r!

(
− b2

4a2

)r

(5.106)

さて, ラゲルの多項式 Ln,α(x)はロドリゲス表示より，次のようになる.

Ln,α(x) = exx−α

n!
dn

dxn
(e−xxn+α)

= exx−α

n!
dn

dxn


∞∑

p=0

(−x)p

p!

xn+α


= exx−α

n!

∞∑
p=0

(−1)p

p!
dn

dxn
(xn+α+p)

= exx−α

n!

∞∑
p=0

(−1)p

p!
(n+ α + p)!

(α + p)! xα+p

= ex

n!

∞∑
p=0

(n+ α + p)!
p!(α + p)! (−x)p (5.107)
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ここで,

x ≡ b2

4a2 (5.108)

p ≡ r (5.109)
α ≡ m̄ (5.110)
n ≡ i (5.111)

これより，Li,m̄( b2

4a2 )は次のようになる.

Li,m̄

(
b2

4a2

)
= e

b2
4a2

i!

∞∑
r=0

(i+ m̄+ r)!
r!(m̄+ r)!

(
− b2

4a2

)r

(5.112)

積分項 I ′ は次のようになる.

I ′ = bm̄

(2a2)m̄+1(a2)i
Li,m̄( b

2

4a2 ) i!
e

b2
4a2

= bm̄

(2a2)m̄+1(a2)i
i!e− b2

4a2
i∑

r=0

(
i+ m̄
i− r

)
(− b2

4a2 )r

r! (5.113)

よって，与式の積分 I は次のようになる.

I = γ2
0

n∑
i=0

(
n+ m̄
n− i

)
(−1)i

i! I ′

= γ2
0

n∑
i=0

(
n+ m̄
n− i

)
(−1)i

i!
bm̄

(2a2)m̄+1(a2)i
i!e− b2

4a2

·
i∑

r=0

(
i+ m̄
i− r

)
(− b2

4a2 )r

r!

= γ2
0e

− b2
4a2

bm̄

(2a2)m̄+1

n∑
i=0

i∑
r=0

(
n+ m̄
n− i

)(
i+ m̄
i− r

)
(−1)i

(a2)i

(− b2

4a2 )r

r!

= γ2
0e

− b2
4a2

bm̄

(2a2)m̄+1

·
n∑

i=0

i∑
r=0

(n+ m̄)!
(n− i)!(m̄+ i)!

(i+ m̄)!
(i− r)!(m̄+ r)!

(−1)i

(a2)i

(− b2

4a2 )r

r!

= γ2
0e

− b2
4a2

bm̄

(2a2)m̄+1

n∑
r=0

(n+ m̄)!
(m̄+ r)!

(− b2

4a2 )r

r!

·
n∑

i=r

1
(n− i)!(i− r)!

(−1)i

(a2)i
(5.114)

いま，

j ≡ i− r (5.115)
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とおくと,
n∑

i=r

1
(n− i)!(i− r)!

(−1)i

(a2)i
=

n−r∑
j=0

1
(n− r − j)!j!

(
− 1
a2

)j+r

=
(− 1

a2 )r

(n− r)!

n−r∑
j=0

(n− r)!
(n− r − j)!j!

(
− 1
a2

)j

=
(− 1

a2 )r

(n− r)!

n−r∑
j=0

(
n− r
j

)(
− 1
a2

)j

=
(− 1

a2 )r

(n− r)!

(
1 − 1

a2

)n−r

(5.116)

となり, I は，

I = γ2
0e

− b2
4a2

bm̄

(2a2)m̄+1

n∑
r=0

(n+ m̄)!
(m̄+ r)!

(− b2

4a2 )r

r!
(− 1

a2 )r

(n− r)!

(
1 − 1

a2

)n−r

= γ2
0e

− b2
4a2

bm̄

(2a2)m̄+1

(
1 − 1

a2

)n

·
n∑

r=0

(n+ m̄)!
(m̄+ r)!r!(n− r)!

(
b2

4a2
1
a2

1
1 − 1

a2

)r

(5.117)

ここで,

b2

4a2
1
a2

1
1 − 1

a2
= b2

4a2(a2 − 1) (5.118)

さらに，

v ≡ γ2
0z

k
(5.119)

とおくと，

a2 = 1
2

(
1 − j

γ2
0z

k

)
= 1

2(1 − jv) (5.120)

a2 − 1 = −1
2(1 + jv) (5.121)

4a2(a2 − 1) = −(1 + v2) (5.122)
b2

4a2 = 1
2

γ2
0ρ

2

(1 − jv) (5.123)

b2

4a2(a2 − 1) = − γ2
0ρ

2

1 + v2 (5.124)
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また，(
1 − 1

a2

)n

=
{

−1
2(1 + jv)

1
2(1 − jv)

}n

= (−1)n

(
1 + jv

1 − jv

)n

= (−1)n

(
ej tan−1 v

e−j tan−1 v

)n

= (−1)nej2n tan−1 v (5.125)

よって，I は次のようになる.

I = γ2
0e

− 1
2

γ2
0 ρ2

1−jv
(γ0ρ)m̄

(1 − jv)m̄+1 (−1)nej2n tan−1 v

·
n∑

r=0

(n+ m̄)!
(m̄+ r)!(n− r)!

1
r!

(
− γ2

0ρ
2

1 + v2

)r

= e− 1
2

γ2
0 ρ2

1−jv
γm̄+2

0 ρm̄

(1 − jv)m̄+1 (−1)nej2n tan−1 v
n∑

r=0

(
n+ m̄
n− r

) (− γ2
0ρ2

1+v2 )r

r!

= (−1)n γm̄+2
0

(1 − jv)m̄+1 e
j2n tan−1 vρm̄Ln,m̄

(
γ2

0ρ
2

1 + v2

)
(5.126)

ここで，

v = γ2
0z

k
(5.127)
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5.4 ビームモードのパラメータ

5.4.1 波面の曲率半径

ビームモードの位相項について見ると，

exp
[
j

{
(2n+m± 1 + 1) tan−1 v − 1

2
u2v

1 + v2

}]
≡ exp

[
j
{
ψ̄(±)

m,n(z) + ψ̂(ρ, z)
}]

(5.128)

ここで，

ψ̄(±)
m,n(z) = (2n+m± 1 + 1) tan−1

(
γ2

0
k
z

)
(5.129)

ψ̂(ρ, z) = −1
2
u2v

1 + v2 = −ρ2

2
vγ2

0
1 + v2 (5.130)

上式より，z = 0 では位相分布は一様となり，この位置をビームウエストという．また，
ψ̂(ρ, z)は波面を表し，モードの次数 m , n には依存しないことがわかる. いま，波面の曲
率半径 R̄ の球面波を考えたとき，θ が十分小さい場合，

k
(
R̄ −

√
R̄2 + ρ2

)
= k

R̄ − R̄

√
1 +

(
ρ

R̄

)2


' k

[
R̄ − R̄

{
1 + 1

2

(
ρ

R̄

)2
}]

= −ρ2

2
k

R̄
(5.131)

で近似でき，両者を比較すると，

k

R̄
= vγ2

0
1 + v2 (5.132)

これより，波面の曲率半径 R̄が定まり，次のようになる．

R̄ = 1 + v2

vγ2
0
k = 1 + v2

v2 z

= z
(

1 + 1
v2

)
(5.133)

5.4.2 ビーム半径

基本ビームモードは m̄ = 0, n = 0 によって与えられ，この基本ビームモードにおいて
ρ = 0 のピーク値から 1/e となる半径をビーム半径 ω と定めることにする．これより，
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m̄ = m± 1 = 0 のときは肩添字 (±)の下側 (−)のときの m = 1 より，

E
(−)
ρ,1,0|ρ=ω

E
(−)
ρ,1,0|ρ=0

= 1
e

(5.134)

よって，

L0,0

(
u2

1 + v2

)
e

− 1
2

u2
1+v2 = e

− 1
2

u2
1+v2 = e−1 (5.135)

これより，

1
2

(γ0ω)2

1 + v2 = 1 (5.136)

よって，

ω2 = 21 + v2

γ2
0

(5.137)

また，ビームモードの波面が平面となる z = 0（ビームウエスト）におけるビーム半径を ω0

とすると，v = 0 より，

ω2
0 = 2

γ2
0

(5.138)

これにより, ビーム半径 ω は次のようになる．

ω2 = 2
γ2

0
(1 + v2)

= ω2
0(1 + v2) (5.139)

一方，v は ω0 を用いて次のように表される．

v = γ2
0
k
z

= 2
kω2

0
z (5.140)

5.4.3 異なる位置でのビームモードの関係

ビーム半径 ω および波面の曲率半径 R̄ は，z の関数であり，ある位置 z = z1 における値
ω1 = ω(z1)，R̄1 = R̄(z1) が与えられれば，ビームウエストの位置 z = z0 およびそのビー
ムウエストでのビーム半径 ω0 が次式によって求められる．

z0 = z1 − R̄1

1 + 1
v2

1

(5.141)

ω0 = ω1√
1 + v2

1
(5.142)
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ここで，

v1 = πω2
1

λR̄1
(5.143)

ただし，λは自由空間波長を示す．このようにビームウエストが決まれば，さらに任意の位
置 z = z2 における値 ω2 = ω(z2)，R̄2 = R̄(z2) も求めることができる．

ω2 = ω0

√
1 + v2

2 (5.144)

R̄2 = (z2 − z0)
(

1 + 1
v2

2

)
(5.145)

ここで，

v2 = λ(z2 − z0)
πω2

0
(5.146)
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5.5 ビームモード関数

ビーム半径 ω，波面の曲率半径 R̄を用いると，

u2

1 + v2 = γ2
0

1 + v2ρ
2 = 2 ρ

2

ω2 (5.147)

1
2

u2

1 + v2 = − ρ2

ω2 (5.148)

u2v

1 + v2 = k

R̄
ρ2 (5.149)

また，

γ0
um±1

(1 + v2) 1
2 (m±1+1) =

(
u2

1 + v2

) 1
2 (m±1) (

γ2
0

1 + v2

) 1
2

=
(

2 ρ
2

ω2

)m±1
2 ( 2

ω2

) 1
2

(5.150)

これより，E(±)
m,n は次のように表される．

E(±)
m,n = 1√

2π

√
n!

(n+m± 1)!

( 2
ω

)(
2 ρ

2

ω2

)m±1
2

Ln,m±1

(
2 ρ

2

ω2

)

·e− ρ2

ω2 +j{(2n+m±1+1) tan−1 v− k
2R̄

ρ2}e−jkz (5.151)

ここで，

Fm±1,n(t) ≡
√

n!
(n+m± 1)!

(
2t2
)m±1

2 Ln,m±1
(
2t2
)
e−t2 (5.152)

t ≡ ρ

ω
(5.153)

とおくと，

E(±)
m,n = 1√

2π

( 2
ω

)
Fm±1,n(t) · ej{(2n+m±1+1) tan−1 v− k

2R̄
ρ2}e−jkz (5.154)

さらに，

m̄ ≡ m± 1 (5.155)

とおけば，

Fm̄,n(t) =
√

n!
(n+ m̄)!

√
2m̄tm̄Ln,m̄(2t2)e−t2 (5.156)
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この式をもとに低次の Fm̄,n(t)について具体的に考えてみる．まず，n = 0 のとき，

Fm̄,0(t) =
√

1
m̄!

√
2m̄tm̄L0,m̄

(
2t2
)
e−t2 =

√
1
m̄!

√
2m̄tm̄e−t2 (5.157)

より，

F0,0(t) = e−t2 [dominate mode] (5.158)
F1,0(t) =

√
2te−t2 [typical higher-order mode] (5.159)

F2,0(t) =
√

2t2e−t2 (5.160)

n = 1 のとき，

Fm̄,1(t) =
√

1
(1 + m̄)!

√
2m̄tm̄L1,m̄

(
2t2
)
e−t2 (5.161)

より，

F0,1(t) = L1,0(2t2)e−t2

= (1 − 2t2)e−t2 (5.162)
F1,1(t) = tL1,1(2t2)e−t2

= 2t(1 − t2)e−t2 [typical higher-order mode] (5.163)

F2,1(t) = 2√
6
t2L1,2(2t2)e−t2

= 2√
6
t2(3 − 2t2)e−t2 (5.164)

n = 2 のとき，

Fm̄,2(t) =
√

2
(2 + m̄)!

√
2m̄tm̄L2,m̄

(
2t2
)
e−t2 (5.165)

より，

F0,2(t) = L2,0(2t2)e−t2

= (1 − 4t2 + 2t4)e−t2 [typical higher-order mode] (5.166)

F1,2(t) = 2√
6
tL2,1(2t2)e−t2

= 2√
6
t(3 − 6t2 + 2t4)e−t2 (5.167)

F2,2(t) = 1√
3
t2L2,2(2t2)e−t2

= 2√
3
t2(3 − 4t2 + t4)e−t2 (5.168)
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5.5.1 正規直交化したラゲルの多項式の計算例

Fm̄,n(t) =
√

n!
(n+ m̄)!

√
2m̄tm̄Ln,m̄(2t2)e−t2 (5.169)
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図 5.1. 正規直交系にしたラゲルの多項式（m̄ = 0）
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図 5.2. 正規直交系にしたラゲルの多項式（m̄ = 1）
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図 5.3. 正規直交系にしたラゲルの多項式（m̄ = 2）
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図 5.4. 正規直交系にしたラゲルの多項式（m̄ = 3）
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5.6 ビームモード展開

ビームモード関数 e(±)
m,n を新たに次のように定義する．

E(±)
m,n ≡ 1√

2π
e(±)

m,ne
−jkz (5.170)

これより，

e(±)
m,n ≡ 2

ω
· Fm±1,n(t) · ej{(2n+m±1+1) tan−1 v− k

2R̄
ρ2} (5.171)

これに伴い，ビームモード係数 f (±)
m,n も新たに次のように定義する．

g(±)
m,n ≡

√
2πf (±)

m,n (5.172)

このとき，ビームモード展開された横断面内電界 ET は，次のように表される．

ET = Ete
−jkz = (Eρaρ + Eφaφ)e−jkz (5.173)

Eρ =
∞∑

m=1
E(−)

m cos(mφ+ α(−)
m ) +

∞∑
m=0

E(+)
m cos(mφ+ α(+)

m ) (5.174)

Eφ =
∞∑

m=1
−E(−)

m sin(mφ+ α(−)
m ) +

∞∑
m=0

E(+)
m sin(mφ+ α(+)

m ) (5.175)

E(±)
m =

∞∑
n=0

f (±)
m,ne

(±)
m,n (5.176)

e(±)
m,n =

√
n!

(n+m± 1)!

( 2
ω

)(
2 ρ

2

ω2

)m±1
2

Ln,m±1

(
2 ρ

2

ω2

)

·e− ρ2

ω2 +j{(2n+m±1+1) tan−1 v− k
2R̄

ρ2} (5.177)

上式において，mについて 0から∞までの和のところを，−∞から∞までの和の形にな
るよう変形する．

Eρ =
−1∑

m=−∞
E

(−)
|m| cos(−mφ+ α

(−)
|m| ) +

∞∑
m=0

E(+)
m cos(mφ+ α(+)

m ) (5.178)

Eφ =
−1∑

m=−∞
−E(−)

|m| sin(−mφ+ α
(−)
|m| ) +

∞∑
m=0

E(+)
m sin(mφ+ α(+)

m ) (5.179)

さらに，

Em ≡

 E(+)
m

E
(−)
|m|

, αm ≡

 α(+)
m (m = 0, 1, 2, · · · )

−α(−)
|m| (m = −1,−2, · · · ) (5.180)
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とおくと，次のようになる．

Eρ =
∞∑

m=−∞
Em cos(mφ+ αm) (5.181)

Eφ =
∞∑

m=−∞
Em sin(mφ+ αm) (5.182)

同様に，

f̄m,n ≡

 f (+)
m,n

f
(−)
|m|,n

, ēm,n ≡

 e(+)
m,n (m = 0, 1, 2, · · · )
e

(−)
|m|,n (m = −1,−2, · · · ) (5.183)

とおけば，

Em =
∞∑

n=0
f̄m,nēm,n (m = · · · − 2,−1, 0, 1, 2, · · · ) (5.184)

となり，これより，

Eρ =
∞∑

m=−∞

( ∞∑
n=0

f̄m,nēm,n

)
cos(mφ+ αm) (5.185)

Eφ =
∞∑

m=−∞

( ∞∑
n=0

f̄m,nēm,n

)
sin(mφ+ αm) (5.186)

5.6.1 ビームモードの伝送電力

電力 P は，ビームモード展開された電界 E より，

P = 1
2

¨
{E × H∗} · azdS

= 1
2

√
ε

µ

¨
E · E∗dS

= 1
2

√
ε

µ

ˆ 2π

0

ˆ ∞

0

(
|Eρ|2 + |Eφ|2

)
ρdρdφ (5.187)

すでに示した直交性より，

P = π

√
ε

µ

∞∑
m=−∞

∞∑
n=0

(
|f (c)

m,n|2 + |f (s)
m,n|2

)

= π

√
ε

µ

∞∑
m=−∞

∞∑
n=0

|f̄m,n|2 (5.188)

ここで，

f (c)
m,n = f̄m,n cosαm (5.189)
f (s)

m,n = f̄m,n sinαm (5.190)
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つまり，ビームモード係数 f̄m,n がわかれば，伝送電力 P が得られることになる．

5.6.2 電界の直角座標成分

電界 Et を直角座標系の成分で表すと，

Et =
∞∑

m=−∞
Emam

=
∞∑

m=−∞

( ∞∑
n=0

f̄m,nēm,n

){
(am · ax)ax + (am · ay)ay

}

=
∞∑

m=−∞

( ∞∑
n=0

f̄m,nēm,n

)

·
[

cos
{
(m+ 1)φ+ αm

}
ax + sin

{
(m+ 1)φ+ αm

}
ay

]
≡

∞∑
m=−∞

∞∑
n=0

f̄m,n

(
exm,nax + eym,nay

)

≡
∞∑

m=−∞

∞∑
n=0

f̄m,ne(R)
m,n (5.191)

ここで，

Em =
∞∑

n=0
f̄m,nēm,n (5.192)

am ≡ cos(mφ+ αm)aρ + sin(mφ+ αm)aφ (5.193)

また，

aρ = cosφax + sinφay (5.194)
aφ = − sinφax + cosφay (5.195)
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5.7 ビームモード係数

横断面内電界 ET のビームモード展開は，

ET = Ete
−jkz (5.196)

Et =
∞∑

m=−∞
Emam (5.197)

Em =
∞∑

n=0
f̄m,nēm,n (5.198)

ここで，f̄m,n はビームモード係数，ēm,n はビームモード関数を示し，

ēm,n =
√

n!
(n+ |m+ 1|)!

( 2
ω

)(
2 ρ

2

ω2

) |m+1|
2

Ln,|m+1|

(
2 ρ

2

ω2

)

·e− ρ2

ω2 +j{(2n+|m+1|+1) tan−1 v− k
2R̄

ρ2} (5.199)

また，am は単位ベクトルを示し，

am ≡ cos(mφ+ αm)aρ + sin(mφ+ αm)aφ (5.200)

横断面内電界分布 Et が与えられれば，次式によりビームモード展開してビームモード係数
f̄m,n を求めることができる．

f̄m,n =
ˆ ∞

0
Emē

∗
m,nρdρ (5.201)

Em = 1
2π

ˆ 2π

0
Et · amdφ (5.202)

ただし，ē∗
m,n はビームモード関数 ēm,n の複素共役を示す．このとき，ビームウエストでの

ビーム半径 ω0，ビームウエストからの距離 z は，

ω0 = ω√
1 + v2

(5.203)

z = R̄

1 + 1
v2

(5.204)

ここで，

v = kω2

2R̄
(5.205)

さて，

f (c)
m,n ≡ f̄m,n cosαm (5.206)
f (s)

m,n ≡ f̄m,n sinαm (5.207)
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とおくと，

Eρ =
∞∑

m=−∞

∞∑
n=0

Em,n

(
f (c)

m,n cosmφ− f (s)
m,n sinmφ

)
(5.208)

Eφ =
∞∑

m=−∞

∞∑
n=0

Em,n

(
f (c)

m,n sinmφ+ f (s)
m,n cosmφ

)
(5.209)

さらに，

E(c)
m ≡

∞∑
n=0

f (c)
m,nēm,n (5.210)

E(s)
m ≡

∞∑
n=0

f (s)
m,nēm,n (5.211)

とおくと，

Eρ =
∞∑

m=−∞

(
E(c)

m cosmφ− E(s)
m sinmφ

)
(5.212)

Eφ =
∞∑

m=−∞

(
E(c)

m sinmφ+ E(s)
m cosmφ

)
(5.213)

これより，Et は次のようになる．

Et =
∞∑

m=−∞

{
E(c)

m a(c)
m + E(s)

m a(s)
m

}
(5.214)

ここで，a(c)
m ，a(s)

m は直交単位ベクトルであり，

a(c)
m ≡ cosmφaρ + sinmφaφ (5.215)

a(s)
m ≡ − sinmφaρ + cosmφaφ (5.216)

横断面内電界分布 Et，ビーム半径 ω，波面の曲率半径 R̄ が与えられれば，ビームモード係
数 f

(
c
s

)
m,n は次式により求められる．

f

(
c
s

)
m,n =

ˆ ∞

0
E

(
c
s

)
m ē∗

m,nρdρ (5.217)

E

(
c
s

)
m = 1

2π

ˆ 2π

0
Et · a

(
c
s

)
m dφ (5.218)
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5.8 単一ビームモードの放射パターン

単一ビームモードの直角座標成分は，

e(R)
m,n = exm,nax + eym,nay (5.219)

ここで，

exm,n = em,n cos
{
(m+ 1)φ+ αm

}
(5.220)

eym,n = em,n sin
{
(m+ 1)φ+ αm

}
(5.221)

球座標系 (r, θ, ϕ)で表した単一ビームモードの放射電界 Es は，r > 0 ，0 ≤ θ ≤ π/2にお
いて，次のように近似できる（導出省略）．

e(S)
m,n ' s

(cos θ)3/2 e
jk ρ2

2s (exm,naξ + eym,naη)

= 1
(cos θ)3/2 · 2s

ω
· Fl,n(t) · ej{(2n+l+1) tan−1 v}

·ej k
2

(
1
s

− 1
R̄

)
ρ2
{

cos (mφ+ αm) aθ + sin (mφ+ αm) aϕ

}
(5.222)

このとき，ϕ = φより，

aξ = cosφaθ − sinφaϕ (5.223)
aη = − sinφaθ + cosφaϕ (5.224)

このとき，球座標系 (r, θ, ϕ)の単位ベクトル aθ，aϕ は次のようになる．

aθ = cos θ(cosϕax + sinϕay) − sin θax (5.225)
aϕ = − sinϕax + cosϕay = aφ (5.226)

無限遠方での放射電界を求めるためには，r → ∞とすればよい．いま，次の図のように s0，
sを定義すると，

tan θ = ρ

s
(5.227)

z = s0 + s (5.228)

これより，ビーム半径 ω は次のようになる．

ω = ω0
√

1 + v2

= ω0

√√√√1 +
(

2z
kω2

0

)2

=

√√√√ω2
0 + 4(s0 + s)2

k2ω2
0

(5.229)
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図 5.5. 球座標系の定義球座標系の定義

近軸のみに着目するなら，s → ∞としても差し支えない．そこで，まず t(= ρ/ω) につい
て s → ∞ とすると，

lim
s→∞

t = lim
s→∞

ρ

ω

= lim
s→∞

s tan θ√
ω2

0 + 22(s0+s)2

k2ω2
0

= lim
s→∞

tan θ√(
ω0
s

)2
+ 22

(
s0
s

+1
)2

k2ω2
0

= tan θ√
22

k2ω2
0

= kω0

2 tan θ (5.230)

同様にして，

lim
s→∞

2s
ω

= lim
s→∞

2s√
ω2

0 + 22(s0+s)2

k2ω2
0

= 2√
22

k2ω2
0

= kω0 (5.231)
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また，

lim
s→∞

v = lim
s→∞

2z
kω2

0

= lim
s→∞

2(s0 + s)
kω2

0
→ ∞ (5.232)

より次のようになる．

lim
s→∞

tan−1 v = π

2 (5.233)

一方，波面の曲率半径 R̄は，

R̄ = z
(

1 + 1
v2

)

= z

1 +
(
kω2

0
2z

)2


= 4z2 + k2ω4
0

4z

= 4(s0 + s)2 + k2ω4
0

4(s0 + s) (5.234)

となるので，

lim
s→∞

(1
s

− 1
R̄

)
ρ2 = lim

s→∞

{
1
s

− 4(s0 + s)
4(s0 + s)2 + k2ω4

0

}
s2 tan2 θ

= lim
s→∞

(4s0s+ k2ω4
0)s2

s{4(s0 + s)2 + k2ω4
0}

tan2 θ

= lim
s→∞

s0 + k2ω4
0

4s

(s0
s + 1)2 + k2ω4

0
4s2

tan2 θ

= s0 tan2 θ (5.235)

よって，無限遠方の放射電界は，次のようになる．

lim
s→∞

e(S)
m,n = kω0

(cos θ)3/2 · Fl,n(t) · ej(2n+l+1) π
2 · ej k

2 s0 tan2 θ

·
{

cos (mφ+ αm) aθ + sin (mφ+ αm) aϕ

}
(5.236)

ここで，

Fl,n(t) =
√

n!
(n+ l)!

√
2ltlLn,l(2t2)e−t2 (5.237)

l = |m+ 1| (5.238)

t = kω0

2 tan θ (5.239)
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5.9 ビームモードのホーンアンテナへの応用

5.9.1 1次ホーンおよび鏡面上のビームモードのパラメータ

反射鏡アンテナの一次放射器として用いるホーンアンテナ（開口径 Dh，長さ L = Rh）
の設計に対して，近傍界が考慮できるビームモードは非常に有用である．ホーンの開口面分
布をビームモード展開すればビーム半径 ωh および波面の曲率半径 Rh が求められ，開口面
からビームウエストまでの距離 zh およびビームウエストにおけるビーム半径 ω0 が決まる．

R

Beam waist

Phase center

Dh

Lc

Rh

zh dd

f

L

D

ωh

ω

ω0

図 5.6. ホーンに対するビームモード・パラメータ

5.9.2 基本ビームモード

基本ビームモード m = −1，n = 0 のビームモード関数 ē−1,0 は，

ē−1,0 = 2
ω
L0,0

(
2 ρ

2

ω2

)
ej(tan−1 v− k

R̄
ρ2)

= 2
ω
e−
(

ρ
ω

)2

ej(tan−1 v− k
R̄

ρ2) (5.240)

ビームウエスト位置は z = 0 であり，ω
∣∣∣
z=0

= ω0，R̄
∣∣∣
z=0

→ ∞，v
∣∣∣
z=0

= 0 より，ビームウ
エストでのビームモード関数

ē−1,0

∣∣∣∣
z=0

= 2
ω0
e

−
(

ρ
ω0

)2

(5.241)
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ピーク値で規格化すると，

ē−1,0

ē−1,0
∣∣∣
z=0,ρ=0

= ω0

ω
e−
(

ρ
ω

)2

ej(tan−1 v− k
R̄

ρ2) ≡ ẽ−1,0 (5.242)

∣∣∣ẽ−1,0
∣∣∣2 =

(
ω0

ω

)2
e−2

(
ρ
ω

)2

= 1
1 + v2 e

−2
(

ρ
ω

)2

(5.243)

5.9.3 鏡面上のビーム半径

基本ビームモードを開口径 D の反射鏡に照射したときのエッジレベルを −Le [dB]，こ
のときのビーム半径を ω とすると，

10
−Le

20 = e−( D
2ω

)2 (5.244)

log10 10
−Le

20 = log10 e
−( D

2ω
)2 (5.245)

−Le

20 = −
(
D

2ω

)2
log10 e (5.246)

ω2 =
(
D

2

)2 20 log10 e

Le
'
(
D

2

)2 8.69
Le

(5.247)

よって，ビーム半径 ω は，

ω = D

2

√
8.69
Le

(5.248)

5.9.4 ホーンアンテナ

ホーンの開口径 Dh，ホーン開口面での波面の曲率半径 Rh は，ホーン開口面でのビーム
半径を ωh，開口面からビームウエストまでの距離を zh とすると（Rh ≥ zh より，ホーンの
ビームウエスト位置はホーン内部にある），

Dh = 2ωhΩ0 (5.249)

Rh = zh

(
1 + 1

v2
h

)
(5.250)

ここで，

ωh = ω0

√
1 + v2

h (5.251)

vh = 2
kω2

0
zh (5.252)
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また，ω0 はビームウエストにおけるビーム半径を示し，

ω0 = ω√
1 + v2

(5.253)

v = 2
kω2

0
z (5.254)

ただし，ω は鏡面上のビーム半径，z は鏡面からビームウエストまでの距離を示す．反射鏡
に照射されるビームモードの波面の曲率半径を R̄ とすると，

z = zh + d = R̄

1 + 1
v2

(5.255)

パラメータ v を変形すると，

v = 2
kω2

0
z

= 2
k

· 1 + v2

ω2 · R̄

1 + 1
v2

= 2R̄
kω2 · (1 + v2)v2

1 + v2

= 2R̄
kω2v

2 (5.256)

よって，

v = kω2

2R̄
= 2π

λ
· ω

2

2R̄

= πω2

λR̄
(5.257)

ただし，反射鏡の焦点距離は f = R̄ とする．ビームウエストでのビーム半径 ω0 を消去す
ると，ホーンの開口径 Dh は，

Dh = 2Ω0ω0

√
1 + v2

h

= 2Ω0ω

√
1 + v2

h

1 + v2 (5.258)

また，ビームウエストから鏡面までの距離は zh + d ゆえ，

v = 2
kω2

0
(zh + d)

vh = 2
kω2

0
zh (5.259)

これより，

zh + d = v

vh
zh = R̄

1 + 1
v2

= R̄
v2

v2 + 1 (5.260)
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ホーンの軸長（電気長）Lは，ホーン開口面での波面の曲率半径 Rh に等しく，鏡面での波
面の曲率中心を鏡面の焦点と一致させて，焦点距離 fr = R̄より，

L = Rh = zh

(
1 + 1

v2
h

)

= vh

v
· R̄ v2

v2 + 1 · v
2
h + 1
v2

h

= frv

1 + v2
1 + v2

h

vh
(5.261)

また，

zh = vh

v − vh
d (5.262)

より，

zh + d = vh

v − vh
d+ d

= v

v − vh
d

= R̄

1 + 1
v2

v − vh = vd
1 + 1

v2

R̄

= d

R̄

(
v + 1

v

)
vh = v − d

R̄

(
v + 1

v

)
= v − d

fr

(
v + 1

v

)
(5.263)

ここで，

v = kω2

2R̄
= 2π

λ

ω2

2R̄

= πω2

λR̄
= πω2

λfr
(5.264)

5.9.5 ホーンアンテナの位相中心

開口面から距離 d離れた観測点におけるビームモードの波面の曲率半径 R̄ は，ビームウ
エストから観測点までの距離 zh + d を用いて次のようになる．

R̄ = (zh + d)
(

1 + 1
v2

)
(5.265)
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ここで，

v = 2
kω2

0
(zh + d) (5.266)

ホーンアンテナの位相中心は鏡面上の波面の曲率中心と一致させるため，ホーン開口面から
位相中心（つまり波面の曲率中心）までの距離 Lc は，

Lc = R̄ − d

= (zh + d)
(

1 + 1
v2

)
− d

= (zh + d)

1 + 1{
2

kω2
0
(zh + d)

}2

− d

= (zh + d)
{

1 + k2ω4
0

4(zh + d)2

}
− d

= (zh + d) 4(zh + d)2 + k2ω4
0

4(zh + d)2 − d

= 4(zh + d)2 + k2ω4
0 − 4(zh + d)d

4(zh + d) (5.267)

さらに変形するため，k2ω4
0 について計算する．まず，

ω0 = ωh√
1 + v2

h

(5.268)

vh = kω2
h

2Rh
(5.269)

より，ωh を消去すると，

vh = kω2
0(1 + v2

h)
2Rh

(5.270)

kω2
0 = 2Rh

1 + v2
h

vh = 2Rh

1 + 1
v2

h

· 1
vh

= 2Rh

vh

zh

Rh

= 2zh

vh
(5.271)

zh = Rh

1 + 1
v2

h

(5.272)

k2ω4
0 = 4z2

h

v2
h

(5.273)
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ここで，

1 + 1
v2

h

= Rh

zh
(5.274)

v2
h = 1

Rh

zh
− 1

= zh

Rh − zh
(5.275)

これより，

k2ω4
0 = 4z2

h

Rh − zh

zh
= 4zh(Rh − zh) (5.276)

これを用いると，

Lc = 4(z2
h + 2zhd+ d2) + 4zh(Rh − zh) − 4(zhd+ d2)

4(zh + d)

= zhd+ zhRh

zh + d

= zh
Rh + d

zh + d
(5.277)

特別な場合として，

• d = 0（開口面）とおいて Lc を求めると，開口面での波面の曲率半径 Lc = Rh が得
られる．

• d = ∞（観測点が無限遠方）とおけば，遠方放射パターンの位相中心 Lc = zh が得
られる．

• t = 0，d = ∞とおけば，円筒導波管開口による遠方放射パターンの位相中心が得ら
れ，Lc = 0 となって位相中心が開口面上にあることがわかる．

5.9.6 軸長が最小となる最適 1次ホーン

1次ホーンの軸長（電気長）L，すなわちホーン開口面の波面の曲率半径Rh は，式 (5.261)
に示すように vh の関数であり，極値の条件は，

dRh

dvh
= 0 (5.278)

つまり，

dRh

dvh
= R̄v

1 + v2 · d

dvh

(
1 + v2

h

vh

)

= R̄v

1 + v2
2v2

h − (1 + v2
h)

v2
h

= R̄v

1 + v2
v2

h − 1
v2

h

= 0 (5.279)
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したがって，v2
h = 1．開き角が正のホーンを考えれば，vh = 1．このとき Rh は最小とな

る．これより，軸長最小の最適 1次ホーンの開口径 Dh,min，軸長 Rh,min は，

Dh,min = Dh

∣∣∣∣
vh=1

= 2Ω0ω

√
1 + 1
1 + v2

= 2Ω0ω

√
2

1 + v2 (5.280)

Rh,min = Rh

∣∣∣∣
vh=1

= R̄v

1 + v2
1 + 1

1

= 2R̄v
1 + v2 (5.281)

ホーン開口面における位相遅れの大きさを表すパラメータ t は，

t = D2
h

8Rhλ
= (2ωhΩ0)2

8Rhλ

= ω2
hΩ2

0
2Rhλ

= Ω2
0vh

2π (5.282)

これより，

vh = 2πt
Ω2

0
(5.283)

軸長が最小となる最適 1次ホーンの t パラメータは，vh = 1 より，

tRmin = t

∣∣∣∣
vh=1

= Ω2
0

2π vh

∣∣∣∣
vh=1

= Ω2
0

2π (5.284)

ただし，Ω0 はモードによって決まる定数であり，基本ビームモード（ガウス分布）の電力
が最大となる条件で Ω0 を求めると †，

• コルゲートホーン（corrugated horn）の場合，Ω0 = 1.554
• TE11 モードの円すいホーン（conical horn）の場合，Ω0 = 1.302

このときの t パラメータ tRmin は，

tRmin =
{

0.384 (コルゲートモード)
0.270 (TE11モード) (5.285)
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ビームウエストでのビーム半径，ホーン開口面からビームウエストまでの距離は，

ω0

∣∣∣∣
vh=1

= ωh√
1 + v2

h

∣∣∣∣∣∣
vh=1

= ωh√
2

(5.286)

zh

∣∣∣∣
vh=1

= Rh,min

1 + 1
v2

h

∣∣∣∣∣∣
vh=1

= Rh,min

2 (5.287)

式 (5.262)より，ホーン開口面から鏡面までの距離は，

d

∣∣∣∣
vh=1

= v − vh

vh
zh

∣∣∣∣
vh=1

= (v − 1)zh

∣∣∣∣
vh=1

= (v − 1)Rh,min

2 (5.288)

ここで，

v = kω2

2R̄
(5.289)

ホーン開口面から位相中心までの距離は，

Lc

∣∣∣∣
vh=1

= zh
Rh,min + d

zh + d

∣∣∣∣∣
vh=1

= 1 + v

v

Rh,min

2 (5.290)

このとき，ホーン開口面でのビーム半径 ωh は，

ωh = Dh,min

2Ω0
(5.291)

5.9.7 最適円錐ホーン（ホーン単体の軸長最小の条件）

ホーンアンテナ単体で最適円錐ホーンの条件を求めよう．

vh = πω2
h

λRh

= πω2
0

λRh
(1 + v2

h) (5.292)

ω2
0 = λRh

π

vh

1 + v2
h

(5.293)
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図 5.7. 軸長が最小となる最適 1 次ホーンの例および電力分布

これより，

ω0 =

√√√√λRh

π

vh

1 + v2
h

(5.294)

軸長 Rh が一定のとき，最大利得を得る条件を求めればよい．これは，ビームウエストでの
ビーム半径 ω0 が最大となるときで，

dω0

dvh
= 0 (5.295)

よって，

dω0

dvh
=
√
λRh

π
· d

dvh

(
vh

1 + v2
h

) 1
2

= 0

∴

(
1 + v2

h

vh

) 1
2 1 − v2

h

(1 + v2
h)2 = 0 (5.296)

これより，vh = 1 のとき，ビーム半径 ω0 が最大となる．これは軸長が最小となる最適 1次
ホーンと同じ条件である．いま，ホーンの開口径 Dh が与えられれば，ホーン開口面での
ビーム半径 ωh は，

ωh = Dh

2Ω0
(5.297)
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最適円錐ホーンの条件 vh = 1 より，ホーン開口面での波面の曲率半径 Rh は，

vh = πω2
h

λRh
= 1 (5.298)

∴ Rh = πω2
h

λ
= L (5.299)

なお，開口面法によって求めた最適円錐ホーンの t パラメータの値は，

t =
{

0.49 (コルゲートモード)
0.39 (TE11モード) (5.300)

両者の差異は，高次のビームモードによる影響などによるものである*1．

*1 蛭子井貴，片木孝至，” 一次放射器としての最適円錐ホーン,” 信学全大，746（1984）
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5.10 ビームモードによる 1次ホーンの設計例

5.10.1 1次ホーンの軸長を与えた設計

問題

　鏡面上の曲率半径 R̄，鏡面の開口径 D，エッジレベル Le[dB]，1次ホーンの軸長 L

が与えられた場合，鏡面上のビーム半径 ω，ホーンの開口面におけるビーム半径 ωh，
ホーン開口径 Dh，ホーン開口面からビームウエストまでの長さ zh，ホーン開口面から
位相中心までの長さ Lc，ホーン開口面から鏡面までの距離 dを求めよ．

� 略解 鏡面上のビーム半径 ω，ビームウエストでのビーム半径 ω0 は，

ω = D

2

√
8.69
Le

(5.301)

v = kω2

2R̄
(5.302)

ω0 = ω√
1 + v2

(5.303)

ホーン開口径 Dh，ホーンの開口面におけるビーム半径 ωh は，

Dh = 2ωhΩ0 (5.304)

ωh = ω0

√
1 + v2

h (5.305)

vh = kω2
h

2Rh
(5.306)

Rh = L (5.307)

これより，vh を消去すると，

ω2
h = ω2

0(1 + v2
h)

= ω2
0

1 +
(
kω2

h

2Rh

)2
 (5.308)

これを解けば，

ω4
h − 2 2R2

h

k2ω2
0
ω2

h + 4R2
h

k2 = 0 (5.309)

∴ ω2
h = 2R2

h

k2ω2
0

1 ±

√√√√1 − k2ω4
0

R2
h

 (5.310)
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ここで，ω2
h は実数ゆえ，Rh = Lより，

1 − k2ω4
0

L2 ≥ 0 (5.311)

軸長 Lは正ゆえ，

L ≥ kω2
0 (5.312)

軸長の最小値 Lmin は，

Lmin = kω2
0 (5.313)

これは最適 1次ホーンの軸長と一致する．これより軸長が長い場合には，同じ軸長の解が 2
つ存在し，式 (5.310)のプラス符号のときホーン開口径が小さく，逆にマイナス符号のとき
ホーン開口径が大きくなる．
ビームウエストからホーン開口面までの長さ zh，ホーン開口面から位相中心までの長さ

Lc，ホーン開口面から鏡面までの距離 d は，

zh = Rh

1 + 1
v2

h

(5.314)

Lc = R̄ − d = R̄ − (z − zh)

= R̄ −

 R̄

1 + 1
v2

− Rh

1 + 1
v2

h


= R̄

(
1 − v2

v2 + 1

)
+ v2

hRh

v2
h + 1

= R̄

1 + v2 + Rhv
2
h

1 + v2
h

(5.315)

d = R̄ − Lc (5.316)

特別な場合として，Rh → ∞のとき（導波菅開口），ωh = ω0，vh = 0 より，

Lc = R̄

1 + v2

= ω2
0
ω2 R̄ (5.317)

ω2 = ω2
0(1 + v2) (5.318)

158



図 5.8. 1 次ホーンの設計例（軸長を与えた場合）

5.10.2 既存のホーンアンテナを 1次放射器として用いる場合

問題

　ホーンアンテナの開口径Dh，軸長 L，鏡面の開口径D が与えられている場合，鏡面
上の波面の曲率半径 R̄，ホーン開口面から鏡面までの距離 d，ホーン開口面から位相中
心までの距離 Lc，鏡面の焦点距離 fr を求めよ．

� 略解 ホーン開口面での波面の曲率半径 Rh およびビーム半径 ωh は，

Rh = L (5.319)

ωh = Dh

2Ω0
(5.320)

ビームウエストでのビーム半径 ω0，ホーン開口面からビームウエストまでの距離 zh は，

ω0 = ωh√
1 + v2

h

(5.321)

zh = kω2
0

2 vh (5.322)
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ここで，

vh = kω2
h

2Rh
(5.323)

鏡面上のビーム半径 ω は，

ω = D

2

√
8.69
Le

(5.324)

ここで，

ω0 = ω√
1 + v2

(5.325)

∴ v =
√(

ω

ω0

)2
− 1 (5.326)

ホーン開口面から鏡面までの距離 d は，

v = 2
kω2

0
(zh + d) (5.327)

∴ d = kω2
0

2 v − zh (5.328)

また，鏡面上の波面の曲率半径 R̄，鏡面の焦点距離 fr は，

v = kω2

2R̄
(5.329)

∴ R̄ = kω2

2v = fr (5.330)

ホーン開口面から位相中心までの距離 Lc は，

Lc = R̄ − d (5.331)

5.10.3 鏡面とホーンとの距離を与えた 1次ホーンの設計

問題

　鏡面上の波面の曲率半径 R̄，鏡面の開口径 D，エッジレベル Le[dB]，ホーン開口面
から鏡面までの距離 d が与えられた場合，鏡面上のビーム半径 ω，ビームウエストでの
ビーム半径 ω0，ホーン開口面から位相中心までの長さ Lc およびビームウエストまでの
長さ zh，ホーン開口面におけるビーム半径 ωh，ホーンの開口径Dh および軸長 L を求
めよ．
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図 5.9. 13GHz で 1 次ホーンを設計した場合

� 略解 鏡面上およびビームウエストでのビーム半径 ω，ω0，位相中心までの長さ Lc は，

ω = D

2

√
8.69
Le

(5.332)

v = kω2

2R̄
(5.333)

ω0 = ω√
1 + v2

(5.334)

Lc = R̄ − d (5.335)

ホーン開口面からビームウエストまでの長さ zh は，

v = 2
kω2

0
(zh + d)

∴ zh = kω2
0

2 v − d (5.336)

ホーンの開口面におけるビーム半径 ωh，ホーン開口径 Dh および軸長 Rh は，

ωh = ω0

√
1 + v2

h (5.337)
Dh = 2ωhΩ0 (5.338)

vh = 2
kω2

0
zh (5.339)

Rh = kω2
h

2vh
= L (5.340)
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図 5.10. 30GHz で 1 次ホーンを設計した場合

5.10.4 開き角を与えたホーン単体の設計

問題

　ビームウエストでのビーム半径 ω0，開き角半値を θ として，α = tan θ = Dh

2L が与え
られた場合，ホーンの開口径Dh，ホーンの開口面におけるビーム半径 ωh，ホーンの軸
長 L(= Rh)を求めよ．

� 略解 ホーンの開口面におけるビーム半径 ωh は，

ωh = Dh

2Ω0
= 2αL

2Ω0
= αL

Ω0
(5.341)

一方，ビームウエストでのビーム半径 ω0 より，

ω2
h = ω2

0(1 + v2
h) (5.342)
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図 5.11. 距離 d/D = 1，波面の曲率半径 R̄/D = 1.15

(
αL

Ω0

)2
= ω2

0

1 +
(
kω2

h

2L

)2


= ω2
0 + ω2

0

(
k

2L
α2L2

Ω2
0

)2

(5.343)


(
α

Ω0

)2
− ω2

0

(
kα2

2Ω2
0

)2
L2 =

(
α

Ω0

)2
1 −

(
ω0kα

2Ω0

)2
L2

= ω2
0 (5.344)

これより，

L2 =
(

Ω0ω0

α

)2

· 1
1 −

(
ω0kα
2Ω0

)2 (5.345)

よって，ホーンの軸長 L(= Rh) は，

L = Ω0ω0

α

√
1 −

(
ω0kα
2Ω0

)2
(5.346)
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図 5.12. 距離 d/D = 1，波面の曲率半径 R̄/D = 1.65

したがって，ホーン開口径 Dh，ビーム半径 ωh は，

Dh = 2ωhΩ0 (5.347)

ωh = αL

Ω0
(5.348)

このとき，

1 −
(
ω0kα

2Ω0

)2

0 (5.349)

よって，開き角の上限は次式によって決まる．

α <
2Ω0

ω0k
(5.350)

開き角半値 θ は任意に与えることはできない（物理的にこれ以上開き角が大きくなること
はない）．また，ホーンの軸長を最小にする条件

dL

dα
= 0 (5.351)

より次式が得られる．

1 − 2cα2 = 0 (5.352)
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ここで，

c =
(
ω0k

2Ω0

)2

(5.353)

よって，

α =
√

1
2c = 1√

2
2Ω0

ω0k
=

√
2Ω0

ω0k
(5.354)

このとき，最小となる軸長 Lmin は，

Lmin =
√

2Ω0ω0

α
= ω2

0k = 2πω2
0

λ
(5.355)

これは，最適ホーンであり，vh = 1 ゆえ，

ω0 = ωh√
1 + v2

h

= ωh√
2

(5.356)

よって，

Lmin = πω2
h

λ
(5.357)

これは先に求めた結果と一致する．

5.10.5 1次パターンの tパラメータを与えた 1次ホーンの設計

問題

　鏡面上の波面の曲率半径 R̄，鏡面の開口径 D，エッジレベル Le[dB]，開口面の位相
遅れおよびフレネル領域で生じる位相項によって定義した t パラメータ

td = D2
h

8λ

( 1
Rh

+ 1
d

)
(5.358)

を与えて 1次ホーンの形状，鏡面からの距離を設計せよ．

� 略解 まず，鏡面上のビーム半径 ω，ビームウエストでのビーム半径 ω0 は，

ω = D

2

√
8.69
Le

(5.359)

v = kω2

2R̄
(5.360)

ω0 = ω√
1 + v2

(5.361)
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　式 (5.358)を変形すると d は，

8λ
D2

h

td = 1
Rh

+ 1
d

1
d

= 8λ
D2

h

td − 1
Rh

= 8λtdRh −D2
h

D2
hRh

d = D2
hRh

8λtdRh −D2
h

(5.362)

ここで，

Dh = 2Ω0ωh, Rh = πω2
h

vhλ
(5.363)

これより，Dh，Rh を消去すると，

d =
(2Ω0ωh)2 πω2

h

vhλ

8λtd πω2
h

vhλ − (2Ω0ωh)2

=
(Ω0ωh)2 π

vhλ

2td π
vh

− Ω2
0

= πω2
h

(2πtd

Ω2
0

− vh)λ
(5.364)

また，

ω2
h = ω2

0(1 + v2
h)

= ω2

1 + v2 (1 + v2
h) (5.365)

より，ωh を消去して，

d = πω2

(2πtd

Ω2
0

− vh)λ
· 1 + v2

h

1 + v2

= R̄
2πtd

Ω2
0

− vh
· πω

2

λR̄
· 1 + v2

h

1 + v2

= R̄v
2πtd

Ω2
0

− vh
· 1 + v2

h

1 + v2 (5.366)

いま，v′
h ≡ 2πtd

Ω2
0
とおくと，

d = R̄v

v′
h − vh

· 1 + v2
h

1 + v2 (5.367)
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また，

vh = v − d

R̄

(
v + 1

v

)
(5.368)

d = R̄

v + 1
v

(v − vh)

= R̄v

v2 + 1(v − vh) (5.369)

これより，d を消去すると，

R̄v

v′
h − vh

· 1 + v2
h

1 + v2 = R̄v

v2 + 1(v − vh)

1 + v2
h = (v − vh)(v′

h − vh) = vv′
h − vvh − vhv

′
h + v2

h

1 = vv′
h − vvh − vhv

′
h

vh(v + v′
h) = vv′

h − 1

vh = vv′
h − 1

v + v′
h

(5.370)

ここで，

1 + v2
h

1 + v2 =
1 +

(
vv′

h−1
v+v′

h

)2

1 + v2

= (v + v′
h)2 + (vv′

h − 1)2

(v + v′
h)2(1 + v2)

= (1 + v2)(1 + (v′
h)2)

(v + v′
h)2(1 + v2)

= 1 + (v′
h)2

(v + v′
h)2 (5.371)

より，

ωh = ω0

√
1 + v2

h = ω

√
1 + v2

h

1 + v2 = ω

√
1 + (v′

h)2

v + v′
h

(5.372)
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また，式 (5.367)の vh を消去して，d は次のようになる．

d = R̄v

v′
h − vh

· 1 + v2
h

1 + v2

= R̄v

v′
h − vv′

h−1
v+v′

h

·
1 +

(
vv′

h−1
v+v′

h

)2

1 + v2

= R̄v

(v′
h)2 + 1 · (1 + v2)(1 + (v′

h)2)
(v + v′

h)(1 + v2)

= R̄v

v + v′
h

(5.373)

さらに，Rh は，

Rh = πω2
h

vhλ

= v + v′
h

vv′
h − 1 · πω

2

λ
· 1 + (v′

h)2

(v + v′
h)2

= R̄v

vv′
h − 1 · 1 + (v′

h)2

v + v′
h

(5.374)

ここで，

ω = D

2

√
8.69
Le

(5.375)

v = kω2

2R̄
(5.376)

Lc = R̄ − d (5.377)

ただし，D は鏡面の開口径，R̄ は波面の曲率半径（焦点距離 f），Le [dB]はエッジレベル
を示す．
特別な場合，導波菅開口では，Rh → ∞とすると，vh = 0，

vv′
h − 1 = 0 (5.378)

∴ v = 1
v′

h

(5.379)
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CHAPTER 6

エルミート形式の電磁波極値問題

　電磁波の極値問題を扱う上で不可欠なエルミート形式と，その応用について詳述す
る．エルミート形式は，エルミート行列やエルミート作用素によって定義され，電磁
波工学における様々な物理量を実数として表現するための数学的枠組みとなる．例え
ば，線形回路網の消費電力やアンテナの放射電力はエルミート 2次形式となる．さら
に，アンテナ利得や S/N比はエルミート 2次形式の比で表され，これら性能指数の
最大化も対象となる問題である．また，不連続導波路に対するモード整合法において
も，相対 2乗平均誤差を最小化する解析を考えれば，ここで説明している理論が適用
でき，その詳細についても示していく．

6.1 エルミート形式

6.1.1 エルミート行列

複素数の N ×N 行列 [A]

[A] ≡


A11 A12 · · · A1N

A21 A22 · · · A2N
... ... . . . ...

AN1 AN2 · · · ANN

 (6.1)

の要素が Amn = A∗
nm（共役転置）のとき，[A] = [A]∗T が成り立ち，[A] をエルミート行列

（Hermitian matrix）という．ただし，添字 T は転置行列，肩文字 ∗は複素共役を示す．
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6.1.2 エルミート形式

α を N 要素からなる複素の列ベクトル（あるいは列マトリクスともいう）とし，α∗
T を

列ベクトル α の複素共役（complex conjugate）の転置行列（transpose matrix）

α ≡


α1
α2
...
αN

 , α∗
T ≡

(
α∗

1 α∗
2 · · · α∗

N

)
(6.2)

として次式を考える．

H = α∗
T [A]α

=
(
α∗

1 α∗
2 · · · α∗

N

)
A11 A12 · · · A1N

A21 A22 · · · A2N
... ... . . . ...

AN1 AN2 · · · ANN



α1
α2
...
αN

 (6.3)

あるいは，

H = α∗
T [A]α =

N∑
m,n=1

α∗
mAmnαn (6.4)

上式を要素毎の計算式で表し，Amn = A∗
nm を代入して，さらにm，nを交換し，要素を入

れ替えると，

H =
N∑

m,n=1
α∗

mAmnαn =
N∑

m,n=1
α∗

mA
∗
nmαn

=
N∑

n,m=1
α∗

nA
∗
mnαm =

N∑
m,n=1

αmA
∗
mnα

∗
n

= αT [A]∗α∗r =
(

α∗
T [A]α

)∗

= H∗ (6.5)

ただし，H∗ は H の複素共役である．このように H = H∗ が成り立てば，H は全ての α

に対して実数であるといえる．このような H をエルミート形式 (Hermitian form) という．
エルミート行列の全ての固有値 (eigenvalues) は実数となる．なお，上式は αi に関する 2
次形式 (Quadratic form) になっており，このような H をエルミート 2次形式 (Hermitian
quadratic form) という．
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6.1.3 エルミート作用素

ドメイン L における全ての関数 f に対して，内積 (inner product)

H = 〈f∗, Lf〉 (6.6)

が実数であるとき，H をエルミート形式 (Hermitian form) という．このとき L はエルミー
ト作用素 (Hermitian operator) と呼ばれる．この場合もエルミート作用素の全ての固有値
（eigenvalues）は実数である．
　いま，関数 f を N 個の項で展開して近似すると，

f '
N∑

n=1
αnfn (6.7)

これを，式 (6.6)に代入して，

H ' 〈

 N∑
m=1

αmfm

∗

, L

 N∑
n=1

αnfn

〉

=
N∑

m=1
α∗

m〈f∗
m, L

 N∑
n=1

αnfn

〉 (6.8)

また，

H '
N∑

m=1

N∑
n=1

α∗
mαn〈f∗

m, Lfn〉 (6.9)

ここで，

lmn ≡ 〈f∗
m, Lfn〉 (6.10)

とおくと，

H '
N∑

m,n=1
α∗

mαnlmn

=
(
α∗

1 α∗
2 · · · α∗

N

)
l11 l12 · · · l1N

l21 l22 · · · l2N
... ... . . . ...
lN1 lN2 · · · lNN



α1
α2
...
αN


= α∗

T [l]α (6.11)

エルミート作用素（Hermitian operator）L より，[l] はエルミート行列である．よって，い
かなる関数のエルミート形式も行列のエルミート形式（matrix Hermitian form）によって
近似できる．
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6.1.4 エルミート行列，エルミート形式のまとめ

関数 f を，有限個の関数 fm (m = 0, 1, 2, · · · , N) の線形結合（係数 αm）

f '
N∑

m=0
αmfm (6.12)

で近似できるとき，次の内積（inner product）を考える．

H = 〈f∗, f〉 =
ˆ
f∗f dS '

ˆ  N∑
m=0

αmfm

∗ N∑
n=0

αnfn

 dS
=
ˆ  N∑

m=0
α∗

mf
∗
m

 N∑
n=0

αnfn

 dS =
N∑

m=0

N∑
n=0

α∗
mαn

ˆ
f∗

mfndS

=
N∑

m=0

N∑
n=0

α∗
mαn〈f∗

m, fn〉 (6.13)

ここで，

Fmn ≡ 〈f∗
m, fn〉

(
=
ˆ
f∗

mfn dS

)
(6.14)

とおき，また，

α ≡


α0
α1
...
αN

 (6.15)

α∗
T ≡

(
α∗

0 α∗
1 · · · α∗

N

)
(6.16)

[F ] ≡


F00 F01 · · · F0N

F10 F11 · · · F1N
... ... . . . ...

FN0 FN1 · · · FNN

 (6.17)

ただし，α∗
T は列ベクトル α の複素共役（complex conjugate）の転置行列（transpose

matrix）を示す．これより，

H = 〈f∗, f〉 '
N∑

m=0

N∑
n=0

α∗
mαnFmn

=
(
α∗

0 α∗
1 · · · α∗

N

)
F00 F01 · · · F0N

F10 F11 · · · F1N
... ... . . . ...

FN0 FN1 · · · FNN



α0
α1
...
αN


= α∗

T [F ]α (6.18)
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このとき，

F ∗
nm = 〈f∗

n, fm〉∗ = 〈fn, f
∗
m〉 = 〈f∗

m, fn〉
= Fmn (6.19)

ここで，(ˆ
f∗

nfm dS

)∗

=
ˆ
fnf

∗
m dS =

ˆ
f∗

mfn dS (6.20)

このように Fmn = F ∗
nm が成り立つので，[F ] はエルミート行列（Hermitian matrix）であ

る．つまり，[F ] = [F ]∗T．そして*1，

H = α∗
T [F ]α = α∗

T [F ]∗T α (6.22)

さらに，

H =
N∑

m,n=0
α∗

mF
∗
nmαn =

N∑
n,m=0

α∗
nF

∗
mnαm

=
N∑

m,n=0
αmF

∗
mnα

∗
n

= αT [F ]∗α∗ =
(

α∗
T [F ]α

)∗

= H∗ (6.23)

となり，H = H∗ が成り立つので，H は，エルミート形式（Hermitian form）である．し
たがって，H は全ての [α] に対して実数である*2．

*1 要素 am (m = 0, 1, · · · ) の列ベクトル a，要素 bn (n = 0, 1, · · · ) の列ベクトル b，要素 Fmn の行列 [F ]
との間に次のような関係が成り立つ．

aT [F ]b =
∑

m

∑
n

amFmnbn =
∑

m

∑
n

bnFmnam = bT [F ]T a (6.21)

*2 転置を伴う計算には次のような関係がある．
• 転置の転置：(AT )T = A

• 和の転置：(A + B)T = AT + BT

• 積の転置は順番が逆転：(AB)T = BT AT，(ABC)T = CT BT AT

積の転置を用いれば，

(aT [F ]b)T = bT [F ]T a (6.24)

また，上の計算結果はスカラーゆえ，転置をとっても変わらないから，

(aT [F ]b)T = aT [F ]b (6.25)

よって，式 (6.21) が得られる．

aT [F ]b = bT [F ]T a (6.26)
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6.2 エルミート形式の例：線形回路網の消費電力

エルミート形式を用いた回路やアンテナの極値問題について，文献*3 に示された内容を
詳しく説明していく．

6.2.1 インピーダンス行列

N 端子対線形回路（linear N -port network）で消費される電力は，端子電圧・電流を用
いて表したエルミート形式（Hermitian form）となる．いま，N 端子対回路網のインピー
ダンス行列を [Z]，端子電流を要素とする列ベクトルを I，端子電圧を要素とする列ベクト
ルを V とすると，回路の複素電力（complex power）Ṗ は，次のようになる．

Ṗ = I∗
T V = I∗

T [Z]I (6.27)

ただし，添字 T は転置（transpose），肩文字 ∗ は複素共役（complex conjugate）を示す．
複素電力 Ṗ の複素共役 Ṗ ∗ は（式 (6.21)より），

Ṗ ∗ =
(

I∗
T [Z]I

)∗
= IT [Z]∗I∗ = I∗

T [Z]∗T I (6.28)

これより，回路で消費される電力（power dissipated in the network）P は，複素電力 Ṗ の
実部より，

P = <(Ṗ ) = 1
2(Ṗ + Ṗ ∗)

= 1
2

(
I∗

T [Z]I + I∗
T [Z]∗T I

)
= 1

2I∗
T

(
[Z] + [Z]∗T

)
I

= I∗
T [ZH ]I (6.29)

ここで，

[ZH ] ≡ 1
2
(
[Z] + [Z]∗T

)
(6.30)

消費電力 P の複素共役は（式 (6.21)より），

P ∗ =
(

I∗
T [ZH ]I

)∗
= IT [ZH ]∗I∗ = I∗

T [ZH ]∗T I (6.31)

消費電力 P は実数ゆえ，P = P ∗ である．これより，次式が成り立つ．

I∗
T [ZH ]I = I∗

T [ZH ]∗T I (6.32)

*3 Roger F. Harrington, Field Computation by Moment Methods, (IEEE Press Series on Electromagnetic
Wave Theory), ch.10, Wiley-IEEE Press (1993).

174



よって，

[ZH ] = [ZH ]∗T = 1
2
(
[Z] + [Z]∗T

)∗

T
= 1

2
(
[Z]∗T + [Z]

)
(6.33)

これより，[ZH ] はエルミート行列である．したがって，消費電力 P はエルミート形式で
ある．受動 (passive) 回路のとき，電力 P は負にはならない．[ZH ] は半正値定符号行列
(positive semidefinite matrix) で，回路に損失があれば正値定符号 (positive definite) であ
る．なお，相反回路（reciprocal network）の場合，Zmn = Znm より，[ZH ] の要素 ZH,mn

は，

ZH,mn = 1
2(Zmn + Z∗

nm) = 1
2(Zmn + Z∗

mn)

= <(Zmn) = <(Znm) (6.34)

6.2.2 アドミタンス行列

端子電圧から消費電力 P の複素電力を求めると

P ∗ =
(

V ∗
T [YH ]V

)∗
= VT [YH ]∗V ∗ = V ∗

T [YH ]∗T V (6.35)

同様にして，アドミタンス行列 [Y ]に対して，

[YH ] = [YH ]∗T = 1
2
(
[Y ] + [Y ]∗T

)∗

T
= 1

2
(
[Y ]∗T + [Y ]

)
(6.36)

ただし，[YH ] は半正値定符号行列 (positive semidefinite matrix) ，回路に損失があれば正
値定符号である．したがって，N 端子対線形回路で消費される電力は，端子電圧・電流を用
いて表したエルミート形式となる．
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6.3 エルミート形式の例：放射電力

スカラ波動方程式（scalar wave equation）を考えると，放射電力はエルミート形式
（Hermitian form）となる．これを説明するため，波源を ρ として，次のヘルムホルツ方程
式（Helmholtz equation）を満たす仮想的なスカラーフィールド（scalar field）ψを考える．

(
∇2 + k2

)
ψ = 4π

jk
ρ (6.37)

ただし，k(= 2π/λ)は波数を示す．境界条件（boundary condition）として，無限遠での放
射条件（radiation condition at infinity）を用いると，よく知られた次の積分が得られる．

ψ =
˚

ρ
e−jkR

−jkR
dτ ≡ Lρ (6.38)

ただし，Rは波源の点からフィールドの観測点までの距離，L は作用素を示す．波源によっ
て放射された電力 P は，次のようになることが知られている．

P = <
(˚

ρ∗ψdτ

)
= <〈ρ∗, ψ〉 = <〈ρ∗, Lρ〉

= 1
2
(
〈ρ∗, Lρ〉 + 〈ρ, L∗ρ∗〉

)
(6.39)

ここで，

〈Lf, g〉 = 〈g, Lf〉

=
˚

τ

g(τ)
(˚

τ ′
f(τ ′) e

−jkR

−jkR
dτ ′
)
dτ

=
˚

τ ′
f(τ ′)

(˚
τ

g(τ) e
−jkR

−jkR
dτ

)
dτ ′

= 〈f, Lg〉 (6.40)

より，Lは自己共役 (self-adjoint)である．作用素 L について，〈Lf, g〉 = 〈f, Lg〉 であれば，
L は自己共役 (self-adjoint) であるという．同様にして，

〈L∗f, g〉 = 〈f, L∗g〉 (6.41)

が成り立ち，L∗ も自己共役である．よって，

〈Lρ, ρ∗〉 = 〈ρ, Lρ∗〉 (6.42)
〈L∗ρ, ρ∗〉 = 〈ρ, L∗ρ∗〉 (6.43)
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これより，放射電力（radiated power）P は次のようにエルミート形式（Hermitian form）
となる．

P = 1
2
(
〈ρ∗, Lρ〉 + 〈ρ∗, L∗ρ〉

)
= 1

2〈ρ∗, (L+ L∗)ρ〉

= 〈ρ∗, (< L)ρ〉 = 〈ρ, (< L)ρ∗〉 =
(

〈ρ∗, (< L)ρ〉
)∗

= P ∗ (6.44)

ただし，(< L)は作用素（operator）であり，次式となる．

(< L)ρ = 1
2(L+ L∗)ρ =

˚
ρ

sin kR
kR

dτ (6.45)

放射電力は正ゆえ，(< L)は正値作用素 (positive definite operator) である．
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6.4 エルミート 2次形式の比の極値条件

電磁波回路ならびにアンテナの性能指数の中には，例えば，アンテナ利得（antenna gain
），S/N比（signal-to-noise ratio），Q値（quality factor），能率（efficiency）等，次のよう
なエルミート 2次形式（quadratic forms）の比 ε によって表される場合がある．

ε = α∗
T [A]α

α∗
T [B]α (6.46)

ただし，[A] および [B] は正方エルミート行列（square Hermitian matrices），α は未知の
列ベクトル（column matrix）を示す．ここでは，上式の ε の最大値およびそのときの α を
求める問題について考える．これは極値を求める問題であり，通常の方法によれば，変数を
列ベクトル α の各々の要素 αi として，全ての i に対して次の条件を考えればよい．

∂ε

∂αi
= 0, ∂ε

∂α∗
i

= 0 (6.47)

条件式として式 (6.47)の 2式があるのは，一般に α が複素数で，ε は各々の αi について 2
つのパラメータに対して最大化しなければならないからである．そこで，α′

i ≡ <(αi) およ
び α′′

i ≡ =(αi) とおくと，

αi = α′
i + jα′′

i , α∗
i = α′

i − jα′′
i (6.48)

この場合，極値を求める条件は，

∂ε

∂α′
i

= 0, ∂ε

∂α′′
i

= 0 (6.49)

となり，ここでは先に示した条件と等価であることを示していく．まず，
∂ε

∂α′
i

= ∂ε

∂αi

∂αi

∂α′
i

+ ∂ε

∂α∗
i

∂α∗
i

∂α′
i

(6.50)

∂ε

∂α′′
i

= ∂ε

∂αi

∂αi

∂α′′
i

+ ∂ε

∂α∗
i

∂α∗
i

∂α′′
i

(6.51)

式 (6.48)より，

∂αi

∂α′
i

= ∂

∂α′
i

(
α′

i + jα′′
i

)
= 1 (6.52)

∂α∗
i

∂α′
i

= ∂

∂α′
i

(
α′

i − jα′′
i

)
= 1 (6.53)

∂αi

∂α′′
i

= ∂

∂α′′
i

(
α′

i + jα′′
i

)
= j (6.54)

∂α∗
i

∂α′′
i

= ∂

∂α′′
i

(
α′

i − jα′′
i

)
= −j (6.55)
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よって，式 (6.51)は次のようになり，両者の条件式は等価であることがわかる．

∂ε

∂α′
i

= ∂ε

∂αi
+ ∂ε

∂α∗
i

= 0 (6.56)

∂ε

∂α′′
i

= j

(
∂ε

∂αi
− ∂ε

∂α∗
i

)
= 0 (6.57)

さて，式 (6.47)を適用するため，式 (6.46)を次のように変形する．

ε =

∑
j,k

α∗
jAjkαk∑

j,k

α∗
jBjkαk

≡ N

D
(6.58)

式 (6.47)の第 1式に代入して，

∂ε

∂αi
= ∂

∂αi

(
N

D

)
= 1
D2

[
D
∂N

∂αi
−N

∂D

∂αi

]

= 1
D2

D ∂

∂αi

∑
j,k

α∗
jAjkαk

 −N ∂

∂αi

∑
j,k

α∗
jBjkαk


= 1
D2

D∑
j

α∗
jAji −N

∑
j

α∗
jBji

 = 0 (6.59)

上式は全ての i について成り立ち，行列でまとめて表すと，

1
D2

(
D[A]α∗

T −N [B]α∗
T

)
= 0 (6.60)

同様にして，式 (6.47)の第 2式に代入すると，

∂ε

∂α∗
i

= ∂

∂α∗
i

(
N

D

)
= 1
D2

[
D
∂N

∂α∗
i

−N
∂D

∂α∗
i

]

= 1
D2

D ∂

∂α∗
i

∑
j,k

α∗
jAjkαk

 −N ∂

∂α∗
i

∑
j,k

α∗
jBjkαk


= 1
D2

[
D
∑

k

Aikαk −N
∑

k

Bikαk

]
= 0 (6.61)

行列表示して，

1
D2

(
D[A]α −N [B]α

)
= 0 (6.62)

これより，D 6= 0において（εが最大値をとならない場合を除く），

D[A]α −N [B]α = 0

[A]α = N

D
[B]α = ε[B]α (6.63)
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また，式 (6.60)は，

D[A]α∗ −N [B]α∗ = 0

α∗
T [A] = N

D
α∗

T [B] = εα∗
T [B] (6.64)

共役転置をとると，

[A]∗T α = ε∗[B]∗T α (6.65)

[A]，[B] はエルミート行列ゆえ，

[A] = [A]∗T , [B] = [B]∗T (6.66)

また，εはエルミート形式ゆえ，ε = ε∗ が成り立つ．したがって，極値条件として，

[A]α = ε[B]α (6.67)

が得られ，もう一つの条件式と一致する．そこで，例えば，一方の条件式

∂ρ

∂α∗
i

= 0 (i = 1, 2, · · · ) (6.68)

を考えればよい．このとき，ε は固有値（eigenvalue）とみなせ，ε の定義式は固有値方程
式（eigenvalue equation）となっている．それゆえ，ε の最大値は固有値の最大値を求める
ことでもある*4．

*4 Felix R. Gantmacher, The Theory of Matrices, Vol.1, AMS Chelsea Publishing (1990).
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6.5 多端子対回路網の電力比の最大化

N 個の信号発生器（電流源），および内部インピーダンス Z1, Z2, · · · , Zn を 接続した N

端子対回路網を考える．信号発生器で消費される電力 Pgen と負荷に消費される電力 Pload

との比を最大化するためには，信号源の電流 I1, I2, · · · , IN を調整する必要がある．両者の
比 ε は，

ε = Pload

Pgen
= I∗

T [< Zload]I
I∗

T [< Zgen]I (6.69)

ここで，I は端子電流 Ii を要素とする列ベクトル，[Zload] は負荷回路のインピーダンス行
列，[Zgen] は信号源のインピーダンス行列を示す．[Zgen]は次のように対角行列（diagonal
matrix）

[Zgen] =


Z1 0 · · · 0
0 Z2

...
... . . . 0
0 · · · 0 ZN

 (6.70)

となるが，[Zgen] が任意の行列でも適用できる．したがって，ε の最大値は，すでに述べた
ように次の方程式の最大の固有値によって与えられる．

[< Zload]I = ε[< Zgen]I (6.71)

最大値 ε のときの電流 I は，対応する固有ベクトルによって与えられる．
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6.6 アンテナ利得

6.6.1 インピーダンス行列

N 個の入力端子対を有する任意のアンテナアレーを考え，このアレーから十分離れた遠
方界領域，つまり平面波領域にテストアンテナをおく．ここでは，テストアンテナには一つ
の入力端子対があって，単一偏波を受信あるいは送信するものとする．アレーアンテナとテ
ストアンテナで (N + 1) 端子対回路ゆえ，この回路の端子の特性は，(N + 1) 次の正方行列
によって表すことができ，インピーダンス行列より，(

Vt

V a

)
=
(
Ztt Zta

t

Zat [Zaa]

)(
It

Ia

)
(6.72)

ただし，Vt，It はテストアンテナの端子電圧および電流を示し，V a，Ia はアレーの端子で
の電圧および電流を要素とする次のような列ベクトルである．

V a =


V1
V2
...
VN

 , Ia =


I1
I2
...
IN

 (6.73)

また，Ztt はテストアンテナの入力インピーダンスを示し，[Zaa] はアレーアンテナのイン
ピーダンス行列で次のようにおく．

[Zaa] =


Z11 Z12 · · · Z1N

Z21 Z22 · · · Z2N
... ... . . . ...

ZN1 ZN2 · · · ZNN

 (6.74)

そして [Zta]，[Zat] はテストアンテナとアレーの端子間の相互インピーダンス（mutual
impedance）を示し，行ベクトルによって次のようにおく．

Zta =


Zt1
Zt2
...

ZtN

 , Zat
T =

(
Z1t Z2t · · · ZNt

)
(6.75)

アンテナおよび媒質が相反性を有するとき，[Zaa] = [Zaa]T，[Zta] = [Zat]T（転置行列がも
との行列と等しい）が成り立つ．
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6.6.2 アドミタンス行列

一方，(N + 1)端子対回路におけるアドミタンス行列を用いれば，(
It

Ia

)
=
(
Ytt Y ta

T

Y at [Yaa]

)(
Vt

V a

)
(6.76)

なお，上式のアドミタンス行列のパラメータは，インピーダンス行列と双対的なものである．

6.6.3 放射強度

いま，アレーの端子に電流源 I1, I2, · · · , IN を接続して励振させ，テストアンテナの端子
を開放にした場合を考える．入力電力 Pin は，先に示したように，次式で与えられる．

Pin = 1
2Ia∗

T

(
[Zaa] + [Zaa]∗T

)
Ia (6.77)

両アンテナの偏波面を一致させると，テストアンテナの端子電圧の大きさは，テストアンテ
ナへ入射する放射強度に比例した値となる．いま，式 (6.72)より，It = 0（開放）とおくと，
テストアンテナの端子電圧 Vt は，

Vt = Zta
T Ia =

(
Zt1 Zt2 · · · ZtN

)
I1
I2
...
IN


=

N∑
n=1

ZtnIn =
N∑

n=1
InZtn

=
(
I1 I2 · · · IN

)
Zt1
Zt2
...

ZtN


= Ia

T Zta (6.78)

よって，∣∣∣Vt

∣∣∣2 =
∣∣∣Zta

T Ia
∣∣∣2 =

(
Zta

T Ia
)∗(

Zta
T Ia

)
= Zta∗

T Ia∗Zta
T Ia = Ia∗

T Zta∗Zta
T Ia (6.79)

これより，テストアンテナの方向での放射強度 (radiation intensity) Pr は，

Pr = 1
8πK1

∣∣∣Vt

∣∣∣2 = 1
8πK1Ia∗

T Zta∗Zta
T Ia (6.80)

ただし，K1 はテストアンテナの受信開口面によって決まる係数を示す．
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6.6.4 電力利得

アンテナの電力利得 (power gain) Gは，供試アンテナと無指向性アンテナに同じ電力を
入力したときの両者の放射強度の比によって定義され，次のようになる．

G = 4π × (radiation intensity)
(power input to the antenna) (6.81)

式 (6.81)に式 (6.77)および式 (6.80)を代入すると，次のようにエルミート形式の比となる．

G = 4πPr

Pin
=

4π · 1
8πK1Ia∗

T Zta∗Zta
T Ia

1
2Ia∗

T

(
[Zaa] + [Zaa]∗T

)
Ia

= K1
Ia∗

T Zta∗Zta
T Ia

Ia∗
T

(
[Zaa] + [Zaa]∗T

)
Ia

(6.82)

電圧源 V1, V2, · · · , VN をアレーの端子に接続して励振し，テストアンテナの端子を短絡し
たときの問題は，上と相対的な関係である．式 (6.77)および式 (6.80)に対して相対的な式
を考えると，

Pin = 1
2V a∗

T

(
[Yaa] + [Yaa]∗T

)
V a (6.83)

および

Pr = 1
8πK2

∣∣∣It

∣∣∣2 = 1
8πK2V a∗

T Y ta∗Y ta
T V a (6.84)

よって，双対的なパラメータを用いて表したアンテナ利得の式は次のようになる．

G = 4πPr

Pin
= K2

V a∗
T Y ta∗Y ta

T V a

V a∗
T

(
[Yaa] + [Yaa]∗T

)
V a

(6.85)

式 (6.82)および式 (6.85)は，問題に応じて使い分けるとよい．例えば，ダイポールアンテ
ナ（dipole antenna）では電流を励振して考えるのに対して，開口面アンテナ（aperture
antenna）では電圧を励振して考えると分かり易い．
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6.7 極値条件と最大利得

6.7.1 特別な場合（ケースA）

行列 [A] を列ベクトル x によって [A] = xx∗
T で表せる場合を考える．

x =


A1
A2
...

 , x∗
T =

(
A∗

1 A∗
2 · · ·

)
(6.86)

ただし，x は列ベクトル，x∗
T は列ベクトル x の複素共役の転置を示す．行列 [A] の要素に

は，Amn = A∗
nm の関係があるので，[A] はエルミート行列（Hermitian matrix）である．

このとき，エルミート 2次形式の比 ε は，次のようになる．

ε = α∗
T [A]α

α∗
T [B]α = α∗

T xx∗
T α

α∗
T [B]α (6.87)

すでに導出した最大化の条件 [A]α = ε[B]α より，

xx∗
T α = ε[B]α = α∗

T xx∗
T α

α∗
T [B]α [B]α (6.88)

ただし，x∗
T α はスカラ関数であり，X ≡ x∗

T α とおくと，複素共役は，

X∗ = xT α∗ = α∗
T x (6.89)

これより，式 (6.88)は次のようになる．

xX = X∗X

α∗
T [B]α [B]α(

x − X∗

α∗
T [B]α [B]α

)
X = 0 (6.90)

よって，

X = 0, x − X∗

α∗
T [B]α [B]α = 0 (6.91)

X = 0 のとき，ε = 0．i 番目の固有値（eigenvalue）を ε̂i，固有ベクトル（eigenvector）を
α(i) とすると，

ε̂i = 0, x∗
T α(i) = 0 (i = 1, 2, · · · ) (6.92)

一方，X = x∗
T α 6= 0 のとき，

x − 1
C

[B]α = 0 (6.93)
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ここで，C はスカラ関数（scalar function）で次式で定義される（上式は分母，分子ともに
スカラ）．

1
C

≡ X∗

α∗
T [B]α = α∗

T x

α∗
T [B]α (6.94)

このとき，

1
C

α = [B]−1x (6.95)

これより，ε の極値は，

ε = α∗
T xx∗

T α

α∗
T [B]α = x∗

T α

C
= x∗

T [B]−1x ≡ ε̂ (6.96)

ただし，ε̂ はゼロでない一つの固有値（one nonzero eigenvalue）である．ε̂ に対応する固有
ベクトルを α̂ とすると，

xx∗
T α̂ = ε̂[B]α̂ (6.97)

固有ベクトル α
(i)∗
T を上式両辺の左側から乗じて，

α
(i)∗
T xx∗

t α̂ = α
(i)∗
T ε̂[B]α̂ (6.98)

x∗
T α(i) = 0 ゆえ α

(i)∗
T x = 0，および ε̂ 6= 0 より，

α
(i)∗
T [B]α̂ = 0 (6.99)

上式は，固有ベクトル α(i) (i = 1, 2, · · · ) と α̂ の直交性（orthogonal relation）を示す重
み付きスカラ積となっている．いま，

α̂ ≡ Cα′ (6.100)

として (C 6= 0)，α̂のかわりに，

α′ = [B]−1x (6.101)

を用いて表すと，

ε̂ = x∗
TCα′

C
= x∗

T α′(= x∗
T [B]−1x) (6.102)

また，

ε = C∗α′
T

∗xx∗
TCα′

C∗α′
T

∗[B]Cα′ = α′
T

∗xx∗
T α′

α′
T

∗[B]α′ (6.103)
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6.7.2 アレーの最大利得

アレーアンテナの利得を最大にする条件は，次のような固有値方程式となる．

Zta∗Zta
T Ia = G

K1

(
[Zaa] + [Zaa]∗T

)
Ia (6.104)

ただし，G/K1 は固有値（eigenvalue）である．上式は，正方行列 Zta∗Zta
T で表される式

(6.88)のケースに相当する．さらに [Z∗
ta]T [Zta]は一項のみのダイアードとなり，固有値は

一つを除いて全てゼロとなる．インピーダンス行列の性質より，
(
[Zaa] + [Zaa]∗T

)
は正定値

(positive definite)，Zta∗Zta
T は半正定値 (positive semidefinite) である．よって，全ての固

有値は正かゼロである．ただし，固有値の一つは式 (6.96)によって与えられゼロではない．
また，式 (6.92)から Zta

T Ia = 0 ゆえ，固有値は一つを除いて全てゼロとなる．したがって，
式 (6.104)のゼロでないただ一つの固有値，および対応する固有ベクトル [Ia]を求める問題
と考えればよい．
いま，式 (6.104)のゼロでない固有値に対応する固有ベクトルを I(N) とおくと，

Zta∗Zta
t I(N) = G

K1

(
[Zaa] + [Zaa]∗T

)
I(N) (6.105)

式 (6.95)より，固有ベクトル I(N) は，

I(N) = C
(
[Zaa] + [Zaa]∗T

)−1
Zta∗ (6.106)

式 (6.96)より，最大利得（maximum gain）Gmax は，

Gmax = K1Zta
t

(
[Zaa] + [Zaa]∗T

)−1
Zta∗ (6.107)

これは，Zta∗Zta
t となる特別な場合で，ゼロ固有値（G/K1 = 0）に対応する線形独立な固

有ベクトルを I(1)，I(2) · · · , I(N−1) とすると，例えば次のようになる．

I(1) =



1/Zt1
−1/Zt2

0
...
0

 , I(2) =



1/Zt1
0

−1/Zt3
...
0

 (6.108)

· · ·

I(N−1) =



1/Zt1
0
0
...

−1/ZtN

 (6.109)
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ただし，Zti は Zta の i 番目の要素であり，Zta
T I(i) = 0 を満足する．そして，式 (6.104)の

両辺に左側から I
(i)∗
T を乗じて，

I
(i)∗
T Zta∗Zta

T I(N) = G

K1
I

(i)∗
t

(
[Zaa] + [Zaa]∗T

)
I(N) (6.110)

さて，Zta
T I(i) = 0 (i = 1, 2, · · · , N − 1)より，

I
(i)∗
T Zta∗ = 0 (6.111)

よって，

I
(i)∗
T

(
[Zaa] + [Zaa]∗T

)
I(N) = 0 (i = 1, 2, · · · , N − 1) (6.112)

そこで，重み付きスカラ積を次のように定義する．

〈I(i), I(j)〉 ≡ I
(i)∗
t

(
[Zaa] + [Zaa]∗T

)
I(j) (6.113)

式 (6.112)の直交性は次のようになる．

〈I(i), I(N)〉 = 0 (i = 1, 2, · · · , N − 1) (6.114)

それゆえ，式 (6.104)で右辺がゼロとなる式の解を考えればよい．いま，I(N) は式 (6.112)
による全ての I(i) と直交しなければならない（Schmidtの直交化によって [I]N を構成する
ことができる）．ただし，式 (6.109)より，I(i) はテストアンテナに対してフィールドを発生
しないようなアレーの励振であるから，アレーの最大利得（maximum gain）を得るときの
励振 I(N) はゼロ利得（zero gain）となる電流と全て直交関係があることを意味している．
電圧源による励振の場合，双対的な式を考えれば，式 (6.104)に対する極値問題の解法は
次の固有値方程式から行え，

Y ta∗Y ta
T V a = G

K2

(
[Yaa] + [Yaa]∗T

)
V a (6.115)

これより，最大利得を得る励振 V a を決定できる．最大利得はもちろん電流励振（current
excitation）でも電圧励振（voltage excitation）でも同じであるが，固有ベクトル I(N)，
V (N) は異なる．電圧励振の場合の最大利得を得る V (N) は，

V (N) = C
(
[Yaa] + [Yaa]∗T

)−1
Y ta∗ (6.116)

上式は，式 (6.106)と双対である．最終的に最大利得 Gmax は次のようになる．

Gmax = K2Y ta
T

(
[Yaa] + [Yaa]∗T

)−1
Y ta∗ (6.117)
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6.8 特別な場合の極値条件（ケースB）

正方行列（square matrix）[B] を列ベクトル（column matrix）y によって [B] = yy∗
T で

表せる場合，

[A]α = εyy∗
T α = α∗

T [A]α
α∗

T yy∗
T α

yy∗
T α = α∗

T [A]α
α∗

T y
y (6.118)

上式右辺の分母・分子の y∗
T α はスカラゆえ消去している．いま，

C
B

≡ α∗
T [A]α
α∗

T y
(6.119)

とおくと（上式は分母，分子ともにスカラ），

[A]α = C
B

y (6.120)
α = C

B
[A]−1y (6.121)

これより，εの極値は，

ε = α∗
T [A]α

α∗
T yy∗

T α
= C

B

y∗
T α

= C
B

y∗
TCB

[A]−1y
= 1

y∗
T [A]−1y

≡ εB (6.122)

あるいは，

1
ε

B

= y∗
T [A]−1y (6.123)
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6.9 点波源アレーの最大利得

6.9.1 エルミート形式の放射電力

スカラ波動方程式（scalar wave equation）を考えると，放射電力はエルミート形式
（Hermitian form）となる．これを説明するため，波源を ρ として，次のヘルムホルツ方程
式（Helmholtz equation）を満たす仮想的なスカラーフィールド（scalar field）ψを考える．

(
∇2 + k2

)
ψ = 4π

jk
ρ (6.124)

ただし，k(= 2π/λ)は波数を示す．境界条件（boundary condition）として，無限遠での放
射条件（radiation condition at infinity）を用いると，よく知られた次の積分が得られる．

ψ =
˚

ρ
e−jkR

−jkR
dτ ≡ Lρ (6.125)

ただし，Rは波源の点からフィールドの観測点までの距離，L は作用素を示す．波源によっ
て放射された電力 P は，次のようになることが知られている．

P = <
(˚

ρ∗ψdτ

)
= <〈ρ∗, ψ〉 = <〈ρ∗, Lρ〉

= 1
2
(
〈ρ∗, Lρ〉 + 〈ρ, L∗ρ∗〉

)
(6.126)

ここで，

〈Lf, g〉 = 〈g, Lf〉

=
˚

τ

g(τ)
(˚

τ ′
f(τ ′) e

−jkR

−jkR
dτ ′
)
dτ

=
˚

τ ′
f(τ ′)

(˚
τ

g(τ) e
−jkR

−jkR
dτ

)
dτ ′

= 〈f, Lg〉 (6.127)

より，Lは自己共役 (self-adjoint)である．作用素 L について，〈Lf, g〉 = 〈f, Lg〉 であれば，
L は自己共役 (self-adjoint) であるという．同様にして，

〈L∗f, g〉 = 〈f, L∗g〉 (6.128)

が成り立ち，L∗ も自己共役である．よって，

〈Lρ, ρ∗〉 = 〈ρ, Lρ∗〉 (6.129)
〈L∗ρ, ρ∗〉 = 〈ρ, L∗ρ∗〉 (6.130)
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これより，放射電力（radiated power）P は次のようにエルミート形式（Hermitian form）
となる．

P = 1
2
(
〈ρ∗, Lρ〉 + 〈ρ∗, L∗ρ〉

)
= 1

2〈ρ∗, (L+ L∗)ρ〉

= 〈ρ∗, (< L)ρ〉 = 〈ρ, (< L)ρ∗〉 =
(

〈ρ∗, (< L)ρ〉
)∗

= P ∗ (6.131)

ただし，(< L)は作用素（operator）であり，次式となる．

(< L)ρ = 1
2(L+ L∗)ρ =

˚
ρ

sin kR
kR

dτ (6.132)

放射電力は正ゆえ，(< L)は正値作用素 (positive definite operator) である．

6.9.2 アレーアンテナの遠方界

スカラ・ヘルムホルツ方程式（scalar Helmholtz equation）を満足するスカラフィールド
（scalar field）ψ として，点波源からなる N 素子アレーを考える．I1, I2, · · · , IN を点波源
の複素励振（complex excitation）の係数，r1, r2, · · · , rN をアレー素子の位置ベクトルと
する．アレーによるフィールドを求める点（観測点）の位置ベクトルを r0 とすると，この
点でのアレーによるフィールドは，In を係数として式 (6.125)を重ね合わせれば求めること
ができる．
いま，波源 ρは点波源ゆえ，インパルス波源（impulsive sources）の和として扱えばよい
ので，次のようにクロネッカのデルタ記号 δ(r − rn)を用いて計算すると，

ψ = Lρ = L


N∑

n=1
Inδ(r − rn)


=
˚ 

N∑
n=1

Inδ(r − rn)

 e−jk|r0−r|

−jk|r0 − r|
dτ

=
N∑

n=1
In

˚
δ(r − rn) e−jk|r0−r|

−jk|r0 − r|
dτ

=
N∑

n=1
In

e−jk|r0−rn|

−jk|r0 − rn|
(6.133)

実部は，

< (ψ) =
N∑

n=1
In

sin k|r0 − rn|
k|r0 − rn|

(6.134)
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観測点 r0 が十分遠方の場合（全ての rn より十分大きい），∣∣∣r0 − rn

∣∣∣ =
√

(r0 − rn)(r0 − rn) =
√
r2

0 − 2r0 · rn + r2
n

= r0

(
1 − 2r0 · rn

r2
0

+ r2
n

r2
0

) 1
2

' r0

(
1 − r0 · rn

r2
0

)
(6.135)

位置ベクトル r0 と rn とのなす角を ζn とおき，

r0 · rn = r0rn cos ζn (6.136)

これより，

∣∣∣r0 − rn

∣∣∣ ' r0

(
1 − r0rn cos ζn

r2
0

)
= r0 − rn cos ζn(' r0) (6.137)

よって，

e−jk|r0−rn| ' e−jkr0ejkrn cos ζn (6.138)

したがって，遠方界表示（far-field expression）は次のようになる．

ψ =
N∑

n=1
In

e−jk|r0−rn|

−jk|r0 − rn|
' e−jkr0

−jkr0

N∑
n=1

Ine
jkrn cos ζn (6.139)

放射電力 P は式 (6.131)によって与えられ，点波源の場合，次のようになる．

P = 〈
N∑

m=1
I∗

mδ(r − rm),
N∑

n=1
In

sin k|r − rn|
k|r − rn|

〉

=
˚ N∑

m=1
I∗

mδ(r − rm)
N∑

n=1
In

sin k|r − rn|
k|r − rn|

dτ

=
N∑

m=1

N∑
n=1

I∗
mIn

sin k|rm − rn|
k|rm − rn|

(6.140)

ここで，

Bmn ≡ sin k|rm − rn|
k|rm − rn|

(6.141)

とおくと，Bmn = B∗
nm ゆえ，[B] はエルミート行列（Hermitian matrix）である．また，P
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は，

P =
N∑

m=1

N∑
n=1

I∗
mInBmn

=
(
I∗

1 I∗
2 · · · I∗

N

)
B11 B12 · · · B1N

B21 B22 · · · B2N
... ... . . . ...

BN1 BN2 · · · BNN



I1
I2
...
IN


= I∗

T [B]I = I∗
T [B]∗T I = IT [B]∗I∗ =

(
I∗

T [B]I
)∗

= P ∗ (6.142)

よって，P はエルミート 2次形式（Hermitian quadratic form）である．

6.9.3 放射強度

単位立体角当たりの電力密度（power density per unit solid angle）を放射強度（radiation
intensity）という．スカラ関数 ψ より放射強度 Pr は，

Pr = 1
4π
∣∣∣kr0ψ

∣∣∣2 (6.143)

式 (6.139)より，

Pr = 1
4π

∣∣∣∣∣∣kr0
e−jkr0

−jkr0

N∑
n=1

Ine
jkrn cos ζn

∣∣∣∣∣∣
2

= 1
4π

∣∣∣∣∣∣
N∑

n=1
Ine

jkrn cos ζn

∣∣∣∣∣∣
2

(6.144)

行列表示に変形して，

N∑
n=1

Ine
jkrn cos ζn

=
(
ejkr1 cos ζ1 ejkr2 cos ζ2 · · · ejkrN cos ζN

)
I1
I2
...
IN


= χ∗

T I (6.145)

ここで，

χ∗
T ≡

(
ejkr1 cos ζ1 ejkr2 cos ζ2 · · · ejkrN cos ζN

)
(6.146)

193



これより，

Pr = 1
4π

∣∣∣∣χ∗
T I

∣∣∣∣2 = 1
4π

(
χ∗

T I
)∗(

χ∗
T I
)

= 1
4πI∗

T χχ∗
T I

= 1
4πI∗

T [A]I (6.147)

ここで，

[A] ≡ χχ∗
T ≡


A11 A12 · · · A1N

A21 A22 · · · A2N
... ... . . . ...

AN1 AN2 · · · ANN

 (6.148)

正方行列（square matrix）[A] の行列要素 Amn は，

Amn = ejk(rn cos ζn−rm cos ζm) (6.149)

したがって，放射強度 Pr は，

Pr = 1
4π

N∑
m=1

N∑
n=1

I∗
mInAmn

= 1
4π

N∑
m=1

N∑
n=1

I∗
mIne

jk(rn cos ζn−rm cos ζm) (6.150)

6.9.4 アンテナ利得

アンテナ利得（antenna gain）G は，

G = 4πPr

P
= I∗

T [A]I
I∗

T [B]I (6.151)

極値条件より，最大利得は次式の固有値の最大値 Gとなる．

[A]I = G[B]I (6.152)

先に示したように，[A] = χχ∗
T のケースより，

χχ∗
T I = G[B]I (6.153)

この固有値もまたゼロではなく，最大利得 Gmax は，

Gmax = I
(m)∗
T χχ∗

T I(m)

I
(m)∗
T [B]I(m)

(6.154)
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ここで，

C = I
(m)∗
T χ

I
(m)∗
T [B]I(m)

(6.155)

とおくと，

I
(m)∗
T [B]I(m) = I

(m)∗
T χ

C

[B]I(m) = χ

C

　I(m) = [B]−1 χ

C
(6.156)

これより，Gmax は，

Gmax = Cχ∗
T I(m) = Cχ∗

T [B]−1 χ

C
= χ∗

T [B]−1χ (6.157)

行列形式で表すと，

Gmax =
(
ejkr1 cos ζ1 ejkr2 cos ζ2 · · · ejkrN cos ζN

)

·


B11 B12 · · · B1N

B21 B22 · · · B2N
... ... . . . ...

BN1 BN2 · · · BNN


−1

e−jkr1 cos ζ1

e−jkr2 cos ζ2

...
e−jkrN cos ζN

 (6.158)

このような最大利得について，これまで，ブロードサイド・リニアアレー，エンドファイ
アーアレー，円形アレーについて適用されている．
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6.10 最小 2乗法によるモード整合法

6.10.1 不連続部のある導波路

異なる 2つの一様導波路が接続された不連続部を考え，導波路軸方向を z 軸，不連続部を
z = 0 にとる．z ≤ 0 の導波路 #1および z ≥ 0 の導波路 #2の位置ベクトル r = zaz + ρ

（az は z方向の単位ベクトル）における横断面内の電界E
(1)
t ，E

(2)
t ，および磁界H

(1)
t ，H

(2)
t

は，不連続部における入射ルート電力波を ai,n，反射ルート電力波を bi,n とすると（i = 1, 2
は導波路 #1, #2に対応，nはモードの次数），

E
(1)
t (ρ, z) =

∑
n

(
a(1)

n e−γ
(1)
n z + b(1)

n eγ
(1)
n z
)

e(1)
n (ρ) (6.159)

E
(2)
t (ρ, z) =

∑
n

(
b(2)

n e−γ
(2)
n z + a(2)

n eγ
(2)
n z
)

e(2)
n (ρ) (6.160)

また，横断面内磁界H
(1)
t ，H

(2)
t は，

H
(1)
t (ρ, z) =

∑
n

(
a(1)

n e−γ
(1)
n z − b(1)

n eγ
(1)
n z
)

h
(1)
n (ρ) (6.161)

H
(2)
t (ρ, z) =

∑
n

(
b(2)

n e−γ
(2)
n z − a(2)

n eγ
(2)
n z
)

h
(2)
n (ρ) (6.162)

ここで，

e(i)
n (ρ) =

√
Z

(i)
n e(i)

n (ρ) (6.163)

h
(i)
n (ρ) =

√
Y

(i)
n h(i)

n (ρ) = Y (i)
n az × e(i)

n (ρ) (6.164)

ただし，e(i)
n ，h

(i)
n (i = 1, 2) は導波路 #1, #2における電界および磁界のモード関数（電力

で規格化）を示し，複素の 2次元ベクトルである．また，Z(i)
n ，Y (i)

n は n 次モードの波動イ
ンピーダンスおよび波動アドミタンスを示す．このとき，|a(i)

n |2，|b(i)
n |2 は伝搬モードの場

合は電力波であるが，遮断モードの場合は電力波を意味しない，いわゆる共役整合を基にし
た一般化散乱行列とは異なるもので，全モードの縦続接続を行うための散乱行列である．

6.10.2 不連続部の境界条件

不連続部が開口面 S0，および（完全）導体面 S1（導波路 #1側）, S2（導波路 #2側）か
らなる場合，境界条件は次のようになる．

E
(1)
t (ρ, 0) = E

(2)
t (ρ, 0) (開口面S0) (6.165)

H
(1)
t (ρ, 0) = H

(2)
t (ρ, 0) (開口面S0) (6.166)

E
(1)
t (ρ, 0) = 0 (導体面S1) (6.167)

E
(2)
t (ρ, 0) = 0 (導体面S2) (6.168)
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ここで，

E
(1)
t (ρ, 0) =

∑
n

(
a(1)

n + b(1)
n

)
e(1)

n (ρ) (6.169)

E
(2)
t (ρ, 0) =

∑
n

(
b(2)

n + a(2)
n

)
e(2)

n (ρ) (6.170)

H
(1)
t (ρ, 0) =

∑
n

(
a(1)

n − b(1)
n

)
h

(1)
n (ρ) (6.171)

H
(2)
t (ρ, 0) =

∑
n

(
b(2)

n − a(2)
n

)
h

(2)
n (ρ) (6.172)

これより，散乱行列 [S]は，
(

b1
b2

)
=
[
S
] (

a1
a2

)
,

[
S
]

=
[S11

] [
S12

][
S21

] [
S22

] (6.173)

ここで，

ai =



a
(i)
1
a

(i)
2
...
a(i)

n
...


, bi =



b
(i)
1
b

(i)
2
...
b(i)

n
...


(i = 1, 2) (6.174)

散乱行列は，

[Sii′ ] =



Sii′,11 Sii′,12 · · · Sii′,1n · · ·
Sii′,21 Sii′,22 · · · Sii′,2n · · ·

... ... . . . ...
Sii′,m1 Sii′,m2 · · · Sii′,mn · · ·

... ... ... . . .

 (6.175)

6.10.3 単一モード入射の場合

導波路 #1（z ≤ 0）より一つの k 次モードだけが不連続部に入射波する場合（a(1)
k 6= 0）

を考えると，それ以外に入射波がないことから a
(1)
n6=k = 0, a(2)

n = 0 とおき，

E
(1)
t (ρ, 0) =

∑
n

(
a(1)

n δnk + b(1)
n

)
e(1)

n (ρ) (6.176)

E
(2)
t (ρ, 0) =

∑
n

b(2)
n e(2)

n (ρ) (6.177)

H
(1)
t (ρ, 0) =

∑
n

(
a(1)

n δnk − b(1)
n

)
h

(1)
n (ρ) (6.178)

H
(2)
t (ρ, 0) =

∑
n

b(2)
n h

(2)
n (ρ) (6.179)
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散乱パラメータは，

S11,mk = b(1)
m

a
(1)
k

∣∣∣∣∣∣
a

(1)
n6=k=0, a

(2)
n =0

(6.180)

S21,mk = b(2)
m

a
(1)
k

∣∣∣∣∣∣
a

(1)
n6=k=0, a

(2)
n =0

(6.181)

これより，境界条件の式は散乱行列要素を用いて次のように表すことができる．∑
m

(δmk + S11,mk) e(1)
m (ρ) =

∑
m

S21,mke(2)
m (ρ) (on S0) (6.182)

∑
m

(δmk − S11,mk) h
(1)
m (ρ) =

∑
m

S21,mkh
(2)
m (ρ) (on S0) (6.183)∑

m

(δmk + S11,mk) e(1)
m (ρ) = 0 (on S1) (6.184)∑

m

S21,mke(2)
m (ρ) = 0 (on S2) (6.185)

同様にして，S12,mk，S22,mk に関する式も得られ，ここでは，導波路 #1, #2におけるモー
ドの展開項数を N1, N2 と有限で打ち切った次のような分布を考え，このときの反射係数
を Rmk ≡ S11,mk，透過係数を Tmk ≡ S21,mk とおくと，z = 0 の境界面での横断面内電磁
界は，

E
(1)
t

′
(ρ) ≡

N1∑
m

(δmk +Rmk) e(1)
m (ρ) (6.186)

E
(2)
t

′
(ρ) ≡

N2∑
m

Tmk e(2)
m (ρ) (6.187)

H
(1)
t

′
(ρ) ≡

N1∑
m

(δmk −Rmk) h
(1)
m (ρ) (6.188)

H
(2)
t

′
(ρ) ≡

N2∑
m

Tmk h
(2)
m (ρ) (6.189)

6.10.4 導波路 #1からの入射したときの相対 2乗平均誤差

境界面（z = 0）における相対 2乗平均誤差 F を次のように定義する．

F = 1
2

(
CE

ce
+ CH

ch

)
(6.190)

ここで，

CE =
ˆ

S0

∣∣∣∣E(1)
t

′
− E

(2)
t

′
∣∣∣∣2 dS +

ˆ
S1

∣∣∣∣E(1)
t

′
∣∣∣∣2 dS +

ˆ
S2

∣∣∣∣E(2)
t

′
∣∣∣∣2 dS (6.191)

CH =
ˆ

S0

∣∣∣∣H(1)
t

′
− H

(2)
t

′
∣∣∣∣2 dS (6.192)
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また，

ce =
ˆ

S0+S1

∣∣∣e(1)
k

∣∣∣2 dS (6.193)

ch =
ˆ

S0

∣∣∣∣h(1)
k

∣∣∣∣2 dS (6.194)

相対 2乗平均誤差 F の CE の第 1項を CE1 とおき，整理すると次のようになる．

CE1 =
ˆ

S0

∣∣∣∣E(1)
t

′
− E

(2)
t

′
∣∣∣∣2 dS

=
ˆ

S0

∣∣∣∣ N1∑
m

(δmk +Rmk) e(1)
m −

N2∑
m

Tmk e(2)
m

∣∣∣∣2dS
=
ˆ

S0

{
e

(1)
k +

N1∑
m

Rmke(1)
m +

N2∑
m

Tmk

(
− e(2)

m

)}∗

·
{

e
(1)
k +

N1∑
n

Rnke(1)
n +

N2∑
n

Tnk

(
− e(2)

n

)}
dS

=
(

1
(
Rk

)∗

T

(
Tk

)∗

T

)ˆ
S0


e

(1)∗
k(

e(1)
)∗

T

−
(
e(2)

)∗

T

 ·
(

e
(1)
k

(
e(1)

)
−
(
e(2)

))
dS


1(
Rk

)(
Tk

)


(6.195)

ここで，(
e(i)

)
=
(
e

(i)
1 e

(i)
2 · · · e

(i)
Ni

)
(i = 1, 2) (6.196)

また，

(
Rk

)
=


R1k

R2k
...

RN1k

 ,
(
Tk

)
=


T1k

T2k
...

TN2k

 (6.197)
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ただし，
(
e(i)

)∗

T
，
(
Rk

)∗

T
，
(
Tk

)∗

T
は各々

(
e(i)

)
，
(
Rk

)
，
(
Tk

)
の共役転置行列を示す．この

とき，モード関数のスカラー積の項については，

e
(1)∗
k · e

(1)
k e

(1)∗
k · e

(1)
1 e

(1)∗
k · e

(1)
2 · · · −e

(1)∗
k · e

(2)
1 −e

(1)∗
k · e

(2)
2 · · ·

e
(1)∗
1 · e

(1)
k e

(1)∗
1 · e

(1)
1 e

(1)∗
1 · e

(1)
2 · · · −e

(1)∗
1 · e

(2)
1 −e

(1)∗
1 · e

(2)
2 · · ·

e
(1)∗
2 · e

(1)
k e

(1)∗
2 · e

(1)
1 e

(1)∗
2 · e

(1)
2 · · · −e

(1)∗
2 · e

(2)
1 −e

(1)∗
2 · e

(2)
2 · · ·

... ... ... . . . ... ... . . .

−e
(2)∗
1 · e

(1)
k −e

(2)∗
1 · e

(1)
1 −e

(2)∗
1 · e

(1)
2 · · · e

(2)∗
1 · e

(2)
1 e

(2)∗
1 · e

(2)
2 · · ·

−e
(2)∗
2 · e

(1)
k −e

(2)∗
2 · e

(1)
1 −e

(2)∗
2 · e

(1)
2 · · · e

(2)∗
2 · e

(2)
1 e

(2)∗
2 · e

(2)
2 · · ·

... ... ... . . . ... ... . . .


いま，積分項

ˆ
S0

e(i)∗
m · e(i′)

n dS (i, i′ = 1, 2) (6.198)

について行列表示すると，

CE1 =
(

1
(
Rk

)∗

T

(
Tk

)∗

T

)


pe0

∣∣∣∣
S0

(
pe

11

)∣∣∣∣
S0

−
(
pe

12

)∣∣∣∣
S0(

pe
11

)∗

T

∣∣∣∣
S0

[
PE

11

]
S0

−
[
PE

12

]
S0

−
(
pe

12

)∗

T

∣∣∣∣
S0

−
[
PE

12

]∗

T

∣∣∣∣
S0

[
PE

22

]
S0




1(
Rk

)(
Tk

)


(6.199)

ここで (i, i′ = 1, 2)，

pe0

∣∣∣∣
S0

=
ˆ

S0

e
(1)∗
k · e

(1)
k dS = p∗

e0

∣∣∣∣
S0

(6.200)
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また，

(
pe

1i′

)
S0

=
(ˆ

S0

e
(1)∗
k · e

(i′)
1 dS

ˆ
S0

e
(1)∗
k · e

(i′)
2 dS · · ·

ˆ
S0

e
(1)∗
k · e

(i′)
Ni′dS

)
(6.201)

[
PE

ii′

]
S0

=



ˆ
S0

e
(i)∗
1 · e

(i′)
1 dS

ˆ
S0

e
(i)∗
1 · e

(i′)
2 dS · · ·

ˆ
S0

e
(i)∗
1 · e

(i′)
Ni′dSˆ

S0

e
(i)∗
2 · e

(i′)
1 dS

ˆ
S0

e
(i)∗
2 · e

(i′)
2 dS · · ·

ˆ
S0

e
(i)∗
2 · e

(i′)
Ni′dS

... ... . . . ...ˆ
S0

e
(i)∗
Ni

· e
(i′)
1 dS

ˆ
S0

e
(i)∗
Ni

· e
(i′)
2 dS · · ·

ˆ
S0

e
(i)∗
Ni

· e
(i′)
Ni′dS


(6.202)

ただし，[
PE

11

]∗

T

∣∣∣∣
S0

=
[
PE

11

]
S0

(6.203)[
PE

22

]∗

T

∣∣∣∣
S0

=
[
PE

22

]
S0

(6.204)

CE の第 2項 CE2 および第 3項 CE3 も同様にして整理すると，

CE2 =
ˆ

S1

∣∣∣∣E(1)
t

′
∣∣∣∣2 dS

=
ˆ

S1

∣∣∣∣ N1∑
m

(δmk +Rmk) e(1)
m

∣∣∣∣2dS

=
(

1
(
Rk

)∗

T

(
Tk

)∗

T

)


pe0

∣∣∣∣
S1

(
pe

11

)
S1

(
0
)

(
pe

11

)∗

T

∣∣∣∣
S1

[
PE

11

]
S1

[
0
]

(
0
) [

0
] [

0
]




1(
Rk

)(
Tk

)
 (6.205)

CE3 =
ˆ

S2

∣∣∣∣E(2)
t

′
∣∣∣∣2 dS

=
ˆ

S2

∣∣∣∣ N2∑
m

Tmk e(2)
m

∣∣∣∣2dS

=
(

1
(
Rk

)∗

T

(
Tk

)∗

T

)


0
(

0
) (

0
)

(
0
) [

0
] [

0
]

(
0
) [

0
] [

PE
22

]
S2




1(
Rk

)(
Tk

)
 (6.206)
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したがって，CE = CE1 + CE2 + CE3 は，

CE =
(

1
(
Rk

)∗

T

(
Tk

)∗

T

)


pe0

∣∣∣∣
S0+S1

(
pe

11

)
S0+S1

−
(
pe

12

)
S0(

pe
11

)∗

T

∣∣∣∣
S0+S1

[
PE

11

]
S0+S1

−
[
PE

12

]
S0

−
(
pe

12

)∗

T

∣∣∣∣
S0

−
[
PE

12

]∗

T

∣∣∣∣
S0

[
PE

22

]
S0+S2




1(
Rk

)(
Tk

)

(6.207)

ここで，

pe0

∣∣∣∣
S0+S1

=
ˆ

S0+S1

∣∣∣e(1)
k

∣∣∣2 dS = ce = c∗
e (6.208)

また，[
PE

11

]∗

T

∣∣∣∣
S0+S1

=
[
PE

11

]
S0+S1

(6.209)[
PE

22

]∗

T

∣∣∣∣
S0+S2

=
[
PE

22

]
S0+S2

(6.210)

ただし，積分範囲 (S0 + S1)は導波路 #1 の断面全体，(S0 + S2)は導波路 #2 の断面全体
である．そして，CH も反射係数の符号の違いに注意して同様に求めると，

CH =
ˆ

S0

∣∣∣∣H(1)
t

′
− H

(2)
t

′
∣∣∣∣2 dS

=
ˆ

S0

∣∣∣∣ N1∑
m

(δmk −Rmk) h
(1)
m −

N2∑
m

Tmk h
(2)
m

∣∣∣∣2dS

=
(

1 −
(
Rk

)∗

T

(
Tk

)∗

T

)


ph0

∣∣∣∣
S0

(
ph

11

)
S0

−
(
ph

12

)
S0(

ph
11

)∗

T

∣∣∣∣
S0

[
PH

11

]
S0

−
[
PH

12

]
S0

−
(
ph

12

)∗

T

∣∣∣∣
S0

−
[
PH

12

]∗

T

∣∣∣∣
S0

[
PH

22

]
S0




1
−
(
Rk

)(
Tk

)


=
(

1
(
Rk

)∗

T

(
Tk

)∗

T

)


ph0

∣∣∣∣
S0

−
(
ph

11

)
S0

−
(
ph

12

)
S0

−
(
ph

11

)∗

T

∣∣∣∣
S0

[
PH

11

]
S0

[
PH

12

]
S0

−
(
ph

12

)∗

T

∣∣∣∣
S0

[
PH

12

]∗

T

∣∣∣∣
S0

[
PH

22

]
S0




1(
Rk

)(
Tk

)
 (6.211)

ここで (i, i′ = 1, 2)，

ph0

∣∣∣∣
S0

≡
ˆ

S0

∣∣∣∣h(1)
k

∣∣∣∣2 dS = ch = c∗
h (6.212)
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また，
(
ph

1i′

)
S0

=
(ˆ

S0

h
(1)∗
k · h

(i′)
1 dS

ˆ
S0

h
(1)∗
k · h

(i′)
2 dS · · ·

ˆ
S0

h
(1)∗
k · h

(i′)
Ni′dS

)
(6.213)

[
PH

ii′

]
S0

=



ˆ
S0

h
(i)∗
1 · h

(i′)
1 dS

ˆ
S0

h
(i)∗
1 · h

(i′)
2 dS · · ·

ˆ
S0

h
(i)∗
1 · h

(i′)
Ni′dSˆ

S0

h
(i)∗
2 · h

(i′)
1 dS

ˆ
S0

h
(i)∗
2 · h

(i′)
2 dS · · ·

ˆ
S0

h
(i)∗
2 · h

(i′)
Ni′dS

... ... . . . ...ˆ
S0

h
(i)∗
Ni

· h
(i′)
1 dS

ˆ
S0

h
(i)∗
Ni

· h
(i′)
2 dS · · ·

ˆ
S0

h
(i)∗
Ni

· h
(i′)
Ni′dS


(6.214)

ただし，[
PH

11

]∗

T

∣∣∣∣
S0

=
[
PH

11

]
S0

(6.215)[
PH

22

]∗

T

∣∣∣∣
S0

=
[
PH

22

]
S0

(6.216)

さらに，
(
α
)

≡

(Rk

)(
Tk

) (6.217)

(
α
)∗

T
≡
((
Rk

)∗

T

(
Tk

)∗

T

)
(6.218)(

pk
e

)
≡
((
pe

11

)
S0+S1

−
(
pe

12

)
S0

)
(6.219)(

pk
h

)
≡
((
ph

11

)
S0

(
ph

12

)
S0

)
(6.220)

[
P k

E

]
≡


[
PE

11

]
S0+S1

−
[
PE

12

]
S0

−
[
PE

12

]∗

T

∣∣∣∣
S0

[
PE

22

]
S0+S2

 =
[
P k

E

]∗

T
(6.221)

[
P k

H

]
≡


[
PH

11

]
S0

[
PH

12

]
S0[

PH
12

]∗

T

∣∣∣∣
S0

[
PH

22

]
S0

 =
[
P k

H

]∗

T
(6.222)

とおくと，

CE =
(

1
(
α
)∗

T

) ce

(
pk

e

)
(
pk

e

)∗

T

[
P k

E

]
 1(

α
) (6.223)

CH =
(

1
(
α
)∗

T

) ch −
(
pk

h

)
−
(
pk

h

)∗

T

[
P k

H

] 
 1(

α
) (6.224)
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よって，

F = 1
2

(
CE

ce
+ CH

ch

)

= 1
2

(
1
(
α
)∗

T

) 1
ce

 ce

(
pk

e

)
(
pk

e

)∗

T

[
P k

E

] + 1
ch

 ch −
(
ph

)
k

−
(
pk

h

)∗

T

[
P k

H

] 

 1(

α
)

(6.225)

ここで，

1
2

(
ce

ce
+ ch

ch

)
= 1 (6.226)

また，

(uk) ≡ 1
2

{
− 1
ce

(
pk

e

)
+ 1
ch

(
pk

h

)}
(6.227)[

Uk
]

≡ 1
2

{ 1
ce

[
P k

E

]
+ 1
ch

[
P k

H

]}
=
[
Uk
]∗

T
(6.228)

とおくと，

F =
(

1
(
α
)∗

T

) 1 −
(
uk
)

−
(
uk
)∗

T

[
Uk
] 

 1(
α
)

= 1 − (uk)
(
α
)

−
(
α
)∗

T

(
uk
)∗

T
+ (α)∗

T

[
Uk
](
α
)

= 1 − (uk)
(
α
)

− (uk)∗
(
α
)∗

+ (α)T

[
Uk
](
α
)∗

(6.229)

さらに，F = F ∗ より，

F =
{

1 − (uk)
(
α
)

− (uk)∗
(
α
)∗

+ (α)T

[
Uk
](
α
)∗}∗

= 1 − (u∗)k

(
α∗
)

− (u)k

(
α
)

+ (α)∗
T

[
Uk
]∗(

α
)

(6.230)

なお，行列
[
P k

E

]
，
[
P k

H

]
の第m行 n列要素を各々 P k

E,mn，P k
H,mn とすると，行列

[
Uk
]
の

第m行 n列要素 Uk
mn は，ce = PE,kk，ch = PH,kk より，

Uk
mn = 1

2

(
PE,mn

PE,kk
+ PH,mn

PH,kk

)
= Uk∗

nm (6.231)

uk
n = 1

2

(
−PE,kn

PE,kk
+ PH,kn

PH,kk

)
(6.232)
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また，(uk)の共役転置ベクトル (uk)∗
T の第 n列要素 uk∗

n は，
[
P k

E

]
=
[
P k

E

]∗

T
，
[
P k

H

]
=
[
P k

H

]∗

T

より，

uk∗
n = 1

2

(
−
P ∗

E,kn

P ∗
E,kk

+
P ∗

H,kn

P ∗
H,kk

)

= 1
2

(
−PE,nk

PE,kk
+ PH,nk

PH,kk

)
(6.233)

6.10.5 エルミート 2次形式

入射波について α0 = 1 として，

x ≡


α0(
Rk

)(
Tk

)
 (6.234)

x∗
T ≡

(
α∗

0

(
Rk

)∗

T

(
Tk

)∗

T

)
(6.235)

を新たに定義し，

[
Qk

E

]
≡

 ce

(
pk

e

)
(
pk

e

)∗

T

[
P k

E

] =
[
Qk

E

]∗

T
(6.236)

[
Qk

H

]
≡

 ch −
(
pk

h

)
−
(
pk

h

)∗

T

[
P k

H

]  =
[
Qk

H

]∗

T
(6.237)

また，

[
V k
]

≡

 1 −
(
uk
)

−
(
uk
)∗

T

[
Uk
]  =

[
V k
]∗

T
(6.238)

とおくと，

CE = x∗
T

[
Qk

E

]
x (6.239)

複素共役は，

C∗
E =

{
x∗

T

[
Qk

E

]
x
}∗

= xT

[
Qk

E

]∗
x∗ = x∗

T

[
Qk

E

]∗

T
x

= x∗
T

[
Qk

E

]
x (6.240)

よって，

C∗
E = CE (6.241)
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同様にして，

C∗
H =

{
x∗

T

[
Qk

H

]
x
}∗

= x∗
T

[
Qk

H

]
x = CH (6.242)

いま，

[
W
]

≡

 1
(

0
)

(
0
)

T

[
0
] =

[
W
]∗

T
(6.243)

を定義すると，F は次のようになる．

F =
x∗

T

[
V k
]
x

x∗
T

[
W
]
x

(6.244)

ただし，
[
V
]

k
，
[
W
]
はエルミート行列である．したがって，

F ∗ =


x∗

T

[
V k
]
x

x∗
T

[
W
]
x


∗

=
xT

[
V k
]∗

x∗

xT

[
W
]
x∗

=
x∗

T

[
V k
]
x

x∗
T

[
W
]
x

= F (6.245)

このように相対 2乗平均誤差 F は，エルミート 2次形式の比で表される.
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6.11 相対 2乗平均誤差の最小値

各モードの反射係数および透過係数は，相対 2乗平均誤差 F をこれらの係数のいずれに
対しても最小となるように決定すればよいから，全ての l に対して

∂F

∂α∗
l

= 0 (l = 1, 2, · · · , N) (6.246)

より，

uk∗
l =

(
Uk

l−

) (
α
)

(l = 1, 2, · · · , N) (6.247)

全ての l について列に並べて行列を構成すると，次のようになる．

(
uk
)∗

T
=
[
Uk
](
α
)

=
[
Uk
](Rk

)(
Tk

) (6.248)

ここで，[
Uk
]

=
[
Uk
]∗

T
(6.249)

このようにして得られた解を
(
αk
)
とすると，相対 2乗平均誤差 F は次のようになる．

F = 1 − (uk)
(
αk
)

− (uk)∗
(
αk
)∗

+ (αk)∗
T

[
Uk
](
αk
)

= 1 − (uk)
(
αk
)

− (uk)∗
(
αk
)∗

+ (αk)∗
T

(
uk
)∗

T

= 1 − (uk)
(
αk
)

(6.250)
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CHAPTER A

付録

A.1 調和関数の不定積分

境界条件の異なる２つの固有関数 fm（固有値 km），gn（固有値 k̂n）

f ′′
m + k2

mfm = 0, g′′
n + k̂2

ngn = 0 (A.1)

について，
d

dx
(fmg

′
n − f ′

mgn) = f ′
mg

′
n + fmg

′′
n − f ′′

mgn − f ′
mg

′
n

= fmg
′′
n − f ′′

mgn

= fm(−k̂2
ngn) − (−k2

mfm)gn

=
(
k2

m − k̂2
n

)
fmgn

不定積分すると，次式が得られる（積分定数省略）．

fmg
′
n − f ′

mgn =
(
k2

m − k̂2
n

) ˆ
fmgndx (A.2)

よって，km 6= k̂n のとき，調和関数に関する不定積分は次のようになる．ˆ
fmgndx = fmg

′
n − f ′

mgn

k2
m − k̂2

n

(A.3)

A.1.1 正弦・正弦関数（sin，sin）の不定積分

まず，f，g をともに正弦関数

f = sin(kxx+ ξ), g = sin(k̂xx+ ξ̂) (A.4)
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とする．これらを xで微分すると，

f ′ = kx cos(kxx+ ξ), g′ = k̂x cos(k̂xx+ ξ̂) (A.5)

先に求めた不定積分の公式 (A.3)より，
ˆ
fgdx

=
ˆ

sin(kxx+ ξ) · sin(k̂xx+ ξ̂)dx

= sin(kxx+ ξ) · k̂x cos(k̂xx+ ξ̂) − kx cos(kxx+ ξ) · sin(k̂xx+ ξ̂)
k2

x − k̂2
x

(A.6)

三角関数の積和公式

2 sinα cos β = sin(α + β) + sin(α− β) (A.7)
2 cosα sin β = sin(α + β) − sin(α− β) (A.8)

より， ˆ
fgdx

= k̂x

sin
{
(kx + k̂x)x+ (ξ + ξ̂)

}
+ sin

{
(kx − k̂x)x+ (ξ − ξ̂)

}
2(k2

x − k̂2
x)

−kx

sin
{
(kx + k̂x)x+ (ξ + ξ̂)

}
− sin

{
(kx − k̂x)x+ (ξ − ξ̂)

}
2(k2

x − k̂2
x)

= −
sin

{
(kx + k̂x)x+ (ξ + ξ̂)

}
2(kx + k̂x)

+
sin

{
(kx − k̂x)x+ (ξ − ξ̂)

}
2(kx − k̂x)

(A.9)

ここで，加法定理より，

sin
{
(kx − k̂x)x+ (ξ − ξ̂)

}
= sin

{
(kx − k̂x)x

}
cos(ξ − ξ̂) + cos

{
(kx − k̂x)x

}
sin(ξ − ξ̂) (A.10)

k̂x → kx のとき，

lim
k̂x→kx

sin
{
(kx − k̂x)x

}
cos(ξ − ξ̂)

2(kx − k̂x)
= x

2 cos(ξ − ξ̂) (A.11)

kx = k̂x のとき，

ˆ
fgdx = −

sin
{
2kxx+ (ξ + ξ̂)

}
4kx

+ x cos(ξ − ξ̂)
2 (A.12)
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また，加法定理より，

sin
{
2kxx+ (ξ + ξ̂)

}
= sin(2kxx) cos(ξ + ξ̂) + cos(2kxx) sin(ξ + ξ̂) (A.13)

kx → 0 のとき，

lim
kx→0

sin(2kxx) cos(ξ + ξ̂)
4kx

= x

2 cos(ξ + ξ̂) (A.14)

kx = 0 のとき，三角関数の和積公式

− cosA+ cosB = 2 sin A+B

2 sin A−B

2 (A.15)

より，
ˆ
fgdx = −x cos(ξ + ξ̂)

2 + x cos(ξ − ξ̂)
2

= x sin ξ sin ξ̂ (A.16)

あるいは，kx = k̂x = 0 のとき，f = sin ξ，g = sin ξ̂ より，ˆ
fgdx = sin ξ sin ξ̂

ˆ
dx

= x sin ξ sin ξ̂ (A.17)

また，kx = k̂x 6= 0のとき，f = sin(kxx+ ξ)，g = sin(kxx+ ξ̂)．三角関数の積和公式

2 sinα sin β = − cos(α + β) + cos(α− β) (A.18)

より，

fg = sin(kxx+ ξ) · sin(kxx+ ξ̂)

= 1
2

[
− cos

{
2kxx+ (ξ + ξ̂)

}
+ cos(ξ − ξ̂)

]
(A.19)

よって，ˆ
fgdx = 1

2

ˆ [
− cos

{
2kxx+ (ξ + ξ̂)

}
+ cos(ξ − ξ̂)

]
dx

= −
sin

{
2kxx+ (ξ + ξ̂)

}
4kx

+ x cos(ξ − ξ̂)
2 (A.20)

正弦・正弦関数の積分をまとめると，kx 6= k̂x のとき，ˆ
sin(kxx+ ξ) · sin(k̂xx+ ξ̂)dx

= −
sin

{
(kx + k̂x)x+ (ξ + ξ̂)

}
2(kx + k̂x)

+
sin

{
(kx − k̂x)x+ (ξ − ξ̂)

}
2(kx − k̂x)

(A.21)
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また，kx = k̂x 6= 0 のとき，
ˆ

sin(kxx+ ξ) · sin(kxx+ ξ̂)dx

= −
sin

{
2kxx+ (ξ + ξ̂)

}
4kx

+ x cos(ξ − ξ̂)
2 (A.22)

さらに，kx = k̂x = 0のとき，
ˆ

sin ξ sin ξ̂dx = x sin ξ sin ξ̂ (A.23)

A.1.2 余弦・余弦関数（cos，cos）の不定積分

次に，f，g をともに余弦関数

f = cos(kxx+ ξ), g = cos(k̂xx+ ξ̂) (A.24)

とする．ここで，ξ ≡ ζ + π/2，ξ̂ ≡ ζ̂ + π/2 とおくと，

f = cos(kxx+ ζ + π/2) = sin(kxx+ ζ) (A.25)
g = cos(k̂xx+ ζ̂ + π/2) = sin(k̂xx+ ζ̂) (A.26)

ここで，ζ = ξ − π/2，ζ̂ = ξ̂ − π/2より，

ζ + ζ̂ = ξ + ξ̂ − π (A.27)

ζ − ζ̂ = ξ − ξ̂ (A.28)

よって，ˆ
fgdx

=
ˆ

cos(kxx+ ξ) · cos(k̂xx+ ξ̂)dx

=
ˆ

sin(kxx+ ζ) · sin(k̂xx+ ζ̂)dx

= −
sin

{
(kx + k̂x)x+ (ζ + ζ̂)

}
2(kx + k̂x)

+
sin

{
(kx − k̂x)x+ (ζ − ζ̂)

}
2(kx − k̂x)

=
sin

{
(kx + k̂x)x+ (ξ + ξ̂)

}
2(kx + k̂x)

+
sin

{
(kx − k̂x)x+ (ξ − ξ̂)

}
2(kx − k̂x)

(A.29)
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また，kx = k̂x 6= 0のとき，ˆ
fgdx =

ˆ
cos(kxx+ ξ) · cos(kxx+ ξ̂)dx

=
ˆ

sin(kxx+ ζ) · sin(kxx+ ζ̂)dx

= −
sin

{
2kxx+ (ζ + ζ̂)

}
4kx

+ x cos(ζ − ζ̂)
2

=
sin

{
2kxx+ (ξ + ξ̂)

}
4kx

+ x cos(ξ − ξ̂)
2 (A.30)

さらに，kx = k̂x = 0のとき，ˆ
fgdx =

ˆ
cos ξ cos ξ̂dx

= x cos ξ cos ξ̂ (A.31)

A.1.3 不定積分のまとめ

正弦・正弦関数を上側，余弦・余弦関数を下側に記して積分をまとめると，kx 6= k̂x の
とき， ˆ

sin
cos(kxx+ ξ) · sin

cos(k̂xx+ ξ̂)dx

= ∓
sin

{
(kx + k̂x)x+ (ξ + ξ̂)

}
2(kx + k̂x)

+
sin

{
(kx − k̂x)x+ (ξ − ξ̂)

}
2(kx − k̂x)

(A.32)

また，kx = k̂x 6= 0 のとき，
ˆ

sin
cos(kxx+ ξ) · sin

cos(kxx+ ξ̂)dx

= ∓
sin

{
2kxx+ (ξ + ξ̂)

}
4kx

+ x cos(ξ − ξ̂)
2 (A.33)

さらに，kx = k̂x = 0 のとき，
ˆ

sin
cos ξ · sin

cos ξ̂dx = x
sin
cos ξ · sin

cos ξ̂ (A.34)
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被積分関数の定数項を若干，変形した形について，kx 6= k̂x のとき，ˆ
sin
cos
{
kx(x+ x1)

}
· sin
cos
{
k̂x(x+ x2)

}
dx

= ∓
sin

{
kx(x+ x1) + k̂x(x+ x2)

}
2(kx + k̂x)

+
sin

{
kx(x+ x1) − k̂x(x+ x2)

}
2(kx − k̂x)

(A.35)

また，kx = k̂x 6= 0 のとき，
ˆ

sin
cos
{
kx(x+ x1)

}
· sin
cos
{
kx(x+ x2)

}
dx

= ∓
sin

{
kx(2x+ x1 + x2)

}
4kx

+
x cos

{
kx(x1 − x2)

}
2 (A.36)

さらに，kx = k̂x = 0 のとき，
ˆ

sin
cos
{
kx(x+ x1)

}
· sin
cos
{
kx(x+ x2)

}
dx = 0

x
(A.37)
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A.2 調和関数の定積分

kxm 6= k̂xm′ のとき，

X̂
{sin
cos

mm′ =
ˆ xmax

xmin

sin
cos
{
kxm(x+ x1)

}
· sin
cos
{
k̂xm′(x+ x2)

}
dx

=
∓

sin
{
kxm(x+ x1) + k̂xm′(x+ x2)

}
2(kxm + k̂xm′)

+
sin

{
kxm(x+ x1) − k̂xm′(x+ x2)

}
2(kxm − k̂xm′)

xmax

xmin

(A.38)

また，kxm = k̂xm′ 6= 0 のとき，

X̂
{sin
cos

mm′ =
ˆ xmax

xmin

sin
cos
{
kxm(x+ x1)

}
· sin
cos
{
kxm(x+ x2)

}
dx

=
∓

sin
{
kxm(2x+ x1 + x2)

}
4kxm

+
x cos

{
kxm(x1 − x2)

}
2

xmax

xmin

(A.39)

kxm = k̂xm′ = 0 のとき，上側は被積分項がゼロ，下側は，[
x
]xmax

xmin

= xmax − xmin (A.40)

同様にして，kyn 6= k̂yn′ のとき，

Ŷ
{sin
cos

nn′ =
ˆ ymax

ymin

sin
cos
{
kyn(y + y1)

}
· sin
cos
{
k̂yn′(y + y2)

}
dy

=
∓

sin
{
kyn(y + y1) + k̂yn′(y + y2)

}
2(kyn + k̂yn′)

+
sin

{
kyn(y + y1) − k̂yn′(y + y2)

}
2(kyn − k̂yn′)

ymax

ymin

(A.41)

また，kyn = k̂yn′ 6= 0 のとき，

Ŷ
{sin
cos

nn′ =
ˆ ymax

ymin

sin
cos
{
kyn(y + y1)

}
· sin
cos
{
kyn(y + y2)

}
dy

=
∓

sin
{
kyn(2y + y1 + y2)

}
4kyn

+
y cos

{
kyn(y1 − y2)

}
2

ymax

ymin

(A.42)

kyn = k̂yn′ = 0 のとき，上側は被積分項がゼロ，下側は，[
y
]ymax

ymin

= ymax − ymin (A.43)
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A.3 ラゲルの多項式

ラゲルの多項式（the Laguerre polynomials）y = Ln,l(x)は，次のラゲルの微分方程式を
満足する．

xy′′ + (l + 1 − x)y′ + ny = 0 (A.44)

ロドリゲス表示（Rodrigues’s Formula）で示すと次のようになる．

Ln,l(x) = exx−l

n!
dn

dxn
(e−xxn+l) (A.45)

これより，

Ln,l(x) =
n∑

i=0

(
n+ l

n− i

)
(−x)i

i! (l > −1) (A.46)

ここで，(
n+ l

n− i

)
= n+lCn−i = (n+ l)!

(n− i)!{(n+ l) − (n− i)}!

= (n+ l)!
(n− i)!(l + i)! (A.47)

なお，nCk は，

nCk =
(
n

k

)
= n(n− 1) · · · (n− k + 1)

1 · 2 · · · k

= n!
k!(n− k)! (A.48)

ラゲルの多項式の低次の式を考えると，n = 0 のとき，

L0,l(x) = 1 (A.49)

より，

L0,0(x) = L0,1(x) = L0,2(x) = · · · = 1 (A.50)

n = 1 のとき，

L1,l(x) = (1 + l) − x (A.51)

より，

L1,0(x) = 1 − x (A.52)
L1,1(x) = 2 − x (A.53)
L1,2(x) = 3 − x (A.54)
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n = 2 のとき，

L2,l(x) = (2 + l)(1 + l)
2 − (2 + l)x+ x2

2 (A.55)

より，

L2,0(x) = 1 − 2x+ x2

2 (A.56)

L2,1(x) = 3 − 3x+ x2

2 (A.57)

L2,2(x) = 6 − 4x+ x2

2 (A.58)

関数 Ln,l(x)は，[0,∞]において重み係数 e−xxl を用いれば次のような直交性をもつ．
ˆ ∞

0
e−xxlLn,l(x)Ln′,l(x)dx = (n+ l)!

n! δn,n′ (A.59)

密度関数 e−xxl より直交関数系は，

e− x
2x

l
2Ln,l(x) (A.60)

さらに，式 (A.59)の直交性より正規直交系は，√
n!

(n+ l)! e
− x

2x
l
2Ln,l(x) (A.61)

x ≡ X2 ≡ (γ/γ0)2 とおいて変数変換すると，dx = 2XdX より，
ˆ ∞

0
e−X2(X2)lLn,l(X2)Ln′,l(X2)2XdX

=
ˆ ∞

0
e

− γ2

γ2
0

(
γ2

γ2
0

)l+ 1
2

Ln,l

(
γ2

γ2
0

)
Ln′,l

(
γ2

γ2
0

)
d

(
γ

γ0

)

= (n+ l)!
2n! δn,n′ (A.62)
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