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CHAPTER 1

講義概論，電磁界の基礎理論析

アンテナ工学では，最初にコース全体像と電磁界の基礎理論について講述しま
す．そして，授業計画では，アンテナの基本パラメータや平面波から始まり，電
気ダイポール，アレーアンテナ，ホーンアンテナ，反射鏡アンテナといった具体
的なアンテナの構造と計算手法を週ごとに追っていきます．基礎理論として，マ
クスウェルの方程式とそこから導かれるベクトル波動方程式やヘルムホルツ方
程式を解説し，線形，等方性，非分散性といった媒質の単純化された条件下で計
算していきます．また，ファラデー，マクスウェル，ヘルツ，マルコーニなど，
電磁波とアンテナ技術の歴史的な発展に貢献した科学者たちについてのトピッ
クスも取り上げます．

1.1 講義概論

本講義「アンテナ工学」の初回へようこそ．本日は，これから 15週間にわたって学ぶ内
容の全体像を掴むことを目的とします．アンテナは，現代社会を支える無線通信技術の根幹
をなすデバイスであり，その動作原理を深く理解することは極めて重要です．この講義で
は，まず全 15回の授業計画を概観し，アンテナ技術が私たちの身の回りでどのように活用
されているか，具体的な応用例を通じて確認します．さらに，天文学などの最先端科学を支
える高性能アンテナの世界にも触れます．そして，これら全てのアンテナ技術の基礎となる
「電磁波」そのものの物理的性質と，その理論体系がどのようにして築かれてきたのかを学
んでいきます．



1.1.1 アンテナ工学　授業計画

本講義は以下の計画に沿って進められます．

• 第 1週　講義概論，電磁界の基礎理論
• 第 2週　アンテナに関する基本パラメータ，平面波の基本特性
• 第 3週　電気ダイポール，双対性
• 第 4週　アレーアンテナの基礎
• 第 5週　アレーアンテナの指向性合成
• 第 6週　任意電磁流分布による放射，影像法
• 第 7週　電磁界の一般的な積分表示式，開口面法
• 第 8週　平面開口面分布と放射電界の関係，計算例
• 第 9週　ホーンアンテナ
• 第 10週　反射鏡アンテナの基礎
• 第 11週　複反射鏡アンテナ
• 第 12週　誘電体レンズ，レドーム
• 第 13週　小形アンテナ，円偏波アンテナ
• 第 14週　アンテナ測定，電波応用計測
• 第 15週　まとめ

1.1.2 アンテナ技術の応用例

アンテナ技術は，現代社会を支える無線通信の基盤として，あらゆる場面で活用されてい
ます．皆さんの身近な例をいくつか見てみましょう．

• 移動通信システム（スマートフォン，5G/6G）：携帯電話やスマートフォンは，内
部の小型アンテナを用いて基地局と通信しています．特に 5Gやその先の 6Gでは，
多数のアンテナ素子を用いて電波の向きを精密に制御する「ビームフォーミング」や
「Massive MIMO」といった高度なアンテナ技術が，超高速・大容量・低遅延通信を
実現する鍵となっています．

• 無線 LAN（Wi-Fi）と近距離通信：家庭やオフィスのWi-Fiルータ，PC，タブレッ
トはもちろん，Bluetoothイヤホン，スマートウォッチ，キーボードなど，近距離で
のデータ通信に多種多様なアンテナが不可欠です．

• 放送（地デジ，衛星放送）：送信所にある巨大な放送用アンテナから送られた電波を，
各家庭のアンテナ（地デジ用の八木・宇田アンテナや，BS/CS放送用のパラボラア
ンテナ）で受信し，テレビ番組を視聴します．

• 衛星測位システム（GPS/GNSS）：宇宙を周回する GPS衛星（米国）だけでなく，
2



GLONASS（ロシア），Galileo（欧州），QZSS（日本，「みちびき」）などを総称した
GNSS（全球測位衛星システム）が送信する微弱な電波を，カーナビやスマートフォ
ンのアンテナで受信し，正確な位置情報を取得します．

• レーダ（RADAR）：アンテナから電波を発射し，物体からの反射波を受信すること
で，その物体までの距離や速度を検知します．気象レーダや航空管制に加え，近年は
自動車の衝突防止レーダ（ミリ波レーダ）としても広く普及しています．

• RFID（ICカード，タグ）：Suicaや PASMOなどの交通系 ICカード，入退室管理
カード，あるいは商品の在庫管理に使われる RFタグもアンテナ技術の応用です．電
波を利用して非接触で情報を読み書きします．

• ETC（Electronic Toll Collection System）：高速道路の料金所に設置されたア
ンテナと，車両に搭載されたアンテナが DSRC（狭域通信）と呼ばれる専用の無線通
信を行い，停車することなく料金の支払いを可能にしています．

• IoT（モノのインターネット）：スマート家電，工場のセンサー，農業用監視システ
ム，ウェアラブルデバイスなど，あらゆるモノがインターネットに繋がる IoTデバイ
スには，データを送受信するための小型・省電力なアンテナが組み込まれています．

• 医療・天文学：医療分野では，MRI（磁気共鳴画像法）において体内の信号を受信す
るために RFコイルという特殊なアンテナが使われます．また，電波望遠鏡（例：ア
ルマ望遠鏡）は，宇宙からの微弱な電波を捉えるための超高性能なアンテナシステム
です．

1.1.3 高利得アンテナの世界

身近な応用例だけでなく，科学技術のフロンティアでは，電波を特定の方向に極めて鋭く
集中させる（あるいは特定の方向から高感度で受信する）「高利得アンテナ」が活躍してい
ます．

• 45m電波望遠鏡（国立天文台野辺山）：ミリ波帯において世界最高クラスの性能を誇
る電波望遠鏡です．アンテナの利得（ゲイン）は口径に比例しますが，同時に電波の
波長が短くなるほど（ミリ波帯など），反射鏡の表面誤差（鏡面精度）が性能に致命
的な影響を与えます．野辺山の 45m鏡は，その極めて高い鏡面精度によってミリ波
帯での高い利得を達成しています．

• 超大型電波望遠鏡（アレシボと FAST）：アレシボ天文台（プエルトリコ）の 305m
電波望遠鏡は，2020 年に崩壊するまで長きにわたり世界最大の単一口径電波望遠
鏡として知られていました．その巨大な反射鏡はカルスト地形の窪地を利用して固
定され，受信機側を動かして天体を追尾する方式でした．現在は，中国の「FAST
（Five-hundred-meter Aperture Spherical Telescope，通称：天眼）」が口径 500mを
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誇る世界最大の電波望遠鏡として稼働しています．
• 深宇宙探査ネットワーク（DSN）：地球から遠く離れた宇宙探査機（例：ボイジャー，
はやぶさ２）からの微弱な信号を受信し，あるいは強力なコマンドを送信するため
には，巨大なパラボラアンテナが必要です．NASA が運用する DSN（Deep Space
Network）は，米国のゴールドストーン，スペインのマドリード，オーストラリアの
キャンベラに設置された直径 70m級のアンテナ群で，地球の自転に関わらず 24時間
体制で探査機との通信を維持しています．

• VLBIとスペースVLBI：アンテナの分解能（遠くにある 2つの点を区別する能力）
は，アンテナの口径に比例します．この分解能を飛躍的に向上させるため，地球上
の複数のアンテナを連携させて一つの巨大な仮想的アンテナとして機能させる技術
が VLBI（Very Long Baseline Interferometry：超長基線電波干渉計）です．これは，
ブラックホールの影の撮影に成功した EHT（イベント・ホライズン・テレスコープ）
でも用いられました．さらに，この原理を拡張し，宇宙空間にあるアンテナ（例：日
本の「はるか」衛星）と地上のアンテナ群を連携させる技術がスペース VLBIです．
これにより，地球の直径を超える長さの「ベースライン（素子間距離）」を持つ仮想
アンテナが実現され，地上だけの VLBIを凌駕する超高分解能を達成できます．これ
らは本講義で詳述する「アレーアンテナ」の原理を，地球規模，さらには宇宙規模に
まで拡張したものです．素子間の距離が長くなるほど分解能が向上する物理的根拠
は，アレー理論を学ぶことで明らかになります．

これら多種多様なアンテナ技術の根幹をなすのは，アンテナが送受信する「電磁波」そのも
のです．次のセクションでは，この電磁波の物理的な定義と性質について理解を深めていき
ましょう．

1.2 電磁波の基礎

アンテナが扱う対象である電磁波とは一体何でしょうか．その物理的定義を明確にするこ
とは，アンテナの設計や特性評価を行う上での出発点となります．電磁波の基本的な性質で
ある周波数と波長の関係，そして可視光線を含む広大な電磁波スペクトルの中で，本講義の
中心となる「電波」がどの領域を指すのかを理解することは，今後の学習の基礎を固める上
で不可欠です．
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1.2.1 電磁波：定義とスペクトル分類

電磁波の周波数 f [Hz] と波長 λ [m] の間には，真空中における伝播速度である光速 c

[m/s] を介して以下の関係が成り立ちます．

fλ = c ' 3 × 108 [m/s] (1.1)

身の回りの電波応用では，周波数を GHz（メガヘルツ）単位で扱うことが多いため，
λ[m] ' 300/f [GHz] という換算式が頻繁に用いられます．
電磁波は，その周波数（あるいは波長）によってエネルギーや物質との相互作用の仕方が
大きく異なり，以下のように分類されます．周波数が低い（波長が長い）順に並べると次の
ようになります．

• 電波 (Radio Wave): 周波数 3 THz以下（波長 0.1 mm以上）．通信，放送，レー
ダなどに利用．

• 赤外線 (Infrared): 3 THz ∼ 430 THz．熱線，センサ，光通信．
• 可視光線 (Visible Light): 430 THz ∼ 750 THz．人間が「光」として認識できる
狭い帯域．

• 紫外線 (Ultraviolet, UV): 750 THz ∼ 30 PHz（PHz, ペタヘルツ = 1015 Hz）．殺
菌，日焼けの原因．

• X線 (X-ray): 30 PHz ∼ 30 EHz（EHz, エクサヘルツ = 1018 Hz）．医療用レント
ゲン，物質の内部構造解析．

• γ 線 (Gamma Ray): 30 EHz以上．放射性崩壊や核反応で発生し，最も高いエネ
ルギーを持つ．

このうち，アンテナ工学」で主に取り扱う「電波」は，一般に周波数が 3 THz（テラヘル
ツ）以下，波長が 0.1 mm（ミリメートル）以上の電磁波として定義されています．電波は
さらに，その周波数帯によって詳細に分類され，それぞれ用途や伝播特性，そして使用され
るアンテナの形状が大きく異なります．

• HF（短波帯）：3 ∼ 30 MHz (波長 100 m ∼ 10 m)．電離層反射を利用した遠距離通
信（国際放送，アマチュア無線）．

• VHF（超短波帯）：30 ∼ 300 MHz (波長 10 m ∼ 1 m)．FM ラジオ，テレビ放送
（地デジの一部），航空無線．

• UHF（極超短波帯）：300 MHz ∼ 3 GHz (波長 1 m ∼ 10 cm)．地デジ，携帯電話，
Wi-Fi，GPS，電子レンジ．

• SHF（センチ波帯）： 3 ∼ 30 GHz (波長 10 cm ∼ 1 cm)．衛星放送，5G，Wi-Fi
（5GHz帯），気象レーダ．
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• EHF（ミリ波帯）：30 ∼ 300 GHz (波長 10 mm ∼ 1 mm)．5G（高速通信），高解
像度レーダ，電波天文学．

電磁波の存在は，初めから自明なものではありませんでした．それがどのようにして理論
的に予言され，実験によってその存在が証明されてきたのか，その歴史的背景をたどること
は，電気磁気学の理論体系をより深く理解する上で非常に有益です．

1.3 電磁気学の歴史的発展

現代のアンテナ工学は，19世紀の偉大な物理学者たちによる基礎研究の積み重ねの上に
成り立っています．ファラデーによる実験的な発見から，マクスウェルによる電磁気現象の
理論的統一，そしてヘルツによる電磁波の実証という一連の歴史的流れが，今日のあらゆる
無線通信技術の礎を築きました．ここでは，アンテナ技術の発展に寄与した重要な発見や発
明を振り返ります．

1.3.1 マクスウェルによる電磁波の予言

19世紀，物理学の世界は，二つの物体が何もない空間を隔てて直接力を及ぼし合う「遠
隔作用」という考え方が主流でした．この状況を大きく変えたのが，二人のイギリスの物理
学者です．
卓越した実験家であったマイケル・ファラデー（1791 – 1867）は，正規の数学教育を受
けていなかったものの，抜群の直感と視覚的洞察力を持っていました．彼は，磁石の周りの
鉄粉の模様から，力が物体間ではなく「空間そのもの」の性質であると考え，「力線（Lines
of Force）」ひいては「場（Field）」という革命的な概念を提唱します．彼が発見した「電磁
誘導の法則」（磁石を動かすことでコイルに電流が流れる）は，この「場」の考えに基づき，
電気と磁気の間の深いつながりを明らかにするものでした．
ファラデーの直感的で視覚的な「場」のビジョンを，厳密な数学の言語へと翻訳するとい
う歴史的使命を担ったのが，理論物理学者のジェームズ・クラーク・マクスウェル（1831 –
1879）です．マクスウェルは，ファラデーらの実験結果と「場」の概念を数学的に体系化
し，当時知られていた電磁気に関する法則を，今日「マクスウェルの方程式」として知られ
る 4つの簡潔な方程式にまとめ上げました．この方程式の探求から，物理学史上最も重大な
予言が導き出されます．

• 第一に，電気と磁気の相互作用が「波」として空間を伝わること，すなわち「電磁波」
の存在が理論的に予言されました（1864年）．

• 第二に，方程式から計算されるその伝播速度が，当時測定されていた光の速度と驚く
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ほど一致したのです．

この計算結果が意味するところは衝撃的でした．それまで全く別物と考えられていた電気，
磁気，そして光が，本質的には同じ現象の異なる側面であることが示され，物理学の偉大な
統一が成し遂げられたのです．しかし，この革命的な理論にもかかわらず，予言された「電
磁波」そのものはまだ誰にも観測されておらず，その実在は数学上の産物に留まっていま
した．

1.3.2 ヘルツによる電磁波の検証

いかにエレガントな科学理論であっても，実験による検証という試練を乗り越えなければ
なりません．マクスウェルの理論的予言から約 20年後，師であるヘルムホルツの示唆を受
け，「目に見えない波を実験室で作り出し，そして捕える」という難題に，ドイツの物理学
者ハインリヒ・ヘルツ（1857 – 1894）が挑みました．1886年，彼の発見は偶然から始まり
ます．ヘルツは，送信機として機能する火花放電（スパーク）装置を動かすと，少し離れた
場所にあった電源に繋がっていない，単純な導線の輪（受信機）の小さな隙間にも，微小な
火花が飛ぶことに気づきました．これをマクスウェルが予言した電磁波による共振現象だと
直感したヘルツは，ここから執念の実験を開始します．彼は暗い実験室にこもり，受信機の
輪の隙間に飛ぶ，肉眼ではかろうじて見える程度の微小な火花を顕微鏡で測定し続けるとい
う，驚異的な忍耐力で電磁波の性質を体系的に明らかにしました．
彼は受信機を部屋の様々な場所に動かし，火花の強弱のパターンを測定することで，目に
見えない電磁波が空間に定在波（standing waves）を形成していることを可視化しました．
彼はこの定在波の波長を測定し，既知の周波数と掛け合わせることで，この波の伝播速度が
光の速度と一致することを算出しました．さらに，電磁波が金属板で反射し，巨大な樹脂製
のプリズムで屈折し，特定の向きでしか透過しない「偏波」という性質を持つことも実験で
示しました．これらの実験結果は，電磁波が光と全く同じ物理的性質を持つことを決定的に
証明しました．この瞬間，マクスウェルの理論は単なる数式上のものではなく，紛れもない
物理的現実であることが確定したのです．

�アンテナ工学の原点 ヘルツの実験は，アンテナ工学のまさに原点と言えます．驚くべき
ことに，ヘルツが電磁波を発生させるために用いた火花放電装置（2枚の金属板）は，実質
的な「半波長ダイポールアンテナ」（「ヘルツのダイポール」）でした．そして，発生した電
磁波を検出するために用いた導線の輪は，現代でも使われる「ループアンテナ」そのもので
した．
さらにヘルツの探求は止まりません．1888 年，彼は室内実験での不要な反射を抑える
ため，亜鉛板を放物線状に曲げた世界初の指向性アンテナ，すなわち「放物線筒反射器
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（parabolic cylinder reflector）」を製作しました．これは，特定の方向に電波を集中させる
能力を持ち，現代のパラボラアンテナのまさしく原型です．ヘルツの動機は，あくまでマク
スウェルの理論を検証するという純粋な科学的探求にあり，彼自身は通信への応用を追求し
ませんでした．しかし，彼の実験的勝利によって，無線通信に不可欠な理論的基盤と物理的
な実証，そして「アンテナ」という技術の芽生えが，ここに確立されたのです．

1.3.3 マルコーニによる無線通信の実用化

科学的な発見が社会を変える技術革新へと繋がるには，両者の間に「架け橋」となる存
在が必要です．その役割を担ったのが，イタリアの発明家グリエルモ・マルコーニ（1874 –
1937）でした．彼は，ファラデーやヘルツのような純粋な知的好奇心に動かされた科学者と
は対照的に，電磁波に世界中を結ぶ通信手段としての商業的可能性を見出した，類まれな先
見性を持つ人物でした．明確な「実用化と事業化」を動機とする「革新者（Innovator）」で
あり，エンジニアであり，ビジネスマンだったのです．彼の天才性は，ゼロから何かを物理
的に発見することではなく，既存の技術—ヘルツの送信機，ロッジの高感度なコヒーラ，そ
してアンテナやアース（接地）といった要素—を最適に統合し，徹底的に改良を重ねる点に
ありました．
彼の関心は理論の探求よりも，試行錯誤と経験則による性能向上にありました．例えば，
彼は理論的な理解に先んじて，以下の二つの重要な経験則を発見します．

• アンテナを高くすればするほど，通信距離が伸びること．
• 長距離通信には，ヘルツが使った高い周波数よりも，より低い周波数の電波が適して
いること．

この実用的かつ執拗なエンジニアリングのアプローチにより，マルコーニは通信距離を飛躍
的に伸ばし，無線電信を実用化することに成功します．
そして 1901年 12月，彼は無線通信の歴史における最も象徴的な実験，すなわち大西洋
横断通信に挑みます．この挑戦は，送信側と受信側の驚くべき技術的な非対称性を持ってい
ました．

• 送信所（イギリス，コーンウォール）：高さ 45.7mの支柱から 54本のワイヤーが扇
状に張られた，巨大なアンテナが設置されました．

• 受信所（カナダ，ニューファンドランド島）：約 3,500km離れた受信側では，凧で空
中に吊り下げられた長さ 122mの 1本の銅線という，驚くほど簡素なアンテナが用い
られました．

イギリスから，モールス符号の「s」（・・・）が約 500kHzの周波数で繰り返し送信されま
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した．悪天候の中，マルコーニはヘッドフォンに耳を澄まし，大西洋を越えて届いた微弱な
がらも確実な 3つのクリック音を捉えました．この瞬間，電波が地球の曲面に沿って遠くま
で届くことが証明され，大陸間無線通信の可能性が現実のものとなったのです．この成功は
彼に名声をもたらし，1909年のノーベル物理学賞受賞に繋がりました．
そして 1912年，彼の実用化の功績は，豪華客船タイタニック号の遭難事故という悲劇的
な形でその重要性を世界に示します．タイタニック号にはマルコーニ社の無線機が搭載され
ており，遭難信号（SOS）を発信し続けました．しかし，最も近くにいたカリフォルニア号
の無線通信士は就寝中で，その信号を受信できませんでした．一方，遠く離れたカルパチア
号が信号を受信し，4時間後に現場に到着して 706名の生存者を救助しました．この出来事
は，無線通信が人命救助に不可欠であることを世界に痛感させ，その後の海上無線規則の整
備へと繋がりました．商業的に実行可能なシステムを世界で初めて構築したマルコーニは，
「無線の父」と見なされるようになりました．もちろん，無線通信の発展は彼一人の力では
なく，同時期にロシアのポポフ，AM（振幅変調）を実証したフェッセンデン，三極真空管
を発明したド・フォレスト，FM（周波数変調）などを発明したアームストロングといった
多くの貢献者が存在しました．

1.3.4 レーダの発展

レーダ（RADAR: RAdio Detection And Ranging）は，アンテナから電波を発射し，物
体からの反射波を捉えることで，その物体までの距離や速度などを知る技術です．距離は，
発射した電波が反射して戻ってくるまでの時間遅れから算出されます．一方，速度は，反射
波の周波数が物体の移動によって変化するドップラー効果を利用して計測されます．この技
術の発展には，大きく二つの異なる流れがあります．

� 連続波（CW）方式と電離層の発見 一つは，連続波（Continuous Wave: CW）を用い
る方式です．その先駆けとなったのが，1924年のアップルトンらによる電離層の発見です．
彼らは，周波数を連続的に変化させる CW波（現代の FMCWレーダの原理）を上空に発
射し，地表を進む直接波と，上空で反射してくる波との「干渉」を観測しました．この干渉
のパターンを解析することで，上空約 90km に電波を反射する層（電離層）が存在するこ
とを突き止めました．この発見は，短波を用いた遠距離通信の発展に不可欠な貢献となり，
アップルトンはこの業績によりノーベル物理学賞を受賞しました．また，周波数を変えない
単純な CWレーダは，もっぱらドップラー効果を利用した速度計測に用いられ，この二つ
の方式が CWレーダの基礎を築きました．
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� パルスレーダ方式の確立 もう一つの流れは，パルス波を用いる方式で，これが現在の
レーダ技術の主流です．1926年，ブライトとチューブは，電離層の測定により高精度な手
法を導入しました．彼らのパルスレーダは，ごく短い時間だけ電波（パルス）を発射し，送
信を停止して受信機に切り替え，そのパルスが反射して戻ってくるまでの時間を直接計測
します．光速 cは一定であるため，この時間遅れ tを正確に測ることで，物体までの距離 R

を R = c · t/2 という単純な関係から高精度に算出できます．このパルスを用いた直接的な
時間計測の手法が，現在のレーダ技術の主流を築きました．

1.3.5 宇宙マイクロ波背景放射とアンテナ

1964年，ベル研究所のアーノ・ペンジアスとロバート・ウィルソンは，衛星通信（エコー
衛星計画）のために開発された，極めて高性能なホーンリフレクタアンテナの調整を行って
いました．このアンテナは，設計上，地球（地面）からの熱雑音や人工的な干渉を極限まで
抑えることができる，当時最も高感度な受信機の一つでした．彼らの目的は，このアンテナ
を使い，天の川銀河（銀河系）からの微弱な電波を精密に測定することでした．しかし，そ
の測定の過程で，彼らは大きな問題に直面します．空のあらゆる方向から，季節や時間（昼
夜）に関わらず，常に入射してくる「謎のノイズ」を検出したのです．そのノイズは，絶対
温度にして約 3ケルビン [K]に相当する微弱なマイクロ波でした．二人は当初，これをアン
テナや受信機の不具合だと考えました．彼らはあらゆる可能性を潰そうと試みます．受信機
を再点検し，アンテナの構造を調べ，さらにはアンテナの内部に巣を作っていた鳩を追い出
し，その「白い堆積物（糞）」を徹底的に掃除することまでしました．しかし，どれほど努
力しても，その謎のノイズは消えませんでした．この「ノイズ」の正体が判明したのは，彼
らがこの問題を近隣のプリンストン大学のロバート・ディッケらの研究グループに相談し
た時でした．ディッケらは，まさにその時，「宇宙が熱い火の玉（ビッグバン）で始まった
ならば，その初期の熱放射の “名残” が，現在は冷えて絶対温度数度のマイクロ波として宇
宙全体に満ちているはずだ」という理論を計算し，まさにその信号を検出するためのアンテ
ナを自ら建設しようとしていたのです．ペンジアスとウィルソンが格闘していた「ノイズ」
こそ，ディッケらが理論的に予言していた「宇宙マイクロ波背景放射（Cosmic Microwave
Background: CMB）」そのものでした．観測者（ペンジアスら）が偶然発見した謎のノイズ
と，理論家（ディッケら）の予言が劇的に出会った瞬間でした．
この発見は，宇宙がビッグバンによって始まったことを示す決定的な証拠の一つとなり，
宇宙論の歴史における最大の発見の一つとされています．高性能なアンテナがあったからこ
そ成し得たこの科学的偉業により，ペンジアスとウィルソンは 1978年にノーベル物理学賞
を受賞しました．
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1.3.6 光学望遠鏡から反射鏡アンテナへ

電波望遠鏡で広く用いられるパラボラアンテナなどの反射鏡アンテナは，その設計思想と
動作原理を光学望遠鏡に直接遡ることができます．光（可視光）も電波（マイクロ波など）
も，同じ電磁波の仲間です．これらの電磁波の波長が，扱う鏡や反射鏡のサイズに比べて十
分に小さい場合，その振る舞いは「波」として厳密に扱う代わりに，「光線」や「電波の進
む線（レイ）」として近似的に扱うことができます．これが幾何光学（Geometrical Optics）
の原理です．
ニュートン，カセグレン，グレゴリーらが考案した光学反射望遠鏡は，まさにこの幾何光
学の原理に基づき，主鏡（放物面鏡など）で光を集光します．電波を扱うアンテナ工学，特
にマイクロ波やミリ波といった高周波数の領域では，この光学の原理がほぼそのまま適用で
きるため，この分野を「準光学（Quasi-Optics）」と呼ぶことさえあります．

• 光学カセグレン望遠鏡：主鏡（放物面）で集めた光を，焦点手前に置いた副鏡（双曲
面）で反射させ，主鏡の中心にある穴を通して後方に導き，観測装置で捉えます．

• カセグレンアンテナ：主反射鏡（パラボラ）で集めた電波を，焦点手前に置いた副反
射鏡（ハイパーボラ）で反射させ，主反射鏡の中心にある給電ホーン（受信機）で受
信します．

このように，反射鏡の形状や配置に関する理論は，光学とアンテナ工学で完全に共通してい
ます．
しかし，この幾何光学はあくまで「近似」です．アンテナのビームがどの程度シャープに
なるか（ビーム幅），目的方向以外にどれだけ電波が漏れるか（サイドローブ），電波の偏波
がどうなるかといった，より厳密な性能を設計・評価するためには，電波を「波」として正
確に記述する必要があります．そして，その電磁波のすべての振る舞いを記述する，技術の
理論的根幹こそがマクスウェルの方程式です．光学望遠鏡で培われた「形」の知恵が，マク
スウェルの方程式という「物理法則」によって裏付けられ，アンテナ工学へと発展していっ
たのです．アンテナ工学を本格的に学ぶにあたり，まずはこの基本法則を数式として正確に
理解し，整理することから始めましょう．

1.4 電磁界の基礎理論

これまでの歴史的・応用的な概観から一歩進み，ここからはアンテナから放射される電磁
界を厳密に記述するための数学的基盤を固めていきます．アンテナ工学の理論体系は，マク
スウェルの方程式，媒質の性質を記述する構成方程式，そして複雑なベクトル場の計算を助
けるベクトル演算公式という 3 つの柱の上に成り立っています．これらの数式がどのよう

11



に連動して，電磁波の振る舞いを決定するのかを見ていきましょう．

1.4.1 マクスウェルの方程式

マクスウェルの方程式は，時間的に変動する電界と磁界の関係，およびそれらの発生源
（電荷と電流）との関係を記述する，古典電磁気学の根幹をなす 4つの基本法則です．ここ
で，Eは電界，Hは磁界，Dは電束密度，Bは磁束密度，Jt は全電流密度（伝導電流と変
位電流の源となる電流の和），ρは電荷密度です．

�ファラデーの電磁誘導の法則 磁束密度の時間変化（∂B
∂t）が，その変化を妨げる向きに電

界の渦（∇ × E）を生み出すことを示します．∇× は空間的な「渦」の強さと向きを表して
おり，この法則は「磁場が時間変化する場所には，必ずループ状（渦巻き状）の電界が発生
する」ことを意味します．

∇ × E = −∂B
∂t

(1.2)

�アンペール・マクスウェルの法則 磁界の渦（∇ × H）を生み出す原因が 2つあることを
示します．一つは Jt，すなわち導体を流れる電流（伝導電流）です．これは「電流の周りに
は渦を巻く磁界が発生する」という元のアンペールの法則に相当します．もう一つは ∂D

∂t ，
すなわち電束密度の時間変化です．これはマクスウェルによって加えられた「変位電流」と
呼ばれる項であり，コンデンサの内部のように電流が流れていない空間でも，電界が時間変
化すれば磁界が発生することを示しています．この変位電流項こそが，電界と磁界が相互に
作用しあい，波として空間を伝播（つまり，電磁波）することを理論的に導く鍵となりま
した．

∇ × H = ∂D
∂t

+ Jt (1.3)

�電束密度に対するガウスの法則 ∇· は，ある点からベクトル場がどれだけ「湧き出して」
いるか（発散）を表します．この法則は，電束密度 D の湧き出し量が，その点に存在する
電荷密度 ρ に等しいことを示しています．つまり，電荷（正電荷）が電束線の発生源（湧き
出し口）であり，負電荷は吸い込み口となります．

∇ · D = ρ (1.4)

�磁束密度に対するガウスの法則 磁束密度 B の発散（∇·）が常にゼロであることを示し
ます．これは，磁場には電荷のような「湧き出し口」や「吸い込み口」が存在しないことを
意味します．物理的には，磁気単極子（モノポール，N極だけまたは S極だけの磁荷）は自
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然界に存在しないことを示しており，結果として，磁力線は必ずループを形成（閉曲線とな
る）か，無限遠から無限遠へと続くことになります．

∇ · B = 0 (1.5)

1.4.2 構成方程式と媒質定数

マクスウェルの方程式は，電磁界の振る舞いを記述する普遍的な「基本法則」ですが，そ
れだけでは特定の状況下での解を求めることはできません．電磁波が伝播する「媒質（物
質）」が，電界や磁界に対してどのように応答するかを記述する関係式が必要であり，それ
が構成方程式（または媒質方程式）です．これらの方程式は，電界の強さ Eと電束密度D，
および磁界の強さHと磁束密度 Bという，2種類の場を結びつけます．

D = εE (1.6)
B = µH (1.7)
Jt = J0 + σE (1.8)

ここで，εは誘電率，µは透磁率，σ は導電率であり，これらは媒質定数と呼ばれます．J0

は外部から印加される電流源です．
本講義では，計算を単純化するため，扱う媒質について限定し，以下の 3つの仮定を置き
ます．

• 線形 (Linear)：媒質定数 ε, µ, σ が，電界 E や磁界 H の大きさに依存しないと仮定
します．もし線形でなければ（非線形媒質），D が E の 2乗に比例するなどの複雑
な応答を示し，重ね合わせの理が使えなくなるなど，解析が極めて困難になります．
（例：鉄などの強磁性体は B と H の関係が非線形です）

• 等方性 (Isotropic)：媒質定数が，電磁波が加わる方向によらず一定であると仮定し
ます．もし等方性でなければ（異方性媒質），ε や µ は方向によって異なる値を持つ
テンソル量となり，例えば D と E の向きが一致しなくなります．（例：結晶や，繊
維強化プラスチックなど特定の方向に構造を持つ材料）

• 非分散性 (Non-dispersive)：媒質定数が，電磁波の周波数 f に依存しないと仮定
します．もし分散性媒質であれば，ε(f) や µ(f) のように周波数によって値が変わる
ため，異なる周波数成分（例：パルス波に含まれる様々な周波数）が異なる速度で伝
播し，波形が崩れてしまいます．（例：プリズムが光を色（周波数）によって分離す
るのは，ガラスが可視光域で分散性を持つためです）

これらの仮定は，現実世界の媒質がより複雑な特性を持つ場合があることを認識しつつも，
アンテナ工学で主に扱う自由空間や，マイクロ波帯で用いられる多くの誘電体基板（テフロ
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ン，FR-4など）においては，非常に優れた近似となります．このため，解析を大幅に簡略
化しつつ，広範な実用アプリケーションに対する強力かつ正確な基本モデルを提供すること
が正当化されます．

1.4.3 ベクトルの演算公式

マクスウェルの方程式から電磁波の性質を導出する過程で，ベクトルの微分演算が頻繁に
登場します．特に以下の公式は，後の波動方程式の導出に不可欠なため，ここで確認してお
きます．

• スカラーポテンシャルの回転は常にゼロとなります．

∇ × (∇φ) = 0 (1.9)

• ベクトル場の回転の発散は常にゼロとなります．

∇ · (∇ × a) = 0 (1.10)

• ベクトルの回転の回転は，発散の勾配とラプラシアンで表されます．

∇ × (∇ × a) = ∇(∇ · a) − ∇2a (1.11)

これらの基本法則と公式を組み合わせることで，電磁界が空間と時間の中でどのように振る
舞い，伝播していくかを示す「波動方程式」を導き出すことができます．

1.5 波動方程式

アンテナ工学の核心である「放射」現象，すなわち電磁波がどのようにしてアンテナから
空間へ伝播していくのかを理解するためには，マクスウェルの方程式から波動方程式を導
出するプロセスを理解することが不可欠です．このセクションでは，まず時間領域で電磁波
の伝播を記述する「ベクトル波動方程式」を示し，次に，アンテナ解析で多用される周波数
領域での表現である「ベクトルヘルムホルツ方程式」へと変換する過程を段階的に説明し
ます．

1.5.1 ベクトル波動方程式

ベクトル波動方程式は，マクスウェルの方程式から電界 Eまたは磁界Hの一方について
の方程式を導くことで得られます．ここでは電界 E に関する方程式を導出します．まず，
ファラデーの法則の両辺の回転をとり，アンペール・マクスウェルの法則を代入してHを
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消去します．

∇ × (∇ × E) = −µ ∂
∂t

(∇ × H) = −µ ∂
∂t

(
∂D
∂t

+ Jt
)

(1.12)

構成方程式を用いて整理し，前述のベクトル公式 ∇ × (∇ × E) = ∇(∇ · E) − ∇2E とガウ
スの法則 ∇ · E = ρ/ε を適用すると，電流源 J0 と電荷 ρを源（ソース）とする電界 Eに関
する非同次ベクトル波動方程式が得られます．

∇2E − µε
∂2E
∂t2

− µσ
∂E
∂t

= µ
∂J0

∂t
+ 1
ε
∇ρ (1.13)

同様の手順で，磁界Hに関する非同次ベクトル波動方程式も導出できます．

∇2H − µε
∂2H
∂t2

− µσ
∂H
∂t

= −∇ × J0 (1.14)

アンテナから十分に離れた，電流や電荷が存在しない空間（J0 = 0, ρ = 0）では，これらの
方程式の右辺はゼロとなり，同次ベクトル波動方程式となります．これは，一度放射された
電磁波が空間を伝播していく様子を記述する方程式です．

1.5.2 ベクトルヘルムホルツ方程式

アンテナからの放射界は，多くの場合，特定の周波数を持つ正弦波として扱われます．こ
のような時間的に正弦波振動する電磁界を解析するには，複素記号法（フェーザ表示）を導
入すると非常に便利です．この方法では，時間微分 ∂/∂t を jω で置き換えることができま
す（j は虚数単位，ω は角周波数）．
この置き換えをベクトル波動方程式に適用することで，時間微分項を消去し，周波数領域
で問題を扱うための方程式を導出できます．この方程式はベクトルヘルムホルツ方程式と呼
ばれます．電界 Eに関する非同次ベクトルヘルムホルツ方程式は以下のようになります．

∇2E + k2E = jωµJ0 + 1
ε
∇ρ (1.15)

ここで，k は媒質中の波数（wave number）であり，以下のように定義されます．

k2 = −jωµ(jωε+ σ) (1.16)

ソースが存在しない空間では，右辺がゼロとなり，同次ベクトルヘルムホルツ方程式が得ら
れます．

∇2E + k2E = 0 (1.17)

この方程式は，アンテナから放射された後の自由空間における電磁波の振る舞いを記述す
る，アンテナ工学における最も基本的な方程式の一つです．
これで第 1週の講義で学ぶべき主要な理論的基礎が整いました．今後の講義では，これら
の基礎方程式を解くことで，様々なアンテナの特性を具体的に解析していきます．
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CHAPTER 2

アンテナに関する基本パラメータ，
平面波の特性

アンテナの基本的なパラメーターと平面波の基本特性について詳述します．ま
ず，放射パターン，電力密度，ポインティング・ベクトルといった基礎概念を述
べ，複素数を用いた平均電力の計算方法を詳細に解説します．次に，絶対利得と
指向性利得の定義を示し，等方性アンテナを基準とする絶対利得の計算式や，指
向性利得との関係を説明します．また，全方向性や単指向性アンテナの例題を通
して利得の計算やビーム幅との関係を示し，アンテナの指向性について論じてい
きます．さらに，電界と磁界が伝搬方向に垂直である TEM波をはじめとする平
面波の基本特性や，波動インピーダンス，波数ベクトル，そして反射波・透過波
の表示式についても説明します．

2.1 アンテナに関する基本パラメータ

2.1.1 放射パターン

放射パターン（radiation pattern）とは，アンテナからの放射電力に方向性があることを
示し，その放射特性を放射角度の関数として図示したものを指します．アンテナの性能を理
解する上で，その放射パターンを把握することは極めて重要です．アンテナの放射特性に
は，電力束密度，放射強度，電界強度，指向性，位相，偏波などが含まれます．通常，放射
パターンはアンテナから十分離れた遠方界領域（far-field region）で決定（測定または計算）
され，方向（角度座標）の関数として表現されます．



アンテナの性能は，主に以下の 3種類のパターンで示されます．

• 振幅電界パターン (Amplitude Field Pattern): 一定の半径上で測定した電界（ま
たは磁界）の振幅のプロットです．

• 振幅電力パターン (Amplitude Power Pattern): 一定の半径上で測定した電力密
度のプロットです．リニアスケール（線形目盛）では，電界の振幅の 2乗をプロット
したものになります．

• 電力パターン (dBスケール): 電界（または磁界）の振幅をデシベル (dB)単位でプ
ロットしたものです．dBスケールは，後述するマイナーローブのような非常に低い
放射レベルの部分を詳細に強調して表示できるため，実用上よく用いられます．

多くの場合，パターンはその最大値が 1（または 0dB）になるように正規化（normalized）
されて表示されます．放射パターンにより，アンテナがどの方向に強く，どの方向に弱く電
波を放射するのかが一目でわかります．この放射パターンを定量的に評価するためには，ま
ずアンテナから放射される電力の流れを計算する方法を理解する必要があります．そのため
の基本となるのが，電力密度という概念です．

放射パターンのローブ
放射パターンは，放射強度が比較的弱い領域に囲まれた「ローブ」と呼ばれる複数の部分
で構成されます．

• 主ローブ (Major Lobe)，主ビーム (Main Beam): 最も強く放射される方向（最
大放射）を含むローブです．

• マイナーローブ (Minor Lobe): 主ローブ以外のすべてのローブを指します．
• サイドローブ (Side Lobe): 主ローブに隣接するマイナーローブで，意図しない方
向への放射を示します．

• バックローブ (Back Lobe): 主ローブのほぼ反対側（約 180°方向）にあるマイナー
ローブです．

特に，サイドローブレベル (Side Lobe Level, SLL)といえば，主ローブの最大値に対する
最大のサイドローブの比率を指し，通常は dBで表されます（例：−20 dB）．

ビーム幅 (Beamwidth)
アンテナパターンのビーム幅とは，一般に，パターンの最大値を中心として，その両側に
ある同一の（放射強度の）2点間の角度分離として定義されます．最も一般的に使用される
ビーム幅は以下の 2つです．
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� 半値電力ビーム幅 (HPBW) 半値電力ビーム幅 (Half-Power Beamwidth, HPBW) は，
アンテナの指向性の鋭さを示す重要な指標であり，パターンの最大放射レベルから電力が半
分（−3 dB）になる 2点間の角度差を指します．これは，それぞれの正規化パターンにおい
て以下の値になる点を結んだ角度です．

• 電界パターン (リニア): 最大値の 0.707 (
√

0.5 )
• 電力パターン (リニア): 最大値の 0.5
• 電力パターン (dB): 最大値 (0 dB) から −3 dB

�第一ヌルビーム幅 (FNBW) 第一ヌル（放射がゼロになる点）間の角度である第一ヌル
ビーム幅 (First-Null Beamwidth, FNBW)も用いられます．

パターンの分類と主平面
放射パターンは，その形状によって以下のように分類されます．

• 等方性（Isotropic）: 理論上の仮想的なアンテナで，放射方向に依らず放射電力が
一定です（全ての方向に均等にエネルギーを放射）．アンテナの指向性を比較するた
めの基準（リファレンス）として用いられます．

• 全方向性（Omnidirectional）: 特定の平面（例：水平面）内において指向性が一様
ですが，全ての方向で一様ではありません．例えば，アンテナの真上や真下には電波
を放射しないパターンがこれに該当します．微小ダイポールアンテナや半波長ダイ
ポールアンテナがこの例です．

• 指向性（Directional）: 特定（または複数）の方向に，他の方向よりも強く放射（ま
たは受信）する特性を持つパターンです．

– 単指向性 (Unidirectional): ある特定の方向に強い放射を持つ指向性です．ほ
とんどの実用的なアンテナはこのタイプに属し，エネルギーを特定の方向に集中
させることで高い指向性を実現します．例として，パッチアンテナ，八木・宇田
アンテナ，ホーンアンテナ，反射鏡アンテナなどがあります．

�主平面 (Principal Patterns) 直線偏波（電界の振動方向が一定）のアンテナでは，その
性能を評価するためにしばしば「E面」と「H面」の 2つの主平面が用いられます．

• E面 (E-plane): 電界ベクトルと最大放射方向を含む平面．
• H面 (H-plane): 磁界ベクトルと最大放射方向を含む平面．
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2.1.2 電力密度

放射パターンを定量化するためには，アンテナから流出する電力を計算する方法を確立し
なければなりません．この解析の基本的なツールとして，電力密度 (power density)とポイ
ンティングベクトルが導入されます．ある閉曲面 S で囲まれた領域 V から出ていく総電力
P [W]は，次式で定義されます．

P =
˚

V

∇ · S dv =
‹
S

S · dS =
‹
S

(E × H ) · dS (2.1)

ここで，S は瞬時値のポインティングベクトル（instantaneous Poynting vector）であり，
その大きさは電力密度 [W/m2] を表します．

S = E × H (2.2)

ただし，E とH は瞬時値の電界と磁界であり，直角座標系では次のように成分表示され
ます．

E = Exax + Eyay + Ezaz
H = Hxax + Hyay + Hzaz

(2.3)

これより，ポインティングベクトル S は次のように展開されます．

S = E × H = ax(EyHz − EzHy) + ay(EzHx − ExHz) + az(ExHy − EyHx) (2.4)

時間的に変動する電磁界の平均電力を計算する際，瞬時値のままでは計算が煩雑になりま
す．これは電気回路において，瞬時値の電圧・電流から平均電力を求めるよりも，複素電
圧・複素電流（フェーザ表示）を用いる方が計算が容易であることと同様です．そこで，複
素電界 Ė と複素磁界 Ḣ を導入します．

Ė = Ėxax + Ėyay + Ėzaz
Ḣ = Ḣxax + Ḣyay + Ḣzaz

(2.5)

瞬時値と複素表示の関係は，複素振幅が実効値を表すとして次のように定義されます．

E =
√

2R(Ėejωt)
H =

√
2R(Ḣejωt)

(2.6)

ここで，二つの瞬時値 A (t), B(t) の積の時間平均 A B を考えます．それぞれの複素表示
を Ȧ = |Ȧ|ejα, Ḃ = |Ḃ|ejβ とすると，瞬時値は次式で表されます．

A =
√

2|Ȧ| cos(ωt+ α) =
√

2R(Ȧejωt)
B =

√
2|Ḃ| cos(ωt+ β) =

√
2R(Ḃejωt)

(2.7)
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このとき，積の時間平均は複素共役（∗）と実部（R）を用いて，次のように簡潔に計算で
きます．

A B = R(ȦḂ∗) = R(Ȧ∗Ḃ) = |Ȧ||Ḃ| cos(α− β) (2.8)

この時間平均の原理をポインティングベクトルに適用すると，時間平均された電力密度 S

は複素ポインティングベクトルの実部として得られます．

S = R(Ė × Ḣ∗) (2.9)

ここで，複素ポインティングベクトル Ṡ を次のように定義します．

Ṡ = Ė × Ḣ∗ (2.10)

これにより，時間平均電力密度は次のように表せます．

S = 1
T

ˆ
T

S dt = 1
T

ˆ
T

(E × H )dt = R(Ṡ) = R(Ė × Ḣ∗) (2.11)

最終的に，閉曲面から流出する平均電力 P は，複素ポインティングベクトルを用いて次の
ように定式化されます．

P = R(P̂ ) = R

(‹
(Ė × Ḣ∗) · dS

)
(2.12)

この電力密度の概念は基本ですが，遠方界ではより便利な放射強度というパラメータが用い
られます．

2.1.3 放射強度

アンテナの放射特性を記述するために，角度の単位を定義します．平面角にはラジアン
(radian)，立体角にはステラジアン (steradian, sr)が用いられます．半径 r の球において，
面積 r2 の球面が中心に対してなす立体角が 1ステラジアンであり，球全体は 4π ステラジ
アンです．球座標系における微小立体角 dΩ は，次式で表されます．

dΩ = sin θdθdφ (2.13)

電力密度はアンテナからの距離に依存するため，アンテナ固有の放射特性を評価するに
は不便な場合があります．そこで，アンテナから十分離れた遠方界において，距離に依存し
ないパラメータとして放射強度 U が導入されます．これは，単位立体角あたりの放射電力
として定義され，アンテナの方向に関する放射特性をより直接的に表現します．球座標系に
おいて，観測点 r = rar における放射強度 (radiation intensity) U(θ, φ) は次式で定義され
ます．

U(θ, φ) = R
(
(Ė × Ḣ∗) · arr2

)
(2.14)
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この定義から，時間平均電力密度 p と放射強度 U の間には単純な関係が成り立ちます．

p = U(θ, φ)
r2 = R

(
(Ė × Ḣ∗) · ar

)
(2.15)

この関係を用いると，アンテナから放射される総平均電力 P は，放射強度 U を全立体角
（4π ステラジアン）にわたって積分することで得られます．ここで dΩ は（式 (13)で定義
された）立体角要素です．

P =
‹

pdS =
‹

U(θ, φ)
r2 dS =

‹
U(ar)dΩ (2.16)

2.1.4 利得

利得（gain）は，アンテナが特定の方向へエネルギーをどれだけ集中させる能力を持つか
を示す，最も重要なパラメータです．これは，評価対象のアンテナと，基準となるアンテナ
の性能を比較する比率として定義されます．ここで重要なのは，アンテナの利得は増幅器
（アンプ）のような「増幅」ではないという点です．アンテナはエネルギー保存則に従うた
め，新たなエネルギーを生成しません．利得とは，全方向に拡散してしまうであろう電力を
特定の方向に「寄せ集めて集中」させる能力を指します．大きなパラボラアンテナが高い利
得を持つのは，広い面積で電波を「収集」し，一点に集束させるからです．したがって，利
得が高いということは，目的の方向への放射を強化していることを意味します．
利得は同一電力を供給した条件下で，ある距離における評価対象アンテナの電力密度と基
準放射源の電力密度の比で与えられます．

G = （アンテナからある方向へ放射されている電波の電力密度）
（同一電力を供給した基準放射源からの同一距離での電波の電力密度）

この定義は，前節で導入した放射強度 U を用いて，より計算上有利な形に書き換えること
ができます．

G = p(ar)
p0

= U(ar)
U0

(2.17)

アンテナから十分離れた遠方界では，放射波は局所的に平面波とみなせます．このとき，電
界 E と磁界 H の間には，媒質の波動インピーダンス Zw を介して以下の関係が成り立ち
ます *1．

E = ZwH × ar (2.18)

*1 簡略化のため，複素電界，複素磁界などのドットは省略する
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この関係を用いると，電力密度の計算に必要なベクトル積は次のように簡略化できます．

(E × H∗) · ar = |E|2

Zw
(2.19)

これにより，電力密度 p は電界強度の大きさだけで表現できます．

p = U(θ, φ)
r2 = R ((E × H∗) · ar) = |E|2

Zw
(2.20)

同様に，基準放射源の電力密度 p0 も次式で表されます．

p0 = U0

r2 = R ((E0 × H∗
0) · ar) = |E0|2

Zw
(2.21)

これらの結果を統合し，供試アンテナへの入力電力 W と基準放射源への入力電力 W0 が異
なる場合も考慮すると，利得 G は以下の最終的な形で定義されます．

G = p(ar)
p0

=
|E(ar)|2
W

|E0|2
W0

(2.22)

ここで，各変数は以下の通りです．

• E(ar): 方向 ar における供試アンテナによる放射電界強度 [V/m]
• W : 供試アンテナへの入力電力
• E0: 基準放射源による放射電界強度 [V/m]
• W0: 基準放射源への入力電力

利得は非常に大きな値の範囲をとることが多いため，通常はデシベル（dB）単位で表現さ
れ，10 log10 G で計算されます．この一般的な利得の定義を具体的に計算するためには，基
準アンテナを定める必要があります．最も広く用いられるのが，次に示す絶対利得です．

2.1.5 絶対利得

絶対利得（absolute gain）は，利得の計算における基準として，理論的な「等方性（isotropic）
アンテナ」を用いるものです．この基準アンテナは，物理的には存在しない仮想的なもので
すが，あらゆる方向に均一に電力を放射するという理想的な特性を持つものを指し，アン
テナ性能を比較するため用いられます．したがって，無損失アンテナのピーク絶対利得は 1
（0 dBi）以上となります．これは，電力を少しでも特定の方向に集中させれば，均一に放射
する等方性基準を必ず上回るためです．
このアンテナに電力 W を入力すると，その放射強度 Uc は方向によらず一定となります．
総放射電力 P0t が入力電力 W に等しいと考えると，全立体角 4π で積分した結果から Uc
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を求めることができます．

P0t =
‹

UcdΩ = Uc

‹
dΩ = Uc · 4π = W (2.23)

これにより，等方性アンテナの放射強度は Uc = W/4π となります．これを前節の利得の式
に代入すると，絶対利得 Ga の表現が得られます．

G = U

Uc
= U

W
4π

= 4π U
W

(2.24)

したがって，絶対利得 Ga は以下の式で与えられます．

Ga = 4π ·（放射強度（単位立体角当たりの放射電力））（入力電力） (2.25)

絶対利得をデシベルで表す際には，基準が等方性アンテナであることを明示するために，単
位として dBi がしばしば用いられます．絶対利得はアンテナへの「入力電力」を基準とし
ますが，アンテナ内部の損失を無視して放射特性そのものを評価したい場合には，次に述べ
る指向性利得が用いられます．

2.1.6 指向性利得

指向性あるいは指向性利得（directivity, directive gain）*2は，絶対利得と類似した概念で
すが，放射電力に着目し，異なる方向に相対的に集中する度合い，すなわち指向特性の尺度
です．絶対利得がアンテナへの「入力電力」(W )を基準にするのに対し，指向性利得は実
際に放射された「全放射電力」(Pt)を基準にします．これにより，アンテナ内部の導体損失
や誘電体損失などの影響を排除し，放射エネルギーを特定の方向に集中させる能力だけを純
粋に評価することができます．
指向性利得 Gd は，絶対利得の定義式における分母を全放射電力に置き換えることで，次
のように定義されます．

Gd = 4π ·（単位立体角当たりの放射電力）（全放射電力） (2.26)

この式は，ある方向への放射強度と，全放射電力を全立体角 (4π)で均した「平均放射強度」
との比としても解釈できます．

Gd = （単位立体角当たりの放射電力）
（全放射電力の単位立体角当たりの平均値） (2.27)

*2 1983 年の IEEE 標準「アンテナ用語の定義」では、“directivity” という用語が、古い 1973 年の定義にお
ける “directive gain” の用語に置き換えられました。
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指向性利得を具体的に計算するために，まずアンテナからの遠方放射電界 Ep を考えます．
遠方界では，電界は次のように一般的に表現できます．

Ep = K
e−jkr

r
F(ar) (2.28)

ここで，1/r の項はエネルギー保存則による距離減衰を表し，F(ar) は距離 r に依存しない
放射パターン関数です．この式を指向性利得の定義に代入すると，Gd は放射パターン関数
F(ar) だけで計算できることがわかります．

Gd = 4π U(ar)‹
UdΩ

= 4π |F(ar)|2‹
|F(ar)|2dΩ

(2.29)

いま，球座標系において，単位ベクトルを uとして，F(ar) = F (θ, φ)uで表されるとき，

Gd = 4π |F (θ, φ)|2ˆ 2π

0

ˆ π

0
|F (θ̄, φ̄)|2 sin θ̄dθ̄dφ̄

(2.30)

指向性という言葉は角度の関数であるパターン Gd(θ, φ) 全体を指し，指向性利得はそのパ
ターンの最大値（ピーク値）を指すことが多いです．

2.1.7 アンテナ効率と実現利得

� アンテナ効率 (Antenna Efficiency) アンテナ内部の損失を「効率」として定量化しま
す．アンテナの全効率 e0 は，以下の 3つの効率の積で表されます．

e0 = er · ec · ed (2.31)

• 反射効率 er: アンテナ入力端子と伝送線路との間のインピーダンス不整合（ミスマッ
チ）による損失．反射係数を Γ とすると，er = (1 − |Γ|2) で定義されます．

• 導体効率 ec: アンテナ導体（金属）の抵抗によるジュール熱損失．
• 誘電体効率 ed: アンテナの基板や絶縁体など，誘電体の損失．

実用上，導体損失と誘電体損失を分離するのは困難なため，これらを合わせて放射効率
(radiation efficiency, ecd)と呼び，

η = ec · ed (2.32)

より，全効率 e0 は次のようになります．

e0 = er · η (2.33)
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また，絶対利得 Ga と指向性利得 Gd の関係は，アンテナ内部の損失を考慮する放射効率 η

を用いて次のように表されます．

Ga(θ, φ) = ηGd(θ, φ) (2.34)

つまり，放射効率 η は，入力された電力のうち，実際に放射される電力の割合です．

�実現利得 (Realized Gain) 絶対利得 Ga は，アンテナ内部の損失（η）は考慮しますが，
伝送線路とのミスマッチ損失（er）は考慮しません．ミスマッチ損失も含めた，システム全
体で「実現」される利得を，実現利得 Gre と呼びます．

Gre(θ, φ) = erGa(θ, φ) = erηGd(θ, φ) = e0Gd(θ, φ) (2.35)

2.1.8 ビーム効率

ビーム効率（beam Efficiency）, BE は，アンテナが放射する全電力のうち，どれだけの
割合が主ローブ（または特定の角度）内に集中しているかを示す指標です．

BE = 主ローブ内の放射電力全放射電力 =

ˆ 2π

0

ˆ θ1

0
U(θ, φ) sin θdθdφ

ˆ 2π

0

ˆ π

0
U(θ, φ) sin θdθdφ

(2.36)

ここで θ1 は，主ローブの端（通常は第一ヌル点）までの角度です．この指標は，サイドロー
ブによる不要な信号の受信（ノイズや干渉）を最小限に抑えたい電波天文学やリモートセン
シングにおいて重要です．

2.1.9 帯域幅

帯域幅（bandwidth）は，「アンテナの特定の性能が，規定された基準を満たす周波数の
範囲」として定義されます．アンテナの性能（入力インピーダンス，放射パターン，利得，
偏波など）は周波数に依存するため，すべての性能が同じ周波数範囲で基準を満たすとは限
りません．そのため，通常は「インピーダンス帯域幅」や「パターン帯域幅」のように，ど
の特性についての帯域幅かを区別します．
帯域幅の表現方法は，アンテナの種類によって異なります．

• 広帯域 (Broadband) アンテナ: 上限周波数と下限周波数の「比」で表されます．
（例：10:1 の帯域幅）

• 狭帯域 (Narrowband) アンテナ: 中心周波数に対する「パーセンテージ」で表され
ます．（例：5% の帯域幅）
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2.2 指向性利得の計算例

指向性利得の概念を具体的に理解するために，全方向性および単指向性パターンの代表的
な例について計算を行います．

2.2.1 例題 1 (全方向性)

問題：次のような全方向性パターン F (θ, φ) = sin θ（ダイポールアンテナのパターンに
類似）の最大指向性利得を求めよ．
略解：最大放射方向は θ = π/2 です．このときの指向性利得 Gd は，式 (29)を用いて次
のように計算されます．

Gd =
4π
∣∣∣sin π

2

∣∣∣2ˆ 2π

0

ˆ π

0
| sin θ|2 sin θdθdφ

= 4πˆ 2π

0
dφ

ˆ π

0
(1 − cos2 θ) sin θdθ

ここで t = cos θ とおくと，dt = − sin θdθ となります．積分範囲は θ = 0 → t = 1，
θ = π → t = −1 に変わります．

Gd = 4π

2π
ˆ −1

1
(1 − t2)(−dt)

= 2ˆ 1

−1
(1 − t2)dt

= 2

2
[
t− t3

3

]1

0

= 3
2 = 1.5

デシベルに変換すると，10 log10 1.5 = 1.76 dB となります．

2.2.2 例題 2 (単指向性)

問題：次のような単指向性パターン F (θ, φ) = cos θ (0 ≤ θ ≤ π/2)（パッチアンテナの
パターンに類似），その他の範囲では 0 となる場合の指向性利得を求めよ．
略解：最大放射方向は θ = 0 です．このときの指向性利得 Gd は次のように計算され
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ます．

Gd = 4π| cos 0|2ˆ 2π

0

ˆ π/2

0
| cos θ|2 sin θdθdφ

= 4πˆ 2π

0
dφ

ˆ π/2

0
cos2 θ sin θdθ

ここで t = cos θ とおくと，dt = − sin θdθ となります．積分範囲は θ = 0 → t = 1，
θ = π/2 → t = 0 に変わります．

Gd = 4π

2π
ˆ 0

1
t2(−dt)

= 2ˆ 1

0
t2dt

= 2[
t3

3

]1

0

= 2
1
3

= 6

デシベルに変換すると，10 log10 6 = 7.78 dB となります．

2.2.3 ビーム幅と利得の関係

これらの例は，アンテナ理論の基本原則を明確に示しています：ビーム幅が狭くなるほ
ど，指向性利得は高くなる．これは，総放射電力がより小さな立体角に集中されることで，
ピーク方向の強度が必然的に増大するためです．例えば，F (θ) = sin θ (Gd = 1.5) よりも
ビームが鋭い F (θ) = sin2 θ では Gd = 1.875 となり，同様に F (θ) = cos θ (Gd = 6) より
鋭い F (θ) = cos2 θ では Gd = 10 と，利得が向上します．

2.2.4 例題 3

問題：遠方における放射電界 E が，球座標系 (r, θ, φ) において，

E =


A
e−jkr

r
cosn θ u1

(
0 ≤ θ ≤ π

2 [rad]
)

0
(
π

2 < θ ≤ π [rad]
)

となる z 軸に関して回転対称（φ には依らない）な単指向性アンテナ（パッチアンテナ等
に類似のパターン）がある．ただし，A, n は座標に依らない定数，r [m]は観測点までの距
離，k は波数，u1 は主偏波成分に沿う単位ベクトルを示す．このアンテナの指向性のピー
ク値 Gd を求めよ．
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略解：スカラー指向性関数を E1(θ) とすると，E1(θ) = cosn θ (0 ≤ θ ≤ π/2) となりま
す．最大放射方向は θ = 0 です．指向性のピーク値 Gd は次式で計算されます．

Gd = 4π
|E1(θ)|2

∣∣∣∣
θ=0ˆ 2π

0

ˆ π/2

0
|E1(θ)|2 sin θdθdφ

= 4πˆ 2π

0
dφ

ˆ π/2

0
cos2n θ sin θdθ

ここで t = cos θ とおくと，dt = − sin θdθ となります．

Gd = 4π

2π
ˆ 0

1
t2n(−dt)

= 2ˆ 1

0
t2ndt

= 2[
t2n+1

2n+ 1

]1

0

= 2
1

2n+1
= 2(2n+ 1)
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2.3 平面波の基本特性

2.3.1 平面波の基礎

平面波はアンテナ工学において極めて重要な概念です．アンテナから放射された電波は球
面波として広がりますが，アンテナから十分離れた遠方界では，その波面は局所的に平面と
みなすことができます．この「平面波近似」は，遠方界におけるアンテナ解析で最も重要な
単純化であり，波の伝搬や物体との相互作用の解析を劇的に容易にします．このため，平面
波理論の復習は不可欠です．
直角座標系において，±z 方向に伝搬する平面波を考えます．電荷が存在しない自由空間
では，電界 E は同次のベクトルヘルムホルツ方程式を満たします．

d2

dz2 E + k2E = 0 (2.37)

この方程式の一般解は，座標成分に依らない定数ベクトル N1,N2 を用いて次のように書け
ます．

E = N1e
−jkz + N2e

jkz (2.38)

ここで，電荷がない領域でのガウスの法則 ∇ · E = 0 を適用します．

∇ · E =
(

ax
∂

∂x
+ ay

∂

∂y
+ az

∂

∂z

)
· (N1e

−jkz + N2e
jkz) = 0 (2.39)

電界は z のみの関数であるため，∂/∂x = ∂/∂y = 0 となり，

∇ · E = ∂

∂z
az · (N1e

−jkz + N2e
jkz) = az · [N1(−jk)e−jkz + N2(jk)ejkz] = 0 (2.40)

この式が任意の z で成立するためには，各項の係数がゼロでなければなりません．

az · N1 = 0, az · N2 = 0 (2.41)

これは，電界 E が伝搬方向である z 成分を持たないこと，すなわち電界が伝搬方向に垂直
な面（横断面）内に存在することを示しています．次に，ファラデーの法則を用いて磁界 H
を導出します．

H = − 1
jωµ

∇ × E = − 1
jωµ

(
ax

∂

∂x
+ ay

∂

∂y
+ az

∂

∂z

)
× E (2.42)
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2.3.2 波動インピーダンスとTEM波

前節の磁界 H の導出を続けます．電界 E は x, y に関して一様であるため，回転（curl）
の計算は ∂/∂z の項のみが残ります．

H = − 1
jωµ

(
az

∂

∂z

)
× E = − 1

jωµ
az × ∂

∂z
(N1e

−jkz + N2e
jkz)

= k

ωµ
az × (N1e

−jkz − N2e
jkz)

= 1
Z0

(az × N1e
−jkz − az × N2e

jkz) (2.43)

ここで，Z0 は波動インピーダンス（wave impedance）または媒質の特性インピーダンス
（intrinsic impedance）と呼ばれ，次式で定義されます．

Z0 = ωµ

k
=
√

µ

ε− j σω
(2.44)

特に，真空中（ε = ε0, µ = µ0, σ = 0）では，その値は一定となります．

Z0 =
√
µ0

ε0
' 376.7 ' 120π [Ω] (2.45)

磁界 H もまた az に直交するため，z 成分を持ちません．このように，電界 E と磁界 H の
両方が波の伝搬方向（この場合は z 方向）に対して垂直（transverse）である波を，横電磁
波（Transverse Electromagnetic wave, TEM波）と呼びます．ここまでは z 軸方向
への伝搬を考えましたが，次に任意の方向に伝搬する平面波を波数ベクトルを用いて一般的
に記述します．

2.3.3 波数ベクトルと等位相面

任意の方向に伝搬する平面波を記述するために，波数ベクトルを導入します．まず，一般
的な平面波を表す関数 ψ を考えます．

ψ = e−jkxxe−jkyye−jkzz = e−j(kxx+kyy+kzz) (2.46)

ここで，位置ベクトル r と波数ベクトル k を次のように定義します．

r = xax + yay + zaz (2.47)
k = kxax + kyay + kzaz = kn (2.48)

波数ベクトル k の大きさ k は波数（2π/λ）であり，その向きを表す単位ベクトル n は波
の伝搬方向を示します．これらを用いると，平面波関数 ψ は内積を用いて非常にコンパク
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トに表現できます．

ψ = e−jk·r (2.49)

この指数部分，すなわち波の位相項に注目します．

k · r = constant (2.50)

この条件を満たす点の集合は，ベクトル k に垂直な平面を形成します．この平面上では波
の位相がすべて等しいため，これを等位相面（equiphase surface）と呼びます．この表記法
を用いて，伝搬方向が単位ベクトル ar である入射平面波の電界 E+ と磁界 H+ は，一般
的に次のように表されます．

E+ = A+e−jkar·r (2.51)
H+ = Yw(ar × E+) (2.52)

ここで，Yw は波動アドミタンスで，k は波数です．

k2 = ω2µε(1 − j tan δ), Yw = 1
Zw

= k

ωµ
(2.53)

この一般化された表現は，次に示すように，媒質の境界面における反射や透過の問題を解析
する上で基礎となります．

2.3.4 反射波，透過波，およびTE/TM波

平面波が異なる媒質の境界面に入射すると，波は一般に反射波と透過波に分かれます．こ
の現象を解析する際には，入射電磁界を特定の偏波成分に分解すると便利です．その代表的
なものが，入射面に対して電界が垂直な TE波と，平行な TM波です．まず，反射の法則
に従う反射波の伝搬方向 âr を定義します．

âr = (ar · ax)ax + (ar · ay)ay − (ar · az)az

この方向へ進む反射波の電界 E− と磁界 H− は次のように書けます．

E− = A−e−jkâr·r, H− = Yw(âr × E−) (2.54)

解析を簡単にするため，入射面（入射方向と境界面の法線が作る面）を xz 平面とします．
このとき，任意の電磁界は，入射面に垂直な成分（⊥, y成分）と平行な成分（‖）に分解で
きます．

E± = E±
⊥ + E±

‖ (2.55)
A+ = A+

⊥ay + A+
‖ (ay × ar), A− = A−

⊥ay + A−
‖ (âr × ay) (2.56)
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この座標系では，入射方向と反射方向のベクトルは次のように表されます．

ar = − sin θax + cos θaz, âr = − sin θax − cos θaz (2.57)

これにより，入射波と反射波の位相項はそれぞれ次のようになります．

−kar · r = k(x sin θ − z cos θ) (2.58)
−kâr · r = k(x sin θ + z cos θ) (2.59)

これらの式を用いて，入射波と反射波の電磁界を成分ごとに書き下すと以下のようになり
ます．

E+ = {A+
⊥ay + A+

‖ (ay × ar)}ejk(x sin θ−z cos θ) (2.60)

E− = {A−
⊥ay + A−

‖ (âr × ay)}ejk(x sin θ+z cos θ) (2.61)

H+ = Yw{A+
⊥(ar × ay) + A+

‖ ay}ejk(x sin θ−z cos θ) (2.62)

H− = Yw{A−
⊥(âr × ay) − A−

‖ ay}ejk(x sin θ+z cos θ) (2.63)

ここで，入射面に電界が垂直な場合（A±
‖ = 0）を TE（Transverse Electric）波，入射

面に磁界が垂直な場合（A±
⊥ = 0）を TM（Transverse Magnetic）波と定義します．境

界面（xy 平面）における接線成分（添字 t）は，電磁界の連続性を考える上で重要です．入
射波と反射波それぞれの接線成分は次のように表されます．

E+
t = (A+

⊥ay + A+
‖ cos θax)ejk(x sin θ−z cos θ) (2.64)

E−
t = (A−

⊥ay + A−
‖ cos θax)ejk(x sin θ+z cos θ) (2.65)

H+
t = Yw(−A+

⊥ cos θax + A+
‖ ay)ejk(x sin θ−z cos θ) (2.66)

H−
t = Yw(A−

⊥ cos θax − A−
‖ ay)ejk(x sin θ+z cos θ) (2.67)

境界面上の全電磁界は，入射波と反射波の重ね合わせで表されます．

Et = E+
t + E−

t = (V⊥(z)ay + V‖(z)ax)ejkx sin θ (2.68)
Ht = H+

t + H−
t = (−I⊥(z)ax + I‖(z)ay)ejkx sin θ (2.69)

ここで，V (z), I(z) は，

V⊥(z) = A+
⊥e

−jkz cos θ + A−
⊥e

jkz cos θ (2.70)
V‖(z) = cos θ(A+

‖ e
−jkz cos θ + A−

‖ e
jkz cos θ) (2.71)

I⊥(z) = Yw cos θ(A+
⊥e

−jkz cos θ − A−
⊥e

jkz cos θ) (2.72)
I‖(z) = Yw(A+

‖ e
−jkz cos θ − A−

‖ e
jkz cos θ) (2.73)
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さらに変数を定義しなおすと，

V ±
⊥ ≡ A±

⊥, V ±
‖ ≡ A±

‖ cos θ (2.74)

Y⊥ ≡ Yw cos θ, Y‖ ≡ Yw
cos θ , kz ≡ k cos θ (2.75)

これより，伝送線路理論と全く同じ形式の進行波と後退波の式が得られます．

V⊥(z) = V +
⊥ e

−jkzz + V −
⊥ e

jkzz (2.76)
V‖(z) = V +

‖ e
−jkzz + V −

‖ e
jkzz (2.77)

I⊥(z) = Y⊥(V +
⊥ e

−jkzz − V −
⊥ e

jkzz) (2.78)
I‖(z) = Y‖(V +

‖ e
−jkzz − V −

‖ e
jkzz) (2.79)
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2.4 問題

� 問題 2-1. 放射強度 U(θ) = cos(nθ) のアンテナの電力半値幅 (HPBW) と第一ヌル間
ビーム幅 (FNBW)を，1 ≤ n ≤ 10の範囲で求め図示せよ．

�問題 2-2. 立体角 ΩA の範囲で一様な放射強度を有するアンテナの指向性利得のピーク値
Gd を，ΩA を用いて表せ．

�問題 2-3. 例題 1,2の関数 F (θ)が，(a) F (θ) = sin2 θ，(b) F (θ) = cos2 θ のときの指向
性利得のピーク値を各々導出せよ．

�問題 2-4. 平面波の特徴を簡潔に述べよ．
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CHAPTER 3

電気ダイポールと双対性

電気ダイポール（微小電流源）によって生成される電磁界の解析について詳述
します．磁気的ベクトルポテンシャルの導入から始まり，ヘルムホルツ方程式の
導出，ディラックのデルタ関数を用いた電磁界の計算などについて説明します．
計算結果から得られる電磁界の成分が，観測点までの距離 r の依存性により，準
静電界 (∝ 1/r3)，誘導界 (∝ 1/r2)，放射界 (∝ 1/r)に分類され，特に遠方界で
の放射界が平面波の性質を持つことを示します．さらに，放射抵抗の計算を通じ
てアンテナの特性を定量化し，双対性の概念を導入して，電気的ベクトルポテン
シャルや磁流源が関わる問題についても論じています．

3.1 はじめに

電気ダイポールは，アンテナ理論において最も基本的かつ重要な要素です．その単純な構
造にもかかわらず，その振る舞いを理解することは，より複雑なアンテナ構造の解析や設計
における基礎となります．ここでは，この電気ダイポールが生成する電磁界について，厳密
かつ体系的に解析します．その手法として，電磁気学の根幹をなすマクスウェルの方程式か
ら出発し，計算の効率化と物理的見通しの良さをもたらすベクトルポテンシャル法を採用し
ます．このアプローチにより，一つのポテンシャルを求めるという問題に帰着させ，そこか
ら電界と磁界を導出する過程を丁寧に解説します．そして，静電界や誘導界といった電磁気
学の概念が，より一般的な電磁波の理論の中にどのように内包されているか，またアンテナ
の最も重要な「放射」という現象がどのように数式上現れるのかを明らかにします．



3.2 電磁ポテンシャルによる定式化

電磁波の放射問題を解く際，マクスウェルの方程式を直接扱うことは，電界 E と磁界 H
が互いに連成しているため複雑さを伴います．この困難を回避するための強力な方法が，電
磁ポテンシャル（磁気的ベクトルポテンシャル A と電気的スカラーポテンシャル Φa）を
導入することです．この手法を用いることで，連成した一階のベクトル微分方程式であるマ
クスウェルの方程式を，ポテンシャルに関する非連成の二階微分方程式（波動方程式）へと
変換できます．これにより，まずポテンシャルを求め，その結果から電磁界を算出するとい
う，見通しの良い手順で解析できます．

3.2.1 磁気的ベクトルポテンシャルと電気的スカラーポテンシャル

磁束密度 B は常に発散しない（∇ · B = 0）という物理法則と，任意のベクトル場 A の
回転（curl）は発散がゼロになるというベクトル恒等式 ∇ · (∇ × A) = 0 に基づき，磁気的
ベクトルポテンシャル A を以下のように定義できます．

B = ∇ × A (1)

この A の定義を，ファラデーの電磁誘導の法則 ∇ × E = −∂B/∂t に代入すると，

∇ × E = − ∂

∂t
(∇ × A) (3.1)

∴ ∇ ×
(

E + ∂A
∂t

)
= 0 (2)

となります．回転がゼロとなるベクトル場は，あるスカラー場の勾配（gradient）として表
現できるというベクトル恒等式 ∇ × (∇Φ) = 0 を利用すると，上式から電気的スカラーポ
テンシャル Φa を用いて以下の関係式を定義できます．

E + ∂A
∂t

= −∇Φa (3)

3.2.2 ローレンツの条件とヘルムホルツ方程式

次に，ポテンシャルで表現された H (= (1/µ)B) と E をアンペア・マクスウェルの
法則 ∇ × H = ∂D/∂t + Jt に代入し，整理を進めます．ベクトル公式 ∇ × (∇ × A) =
∇(∇ · A) − ∇2A を用いることで，最終的に A と Φa を含む次のような波動方程式が得ら
れます．

∇2A − µε
∂2A
∂t2

− µσ
∂A
∂t

− ∇
(

∇ · A + µε
∂Φa

∂t
+ µσΦa

)
= −µJ (4)
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ここで重要なのは，ポテンシャル A と Φa は一意には決まらないという点です．これは
「ゲージの任意性」として知られており，任意のスカラー関数 ψ を用いて A → A0 + ∇ψ，
Φa → Φa0 − ∂ψ/∂t という変換を行っても，結果として得られる電磁界 E と B は不変に保
たれます．この任意性を利用して方程式を簡略化し，ポテンシャルを一意に定めるために，
補助的な条件を課すことができます．上の式を見ると，括弧で囲まれた項が計算を複雑にし
ています．そこで，「この項が簡単になると良いのではないか．いっそゼロにしてしまおう」
ということを考えるわけです．これがローレンツの条件です．

∇ · A + µε
∂Φa

∂t
+ µσΦa = 0 (5)

この条件を式 (4)に適用すると，括弧内の項がゼロとなり，A と Φa が分離された，より単
純な非同次波動方程式が得られます．

∇2A − µε
∂2A
∂t2

− µσ
∂A
∂t

= −µJ (6)

同様に，ガウスの法則 ∇ · E = ρ/ε にポテンシャルの表現を代入し，ローレンツの条件を適
用することで，スカラーポテンシャル Φa に関する非同次波動方程式も導出されます．

∇2Φa − µε
∂2Φa

∂t2
− µσ

∂Φa

∂t
= −ρ

ε
(7)

アンテナ工学では時間的に正弦波状に変動する電磁界を扱うことが多いため，時間因子 ejωt

を導入して周波数領域で考えます．これにより，時間微分 ∂/∂t は jω に置き換えられ，上
記の方程式は非同次ヘルムホルツ方程式と呼ばれる形に変換されます．

(∇2 + k2)A = −µJ (8)

(∇2 + k2)Φa = −ρ

ε
(9)

ここで k は媒質中の波数（複素数）であり，k2 ≡ ω2εµ− jωµσ と定義されます．

3.2.3 ベクトルポテンシャルによる電磁界表現

ローレンツの条件を課したことにより，電界 Eをスカラーポテンシャル Φaを介さずに，ベ
クトルポテンシャルAだけで表現することが可能になります．周波数領域において，式 (3)は
E = −jωA−∇Φaとなり，ローレンツの条件 (5)は∇·A = −(jωµε+µσ)Φa = −(k2/jω)Φa

となります．後者の式を用いて Φa を消去すると，以下の重要な関係式が得られます．

E = −jω
{

A + 1
k2 ∇(∇ · A)

}
(10)

この結果は極めて重要です．なぜなら，磁界 H は H = (1/µ)∇ × A から，そして電界 E
はこの式 (10)から，いずれもベクトルポテンシャル A のみを用いて計算できるからです．
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したがって，電磁界の放射問題は，電流源 J が与えられたときにヘルムホルツ方程式 (8)を
解いて A を求めるという，単一のベクトルポテンシャルに関する問題に帰着します．

3.3 微小単位電流源による電磁界

ヘルムホルツ方程式を解くため，まず最も単純な波源，理想化された「点電流源」に対す
る解を求めます．この基本的な解は「グリーン関数」として知られ，電磁気学における基本
的な応答関数として機能します．この基本的な構成要素が得られれば，線形性（重ね合わせ
の原理）を利用して，任意の形状や分布を持つ複雑な電流源に対する解を，点源からの寄与
を積分することで構築できるのです．

3.3.1 点電流源のモデル化と方程式

解析の出発点として，空間内の一点 r′ に局在し，u 方向を向いた理想的な点電流源を考
えます．このような源は，数学的にはディラックのデルタ関数 δ(r − r′) を用いて次のよう
にモデル化できます．

J = uδ(r − r′) (11)

デルタ関数は，r = r′ の点でのみ無限大の値を持ち，それ以外の点ではゼロとなる性質を持
ちます．また，その定義域全体で積分すると 1になります．

ˆ
δ(r − r′)dv = 1

この性質により，点に集中した物理量を数学的に厳密に扱うことができます．この電流源の
定義を，ベクトルヘルムホルツ方程式 (8)に代入します．計算を簡略化するため，電流源を
原点 (r′ = 0) に配置し，その向きを z軸方向 (u = az) に揃えます．この設定により，ベク
トルポテンシャル A は z成分 Az のみを持ち，方程式は以下のようなスカラーのヘルムホ
ルツ方程式に帰着します．

(∇2 + k2)Az = −µδ(r) (12)

3.3.2 ヘルムホルツ方程式の解法とベクトルポテンシャルの導出

源が原点にあり，向きが z 軸方向であるため，生成されるポテンシャル Az は球対称性を
持ち，観測点までの距離 r のみに依存すると考えられます．これにより，球座標系におけ
るラプラシアン ∇2 は r に関する微分項のみとなり，式 (12)は次のような常微分方程式に
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なります．

1
r2

∂

∂r

(
r2∂Az

∂r

)
+ k2Az = −µδ(r) (13)

この方程式の右辺をゼロとした同次方程式の解のうち，外向きに伝搬する波を表すものは，
0次の第 2種球ハンケル関数 h

(2)
0 (kr) で与えられ，これは e−jkr/r に比例します．非同次方

程式を解くために，式 (13)の両辺を，原点を中心とする微小な球の体積 V で積分します．
˚

V

(∇ · ∇Az + k2Az)dv =
˚

V

−µδ(r)dv (14)

左辺第 1項にガウスの発散定理*1を適用し，右辺はデルタ関数の性質を用いて評価すると，
‹
S

∇Az · dS + k2
˚

V

Azdv = −µ (15)

となります．ここで体積 V をゼロに近づける極限 (V → 0) を考えます．Az は 1/r で発散
しますが，体積要素 dv が r2 に比例するため，左辺第 2項の体積積分 k2 ´ Azdv はゼロに
収束します．これにより，以下の関係が得られます．

lim
V→0

‹
S

∇Az · dS = −µ (16)

球面上の面積分を考えると，dS = arr2 sin θdθdφ となり，

lim
V→0

‹
S

(∇Az · ar)r2 sin θdθdφ = −µ (17)

解の形を Az = C · h(2)
0 (kr) = C(je−jkr/(kr))（C は未定係数）と仮定し，その勾配の動径

成分を計算します．

∇Az · ar = ∂Az
∂r

= C
j

k

(−jkr)e−jkr − e−jkr

r2 = C
e−jkr

r2

(
r − j

k

)
(18)

これを式 (17)に代入し，r → 0 の極限をとると，

lim
r→0

ˆ 2π

0

ˆ π

0

[
C
e−jkr

r2

(
r − j

k

)]
r2 sin θdθdφ = −µ (3.2)

lim
r→0

[
Ce−jkr

(
r − j

k

)]
(4π) = −µ (19)

*1 ガウスの発散定理は，˚
(∇ · a)dv =

‹
a · dS
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r → 0 の極限をとると，e−jkr → 1，r → 0 となるため，

C
(

− j

k

)
4π = −µ (20)

となり，未定係数 C が求まります．

C = −j kµ4π (21)

これを Az の式に代入すると，最終的に次のように決定されます．

Az =
(

−j kµ4π

)(
j
e−jkr

kr

)
= µe−jkr

4πr (22)

この結果は，原点に置かれた z軸方向の単位点電流源に対する解です．これを，任意の位置
r′ にあり，任意の方向 u を向いた点電流源の場合に一般化すると，ベクトルポテンシャル
A は次式で与えられます．

A = µu
e−jk|r−r′|

4π|r − r′|
(23)

3.3.3 任意電流分布への一般化

点電流源に対するベクトルポテンシャルが求まったので，重ね合わせの原理を用いて，体
積 V にわたって分布する任意の電流源 J(r′) に対する解へと拡張します．これは，分布し
た電流源を微小な点電流源の連続的な集まりとみなし，それぞれの点源からの寄与をすべて
足し合わせる（積分する）ことで実現されます．

A(r) = µ

˚
V

J(r′)G(r, r′)dv′ (24)

ここで，G(r, r′) は自由空間における 3次元スカラーグリーン関数と呼ばれ，次式で定義さ
れます．

G(r, r′) ≡ e−jk|r−r′|

4π|r − r′|
(25)

この積分式 (24)は，アンテナ解析におけて極めて重要です．与えられた電流分布 J(r′) に
対してこの積分を計算しベクトルポテンシャル A を求めれば，あとは 2.3節で導出した公
式 H = (1/µ)∇ × A および式 (10)を用いることで，電界 E と磁界 H を完全に決定でき
ます．次章では，この手法を，アンテナ理論の基本である電気ダイポールに適用します．
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3.4 電気ダイポールの電磁界解析

これまで示した理論を，最も基本的な放射素子である微小電流源，すなわち「電気ダイ
ポール」に適用します．この具体的な解析を通じて，電磁波がどのように生成され，空間に
伝搬していくかの物理的描像を明らかにします．静電場から放射場に至るまでの電磁界の振
る舞いを統一的に理解することは，アンテナの基本原理を把握する上で不可欠です．

3.4.1 微小電流源（電気ダイポール）のベクトルポテンシャル

電気ダイポールを，原点を中心に z 軸上に置かれた，長さ ∆z の微小な線状電流としてモ
デル化します．電流 I はこの線上で一様であると仮定します．このモデルに対して，前章
で導出したベクトルポテンシャルの積分公式 (24)を適用します．電流分布は線上に限定さ
れるため体積積分は線積分となり，また電流が一定であるため積分の外に出すことができ，
ベクトルポテンシャル A は非常にシンプルに計算できます．

A = µ

ˆ ∆z

0
(Iaz)

e−jkr

4πr dz
′ =

(
µI∆z · e−jkr

4πr

)
az ≡ Azaz (26)

この結果は，z 成分のみを持つベクトルポテンシャル A = Azaz を与えます．

3.4.2 電界と磁界の導出

ベクトルポテンシャル A が求まったので，これを用いて磁界 H と電界 E を導出します．

磁界 (H)
磁界 H は，H = (1/µ)∇ × A の関係式から求められます．A が A = Azaz という形であ
るため，その回転を球座標系で計算します．ベクトル公式 ∇ × (fa) = (∇f) × a +f(∇ × a)
を用いると，az は定ベクトルなので ∇ × az = 0 となり ∇ × (Azaz) = ∇Az × az となり
ます．Az は r のみの関数なので，∇Az = (∂Az/∂r)ar となります．

∇ × A = ∇Az × az = ∂Az
∂r

ar × az = ∂Az
∂r

(− sin θaφ) (3.3)

ここで，

∂Az
∂r

= µI∆z
4π

∂

∂r

(
e−jkr

r

)
= µI∆z

4π

(
−jkre−jkr − e−jkr

r2

)
= −Az

(
jk + 1

r

)
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の関係を使い，最後に Az を代入すると，磁界 H が得られます．

H = 1
µ

[
−Az

(
jk + 1

r

)]
(− sin θaφ)

= 1
µ

[
−µI∆ze−jkr

4πr

(
jk + 1

r

)]
(− sin θaφ)

= I∆z · e−jkr

4π

(
jk

r
+ 1
r2

)
sin θ aφ (27)

電界 (E)
電界 E の導出はより複雑であり，E = −jω(A + (1/k2)∇(∇ · A)) の公式を用います．計
算を系統的に進めるため，まず ∇(∇ · A) の項を求めます．
発散 ∇ · A の計算:

∇ · A = ∇ · (Azaz) = az · ∇Az = az ·
(
∂Az
∂r

ar
)

(28)

ここで az = cos θar − sin θaθ の関係より az · ar = cos θ となるため，

∇ · A = cos θ∂Az
∂r

(3.4)

勾配 ∇(∇ · A) の計算:

∇(∇ · A) = ∇
(

cos θ∂Az
∂r

)
= ∂

∂r

(
cos θ∂Az

∂r

)
ar + 1

r

∂

∂θ

(
cos θ∂Az

∂r

)
aθ

= cos θ∂
2Az
∂r2 ar − sin θ

r

∂Az
∂r

aθ (29)

ここで Az の r に関する微分は，

∂Az
∂r

= −
(
jk + 1

r

)
Az (30)

∂2Az
∂r2 =

(
−k2 + 2jk

r
+ 2
r2

)
Az (31)

これを代入すると ∇(∇ · A) が求まります．

∇(∇ · A) = cos θ
(

−k2 + 2jk
r

+ 2
r2

)
Azar + sin θ

r

(
jk + 1

r

)
Azaθ (32)

電界 E の組み立て: 求めた ∇(∇ · A) と

A = Azaz = Az(cos θar − sin θaθ)
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を電界の公式 (10)に代入し，ar と aθ の成分ごとに整理します．

E = −jω

k2

[
k2A + ∇(∇ · A)

]
= −jω

k2

[
k2Az(cos θar − sin θaθ) + ∇(∇ · A)

]
= −jωAz

k2

[
ar cos θ

(
k2 − k2 + 2jk

r
+ 2
r2

)
+ aθ sin θ

(
−k2 + jk

r
+ 1
r2

)]

= −jωAz
k2

[
2 cos θ

(
jk

r
+ 1
r2

)
ar + sin θ

(
−k2 + jk

r
+ 1
r2

)
aθ
]

(33)

最後に Az = (µI∆ze−jkr)/(4πr) と k2 = ω2µε の関係を用いて整理すると，電界 E の最終
形が得られます．

E = I∆z · e−jkr

j2πωε

(
jk

r2 + 1
r3

)
cos θ ar + I∆z · e−jkr

j4πωε

(
−k2

r
+ jk

r2 + 1
r3

)
sin θ aθ (34)

3.4.3 電磁界の物理的解釈

導出された電界 E と磁界 H の式 (27), (34) を詳しく見ると，距離 r に対して 1/r3，
1/r2，1/r で変化する項が含まれていることがわかります．これらの項は，ダイポールから
の距離によってその支配性が異なり，それぞれが明確な物理的意味を持っています．

準静電界 (Quasi-Static Field)
1/r3 の項は，電界 Eの中に現れます．この項は，波源に非常に近い領域（近傍界，kr � 1）
で最も支配的です．この項が，静電気学で学んだ電気双極子の作る電界と一致することを
確認しましょう．まず，双極子モーメント m = Q∆z と複素電流 I = jωQ の関係から，
I∆z = jωm (35) が成り立ちます．静電気学では，電位 V は次式で与えられます．

V = m cos θ
4πεr2 (36)

この電位の勾配をとると (E = −∇V )，静電双極子の電界が得られます．

Estatic = m

2πεr3 cos θ ar + m

4πεr3 sin θ aθ (37)

一方，式 (34)で周波数がゼロの極限 (ω → 0, k → 0) を考えると，1/r3 の項のみが残り，
e−jkr → 1 となります．I∆z = jωm を代入すると，

lim
ω→0

E = jωm

j2πωεr3 cos θ ar + jωm

j4πωεr3 sin θ aθ = Estatic (38)

となり，両者が完全に一致することがわかります．
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誘導界 (Induction Field)
1/r2 の項は，電界 E と磁界 H の両方に現れます．この項もまた，近傍界で重要な役割
を果たします．特に磁界 H の 1/r2 の項は，静磁気学におけるビオ・サバールの法則と対
応します．微小電流素子 I∆z が作る磁束密度 B は，

B = µ(I∆z)az × aφ
4πr2 (39)

したがって，磁界 H = B/µ は，

Hstatic = I∆z sin θ
4πr2 aφ (40)

式 (27)で直流の極限 (k → 0) を考えると，1/r2 の項のみが残り，

lim
ω→0

H = I∆z
4πr2 sin θ aφ = Hstatic (41)

となり，ビオ・サバールの法則と完全に一致します．

放射界 (Radiation Field)
1/r の項は，電界 E と磁界 H の両方に含まれます．この項は，波源から十分に離れた領
域（遠方界，kr � 1）で支配的となります．他の項が距離と共に急速に減衰するのに対し，
1/r の項は緩やかにしか減衰しないため，無限遠までエネルギーを運び去ることができま
す．これが放射の本質であり，アンテナ工学において最も重要な成分です．結論として，マ
クスウェルの方程式から導かれた厳密解は，近傍界では我々がよく知る静電界や静磁界の法
則を内包し，遠方界ではアンテナの機能そのものである放射現象を記述しているのです．

3.5 放射特性の解析

アンテナの性能を評価する上で最も重要なのは，そのアンテナがどれだけ効率的にエネル
ギーを遠方へ放射できるかです．したがって，解析の焦点は，遠方界（Far-Field）で支配的
となる「放射界」に移ります．本章では，前章で導出した電磁界の式から 1/r の項のみを
抽出し，それらを用いて放射電力や放射抵抗といった，アンテナの基本的な性能指標を導出
します．
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3.5.1 放射界

観測点が波源から十分遠方にあると仮定し (kr � 1)，電磁界の式から 1/r に比例する項
のみを残すと，遠方界における電界 E と磁界 H は以下のように単純化されます．

E = jkI∆z
4π Z0 · e

−jkr

r
sin θ aθ (42)

H = jkI∆z
4π · e

−jkr

r
sin θ aφ (43)

ここで，Z0 は自由空間の波動インピーダンスと呼ばれ，Z0 =
√
µ/ε ' 120π[Ω] で定義され

ます．これらの式を分析すると，遠方界には以下の重要な特徴があることがわかります．

• 電界 E は aθ 方向，磁界 H は aφ 方向を向いており，互いに直交しています．
• 両者は波の伝搬方向である ar 方向にも直交しています（横波）．
• E と H の振幅の比は，|E|/|H| = Z0 となり，常に一定値（波動インピーダンス）に
保たれます．

• 両者の位相は同じです (e−jkr の項が共通)．

これらの関係は，ベクトルを用いて次のように簡潔に表現でき，これはまさしく一様平面波
の電磁界が持つ性質と同一です．

Z0H = ar × E (44)

3.5.2 放射パターン

図 6.1にピーク利得で規格化した電気ダイポールの遠方放射パターン（デシベル [dB]）を
示します．

3.5.3 放射電力と放射抵抗

アンテナから放射される時間平均された電力の流れは，ポインティングベクトルを用いて
記述されます．複素ポインティングベクトルの時間平均 Savg は，Savg = (1/2)<(E × H∗)
で定義されます．（以下，特に断らない限り，I は電流のピーク振幅値（フェーザ振幅）を
表します．）

S = E × H∗ =
(
k∆z
4πr sin θ

)2

|I|2Z0ar (45)

時間平均電力密度は (1/2)<(S)となり，電力は純粋に動径方向（ar 方向）外向きに流れている
ことがわかります．単位立体角あたりの放射電力である放射強度 U は U = (1/2)r2<(S ·ar)
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図 3.1. 電気ダイポールの放射パターン

で定義され，

U = 1
2

(
k∆z sin θ

4π

)2

|I|2Z0 (46)

となります．ダイポールから放射される全平均電力 P は，この U を全球面（全立体角
dΩ = sin θdθdφ）にわたって積分することで得られます．

P =
‹

UdΩ =
ˆ 2π

0

ˆ π

0
U sin θdθdφ (47)

この積分のうち sin3 θ の項は，t = cos θ と変数変換 (dt = − sin θdθ) して計算します．
ˆ π

0
sin3 θdθ =

ˆ π

0
(1 − cos2 θ) sin θdθ =

ˆ −1

1
(1 − t2)(−dt) =

ˆ 1

−1
(1 − t2)dt = 4

3
(48)

φ に関する積分は 2π となるため，全放射電力 P は次のように求まります．

P = |I|2Z0

2

(
k∆z
4π

)2

(2π)
(4

3

)
= |I|2

2

[
Z0

6π (k∆z)2
]

(3.5)

Z0 ' 120π と k = 2π/λ を代入すると，

P = |I|2

2

80π2
(

∆z
λ

)2
 (49)
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この結果を，回路理論における消費電力 P = (1/2)|I|2R と比較することで，アンテナが電
力を放射する能力を等価的な抵抗値として表現した放射抵抗 (Rr) を定義できます．

Rr = 2P
|I|2

= 80π2
(

∆z
λ

)2

[Ω] (50)

この式は，理想的な電気ダイポールの放射抵抗が，その長さを波長で正規化した値の 2乗に
比例することを示しています．

3.5.4 理想ダイポールとショートダイポール

ダイポールの解析では，その長さに応じて電流分布の仮定が異なります．

• 理想（微小）ダイポール (Ideal/Micro Dipole): アンテナ長 lが非常に短い（l ≤ λ/50）
と仮定します．解析を容易にするため，電流は全長にわたって一様（定数 I0）である
と仮定します．これは現実には（トップハット装荷などを除き）実現不可能ですが，
微小部分の積分における数学的な基本単位となります．

• ショートダイポール (Short Dipole): アンテナ長 l が（λ/50 < l ≤ λ/10）の場合，
より現実的なモデルとして，電流は給電点（中央）で最大となり，両端でゼロになる
三角形状の分布を仮定します．

両者の違いを以下の表 3.1 にまとめます．表が示すように，ショートダイポールの放射抵

表 3.1 放射抵抗の比較

特性 理想（微小）ダイポール ショートダイポール
アンテナ長 (l) l ≤ λ/50 λ/50 < l ≤ λ/10
電流分布 一様分布（定数 I0） 三角分布（中央で最大，両端でゼロ）
放射抵抗 (Rr) Rr = 80π2

(
l
λ

)2
Rr = 20π2

(
l
λ

)2

抗は，同じ長さの理想ダイポールの 1/4 になります．これは，電流が両端でゼロになるた
め，アンテナ全体としての実効的な電流が減少し，放射効率が低下するためです．この比較
は，アンテナの放射特性を考える上で，電流分布の形状がいかに重要であるかを示していま
す．これを，三角電流分布から導出されるベクトルポテンシャルと電磁界の計算してみま
しょう．
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ショートダイポールの電磁界と放射抵抗の導出
ショートダイポールの解析にあたって，アンテナを z 軸中心に配置すると，三角電流分布
は次のようになります．

Ie(x′, y′, z′) =

âzI0
(
1 − 2

l z
′
)
, 0 ≤ z′ ≤ l/2

âzI0
(
1 + 2

l z
′
)
, −l/2 ≤ z′ ≤ 0

(3.6)

ここで，I0 は給電点（z′ = 0）における最大電流です．この電流分布を用いてベクトルポテ
ンシャル A を計算します．アンテナ長 l は波長 λ に比べて十分に小さいため，遠方界の近
似（R ' r）を用いて積分を実行すると，ベクトルポテンシャルは次のようになります．

A = âzAz = âz
1
2

[
µI0le

−jkr

4πr

]
(3.7)

これは，一様電流（理想ダイポール）の場合に得られるベクトルポテンシャルのちょうど半
分 (1/2) です．ベクトルポテンシャル A が 1/2 になるため，それから導出される遠方界
（ kr � 1）の電界 E および磁界 H も，理想ダイポールの場合の 1/2 となります．

Eθ ' jη
kI0le

−jkr

8πr sin θ (3.8)

Hφ ' j
kI0le

−jkr

8πr sin θ (3.9)

アンテナからの総放射電力 Prad は，ポインティングベクトル（∝ E × H）を積分して
求められ，電界（または磁界）の 2 乗に比例します．したがって，電界と磁界がそれぞれ
1/2 になると，総放射電力は (1/2) × (1/2) = 1/4 となります．最終的に，放射抵抗 Rr

は Rr = 2Prad/|I0|2 で定義されるため，理想ダイポールの値の 1/4 となり，次式が得られ
ます．

Rr = 20π2
(
l

λ

)2

(3.10)

3.6 双対性の原理と応用

電磁気学には，双対性 (Duality) と呼ばれる強力な原理が存在します．これは，マクス
ウェルの方程式において，電界と磁界，電流と（仮想的な）磁流などを特定のルールに従っ
て置き換えても，方程式の形式が保たれるという対称性を指します．この原理の戦略的価値
は絶大です．なぜなら，一度，電気的な問題（電流源による電磁界など）の解が求まれば，
その双対である磁気的な問題（磁流源による電磁界など）の解を，改めて方程式を解くこと
なく，単純な置き換え操作だけで導出できるからです．
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3.6.1 電気的ベクトルポテンシャルと磁流

磁気的ベクトルポテンシャル A が ∇ · B = 0 から導入されたのと同様に，電荷のない領
域では ∇ · D = 0 が成り立つため，双対的に電気的ベクトルポテンシャル F を以下のよう
に定義できます．

D = −∇ × F (51)

次に，双対性の概念を完成させるため，仮想的な磁流 (Magnetic Current) M を導入しま
す．これにより，ファラデーの電磁誘導の法則は磁流を源とする項を含んで次のように拡張
されます．

∇ × E = −∂B
∂t

− M (52)

この拡張された方程式と F の定義を用い，2章で A について行ったのと全く同じ手順を双
対的に適用することで，電気的ベクトルポテンシャル F に関する非同次ヘルムホルツ方程
式が導出されます．

(∇2 + k2)F = −εM (53)

この方程式は，A に関する方程式 (8) (∇2 + k2)A = −µJ と完全に双対な形をしています．

3.6.2 電流源と磁流源の双対性

マクスウェルの方程式は，電流源のみが存在する場合と，磁流源のみが存在する場合で，
以下のように記述できます．

• 電流源 J のみ: −∇ × E′ = jωµH′, ∇ × H′ = (jωε+ σ)E′ + J
• 磁流源 M のみ: −∇ × E′′ = jωµH′′ + M, ∇ × H′′ = (jωε+ σ)E′′

いま，σ = 0のとき，これら 2組の方程式を見比べると，一方の組から他方の組へは，以下
の対応関係に従って変数を置き換えることで変換できることがわかります（表 3.2参照）．

∇ × E′ = −jωµH′ → ∇ × H′′ = jωεE′′ (3.11)
∇ × H′ = jωεE′ + J → −∇ × E′′ = jωµH′′ + M (3.12)

この対応関係こそが双対性の原理の核心です．例えば，電気ダイポール（電流源 J）の電
磁界 E′,H′ の解が既知であれば，その双対である磁気ダイポール（磁流源 M）の電磁界
E′′,H′′ は，E′ と H′ の式中の各変数を上の表に従って置き換えるだけで，直ちに得られ
ます．
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表 3.2 双対性の対応関係（σ = 0）

電気的源 (Electric Sources) 磁気的源 (Magnetic Sources)
E H
H −E
J M
ε µ

µ ε

さらに，σ 6= 0に拡張するため，ŷ ≡ σ + jωε，ẑ ≡ jωµ とおくと，

∇ × E′ = −ẑH′ → ∇ × H′′ = ŷE′′ (3.13)
∇ × H′ = ŷE′ + J → −∇ × E′′ = ẑH′′ + M (3.14)

これより，両者の双対性は表 3.3に示すようになる．

表 3.3 双対性の対応関係

Electric sources Magnetic sources
E H
H −E
J M

ŷ(= σ + jωε) ẑ(= jωµ)
ẑ(= jωµ) ŷ(= σ + jωε)
k =

√
−ẑŷ k =

√
−ẑŷ

3.6.3 電磁界の境界条件

電磁界の境界条件に関しても，面電流密度 Js および面磁流密度Ms が存在する場合へと
拡張する．いま，異なる媒質 1と 2が接する境界面において，磁界Hの接線成分が満たす
べき条件を考える．アンペア・マクスウェルの法則の積分形を，境界面をまたぐ微小な長方
形ループに適用し，ループの高さをゼロに近づける極限をとる．このとき，境界面に面電流
Js が存在する場合，その電流がループを貫くことになる．その結果，次の境界条件が導か
れる．

n ×
(
H(1) − H(2)

)
= Js (3.15)

ここで，nは媒質 2から媒質 1へ向かう法線ベクトルである．この式は，面電流が存在する
と，その面に垂直な方向から見た磁界の接線成分が不連続になることを示している．
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同様に，ファラデーの電磁誘導の法則の積分形を用いると，電界 Eの接線成分に関する
境界条件が得られる．境界面に磁流が存在しない標準的な場合，電界の接線成分は連続と
なる．(

E(1) − E(2)
)

× n = 0 (3.16)

特に，媒質の一方が完全電気導体（Perfect Electric Conductor, PEC）である場合，導体内
部の電磁界はゼロであるため，導体表面では以下の条件が成り立つ．

n × H = Js, n × E = 0 (3.17)

双対性の概念を拡張し，仮想的な完全磁気導体（Perfect Magnetic Conductor, PMC）を考
えると，その表面では磁界の接線成分がゼロとなる．

n × H = 0 (3.18)

さらに，双対性の原理に従い，ファラデーの法則に面磁流Ms の項を導入すると，電界の接
線成分に関する境界条件は次のように拡張される．(

E(1) − E(2)
)

× n = Ms (3.19)

この式は，面磁流が存在すると，電界の接線成分が不連続になることを示しており，境界条
件の式においても双対的な関係となることがわかる．

3.7 まとめ

アンテナ理論の礎である電気ダイポールが生成する電磁界について，マクスウェルの方
程式を起点とした厳密な解析を行いました．ベクトルポテンシャル法を用いることで，複雑
な連成微分方程式を単一の非同次ヘルムホルツ方程式に帰着させ，点電流源に対する解（グ
リーン関数）を求め，重ね合わせの原理によって任意の電流分布，そして電気ダイポールに
対する解へと展開しました．この解析から得られた重要な知見は次の通りです．

• 導出された電磁界の厳密解は，距離に応じて 1/r3, 1/r2, 1/r の項を含んでいます．
これらはそれぞれ，近傍界における「準静電界」「誘導界」，そして遠方界における
「放射界」に対応します．特に，近傍界の項が低周波数の極限で静電気学や静磁気学
の法則（静電双極子の場，ビオ・サバールの法則）に帰着することは，電磁気学全体
の統一性を示す美しい結果です．

• アンテナの機能そのものであるエネルギーの放射は，遠方まで到達する 1/r の「放
射界」成分によって担われます．この放射界は，局所的に一様平面波と見なせる性質
を持ち，その電界と磁界の関係は自由空間の波動インピーダンスによって規定され
ます．
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• 放射界の解析から，アンテナの放射電力を計算し，その効率を回路的な概念で表す
「放射抵抗」を導出しました．Rr = 80π2(∆z/λ)2 という公式は，アンテナの長さと
使用波長が放射能力を決定する基本的な関係を示しています．

さらに，電磁気学における強力な対称性の原理である「双対性」についても解説しました．
この原理は，電気的な問題の解から磁気的な問題の解を類推することを可能にし，解析的な
労力を大幅に削減するだけでなく，電磁現象に対するより深い洞察を与えてくれます．

3.8 問題

�問題 3-1. 電気ダイポールによって生じる放射電界 E と放射磁界 H の関係は，次式で表
されることを確かめよ．

H = 1
Z0

ar × E (3.20)

ここで，ar は遠方の観測点方向に沿う単位ベクトル，Z0 =
√
µ/ε は波動インピーダンスを

示す．

�問題 3-2. ショートダイポールの指向性利得を求めよ，

�問題 3-3. 波長 λに対して，電気ダイポールの長さが l = λ/100のとき，放射抵抗はいく
らか．

�問題 3-4. 磁気双極子の 2つ磁荷を ±Qm，両者の間隔を δ，磁気モーメントを m，透磁
率を µ，微小電流ループの電流を I，ループの面積を S とすると，

Qmδ = µm = µIS (3.21)

また，時間因子 ejωt として，磁荷 Qm と対応する電流を Im とすると，

Im = jωQm (3.22)

微小電流ループによる電磁界を考察せよ．

54



55

CHAPTER 4

アレーアンテナ

複数の放射素子を配列して高い指向性と柔軟なパターン制御を実現するアレー
アンテナについて詳述します．まず，単一素子アンテナの限界を踏まえ，素子配
置や励振条件（振幅・位相）を設計することで放射特性を制御できるという基
本原理や利点を説明します．さらに，リニアアレー・平面アレー・円形アレーと
いった主要な構成や配列による分類について述べます．また，アレーファクタの
導出を通じて，アレー全体の放射特性が素子パターンとアレーファクタの積で表
されることを示し，グレーティングローブの発生条件や素子間隔の設計指針を
示します．続いて，リニアアレーを例に，ブロードサイドおよびエンドファイア
アレーのビーム制御と素子数・素子間隔の影響を示します．平面アレーや円形ア
レーについても，ビーム制御能力や応用例を述べます．

4.1 アレーアンテナとは

単一素子のアンテナは，その構造上，放射パターンが比較的広く，指向性が低いという基
本的な制約を抱えています．しかし，長距離通信やレーダなどの多くの応用分野では，特定
の方向にエネルギーを集中させるための非常に高い指向性を持つアンテナが必要とされま
す．高い指向性を得るには，アンテナの「電気的なサイズ」を大きくする必要があります．
一つの素子を巨大化するのではなく，複数の放射素子（アンテナ素子）を特定の構成で配置
し，全体として一つのアンテナとして機能させることができ，これを「アレーアンテナ」と
呼びます．アレーを構成する個々の素子は，ワイヤアンテナや開口面アンテナなど，どのよ
うな形態であっても構いません．多くの場合，設計の単純さや実用性の観点から同一の素子
が用いられますが，これは必須の条件ではありません．アレーアンテナの最大の特長は，そ



の放射特性が，個々の素子の特性だけでなく，素子の配置（アレーの幾何学的構成）や，各
素子への電力の与え方（励振の振幅や位相といった電気的構成）によって大きく変化し，自
由に制御できる点にあります．
ここでは，与えられたアレーアンテナの構成（素子特性，配置，励振）からその放射特性
を求める「解析」について説明します．これは，電気回路において回路網が与えられたとき
にその特性を計算する「回路解析」に相当します．なお，所望の放射特性を実現するために
アンテナの構成（素子の配置や励振）を設計する問題は「指向性合成」です．これは「回路
合成」に相当する逆問題であり，別のところで取り上げます．そこで，まずアレーアンテナ
の基本的な概念と特長を概観します．次に，最も基本的な形式であるリニアアレー（直線状
アレー）の放射特性の解析法を説明し，最後に代表的なアレーの計算例について示します．

4.1.1 アレーアンテナの定義と特長

アレーアンテナ（array antenna）は，「複数の放射素子を配列し，その全部，または一部
を励振したアンテナ全体」と定義される．励振の方法により，大きく二つのタイプに分類さ
れる．

• 全素子励振: 配列されたすべての素子に信号を入力して励振する方式．各素子の励振
振幅や位相を精密に制御することで，柔軟な指向性制御が可能となり，レーダ等で広
く用いられている．

• 一部励振: 配列された素子の一部のみを励振し，他の素子（無給電素子ともいう）は
励振素子からの電磁界結合によって電流が誘起され，再放射する．この方式の最も有
名な例が，八木・宇田アンテナである．

八木・宇田アンテナは，八木秀次博士と宇田新太郎博士によって発明された，日本が世界
に誇るアンテナ技術である．構造が単純でありながら高い利得と鋭い指向性（単一指向性）
を実現できる画期的な設計であった．その基本構成は，中央に配置された一つの給電素子，
その背後に配置された少し長い反射器（リフレクタ），そして前方に配置された複数の少し
短い導波器（ディレクタ）からなる．その動作原理は，まず給電素子から空間に放射された
電波が，隣接する無給電素子（導波器と反射器）の表面に電流を誘起させる．この誘起電流
によって各素子から電波が再放射され，その信号は空間を介して他の素子へと伝播してい
く．導波器は前方への放射が強め合うに素子の長さと間隔が巧みに設計されており，これに
より高い指向性が得られる．このアンテナは発表後，海外の研究者によってその価値が直ち
に見出され，特にレーダシステムに応用されて世界中に広まった．
アレーアンテナは，単一のアンテナでは得られない次のような優れた特長を持つ．

• 指向性合成 (Pattern Synthesis): アレーアンテナの最も重要な特長の一つである．各
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素子に給電する信号の励振振幅（an）と励振位相（ψn）を個別に制御することによ
り，アンテナ全体の放射パターンを意図通りに形成することができる．これにより，
利得 (gain)の最大化，主ビーム (main beam)の形状制御（特定のエリアをカバーす
る成形ビームなど），ビーム幅 (beamwidth)の調整，不要な方向への放射を抑えるた
めのサイドローブ (sidelobe)レベルの低減，特定の方向に全く放射しないナル (null)
の生成など，要求仕様に応じた高度な最適化が可能となる．

• 電子的ビーム走査 (Electronic Beam Scanning): アンテナ本体を機械的に動かすこ
となく，主ビームの方向を高速に変化させることができる．例えば，パラボラアンテ
ナがレーダとして使われる場合，アンテナ全体を物理的に回転させて全方位を走査す
るが，これには機械的な速度限界が存在する．一方，アレーアンテナでは，各素子の
励振位相を電気的に変化させることで，高速なビーム走査が実現できる．この方式は
フェーズドアレー (Phased Array)と呼ばれ，高性能レーダや衛星通信で中心的な役
割を担っている．また，周波数を変化させることでビーム方向を走査する周波数走査
という手法もある．

• 大電力処理能力 (High Power Handling): レーダのように非常に大きな電力を送信す
る必要がある場合，単一のアンテナ素子では許容電力を超えてしまうことがある．ア
レーアンテナでは，送信電力を多数の素子に分散させることができるため，個々の素
子の電力許容量が小さくても，アンテナ全体としては非常に大きな電力を扱うことが
可能となる．これは，大電力送信システムを構築する上で大きな利点となる．

4.1.2 アレーアンテナの分類

アレーアンテナは，その構成や用途によって様々な観点から分類することができる．ここ
では，素子の配列方法とアレー形式による分類を示す．

配列方法による分類
素子の配置の仕方によって，アレーは周期的なものと非周期的なものに大別される．

• 周期的配列 (Periodic Arrays): 素子を規則的な間隔で配置する方式で，解析や設計
が比較的容易であるため最も一般的に用いられる．

– リニアアレー (Linear Array): 素子を一直線上に等間隔で配列したもの．最も基
本的な形式であり，詳細な解析を後述する．

– 平面アレー (Planar Array): 素子を同一平面上に配列したもの．大きな開口面
積を確保できるため，高い利得が得られる．素子配置として，格子状の四角配列
や，より密に配置できる三角配列などがある．
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– 円形アレー (Circular Array): 素子を円周上に配列したもの．その面内において
360度全方位へのビーム走査が可能であるという特長を持つ．

– コンフォーマルアレー (Conformal Array): 航空機の胴体や車両のボディなど，
平面ではない曲面上に沿って素子を配列したもの．設計の際には，ある点からの
等角度間隔や，曲面上の最短経路である測地線 (geodesic lines)に沿って配置す
るなど，規則性を保つための工夫がなされる．

• 非周期的配列 (Non-periodic Arrays): 特殊な目的のために，素子を意図的に不規則
に配置する方式．

– 素子の間引き (Element Thinning): 周期配列を基本としながら，一部の素子を
取り除く（励振しない）手法．特に素子数が膨大になるとコストが極めて高くな
るため，特性上重要度の低い素子を取り除くことで，性能への影響を抑えつつコ
ストを管理する目的で用いられる．これにより，複雑な振幅制御なしにサイド
ローブレベルを低減することも可能である．

– 不等間隔アレー (Unevenly Spaced Array): 素子間の間隔を意図的に不均一にす
ることで，放射パターンを制御する手法．設計は複雑であり，素子間隔が極端に
近いと相互結合が強くなりすぎ，解析や合成が困難になるという課題がある．

– 特殊な配列（電波干渉計）(Special Arrays - Radio Interferometers): 電波天文学
の分野で用いられる究極的なアレー応用例．チリの ALMA望遠鏡のように，複
数の大型電波望遠鏡を広大なエリアに配置することで，非常に長い基線長（ベー
スライン）を持つ巨大な仮想的アンテナを構成する．これにより，空間分解能を
劇的に向上させ，遥か彼方の天体を詳細に観測することが可能となる．

アレー形式と用途による分類
アレーアンテナはその使われ方によっても分類される．

• ダイレクトアレー (Direct Array): アレーアンテナが直接，自由空間に電波を放射す
る最も一般的な形式．素子としては，半波長ダイポールアンテナ，スロットアンテ
ナ，パッチアンテナなどが用いられる．

• 一次給電アレー (Primary Feed Array): 反射鏡アンテナ（パラボラアンテナなど）や
レンズアンテナの一次放射器として用いられるアレー．この場合，アレー自体は空間
に直接放射するのではなく，主開口面である反射鏡やレンズを効率よく照射（イルミ
ネーション）することが目的となる．最終的な放射パターン（二次パターン）は，こ
の一次給電アレーによって形成される．

• 電波干渉計 (Radio Interferometer): 前述の通り，電波天文学において超高分解能を
得るために用いられる特殊な形式である．
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4.2 アレーアンテナの放射特性理論

アレーファクタを用いると，アレー全体の放射パターンを，「個々の素子アンテナが持つ
放射パターン」と「素子の配列方法および励振条件のみで決まるパターン」との積で表すこ
とができる．これにより，アンテナ素子の種類とは独立に，配列の幾何学的構造が放射特性
に与える影響を分離して解析・設計することが可能となり，アレーアンテナの取り扱いが飛
躍的に簡略化される．

4.2.1 アレーファクタの導出

まず，N 個の素子アンテナで構成されるアレーを考える．n番目の素子アンテナによる，
十分遠方の観測点 (r, θ, φ) における放射電界 En は，次式で表される．

En = ane
jψnA

e−jkrn

rn
F(θ, φ) (4.1)

ここで，an と ψn は n番目の素子の励振振幅と励振位相，rn = |r − ρn| は n番目の素子か
ら観測点までの距離，F(θ, φ) はすべての素子で共通の指向性関数（素子パターン）である．
また，r は観測点の位置ベクトル，ρn は n番目の素子の位置ベクトルを示す．素子間の相
互結合を無視すると，アレー全体の放射電界 E は，各素子からの電界のベクトル和（重ね
合わせ）で与えられる．

E =
∑
n

En = A
e−jkr

r
F(θ, φ)

∑
n

ane
jψn

r

rn
e−jk(rn−r) (4.2)

ここで，観測点がアンテナから十分遠方にあるという遠方界近似 (far-field approximation)
を適用する．この近似では，以下の 2点を仮定する．

• 振幅項の近似: 観測点が非常に遠いため，各素子までの距離 rn は原点からの距離 r

とほぼ等しいとみなせる．したがって，振幅に影響する項は r
rn

≈ 1 と近似できる．
• 位相項の近似: 位相項に含まれる距離の差 rn − r は，波長に比べて無視できない場
合がある．なぜなら，この微小な差に大きな値である波数 k = 2π/λ が乗じられるた
め，位相に大きな影響を与えるからである．この位相差をより正確に評価するため
に，rn を次のように展開する．

rn =
√

(r − ρn) · (r − ρn) =
√
r2 − 2(r · ρn) + ρ2

n

= r

(
1 − 2

r
(ar · ρn) +

(
ρn
r

)2
)1/2

≈ r
(

1 − 1
r

(ar · ρn)
)

= r − ar · ρn (4.3)
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ここで ar は r 方向の単位ベクトルである．したがって，位相差に関連する項は次のように
近似される．

e−jk(rn−r) ≈ e−jk(−ar·ρn) = ej(kar)·ρn = ejk·ρn (4.4)

ただし，k = kar は波数ベクトルと定義される．これらの近似を式 (2) に代入すると，ア
レーアンテナの遠方放射電界は次のように表される．

E ≈ A
e−jkr

r
F(θ, φ)

(∑
n

ane
jψnejk·ρn

)
(4.5)

上式は二つの部分の積で構成されている．

• 素子単体の遠方界 (E0):

E0 = A
e−jkr

r
F(θ, φ) (4.6)

これは，素子アンテナが一個だけ原点に置かれていた場合の放射電界に相当する．
• アレーファクタ (f(θ, φ)):

f(θ, φ) =
∑
n

ane
jψnejk·ρn (4.7)

これは，アレーの幾何学的配置（ρn）と各素子の励振条件（an, ψn）のみによって決
まるスカラー関数であり，素子アンテナ自身の放射特性 F(θ, φ) には依存しない．

したがって，アレー全体の放射特性は以下のように簡潔に表現できる．

（アレーアンテナの遠方界）=（素子単体の遠方界）×（アレーファクタ） (4.8)

最大の利点は，アレーの設計を二段階に分けて考えられることである．仮想的に無指向性の
点波源を配列した場合の放射パターン，すなわちアレーファクタだけを考えれば，特性の概
略がわかるということである．その後で実際に使用する素子アンテナの指向性を掛け合わせ
れば，最終的な放射特性が決まる．アレーファクタはスカラー量であるため，ベクトル量で
ある電界を直接扱うよりも計算が格段に容易になる．また，電力利得をデシベル（dB）単位
で考える場合，全体の利得パターンは，素子アンテナの利得パターン（dB）とアレーファ
クタ（dB）の和を考えればよい．

4.3 リニアアレーアンテナの解析

アレーファクタの一般論を，最も基本的で広く応用されるリニアアレー（直線アレー）に
適用してみよう．リニアアレーは，素子アンテナを一直線上に等間隔で配列したものであ
る．ここでは，そのアレーファクタを具体的に定式化し，共相励振（cophase excitation）と
呼ばれる手法を用いて，どのようにしてビーム方向を制御するかを明らかにする．
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4.3.1 リニアアレーのアレーファクタの定式化

N 個の同一のアンテナ素子を，z 軸上に等間隔 dで配列する状況を考える．各素子の位置
は n = 0, 1, . . . , N − 1 のインデックスで指定する．このとき，n番目の素子の位置ベクト
ル ρn は次のように書ける．

ρn = ndaz (n = 0, 1, 2, . . . , N − 1) (4.9)

ここで az は z 軸方向の単位ベクトルである．アレーファクタの計算に必要な内積 k · ρn を
求めると，

k · ρn = (kar) · (ndaz) = knd(ar · az) = knd cos θ (4.10)

となる．ここで θ は z 軸から測った角度である．これをアレーファクタの一般式に代入す
る．簡単のため，まずは全素子の励振振幅を均一（an ≡ 1）と仮定すると，アレーファクタ
f(θ) は次のようになる．

f(θ) =
N−1∑
n=0

ejψnejnkd cos θ =
N−1∑
n=0

ej(ψn+nkd cos θ) (4.11)

4.3.2 共相励振

共相励振 (Cophase Excitation)とは，特定の方向 θ0 において，すべての素子アンテナか
らの放射電界が遠方で同相になるように，各素子の励振位相 ψn を調整する手法である．こ
れにより，その方向への放射が強め合い，主ビームが形成される．この条件を実現するため
には，アレーファクタ f(θ) の総和の中の指数部分（位相項）が，θ = θ0 のときにすべての
nに対して一定値となればよい．最も簡単な方法は，この位相項を 0にすることである．

ψn + nkd cos θ0 = 0 ⇒ ψn = −nkd cos θ0 (4.12)

この式が，ビームを θ0 方向にむけるための励振位相の条件となる．この共相条件を使って
アレーファクタ f(θ) を表すと，

f(θ) =
N−1∑
n=0

ejnkd(cos θ−cos θ0) (4.13)

となる．ここで，式を簡潔にするためにユニバーサル・パラメータ (universal parameter)
u を次のように導入する．

u ≡ kd(cos θ − cos θ0) (4.14)
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これより，アレーファクタは u のみの関数として，以下のような等比級数の和で表される．

f(u) =
N−1∑
n=0

ejnu = 1 + eju + · · · + ej(N−1)u (4.15)

この等比級数の和を求めると，

f(u) = ejNu − 1
eju − 1 (4.16)

となる．ここで，素子数 N によらずアレーファクタの最大値が 1になるように，励振振幅
を an = 1/N と正規化する．さらに式を変形し，振幅項と位相項を分離すると，より物理
的な意味が分かりやすい形になる．

f(u) = 1
N

ejNu − 1
eju − 1 = ej

N−1
2 u · sin(Nu/2)

N sin(u/2) (4.17)

この結果，アレーファクタは純粋な位相項である ej
N−1

2 u *1と，振幅（および符号）を表す
実数項 sin(Nu/2)

N sin(u/2) の積で表されることがわかる．アンテナの電力パターンは振幅の 2乗に比
例するため，後者の項の振る舞いを調べることが重要となる．この関数は sinc 関数に似た
形状を持つ．いま，u/2 � 1のとき，アレーファクタの振幅は次のように近似できる．

sin(Nu/2)
N sin(u/2) ' sin(Nu/2)

Nu/2 (4.18)

4.3.3 放射特性

アレーファクタを定式化できれば，次のように放射特性の評価ができる．

• ヌル (Nulls): 放射がゼロになる角度 θn は，sin(Nu/2) = 0（ただし分母が 0になる
場合を除く）から導出されます．

θn = cos−1
[
λ

2πd

(
−β ± 2n

N
π
)]
, n = 1, 2, 3, . . . , n 6= N, 2N, . . . (4.19)

• 最大値 (Maxima): 主ビームおよびグレーティングローブの最大値は，u/2 = ±mπ
の条件から得られます．

θm = cos−1
[
λ

2πd(−β ± 2mπ)
]
, m = 0, 1, 2, . . . (4.20)

• 3-dB 点（半値点）: アレーファクタが 1/
√

2 となる点であり，近似的に Nu/2 =
±1.391 から求められます．

θh ≈ cos−1
[
λ

2πd

(
−β ± 2.782

N

)]
(4.21)

*1 位相の参照点をアレーの物理的な中心に取ることで，位相項は消える．
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• 半値幅 (Half-Power Beamwidth, HPBW): 対称なパターンの場合，HPBWは Θh =
2|θm − θh| で与えられます．

• サイドローブの最大値: サイドローブの最大値は，近似的に sin(Nu/2) ≈ ±1 となる
点で発生します．

θs ≈ cos−1
{

λ

2πd

[
−β ± (2s+ 1)

N
π

]}
, s = 1, 2, 3, . . . (4.22)

特に，最初のサイドローブの最大値は，Nu/2 ≈ ±3π/2 のときに発生します．このときの
正規化アレーファクタの振幅は，

f(3π/2) ≈
∣∣∣∣∣sin(3π/2)

3π/2

∣∣∣∣∣ = 1
3π/2 = 2

3π ≈ 0.212 (4.23)

となり，デシベルで表すと主ビームの最大値から約 −13.46 dBの値となります．

20 log10

( 2
3π

)
≈ −13.46 dB (4.24)

4.3.4 可視領域とグレーティングローブ

アレーファクタの関数形 f(u) は，数学的には u のあらゆる値に対して定義される周期
的関数である．しかし，我々が物理的なアンテナとして観測できるのは，実際の放射方向
θ に対応する部分のみである．物理的な角度 θ は 0 ≤ θ ≤ π の範囲しか取り得ないため，
cos θ は [−1, 1] の範囲に限定される．この物理的制約が，我々が f(u) という無限に広がる
パターンを覗くことができる「窓」を定義する．この窓を可視領域 (visible region)と呼ぶ．
u の定義式から，可視領域の範囲は次のように求められる．

−kd(1 + cos θ0) ≤ u ≤ kd(1 − cos θ0) (4.25)

ビーム走査，すなわち主ビームの方向 θ0 を変化させることは，この可視領域という窓を u

軸上でスライドさせることに相当する．可視領域の外側は不可視領域 (invisible region) と
呼ばれ，実際の空間方向には対応しない．
アレーファクタ f(u) は周期的な関数であるため，主ビームに対応する最大のピーク以外
にも，同程度の大きさのピークが周期的に現れる．もし素子間隔 d が波長に比べて大きすぎ
ると，この周期が短くなり，可視領域の窓の中に主ビーム以外のピークが入ってしまうこと
がある．この，意図しない方向に現れる強力な放射をグレーティングローブ (grating lobes)
と呼ぶ．グレーティングローブの存在は，特定の方向にのみエネルギーを集中させたいとい
うアレーアンテナの目的に反するため，通常は発生しないように設計する必要がある．
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グレーティングローブが可視領域に現れないための条件は，可視領域の幅がアレーファク
タの 1周期より狭くなることであり，これは次式で与えられる．

d <
λ

1 + | cos θ0|
(4.26)

この条件は主ビームの方向 θ0 に依存することに注意が必要である．つまり，ビームを走査
する範囲全体でグレーティングローブが発生しないように，素子間隔 d を決定しなければ
ならない．

4.3.5 放射パターン

図 6.1は素子数 N = 5，共相励振の方向を θ0 = 30◦ としたアレーファクタの計算例を示
したもので，同図 (a)は素子間隔 d = 1.5λ，同図 (b)は d = λ，同図 (c)は d = 0.5λと素
子間隔を変化させている．アレーファクタでは，素子間隔が大きい場合，主ビームと同じレ
ベルのグレーティングローブが発生していることがわかる．同図 (d)に示すように若干，素
子間隔をさらに狭く d = 0.45λとすると，グレーティングローブは可視領域では見えない良
好な放射特性が得られる．共相励振の方向をブロードサイド方向に近く θ0 = 60◦ と変えた
場合，グレーティングローブは d = 0.55λでも可視領域では見えない（図 5.2参照）．同図
中には，第一サイドローブレベルを示しているが，一様振幅でアレー素子を励振しているた
め，いずれも高いレベルである．

4.4 代表的なリニアアレーアンテナの例

これまでに導出したリニアアレーの一般理論を用いて，実用上非常に重要となる二つの基
本的な構成，すなわちブロードサイドアレーとエンドファイアアレーについて解析する．

4.4.1 ブロードサイドアレー

ブロードサイドアレー (Broadside Array)は，最大放射方向がアレーの配列軸（ここでは
z 軸）に対して垂直になるアンテナである．すなわち，主ビーム方向は θ0 = π/2 (90度) と
なる．この条件での共相励振位相は，ψn = −nkd cos(π/2) = 0 となり，すべての素子を同
相で励振すればよいことがわかる．また，グレーティングローブを回避するための素子間隔
の条件は，θ0 = π/2 より，

d <
λ

1 + | cos(π/2)| = λ (4.27)
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図 4.1. アレーファクタ（N = 5，θ0 = 30◦）
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2素子ブロードサイドアレー
具体例として，最も単純な 2 素子ブロードサイドアレーを考える．解析を容易にするた
め，ここでは 2つの素子を原点を中心に z = ±d/2 に対称に配置するモデルを考える．

• この場合，アレーファクタは f2(ū) = cos(ū) という単純な形になる．ここで ū =
u
2 = πd

λ (cos θ − cos θ0) である．
• ブロードサイドの場合（θ0 = π/2），ū は πd

λ cos θ となる．
• 主ビーム以外にローブを持たない単一ビームを得るためには，ū の可視領域が

[−π/2, π/2] の範囲に収まればよい．cos θ の範囲は [−1, 1] なので，ū の可視領域は
[−πd/λ, πd/λ] となる．

• したがって，πd/λ ≤ π/2 という条件が導かれ，これは d ≤ λ/2 を意味する．実用
上，最も広く用いられる設計は d = λ/2 である．

• まとめると，2 素子ブロードサイドアレーの標準的な設計は，N = 2, θ0 = 90◦,
d = λ/2, 全素子同相励振 (ψn = 0) となる．

放射パターン
図 5.3はブロードサイドアレー（θ0 = 90◦）のアレーファクタを示したもので，グレティ
ングローブが発生しないように素子間隔 d = 0.5λに選んでいる．同図 (a)は素子数 N = 2，
同図 (b)は N = 3，同図 (c)は N = 10，同図 (d)は N = 20の場合のアレーファクタであ
り，ビーム幅が狭くなっていくことがわかる．また，図 5.4(a)に示すように素子間隔を狭く
d = 0.25λにすると，リニアアレーの実効的な長さが短くなるため，ビーム幅は広くなり，
図 5.4(b)のように素子間隔を広く d = λにすると，アレーの実効長が長くなるため，逆に，
ビーム幅が狭くなるが，グレティングローブが発生してしまう．
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図 4.3. アレーファクタ（d = 0.5λ，θ0 = 90◦）
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図 4.4. アレーファクタ（N = 10，θ0 = 90◦）

67



4.4.2 エンドファイアアレー

エンドファイアアレー (End-fire Array) は，最大放射方向がアレーの配列軸に沿うアン
テナである．すなわち，主ビーム方向は θ0 = 0 (または π) となる．ここでは θ0 = 0 の場
合を考える．このとき，共相励振位相は，ψn = −nkd cos(0) = −nkd となる．グレーティ
ングローブを回避するための条件は，θ0 = 0 より，

d <
λ

1 + | cos(0)| = λ

2 (4.28)

となる．これはブロードサイドアレーの場合よりも厳しい（より狭い）間隔が要求されるこ
とを示している．

2素子エンドファイアアレー
具体例として，2素子エンドファイアアレーを考える．ブロードサイドと同様に，素子を
原点中心に z = ±d/2 に配置するモデルで解析する．

• アレーファクタは同様に f2(ū) = cos(ū) であり，エンドファイアの場合（θ0 = 0）の
ū は ū = πd

λ (cos θ − 1) となる．
• cos θ の範囲が [−1, 1] なので，ū の可視領域は [−2πd/λ, 0] となる．
• 単一の主ビームを持つためには，この可視領域が [−π/2, 0] の範囲に収まる必要があ
る．これを解くと −2πd/λ ≥ −π/2 より d ≤ λ/4 が得られる．実用上は d = λ/4 が
選ばれることが多い．

• このときの励振位相は，z = ±d/2 に配置した素子に対して ψ±1/2 = ∓kd
2 cos θ0 の

関係から，ψ±1/2 = ∓k(λ/4)
2 = ∓ (2π/λ)λ

8 = ∓π/4 と計算される．
• まとめると，2 素子エンドファイアアレーの標準的な設計は，N = 2, θ0 = 0◦,
d = λ/4, 励振位相はそれぞれ ±π/4 となる．

放射パターン
図 5.5はエンドファイアアレー（θ0 = 0◦）のアレーファクタを示したもので，グレティン
グローブが発生しないように素子間隔 d = 0.25λに選んでいる．同図 (a)は素子数 N = 2，
同図 (b)は N = 3，同図 (c)は N = 10，同図 (d)は N = 20の場合のアレーファクタであ
り，ビーム幅が狭くなっていくことがわかる．また，図 5.6(a), (b)に示すように素子間隔
を d = 0.5λ，d = λと広くしていくと，アレーの実効長が長くなるため，ビーム幅が狭く
なっていくが，グレティングローブが発生してしまう．
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図 4.5. アレーファクタ（d = 0.25λ，θ0 = 0◦）
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図 4.6. アレーファクタ（N = 10，θ0 = 0◦）
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Hansen-Woodyardエンドファイアアレー
1938年に HansenとWoodyardが，通常のエンドファイアアレーの指向性をさらに向上
させる設計を開発している．Hansen-Woodyard 条件に基づくパターンは，通常のエンド
ファイアアレーのパターンに比べて，半値ビーム幅（HPBW）が大幅に狭くなり，より鋭い
ビームを形成できる．ただし，サイドローブレベルは −13.5 dBから −8.9 dBへ上昇する．
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4.5 その他のアレー配列

4.5.1 平面アレー

平面アレー（planar arrays）は，アンテナ素子を二次元の格子状に配置したアレーであ
り，ビームを仰角・方位角の両方向へ向けられるため，空間内の任意方向への電子的ビーム
走査が可能である．また，対称性が高いため，線形アレーより低いサイドローブが得やすい．

幾何学的配置とアレーファクタ
平面アレーは，x 方向に M 個，y 方向に N 個の素子を並べた M × N グリッドで構成
される．放射特性は，x 方向と y 方向の線形アレーのアレーファクタの積として表され，一
様励振の場合，平面アレーのアレーファクタ (AF)n は，

(AF)n =
{

sin(Mux/2)
M sin(ux/2)

}{
sin(Nuy/2)
N sin(uy/2)

}
(4.29)

ここで，ux = kdx sin θ cosφ+ βx および uy = kdy sin θ sinφ+ βy であり，dx, dy は素子間
隔，βx, βy は隣接する素子の位相差である．すなわち，平面アレーは「横方向と縦方向の独
立した制御の組み合わせ」で動作する．

グレーティングローブ
素子間隔が波長より大きいと，意図しない方向でも波が同相で強め合い，グレーティング
ローブ (grating lobes)が生じる．これを防ぐための基本条件は，x方向と y 方向の両方で，
素子間隔を半波長（λ/2）未満に設定することである（dx < λ/2 かつ dy < λ/2）．

放射パターン
平面アレーでは，素子配置と隣接する素子の位相差 βx, βy を調整することで，ビームを
任意の方向 (θ0, φ0) に指向させることができる．三次元的なビーム制御が可能な，非常に柔
軟なアレー構造である．

実用例
平面アレーは，レーダ，衛星通信，5G/6G基地局など，広域の監視や通信に適している．
特に，フェーズドアレーは，艦艇・地上・航空機レーダとして利用されている．多数の素子
を平面状に配置し，素子ごとの位相を電子的に制御することで，アンテナを動かさずにビー
ム方向を高速に変えられる．これにより，広い範囲の監視，高速で移動する目標の追尾，複
数目標の同時処理が可能となり，従来の機械走査式レーダーより高い性能を発揮する．
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4.5.2 円形アレー

円形アレー (circular arrays) とは，複数のアンテナ素子を円周上に等間隔で配置したア
レー構成である．円形という幾何学的な対称性を利用することで，特定方向だけでなく，円
全体にわたって均一なビーム形成やスキャンを行いやすいという特徴がある．

幾何学的配置と応用
円形アレーでは，素子が円周に沿って同じ角度間隔で配置されるため，どの方向に対して
も同等の配置条件が成立する．この対称性によって，以下のような応用で特に有効である．

• 方向探知（Direction Finding）：到来方向によってアレー全体の応答が周期的に変化
するため，角度推定に適している．

• 航法・レーダー：全周囲の監視が必要なシステムでは，回転機構を使わずに電気的に
ビームを振ることができる．

• ソナー・通信アンテナ：円全体が均一な構造であるため，水中音響や無線通信のビー
ム制御に自然に適応できる．

このように，円形アレーの構造そのものが，全方向性が求められる分野で大きな利点をもつ．

放射パターンの特徴
円形アレーに素子を均等配置し，同じ振幅で励振した場合，アレーはある特定方向に鋭い
主ビームを形成することができる．また，主ビームと同時に，円周方向に応じた複数のサイ
ドローブが現れるが，その配置は円対称性に従って規則正しく分布する．たとえば，円の半
径が十分に大きく，素子数が N の場合，アレーは方位角方向にきわめて鋭い指向性を示す．
この鋭さは，素子の増加とともに急速に向上する．

主要な性能特性
円形アレーの特性として重要なのは，次の点である．

• 指向性の増加：円の半径が大きくなるほど，アレー全体の開口が広がり，結果として
鋭いビームを形成できる．

• 利得の近似式：均一励振された円形アレーでは，半径が十分に大きい場合，その指向
性は素子数 N にほぼ比例する．

これは「素子を増やすほど，開口を大きくするほど指向性が高まる」という物理的直感と一
致する．
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4.6 まとめ

アレーアンテナは，素子の幾何学的配置，間隔，振幅，位相を精密に設計することによっ
て放射特性を制御できる．線形，平面，円形といった基本的な構成は，それぞれに特有の利
点と設計上のトレードオフを持ち，レーダーから通信，航法に至るまで幅広い分野で応用さ
れている．今後，次のようなアレーアンテナの研究開発が進められるであろう．

• リフレクトアレーアンテナ
• 高周波，ミリ波，テラヘルツスペクトル用のアレーアンテナ
• モノリシックマイクロ波集積回路（MMIC）技術を統合したフェーズドアレーアン
テナ

• メタマテリアルなどの新材料を用いたアレーアンテナ
• 5G/6G通信のためのアレーアンテナ
• マルチビームアレーアンテナとビームフォーミングネットワーク
• バイオメディカルモニタリング用のアレーアンテナ

4.7 問題

�問題 4-1. N 素子ブロードサイドアレーについて論ぜよ．

�問題 4-2. N 素子エンドファイアアレーについて論ぜよ．

�問題 4-3. 素子数 N，素子間隔 d/λ（λは波長），共相励振の方向 θ0 を決め，アレーファ
クタを計算し，図示せよ．

�問題 4-4. 等方性アンテナをアレー素子とするブロードサイドリニアアレーの指向性利得
（ピーク値）を素子間隔 d，素子数 N を変化させて求めよ．
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CHAPTER 5

アレーアンテナの指向性合成

アレーアンテナの指向性合成について，特にサイドローブの抑制を目的とし
た設計手法を詳述します．まず最初に，複数のアレーを組み合わせる Array of
Arrays の概念と，サイドローブが発生しない 2 項アレーの原理を説明します．
次に，チェビシェフ多項式を利用して所望のサイドローブレベルを実現するドル
フ・チェビシェフアレーの理論を示し，素子数が偶数または奇数の場合の線形ア
レーのファクタを定式化し，アレー素子の励振振幅を求める方法を説明します．

5.1 はじめに

アレーアンテナの指向性を目的に応じて設計する「指向性合成」の基礎的な手法について
解説する．まず，複雑なアレーアンテナの設計を簡略化する極めて強力な概念である「Array
of Arrays」を紹介する．次に，サイドローブを完全に除去することを目的とした「2 項ア
レー（Binomial Array）」，そしてサイドローブレベルを任意の値に制御することでビーム
幅との最適なトレードオフを実現する「ドルフ・チェビシェフアレー（Dolph-Chebyshev
Array）」を取り上げ，指向性合成の詳細を計算例を示しながら説明していく．

5.2 Array of Arrays

「Array of Arrays」は，一つのアレーアンテナ全体を，より大きなアレーを構成する一個
の「素子アンテナ」と見なすもので，設計プロセスを階層的に分解し，全体の放射特性を
個々の要素の積として扱うことが可能となる．この概念を数式で表現すると以下のように
なる．まず，放射電界が E0 である素子アンテナ#0を考え，これを素子として構成したア



レーアンテナ#1（アレーファクタ f1）を定義する．次に，このアレーアンテナ#1自体を
一個の素子と見なし，アレーアンテナ#2（アレーファクタ f2）を構成する．このとき，ア
レー#2の総放射電界 E は，次式のように各要素の積で表される．

E = (E0f1) · f2 ≡ E0f (5.1)

ここで，f は合成されたアレー全体の総アレーファクタであり，f = f1 · f2 となる．このプ
ロセスを m 回繰り返す場合，総アレーファクタは個々のアレーファクタ全ての積で与えら
れる．

f =
∏
m

fm (5.2)

この考え方は，後述する 2項アレーの特性を系統的に説明する上で非常に有効である．

5.3 2項（リニア）アレー

2項アレー（Binomial Array）は，各素子の励振振幅を 2項係数に従って設定することに
より，理論上サイドローブを完全に除去することを目的とした指向性合成である．この 2項
係数を巧みに用いる点は，２項多段インピーダンス整合器やバターワース（最大平坦特性）
フィルタの合成に類似しており，電子工学における普遍的な設計思想の応用例と見なすこと
ができる．不要な方向への放射を極限まで抑えることが求められる干渉対策など，特定の応
用において非常に有用な特性を持つ．

5.3.1 ブロードサイドアレー

ブロードサイドアレー (broadside array)の構成において，2項アレーは Array of Arrays
の概念を応用して実現される．まず，同一の素子間隔 d を持つ 2素子アレー（アレーファ
クタ f1）を考える．この 2素子アレー自体を一つの素子と見なし，さらに 2素子でアレー
化すると，そのアレーファクタ f は，

f = f1 · f1 = f2
1 (5.3)

さらに，アレー化して，

f · f1 = f2
1 · f1 = f3

1 (5.4)

この操作を繰り返すことで，アレーファクタはべき乗の形で表現される．特に，素子間隔を
d = λ/2 とし，原点に対して対称に配置したリニアブロードサイド 2素子アレーに対してこ
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の操作を N − 1 回繰り返すと，N 素子アレーが構成され，その総アレーファクタはコサイ
ン関数のべき乗という非常にシンプルな形に集約される．

f(ū) =
[1
2(e−jū + ejū)

]N−1
= cosN−1 ū (5.5)

この cosN−1 ū というパターンは，可視領域（visible region）においてサイドローブを持た
ないという顕著な特徴を持つ．図 6.1は２素子の場合のアレーファクタを示したもので，サ
イドローブが全くない放射パターンであり，上式ではこのアレーアンテナのアレーを考え
ていくのである．比較として，一般的な均一励振アレーでは第一サイドローブが約 −13 dB
で現れるが，2項アレーではこれを完全に抑制できる．
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図 5.1. ブロードサイド 2 項アレーのアレーファクタ（N = 2，θ0 = 90◦，d = 0.5λ）

この放射パターンを実現するための各素子の励振振幅 an は，リニアアレーのアレーファ
クタの一般式と，2 項展開式を比較することで導出される．まず，アレーファクタの一般
式は，

f(u) =
∑
n

ane
jnu = a0 + a1e

ju + a2e
j2u + . . . (5.6)

ここで，

u = kd cos θ = 2πd
λ

cos θ (5.7)
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これと，対応する 2項展開式を比較する．

(
1 + eju

)N−1
= 1 + (N − 1)eju + (N − 1)(N − 2)

2! ej2u + . . .

= a0 + a1e
ju + a2e

j2u + . . . (5.8)

この比較により，励振振幅 ai が 2項係数に一致することがわかる．素子数 N が 3から 7
の場合の相対振幅を以下の表に示す．これはパスカルの三角形として知られている．

N 素子の相対振幅
3 1 2 1
4 1 3 3 1
5 1 4 6 4 1
6 1 5 10 10 5 1
7 1 6 15 20 15 6 1

この表の係数は，隣接する 2つの数を足し合わせることで，その下の行の係数が得られると
いう単純な加算法で生成できる（例：N = 4の行の「1」と「3」を足すと N = 5の行の「4」
になる）．2項係数 nCk は組み合わせ（combination）の計算であり，次のようにして求め
られる．

(a+ b)n =
n∑
k=0

nCka
n−kbk (5.9)

ここで，

nCk = n!
k!(n− k)! (5.10)

図 5.2(a) は 3 素子，同図 (b) は 4 素子を配列したブロードサイド 2 項アレーのアレー
ファクタを示したもので，素子を増やしてもサイドローブそのものがないことわかる．さら
に，図 5.3は 5素子の 2項アレーを示しており，同図 (a)はアレー素子の最大値の規格化し
た励振振幅，同図 (b)はアレーファクタである．素子間隔は，いずれもグレーティングロー
ブの発生しない d = 0.5λとしている．励振位相として，共相励振の条件を用いれば，所定
の方向に主ビームを向けることができる（ホームページを見る）．2項アレーはサイドロー
ブを完全に除去できるという大きな利点を持つが，その代償として，均一励振アレーに比べ
て主ビームの幅が広くなり，アンテナの能率が低下するというトレードオフが存在する．
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図 5.2. ブロードサイド 2 項アレーのアレーファクタ（θ0 = 90◦，d = 0.5λ）
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図 5.3. ブロードサイド 2 項アレー（N = 5，θ0 = 90◦，d = 0.5λ）

5.3.2 エンドファイアアレー

同様のサイドローブのない特性は，エンドファイアアレー (end-fire array)においても実
現可能である．ただし，ブロードサイドアレーとの重要な違いは，素子間隔を d = λ/4 に
設定する必要がある点である（ブロードサイドアレーとエンドファイアアレーは，グレー
ティングローブの発生しない条件が異なることに注意せよ）．以下に，2素子から 4素子ま
でのエンドファイア 2項アレーにおける励振振幅と位相を示す．まず，N = 2のとき，励
振振幅 a−1，a1，および励振位相 ψ−1，ψ1（共相励振によって決まる位相）は，

a1 = 1, a−1 = a1 (5.11)

ψ−1 = π

4 , ψ1 = −π

4 (5.12)

図 5.4に 2素子のエンドファイア 2項アレーのアレーファクタを示す．また，N = 3のとき
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図 5.4. エンドファイア 2 項アレーのアレーファクタ（N = 2，θ0 = 0◦，d = 0.25λ）

a0 = 2, a1 = 1 (5.13)

ψ−1 = π

2 , ψ0 = 0, ψ1 = −π

2 (5.14)

N = 4のとき

a1 = 3, a2 = 1 (5.15)

ψ−2 = 3π
4 , ψ−1 = π

2 , ψ1 = −π

2 , ψ2 = −3π
4 (5.16)

図 5.5(a)に 3素子，同図 (b)に 4素子のエンドファイア 2項アレーのアレーファクタを示
す．さらに，図 5.6は 9素子のエンドファイア 2項アレーを示したもので，同図 (a)は規格
化励振振幅，同図 (b)はアレーファクタである．
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図 5.5. エンドファイア 2 項アレーのアレーファクタ（θ0 = 0◦，d = 0.25λ）
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図 5.6. エンドファイア 2 項アレー（N = 9，θ0 = 0◦，d = 0.25λ）

5.4 ドルフ・チェビシェフアレー

ドルフ・チェビシェフアレー (Dolph-Chebyshev array)は，アンテナ指向性合成におけ
る古典的かつ極めて強力な手法である．この手法は，チェビシェフ多項式の数学的特性を利
用して，指定された一定レベルのサイドローブをサイドローブ領域全体にわたって実現す
る．このアプローチの最大の特長は，与えられた素子数に対して，主ビーム幅とサイドロー
ブレベルの間に存在するトレードオフ関係を最適化できる点にある．この考え方は，伝送線
路理論におけるチェビシェフ多段インピーダンス整合器や，回路理論におけるチェビシェフ
（等リップル特性）フィルタの設計にも用いられ，広範な電気工学分野で応用されている．
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5.4.1 チェビシェフ多項式

設計の核となるのが，チェビシェフ多項式 (Chebyshev polynomials) Tn(x) である．こ
れは変数 x の範囲によって，以下のように定義される．

Tn(x) =


(−1)n cosh(n cosh−1 |x|) (x < −1)
cos(n cos−1 x) (|x| ≤ 1)
cosh(n cosh−1 x) (x > 1)

(5.17)

図 5.7 はチェビシェフ多項式の計算例を示したもので，同図 (a) は T1(x)，T2(x)，T3(x)，
同図 (b) は T4(x)，T5(x)，T6(x) である．チェビシェフ多項式の最も重要な特性は，領域
|x| ≤ 1 において値が −1と +1の間を振動し，領域 |x| > 1 においては単調に増加（また
は減少）する点である．この性質が，一つの主ビームと均一なレベルのサイドローブ群を持
つアレーファクタの形状をモデル化するのに理想的である．
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図 5.7. チェビシェフ多項式（ホームページを見る）

この多項式を，オイラーの公式を用いて導出してみよう．

ejnu = cos(nu) + j sin(nu) = (eju)n = (cos u+ j sin u)n (5.18)

この式の右辺を 2項展開し，実部を取ると次式が得られる．

cos(nu) = cosn u− n(n− 1)
2! cosn−2 u · sin2 u+ . . . (5.19)

この式に含まれる sin2 u の項を sin2 u = 1 − cos2 u の関係を用いて全て cosu の項に変換
すると，cos(nu) は cosu の多項式として表現できる．ここで x = cos u と置換することで，
チェビシェフ多項式の具体的な形が導かれる．以下に，n = 0 から n = 7 までのチェビシェ
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フ多項式を示す（後の設計例では，T4(x)を用いる）．

T0(x) = 1 (5.20)
T1(x) = x (5.21)
T2(x) = 2x2 − 1 (5.22)
T3(x) = 4x3 − 3x (5.23)
T4(x) = 8x4 − 8x2 + 1 (5.24)
T5(x) = 16x5 − 20x3 + 5x (5.25)
T6(x) = 32x6 − 48x4 + 18x2 − 1 (5.26)
T7(x) = 64x7 − 112x5 + 56x3 − 7x (5.27)

5.4.2 設計法

ドルフ・チェビシェフアレーの設計原理は，アレーファクタの空間依存性（角度依存性）
を，チェビシェフ多項式の変数 x の領域に写像することにある．この手法の巧妙さは，チェ
ビシェフ多項式の特性をアンテナパターンにマッピングする，以下の変数変換にある．この
変換により，多項式の振動領域（|x| ≤ 1）がアンテナのサイドローブ領域に，単調増加領域
（|x| > 1）が主ビームに対応付けられる．
まず，主ビームの最大値とサイドローブレベルの比率を R と定義する．サイドローブレ
ベルは主ビームより小さいため，R > 1 となる．

R = main-lobe maximum
sidelobe level

(> 1) (5.28)

設計の第一歩は，この比率 R を実現するチェビシェフ多項式の変数値 x0 を見つけること
である．x0 > 1 となる値で，TN−1(x0) = R という条件を満たす必要がある．ここで N は
アレーの素子数である．

TN−1(x0) = cosh
(
(N − 1) cosh−1 x0

)
= R (5.29)

この式を x0 について解く．R = coshα とおくと，

eα = R +
√
R2 − 1 (5.30)

e−α = R −
√
R2 − 1 (5.31)

となり，x0 は以下のように求められる．

x0 = cosh
(

cosh−1 R

N − 1

)

= 1
2

[(
R +

√
R2 − 1

) 1
N−1 +

(
R −

√
R2 − 1

) 1
N−1

]
(5.32)
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次に，アレーのユニバーサル・パラメータ u を多項式の変数 x に関連付けるための変数変
換を行う．この変換が設計の鍵となる．

cos
(
u

2

)
= cos ū ≡ x

x0
(5.33)

この変換により，アレーファクタ f はチェビシェフ多項式そのものとして表現される．

f = TN−1(x), x = x0 cos ū (5.34)

実際の励振振幅を求めるには，対称なリニアアレーのアレーファクタの一般式が必要とな
る．素子数が偶数か奇数かで式が異なる．素子数 N が偶数の場合:

f(u) = 2
N/2∑
n=1

an cos
(

(2n− 1)u
2

)
(5.35)

素子数 N が奇数の場合:

f(u) = a0 + 2
(N−1)/2∑
n=1

an cos(nu) (5.36)

5.4.3 設計例

具体的な設計例として，5素子アレー（N = 5）でサイドローブレベルを −20 dB以下に
抑える場合の励振振幅を求める．

アレーファクタの定式化
N = 5（奇数）より，対称励振のアレーファクタ f は，励振振幅を a0, a1, a2 として次の
ように書ける（a−1 = a1，a−2 = a2）．これを cos ū のべき級数に展開する．

f = a0 + 2a1 cos(2ū) + 2a2 cos(4ū)
= (a0 − 2a1 + 2a2) + (4a1 − 16a2) cos2 ū+ 16a2 cos4 ū (5.37)

比率 R の計算
サイドローブレベル −20 dBから，主ビームとの比率 R を計算する．

R = 10RdB/20 = 1020/20 = 10 (5.38)

x0 の計算
N = 5，R = 10 として，x0 を計算すると，

x0 = cosh
(

cosh−1 10
5 − 1

)
= 1.2933 (5.39)
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係数比較
アレーファクタの式に変数変換 cos ū = x/x0 を代入し，N − 1 = 4 次のチェビシェフ多
項式 T4(x) と等しいとおく．

f = 16a2
x4

x4
0

+ 4a1 − 16a2

x2
0

x2 + (a0 − 2a1 + 2a2)

≡ T4(x) = 8x4 − 8x2 + 1 (5.40)

上式において，x の各べき乗の係数を比較することで，励振振幅に関する連立方程式が得ら
れる．

16a2
x4

0
= 8

4a1−16a2
x2

0
= −8

a0 − 2a1 + 2a2 = 1
(5.41)

励振振幅の算出
この連立方程式を順に解いていく．まず第 1式から a2 を求める．

a2 = 8x4
0

16 = 0.5x4
0 (5.42)

次に，この結果を第 2式に代入して a1 を求める．

4a1 − 16(0.5x4
0) = −8x2

0

4a1 = 8x4
0 − 8x2

0

a1 = 2x4
0 − 2x2

0 (5.43)

最後に，求まった a1, a2 を第 3式に代入して a0 を求める．

a0 = 2a1 − 2a2 + 1
= 2(2x4

0 − 2x2
0) − 2(0.5x4

0) + 1
= 3x4

0 − 4x2
0 + 1 (5.44)

x0 = 1.2933 を代入して，各振幅の数値を計算する．

a2 = 0.5 · (1.2933)4 = 1.3988 (5.45)
a1 = 2 · (1.2933)4 − 2 · (1.2933)2 = 2.2500 (5.46)
a0 = 3 · (1.2933)4 − 4 · (1.2933)2 + 1 = 2.7024 (5.47)
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相対振幅の導出
最後に，アレーの端の素子の振幅 a2 で規格化し，相対振幅を求める．

a0

a2
= 2.7024

1.3988 = 1.9319 (5.48)

a1

a2
= 2.2500

1.3988 = 1.6085 (5.49)

よって，中央素子からの相対振幅比は，1.9319 : 1.6085 : 1 となる．このような値がよくア
ンテナ工学の教科書で見られる．得られた励振振幅を見ると中央の素子の値が大きく，ここ
では最大値で規格化した値を求め，図 5.8に 5素子（N = 5）チェビシェフアレーの規格化
励振振幅を示している．この励振振幅のもとで，共相励振の位相を用いれば，所定のサイド
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図 5.8. 5 素子（N = 5）チェビシェフアレーの規格化励振振幅 an(n = −2, −1, 0, 1, 2)

ローブピークレベルで，図 5.9に示すようにブロードサイドアレー（図 5.9(a)参照）やエン
ドファイアアレー（図 5.9(b)参照）を構成することができる．同様にして 9素子（N = 9）
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(a) ブロードサイドアレー (θ0 = 90◦，d = 0.5λ) (b) エンドファイアアレー (θ0 = 0◦，d = 0.25λ)

図 5.9. 5 素子（N = 5）チェビシェフアレー

86



チェビシェフアレーの規格化励振振幅を図 5.10（導出は省略），ブロードサイドアレーを図
5.11(a)，エンドファイアアレーを図 5.11(b)を示す．サイドローブピーク値は −20 dBとし
ている．素子間隔 dを一定として素子数 N を増やせば，リニアアレーの実効長が長くなる
ため，ビーム幅は狭くなることがわかる．
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図 5.10. 9素子（N = 9）チェビシェフアレーの規格化励振振幅 an（サイドローブレベル −20 dB）
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(a) ブロードサイドアレー (θ0 = 90◦，d = 0.5λ) (b) エンドファイアアレー (θ0 = 0◦，d = 0.25λ)

図 5.11. 9 素子（N = 9）チェビシェフアレー（サイドローブレベル −20 dB）

サイドローブピーク値を −30 dBとしたときの 9素子（N = 9）チェビシェフアレーの規
格化励振振幅（導出は省略）を図 5.12に，ブロードサイドアレーを図 5.13(a)，エンドファ
イアアレーを図 5.13(b)を示す*1

*1 さらに素子数が多い場合の計算例は，次の URL で確認できます．
https://www1.doshisha.ac.jp/~hdeguchi/Python/p3_ap_dolph_tschebyscheff.html
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図 5.12. 9素子（N = 9）チェビシェフアレーの規格化励振振幅 an（サイドローブレベル −30 dB）
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(a) ブロードサイドアレー (θ0 = 90◦，d = 0.5λ) (b) エンドファイアアレー (θ0 = 0◦，d = 0.25λ)

図 5.13. 9 素子（N = 9）チェビシェフアレー（サイドローブレベル −30 dB）

5.5 まとめ

アレーアンテナの指向性合成に関する 3つの基本的な手法を説明した．Array of Arrays
は，複雑なアレーをより単純な構成要素の積として扱うことで，設計を簡略化できる．2項
アレーは，2項係数を用いて励振振幅を決定することにより，サイドローブを完全に除去す
る直接的な方法であるが，ビーム幅は広くなる．ドルフ・チェビシェフアレーは，チェビ
シェフ多項式を応用し，指定したサイドローブレベルを達成できる．このほかに数値的な指
向性合成（レメッツアルゴリズムや 2次計画法など）があるがここでは省略する．
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5.6 問題

�問題 5-1. 2項アレーのアレー素子の規格化励振振幅（最大値で規格化すること），および
アレーファクタを求め，図示せよ．ただし，素子数 N，共振励振の方向 θ0，素子間隔 dは，
配付プリントおよび本資料の図以外の値を選定すること．

�問題 5-2. ドルフ・チェビシェフアレーのアレー素子の規格化励振振幅（最大値で規格化
すること），およびアレーファクタを求め，図示せよ．ただし，素子数 N，共振励振の方向
θ0，素子間隔 d，サイドローブレベルは，配付プリントおよび本資料の図以外の値を選定す
ること．

�問題 5-3. sin θ（θ は z 軸とのなす角度）の素子電界パターンを有する 5素子のアンテナ
を z 軸上に配列したブロードサイドドルフ・チェビシェフアレーアンテナの放射パターン
を求め，図示せよ．ただし，素子間隔 dは，グレーティングローブが発生しない値に決める
こと．また，サイドローブレベル −20 dB，あるいはそれ以外を選定すること．

�問題 5-4. cos θ（θは z 軸とのなす角度）の素子電界パターンを有する 5素子のアンテナ
を z 軸上に配列したエンドファイアドルフ・チェビシェフアレーアンテナの放射パターン
を求め，図示せよ．ただし，素子間隔 dは，グレーティングローブが発生しない値に決める
こと．また，サイドローブレベル −20 dB，あるいはそれ以外を選定すること．
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CHAPTER 6

任意電磁流分布による放射

任意電磁流分布による放射電磁界の解析について詳述します．まず，ベクトル
ポテンシャルの遠方近似を用いて任意電流分布による放射電磁界を導出します．
また，直線電流分布やコサインテーパ分布，そして中央給電ダイポールアンテナ
といった具体的な電流分布による遠方放射電界の求め方を説明します．さらに，
影像法の理論を完全電気導体と完全磁気導体の場合に適用する方法を述べ，双対
性を用いて任意磁流分布および任意電磁流分布による放射電界の表示式を導き
ます．

6.1 任意電流分布による放射電磁界

6.1.1 導入とベクトルポテンシャルによる定式化

本節では，任意の電流分布 J が与えられた場合に，それによって放射される電磁界を計
算するための一般的な手法を確立することを目的とする．この計算の基礎となるツールがベ
クトルポテンシャル A である．静磁界におけるビオ・サバールの法則が電流から磁界を求
める積分形式であったように，本手法は時間変動する電磁波の場合における，より一般的な
形式と見なすことができる．ベクトルポテンシャルは，与えられた電流分布とグリーン関数
の積を体積積分することで求められる．

A = µ

ˆ
V

J(r′) e
−jk|r−r′|

4π|r − r′|
dv′ = µ

ˆ
V

J(r′)G(r, r′)dv′ (1)



ここで，G(r, r′) は無限自由空間における 3次元スカラーグリーン関数であり，次式で定義
される．

G(r, r′) ≡ e−jkR

4πR (6.1)

R ≡ |r − r′| (2)

このグリーン関数は点波源による場を表し，次のヘルムホルツ方程式を満足する．

(∇2 + k2)G(r, r′) = −δ(r − r′) (3)

グリーン関数を用いる利点は，境界条件をあらかじめ関数に含めることができる点にある
が，ここでは最も単純な自由空間のグリーン関数を用いる．ベクトルポテンシャル A が求
まれば，電界 E と磁界 H は以下の基本関係式を用いて計算できる．

E = −jω
(

A + 1
k2 ∇∇ · A

)
(6.2)

H = 1
µ

∇ × A (4)

次のステップとして，アンテナの解析で特に重要となる遠方領域に注目し，遠方界近似を適
用してこれらの計算を簡略化する．

6.1.2 遠方領域におけるベクトルポテンシャル

アンテナの放射特性を評価する際，通常はアンテナから非常に遠い距離（遠方領域）にお
ける電磁界に関心がある．この遠方界近似を適用することで，計算を大幅に簡略化できる．
波源（位置ベクトル r′）が有限の領域に分布している場合，観測点（位置ベクトル r）が波
源から十分に遠い（r � r′）と仮定する．このとき，波源から観測点までの距離 R と位相
項 e−jkR は次のように近似できる．

R = |r − r′| ≈ r − r′ · ar (6.3)
e−jkR ≈ e−jkr · ejkr′·ar (5)

これは，遠方では振幅への影響（分母の R）は r で近似できるほど小さいが，位相への影
響（指数部の R）は波長に比べて無視できないため，より高次の項まで考慮するという物
理的考察に基づいている．これらの近似式を式 (1)のベクトルポテンシャルの積分に代入す
ると，

A ≈ µ

ˆ
V

J(r′)e
−jkr

4πr e
jkr′·ardv′ (6)
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となる．ここで，単純化されたグリーン関数 G0(r) と放射ベクトル D(ar) を次のように定
義する．

G0(r) ≡ e−jkr

4πr (6.4)

D(ar) ≡
ˆ
V

J(r′)ejkr′·ardv′ (7)

放射ベクトル D(ar) は，波源の形状と電流分布に関する全ての情報を含んでおり，その形
式はフーリエ変換に類似している．これらを用いると，遠方領域におけるベクトルポテン
シャル A は最終的に以下の簡潔な形で表される．

A ≈ µG0(r)D(ar) (8)

この簡略化された A を用いて，次節では遠方領域の電界 E と磁界 H を計算する．

6.1.3 遠方領域ベクトルポテンシャルによる遠方界

遠方界近似は，ベクトルポテンシャルだけでなく，微分演算子にも適用でき，A から E
と H を計算するプロセスを劇的に簡略化する．まず，A の r に関する微分を考える．

∂A
∂r

≈ ∂

∂r
(µG0(r)D(ar)) = µD(ar)

∂G0

∂r
(9)

ここで，G0 の微分は，

∂G0

∂r
= ∂

∂r

(
e−jkr

4πr

)
= 1

4π

(
−jke−jkr

r
− e−jkr

r2

)

= G0

(
−jk − 1

r

)
≈ −jkG0 (10)

となり，遠方（r → ∞）では 1/r の項は −jk に比べて無視できる．したがって，

∂A
∂r

≈ µD(ar)(−jkG0) = −jkA (11)

という関係が得られる．これは，フェーザ表示における時間微分 ∂/∂t が jω の乗算に対応
するのと同様に，遠方界近似の下では r に関する空間微分 ∂/∂r が −jk の乗算に等価であ
ることを示している．同様に，2階微分は次のように近似される．

∂2G0

∂r2 ≈ (−jk)2G0 = −k2G0 (12)

次に，発散（divergence）∇ · A を球座標系で考えると，r が大きい場合，1/r の高次の項
は無視でき，r 微分項が支配的になる．

∇ · A = 1
r2

∂

∂r
(r2Ar) + · · · ≈ ∂Ar

∂r
(13)
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式 (11)の結果より，

∂Ar
∂r

= ∂A
∂r

· ar ≈ −jkA · ar = −jkAr (6.5)

となり，他の成分についても同様である．

∂Aθ
∂r

≈ −jkAθ,
∂Aφ
∂r

≈ −jkAφ (15)

さらに，発散の勾配（gradient）∇(∇ · A) も，r 微分項が支配的となるため，

∇(∇ · A) ≈ ∇(−jkAr) ≈ ar
∂

∂r
(−jkAr)

≈ ar(−jk)∂Ar
∂r

≈ ar(−k2)Ar

= −ark2(A · ar) = −ark2µG0(D · ar) (16)

と近似できる．回転（curl）∇ × A についても同様に，

∇ × A ≈ −aθ
∂Aφ
∂r

+ aφ
∂Aθ
∂r

≈ −aθ(−jk)Aφ + aφ(−jk)Aθ
= jk(A × ar) ≈ jkµG0(D × ar) (17)

これらの簡略化された微分演算を式 (4)に代入することで，遠方領域の磁界 H と電界 E を
求める．

H = 1
µ

∇ × A ≈ 1
µ
jkµG0(D × ar)

= −jkG0(ar × D) (18)

また，

E = −jω
(

A + 1
k2 ∇∇ · A

)
≈ −jω

[
µG0D + 1

k2 {−ark2µG0(D · ar)}
]

= −jωµG0{D − (D · ar)ar} (19)

ここで，ベクトル公式 a × (b × c) = b(a · c) − c(a · b) を用いると，式 (19)の括弧 {}内
は，ar × (ar × D) = ar(ar · D) − D(ar · ar) = − {D − (D · ar)ar} と変形できるため，E
は次のように書き換えられる．

E ≈ −jωµG0{−(ar × (ar × D))}
= jωµG0{ar × (ar × D)}
= jkZ0G0{ar × (ar × D)} (21)
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また，磁界 H の結果を用いると，E と H の関係は

E = Z0{ar × (jkG0ar × D)}
= Z0{ar × (−H)} = Z0(H × ar) (22)

となる．これらの結果から，遠方界では電界 E と磁界 H はともに伝搬方向 ar に直交する
成分しか持たない TEM波（横電磁波）であり，その振幅の比は自由空間の固有インピーダ
ンス Z0 に等しいことがわかる．

6.1.4 任意電流分布による放射電磁界のまとめ

以上の導出により，任意の電流分布 J から放射される遠方電磁界を計算するための一連
の実用的な公式が得られた．

E = jkZ0G0{ar × (ar × D)} = Z0(H × ar) (23)
H = −jkG0(ar × D) (24)

ここで，放射ベクトル D(ar) は

D(ar) =
ˆ
V

J(r′)ejkr′·ardv′ (25)

であり，関連する定数は以下で定義される．

k = 2π
λ
, Z0 =

√
µ

ε
, G0 = e−jkr

4πr (26)

この一連の式は，任意の電流分布 J が与えられれば，まず放射ベクトル D を計算し，次に
遠方放射電界 E と磁界 H を求めることができる，完全な計算手順を提供する．

6.2 有限長の直線電流分布による放射電界

6.2.1 直線電流分布の一般式

前節で導出した一般論を，z軸に沿って電流が流れる細いワイヤアンテナという，重要か
つ実用的なケースに適用する．長さ L，断面積 ∆S のワイヤ上の電流分布 I(z′) は，電流
密度 J として次のように表される．

J(z′) = I(z′)
∆S az

(
−L

2 ≤ z′ ≤ L

2

)
(27)

放射ベクトル D の積分内の位相項 k · r′ を計算する．電流の位置ベクトルを r′ = z′az，波
数ベクトルを k = kar とすると，

k · r′ = (kar) · (z′az) = kz′(ar · az) = kz′ cos θ (28)
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となる．ここで θ は z軸と観測方向 ar のなす角である．これを式 (23)に代入すると，直
線電流分布に対する放射ベクトル D の一般形が得られる．

D =
ˆ
V

Jejk·r′
dv′

= az
ˆ L/2

−L/2
I(z′)ejk cos θ·z′

dz′ = D(θ)az (29)

この D を遠方電界の一般式 (22)に代入する．ベクトル計算の部分 ar × (ar × az) を球座
標系の単位ベクトルを用いて計算する．az を ar 成分と aθ 成分に分解すると，

az = cos θar − sin θaθ (30)

となる．よって，ベクトル三重積は，

ar × (ar × az) = ar × {ar × (cos θar − sin θaθ)}
= ar × (− sin θ)aφ = sin θaθ (31)

と簡略化される．ここで，単位ベクトル間の関係式 ar×ar = 0, ar×aθ = aφ, ar×aφ = −aθ
を用いた．したがって，任意の直線電流 I(z′) による遠方放射電界 E の一般式は次のよう
になる．

E = jkZ0G0D(θ) sin θaθ

= jkZ0
1

4π
e−jkr

r
D(θ) sin θaθ (33)

この公式を用いれば，一様分布やコサイン分布など，特定の電流分布に対する放射電界を具
体的に解析することができる．

6.2.2 一様電流分布

最も単純なケースとして，電流が一定値 I0 をとる一様電流分布を考える．この場合，式
(27)の D(θ) の積分部分は，

D = I0

ˆ L/2

−L/2
ejk cos θ·z′

dz′ (34)

となる．この積分を実行すると，
ˆ L/2

−L/2
ejk cos θ·z′

dz′ =
[
ejk cos θ·z′

jk cos θ

]L/2

−L/2
= ejk cos θ·L/2 − ejk cos θ·(−L/2)

jk cos θ

= eju − e−ju

jk cos θ = 2j sin u
jk cos θ = L

sin u
kL
2 cos θ

= L
sin u
u

(35)
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となる．ここで，ユニバーサルパラメータ u を次のように定義した．

u ≡ kL

2 cos θ = 2π
λ

· L2 cos θ = πL

λ
cos θ (36)

この結果を式 (30)に代入すると，一様電流分布による放射電界 E が得られる．

E = j
I0LkZ0

4π
e−jkr

r

sin u
u

sin θaθ (37)

放射電界の振幅が最大となるのは θ = π/2 の方向であり，このとき cos θ = 0，u = 0 とな
る．u → 0 の極限では，

lim
u→0

sin u
u

= 1 (38)

である．この最大値で規格化した放射電界（放射パターン）Ē は，

Ē = E
Emax

= sin u
u

sin θaθ (39)

6.2.3 コサインテーパ分布

より物理的に現実的なモデルとして，電流がワイヤの両端でゼロになるコサインテーパ分
布を考える．電流分布は次式で与えられる．

I(z′) = I0 cos
(
πz′

L

) (
−L

2 ≤ z′ ≤ L

2

)
(40)

この電流分布に対する D の積分を計算する．オイラーの公式を用いてコサイン関数を複素
指数関数に分解すると，積分が容易になる．

ˆ L/2

−L/2
cos

(
πz′

L

)
ejk cos θ·z′

dz′ =
ˆ L/2

−L/2

ej
πz′
L + e−j πz′

L

2 · ejk cos θ·z′
dz′

= 1
2

ˆ L/2

−L/2

(
ej(

π
L

+k cos θ)z′ + ej(−
π
L

+k cos θ)z′)
dz′ (41)

= · · · = 2πL cosu
π2 − (2u)2 = 2L

π

cosu
1 − (2u/π)2

この結果を用いて放射電界 E を求めると，

E = jkZ0G0D(u) sin θaθ (42)

となる．最大放射方向（θ = π/2, u = 0）の値で規格化した放射電界 Ē は，

Ē = cosu
1 − (2u/π)2 sin θaθ (43)
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となる．この式では，分母がゼロになる u = ±π/2 の場合に発散するように見えるが，こ
の点では分子もゼロになり不定形となる．ロピタルの定理を適用すると，有限の値に収束す
ることがわかる．

lim
u→±π/2

cosu
1 − (2u/π)2 = lim

u→±π/2

− sin u
−2 · 2u

π · 2
π

= lim
u→±π/2

sin u
8u/π2 = ±1

8(±π/2)/π2 = π

4
(44)

よって，u = ±π/2 のときの規格化電界は，

Ē
∣∣∣
u=±π/2

= π

4 sin θaθ (45)
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図 6.1. 放射パターンの比較

6.2.4 中央給電ダイポールアンテナ

アンテナ素子上での定在波を正確にモデル化する，中央給電ダイポールアンテナの正弦波
状の電流分布を考える．この分布は，アンテナの中央点から給電され，両端で電流がゼロに
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なるという物理的状況を反映している．電流分布は次式で与えられる．

I(z′) = I0 sin
[
k
(
L

2 − |z′|
)] (

|z′| < L

2

)
(46)

放射ベクトル D の振幅を計算するため，積分を z′ < 0 と z′ > 0 の 2つの部分に分ける．

D =
ˆ L/2

−L/2
I(z′)ejk cos θ·z′

dz′

= I0

ˆ 0

−L/2
sin

[
k
(
L

2 + z′
)]
ejk cos θ·z′

dz′

︸ ︷︷ ︸
I

(−)
D

+I0

ˆ L/2

0
sin

[
k
(
L

2 − z′
)]
ejk cos θ·z′

dz′

︸ ︷︷ ︸
I

(+)
D

≡ I0(I(−)
D + I

(+)
D ) (47)

I
(−)
D の積分において z = −z′ と置換すると，I(−)

D は I
(+)
D の指数部の符号が反転したもの

になることがわかる．

I
(−)
D =

ˆ 0

L/2
sin

[
k
(
L

2 − z
)]
ejk cos θ(−z)(−dz)

=
ˆ L/2

0
sin

[
k
(
L

2 − z′
)]
e−jk cos θ·z′

dz′ (48)

ここで I
(±)
D を計算する．

I
(±)
D =

ˆ L/2

0
sin

[
k
(
L

2 − z′
)]
e±jk cos θ·z′

dz′

=
ˆ L/2

0

ejk(L/2−z′) − e−jk(L/2−z′)

j2 · e±jk cos θ·z′
dz′

= ejkL/2

j2

ˆ L/2

0
ejk(−1±cos θ)z′

dz′ − e−jkL/2

j2

ˆ L/2

0
ejk(1±cos θ)z′

dz′ (49)

積分を実行し，整理すると，

I
(±)
D = · · · = 1

−2k

{
e±ju − ejkL/2

−1 ± cos θ − e±ju − e−jkL/2

1 ± cos θ

}

= 2e±ju − (1 ± cos θ)ejkL/2 + (−1 ± cos θ)e−jkL/2

−2k(−1 ± cos θ)(1 ± cos θ)

= 2e±ju − (ejkL/2 + e−jkL/2) ∓ cos θ · (ejkL/2 − e−jkL/2)
2k(1 − cos2 θ)

= 2e±ju − 2 cos(kL/2) ∓ cos θ · 2j sin(kL/2)
2k sin2 θ

(50)

99



I
(−)
D と I

(+)
D の和をとると，

I
(−)
D + I

(+)
D = 2(eju + e−ju) − 4 cos(kL/2)

2k sin2 θ

= 2
k

· cosu− cos(kL/2)
sin2 θ

(6.6)

よって，

D(u) = 2I0

k
· cosu− cos(kL/2)

sin2 θ
(51)

この結果から，放射電界 E は次式となる．

E = jkZ0G0D(u) sin θaθ

= jkZ0G0
2I0

k
· cosu− cos(kL/2)

sin θ aθ (52)

最大放射方向（θ = π/2, u = 0）の値で規格化した放射電界 Ē は*1 ，

Ē =
cosu− cos

(
kL
2

)
{1 − cos(kL/2)} sin θaθ (53)

6.3 影像法

アンテナが無限に大きい導体面の近くに存在する場合の放射問題を簡略化する手法とし
て，影像法が有効である．これは，導体面を仮想的な「影像」アンテナに置き換えることで，
境界条件を満たす解を容易に求める方法である．

6.3.1 完全電気導体

完全電気導体（PEC）の表面では，電界の接線成分がゼロになるという境界条件（Etan = 0）
が成立する．この条件を満たすように，導体面を挟んで鏡像の位置に影像素子を配置する．

• 垂直な電流素子 J: 導体面に対して垂直な電流素子の影像は，同じ向きの電流となる．
• 平行な電流素子 J: 導体面に対して平行な電流素子の影像は，逆向きの電流となる．
• 垂直な磁流素子 M: 垂直な磁流素子の影像は，逆向きの磁流となる．
• 平行な磁流素子 M: 平行な磁流素子の影像は，同じ向きの磁流となる．

これにより，元のアンテナと影像アンテナからなる 2 素子アレーの問題として扱うことが
できる．

*1 python による放射パターンの計算は，次の URL を参照して下さい．
https://www1.doshisha.ac.jp/~hdeguchi/Python/p3_ap_element_patterns.html
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6.3.2 完全磁気導体

完全電気導体と双対的な概念として，完全磁気導体（PMC）が考えられる．これは，磁
界の接線成分がゼロ（Htan = 0）となる仮想的な境界面である．この境界条件を満たすため
の影像の規則は，PECの場合と双対的になる．

• 垂直な電流素子 J: 垂直な電流素子の影像は，逆向きの電流となる．
• 平行な電流素子 J: 平行な電流素子の影像は，同じ向きの電流となる．
• 垂直な磁流素子 M: 垂直な磁流素子の影像は，同じ向きの磁流となる．
• 平行な磁流素子 M: 平行な磁流素子の影像は，逆向きの磁流となる．

6.4 任意磁流・電磁流分布による放射

6.4.1 任意磁流分布

電磁界における双対性（duality）の原理を用いると，電流源 J による放射界の公式か
ら，磁流源 M による放射界の公式を導出できる．これは，マクスウェル方程式において
E → H,H → −E, µ ↔ ε などの置き換えを行うことに対応する．任意磁流分布 M による
遠方放射電磁界は，

E = jkG0(ar × Dm) (54)
H = jkY0G0{ar × (ar × Dm)} = Y0(ar × E) (55)

となる．ここで，磁流の放射ベクトル Dm(ar) および関連定数は，

Dm(ar) =
ˆ
V

M(r′)ejkr′·ardv′ (56)

また，

k = 2π
λ
, Y0 =

√
ε

µ
, G0 = e−jkr

4πr (57)

6.4.2 任意電磁流分布

電流 J と磁流 M が同時に存在する場合，放射される全電磁界は，それぞれが単独で存
在する場合の電磁界の重ね合わせ（superposition）によって求められる．したがって，任意
電磁流分布による全放射電界 E は，J による寄与と M による寄与の和で与えられる．

E = jkZ0G0{ar × (ar × D)} + jkG0(ar × Dm)

= jkG0ar ×
ˆ
V

(ar × Z0J + M)ejkr′·ardv′ (58)

101



ここで，関連する定数は以下で定義される．

k = 2π
λ
, Z0 =

√
µ

ε
, G0 = e−jkr

4πr (59)

この式は，電流と磁流の両方を含む最も一般的な波源からの放射を計算するための統一的な
表現を与えている．

6.5 まとめ

主要な内容を以下に要約する．

• ベクトルポテンシャルと遠方界近似を用いて，任意の電流分布から放射される電磁界
を計算する一般式を導出した．

• この手法を，一様分布，コサインテーパ分布，正弦波分布といった様々な電流分布を
持つ有限長の直線アンテナに適用し，それぞれの放射特性を解析した．

• 導体面近傍のアンテナ問題を簡略化するための強力なツールである影像法について，
完全電気導体および完全磁気導体の場合の規則を示した．

• 双対性と重ね合わせの原理を用いて，理論を磁流分布，さらには電流と磁流が混在す
る一般的な電磁流分布へと拡張した．
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6.6 問題

�問題 6-1. 電流素子の長さ Lが半波長（L = λ
2）の中央給電ダイポールアンテナによる遠

方放射電界を，最大値で規格化して表せ．

� 問題 6-2. 中央給電ダイポールアンテナについて，波長 λ で規格化したアンテナの長さ
L/λと放射特性の関係について論ぜよ．

�問題 6-3. 地導体面から垂直距離 d/λの位置に電気ダイポールアンテナが置かれている．
放射特性と d/λおよびアンテナの向きとの関係について論ぜよ．

�問題 6-4. スロットアンテナ，あるいはパッチアンテナを，等価的に磁流に置き換えて解
析する方法について論ぜよ．
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CHAPTER 7

開口面分布による放射

開口面アンテナの放射特性を解析するための基本的な手法である開口面法
（Aperture-Field Method）について，その理論的背景から具体的な導出までを
詳述します．まず，電磁気学の基礎である Maxwell方程式から出発し，理論的
な構成要素として仮想的な磁流源を導入します．これにより，電磁界の一般積分
表示式を導出し，最終的には開口面上の電磁界分布と遠方放射パターンとの間に
成り立つフーリエ変換の関係を明らかにします．そして，アンテナの放射領域と
理論式との関係について論じていきます．

7.1 電磁界の一般的な積分表示式

マクスウェルの方程式から出発し，最終的に任意の波源分布に対する電磁界を計算するた
めの積分表示式を導出する．このアプローチは，後の開口面法の理論的基礎となる．

7.1.1 磁流源を導入したヘルムホルツ方程式

まず始めに，物理的に存在する電流源 J および電荷 ρ に加えて，仮想的な磁流源 M お
よび磁荷 ρm を導入する．これは物理法則そのものを記述するものではなく，電界と磁界の
双対性を形式的に整え，後の数学的取り扱いを著しく簡便にするための理論的な道具であ
る．このような仮想的な源を導入する手法は，高度な電磁気学において強力な解析ツールと



して広く用いられる．磁流源を導入したマクスウェルの方程式は，以下のようになる．
∇ × E + jωµH = −M

∇ × H − jωεE = J

∇ · H = ρm
µ

∇ · E = ρ

ε

(7.1)

また，電荷と電流の保存則は次式で与えられる．
∇ · J + jωρ = 0

∇ · M + jωρm = 0 (7.2)

次に，これらの式からベクトルヘルムホルツ方程式を導出する．式 (1) の第 1 式の回転
（∇×）をとり，式 (1)の第 2式を用いて磁界 H を消去することで，電界 E に関する方程
式が得られる．

∇ × ∇ × E + jωµ∇ × H = −∇ × M
∇ × ∇ × E − k2E = −jωµJ − ∇ × M (7.3)

ただし，k2 = ω2εµである．同様の操作により，磁界 H についても次式が得られる．

∇ × ∇ × H − k2H = −jωεM + ∇ × J (7.4)

これらはベクトルヘルムホルツ方程式と呼ばれ，電磁界の源である電流源 J と磁流源M が
電磁界をどのように生成するかを記述している．これらの微分方程式をベクトルのグリーン
の定理を用いて積分することにより，波源による電磁界の一般的な積分表現を求めることが
できる．

7.1.2 電磁界の一般的な積分表示式

閉曲面 S1, S2, S3, . . . で囲まれた領域 V に電流源，磁流源，電荷，磁荷が分布している
状況を考える．このとき，領域 V 内の任意の観測点 P における電界 Ep と磁界 Hp は，以
下の積分表示式で与えられる．

Ep = − 1
4π

˚
V

(
jωµψJ + M × ∇ψ − ρ

ε
∇ψ

)
dV

+ 1
4π

‹
S1+···+Sn

{−jωµψ(n × H) + (n × E) × ∇ψ + (n · E)∇ψ} dS (7.5)

また，

Hp = − 1
4π

˚
V

(
jωεψM − J × ∇ψ − ρm

µ
∇ψ

)
dV

+ 1
4π

‹
S1+···+Sn

{jωεψ(n × E) + (n × H) × ∇ψ + (n · H)∇ψ} dS (7.6)
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ここで，∇は波源の座標成分に関する微分演算子である．また，ψ は自由空間におけるグ
リーン関数であり，次式で定義される．

ψ = e−jkr

r
(7.7)

これらの式は，観測点 Pにおける電磁界が，領域 V内の真の波源からの寄与（体積積分項）
と，領域を囲む境界 S上の電磁界の値からの寄与（面積積分項）の和で表されることを示し
ている．

7.1.3 等価的な波源

前節の積分表示式において，体積積分項と面積積分項の被積分関数を比較すると，形式的
な類似性が見られる．この類似性から，境界線上における電磁界を「等価的な波源」として
定義することができる．具体的には，境界 S上の等価的な面電流 Js，面磁流 Ms，面電荷
η，面磁荷 ηm を以下のように定義する．

Js = n × H, Ms = E × n, η = ε(n · E), ηm = µ(n · H) (7.8)

これらの等価波源を用いると，式 (5)と式 (6)は次のように書き換えられる．

Ep = 1
4π

˚
V

(
−jωµψJ − M × ∇ψ + ρ

ε
∇ψ

)
dV

+ 1
4π

‹
S1+···+Sn

(
−jωµψJs − Ms × ∇ψ + η

ε
∇ψ

)
dS (7.9)

また，

Hp = 1
4π

˚
V

(
−jωεψM + J × ∇ψ + ρm

µ
∇ψ

)
dV

+ 1
4π

‹
S1+···+Sn

(
−jωεψMs + Js × ∇ψ + ηm

µ
∇ψ

)
dS (7.10)

この表現では，体積積分と面積積分の被積分関数が完全に同じ形式になっていることがわか
る．この形式的な統一性により，境界上の電磁界分布が既知であれば，その影響をあたかも
そこに実在する電流・磁流源からの放射として扱うことができる．この「等価波源」の考え
方は，複雑な境界値問題をより単純な波源からの放射問題へと変換する強力なツールであ
り，次章で説明する開口面法の基礎となる．

7.2 有限曲面上の電磁界による積分表示式

前章で導出した一般的な積分表示式を，より現実的なアンテナ問題に適用するステップ
に進む．特に，アンテナのような波源が有限の領域に限定されている状況を考える．この場
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合，アンテナを仮想的に囲む「開口面」上の電磁界分布さえ分かれば，そこから外部の放射
電磁界を計算できることが示される．これが本講義の中心テーマである「開口面法」の基本
的な考え方である．

7.2.1 閉曲面上の電磁界による面積分

まず，特殊な状況として「領域 V に波源がない」場合を考える．このアプローチの目的
は，アンテナ内部の複雑な波源の詳細に立ち入ることなく，アンテナを囲む閉曲面上の電磁
界さえ分かれば，外部の全放射界を計算できることを示す点にある．このとき，式 (5)と式
(6)の体積積分項はゼロになり，観測点 Pにおける電磁界は閉曲面 S上の面積分のみで決定
される．さらに，閉曲面の一部である面を無限遠まで広げた場合を想定する．物理的に意味
のある放射波は，無限遠方でエネルギーが適切に発散していくという放射条件（radiation
condition）を満たす必要がある．この条件により，無限遠の面での面積分はゼロになると
仮定できる．結果として，波源が有限領域に収まっている場合，その領域を囲む有限の閉曲
面 S上の電磁界分布が分かれば，外部の任意の点での電磁界が計算できる．その際の積分式
は次のようになる．

Ep = 1
4π

‹
S

{−jωµ(n × H)ψ + (n × E) × ∇ψ + (n · E)∇ψ} dS (7.11)

また，

Hp = 1
4π

‹
S

{jωε(n × E)ψ + (n × H) × ∇ψ + (n · H)∇ψ} dS (7.12)

ここで，法線ベクトル n の向きは，計算対象の領域 V に向かう方向として定義されている
点に注意が必要である．

7.2.2 開口面アンテナ

開口面アンテナとは，アンテナによる放射が，ある有限な面（開口面）上の電磁界分布に
よって生じると考えられるアンテナの総称である．開口面上の電磁界の振幅・位相分布を開
口面分布と呼ぶ．代表的な開口面アンテナには，以下のようなものがある．

• 反射鏡アンテナ
• ホーンアンテナ
• レンズアンテナ

これらのアンテナからの放射電磁界を求める方法として開口面法（aperture-field method）
があり，これからの議論の中心となる．
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7.2.3 開口面法（開口面が曲面の場合）

開口面法は，開口面（曲面でもよい）上の電界 Ea と磁界 Ha から，外部空間の観測点 P
における電磁界を求める手法である．いま，曲面が閉じている場合*1，その基本式は次のよ
うに与えられる（導出は省略）．

E = 1
4πjωε

‹
S

{
k2(n × Ha)ψ + (n × Ha) · ∇(∇ψ) + jωε(n × Ea) × ∇ψ

}
dS

(7.13)

また，

H = − 1
4πjωµ

‹
S

{
k2(n × Ea)ψ + (n × Ea) · ∇(∇ψ) − jωµ(n × Ha) × ∇ψ

}
dS

(7.14)

アンテナ解析で特に重要なのは，アンテナから十分に離れた遠方界での放射波である．この
領域では，kr � 1（rは波源から観測点までの距離）とみなせるため，∇ψ および ∇(∇ψ)
を次のように近似できる．

∇ψ = ∇
(
e−jkr

r

)
= (−ar)

(
−jk − 1

r

)
e−jkr

r
= jk

(
1 + 1

jkr

)
ψar (7.15)

kr � 1 の近似は，物理的には遠方界において球面波が局所的に平面波のように振る舞うこ
とを意味する．これにより，勾配演算子 ∇ は，微分演算ではなく，単に jk と伝搬方向の
単位ベクトル ar の積に置き換えることができる．

∇ψ ' jkψar (7.16)
∇(∇ψ) ' (jk)2ψarar (7.17)

これらの近似を式 (13)に適用し，開口面を Aとすると，放射電界 Eは次のようになる．

E ' 1
4πjωε

¨
A

{
k2(n × Ha) + (n × Ha) · (−k2)arar + jωε(n × Ea) × jkar

}
ψdS

(7.18)

この式は一見複雑であるが，ベクトル公式を用いて整理することで，以前に学んだ一般的な
電磁流源による放射の式と等価であることを示すことができる．これにより，開口面法の妥
当性が証明される．ベクトル公式 a × (b × c) = (a · c)b − (a · b)c を用いて，任意のベク
トル J を次のように分解する．

J = (ar · J)ar − ar × (ar × J) (7.19)

*1 曲面が閉じていない場合，曲面のエッジでの境界条件を考える必要あり，付録に詳細を示している．
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J = n × Ha とおくと，

n × Ha − (n × Ha) · arar = −ar × ar × (n × Ha) (7.20)

この関係を用いると，式 (18)は次のように整理される．

E = jk

4π

¨
A

[√
µ

ε
ar × ar × (n × Ha) − ar × (n × Ea)

]
ψdS (7.21)

座標原点から観測点までの距離を Rとし，R ' r と近似すると，

E = − jk

4π
e−jkR

R

¨
A

(
ar ×

[
(n × Ea) −

√
µ

ε
ar × (n × Ha)

])
· R
r
e−jk(r−R)dS (7.22)

同様にして，磁界Hは，

H = − jk

4π
e−jkR

R

¨
A

(
ar ×

[
(n × Ha) +

√
ε

µ
ar × (n × Ea)

])
·Re−jk(r−R)dS (7.23)

さらに，遠方界では aR ' ar と近似でき，

E = jk

4π
e−jkR

R
aR ×

¨
A

[√
µ

ε
aR × (n × Ha) + (Ea × n)

]
· e−jk(r−R)dS (7.24)

ここで等価的な 2次波源として J = n × Ha，M = Ea × n を定義すれば，最終的に以下の
式が得られる．

E = jkG0aR ×
¨
A

(aR × Z0J + M) e−jk(r−R)dS (7.25)

ただし，G0 = e−jkR

4πR ，Z0 =
√
µ
ε である．この結果は，任意の電磁流分布による放射電磁界

の積分表示式と全く同じ形式になっている．これは，開口面上の電磁界を等価的な波源とみ
なす開口面法の妥当性を示す重要な結論である．

7.2.4 開口面法（開口面が平面の場合）

開口面が曲面の場合の計算は複雑であるが，多くの実用的なアンテナでは開口面を平面と
みなすことができる．ここでは，計算をさらに簡略化するため，開口面が z = 0の xy 平面
である特殊な場合を考える．この設定では，法線ベクトルは n = az となる．さらに，開口
面上で電界と磁界が

Ha = 1
α

(az × Ea) (7.26)

という関係を満たすと仮定する．この仮定は物理的に重要である．これは電磁波の波面
（wavefront）上で成り立つ関係であり，高い指向性を得るためにアンテナは開口面で位相の
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揃った平面波面を生成するように設計される．したがって，この仮定はアンテナ設計の基本
原理に基づいている．この仮定の下で，放射電界 Eは，

E = jkG0aR ×
¨
A

(
Z0

α
aR × az × az × Ea + Ea × az

)
ejk·ρdS (7.27)

ここで，

G0 = e−jkR

4πR , Z0 =
√
µ

ε
, e−jk(r−R) ' ejk·ρ (7.28)

ここで，

N ≡
¨
A

Eae
jk·ρdS, l0 ≡ Z0

α
(7.29)

とおき，ベクトル公式 a × (b × c) = (a · c)b − (a · b)cより，

E = jkG0aR ×
{
l0aR × az ×

(
az × N

)
+ N × az

}
= jkG0aR ×

{
l0aR ·

(
az × N

)
az − l0aR · az

(
az × N

)
+ N × az

}
= jkG0

{
l0N ·

(
aR × az

)(
aR × az

)
+
(
1 + l0 cos Θ

)
aR ×

(
N × az

)}
(7.30)

さて，球座標系 (R,Θ,Φ)の単位ベクトル aR，aΘ，aΦ は，

aR = sin Θ
(

cos Φax + sin Φay
)

+ cos Θaz (7.31)

aΘ = cos Θ
(

cos Φax + sin Φay
)

− sin Θaz (7.32)
aΦ = − sin Φax + cos Φay (7.33)

逆に，

ax = cos Φ
(

sin ΘaR + cos ΘaΘ
)

− sin ΦaΦ (7.34)

ay = sin Φ
(

sin ΘaR + cos ΘaΘ
)

+ cos ΦaΦ (7.35)
az = cos ΘaR − sin ΘaΘ (7.36)

これより，

aR × az = aR ×
(

cos ΘaR − sin ΘaΘ
)

= − sin ΘaΦ (7.37)

また，

N ≡ Nxax +Nyay (7.38)

111



ax

ay

az

x 

y 

z Ea 
0 

RaR

rar

n = az

Θ Φ

aR

aR

aΘ
aΘ

aΦ

aΦ aη

aξ

(R, Θ, Φ) Φ
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図 7.1. 座標系の定義

とおくと，

N ·
(
aR × az

)(
aR × az

)
= N · (− sin ΘaΦ)(− sin ΘaΦ)

= sin2 Θ
(
Nxax +Nyay

)
·
(

− sin Φax + cos Φay
)
aΦ

= sin2 Θ
(

−Nx sin Φ +Ny cos Φ
)

aΦ (7.39)

また，

aR ×
(
N × az

)
= aR ×

{(
Nxax +Nyay

)
× az

}
= aR ×

(
−Nxay +Nyax

)
(7.40)

ここで，

aR × ay = aR ×
{

sin Φ
(

sin Θar + cos ΘaΘ
)

+ cos ΦaΦ

}
= sin Φ cos ΘaΦ − cos ΦaΘ (7.41)

aR × ax = aR ×
{

cos Φ
(

sin ΘaR + cos ΘaΘ
)

− sin ΦaΦ

}
= cos Φ cos ΘaΦ + sin ΦaΘ (7.42)

よって，

aR ×
(
N × az

)
= −Nx

{
sin Φ cos ΘaΦ − cos ΦaΘ

}
+Ny

{
cos Φ cos ΘaΦ + sin ΦaΘ

}
=
(
Nx cos Φ +Ny sin Φ

)
aΘ + cos Θ

(
−Nx sin Φ +Ny cos Φ

)
aΦ (7.43)
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したがって，放射電界 Eは，

E = jkG0

[
l0 sin2 Θ

(
−Nx sin Φ +Ny cos Φ

)
aΦ

+
(
1 + l0 cos Θ

){(
Nx cos Φ +Ny sin Φ

)
aΘ

+ cos Θ
(

−Nx sin Φ +Ny cos Φ
)
aΦ

}]
= jkG0

{(
1 + l0 cos Θ

)(
Nx cos Φ +Ny sin Φ

)
aΘ

+
(
l0 + cos Θ

)(
−Nx sin Φ +Ny cos Φ

)
aΦ

}
(7.44)

いま，α = Z0 のとき，l0 = 1より，

E = jkG0
(
1 + cos Θ

){(
Nx cos Φ +Ny sin Φ

)
aΘ

+
(

−Nx sin Φ +Ny cos Φ
)
aΦ

}
= jkG0

(
1 + cos Θ

){
Nx

(
cos ΦaΘ − sin ΦaΦ

)
+Ny

(
sin ΦaΘ + cos ΦaΦ

)}
(7.45)

ここで，

aξ ≡ cos ΦaΘ − sin ΦaΦ (7.46)
aη ≡ sin ΦaΘ + cos ΦaΦ (7.47)

を新たに定義すると，これより，

E = jkG0
(
1 + cos Θ

)(
Nxaξ +Nyaη

)
= j

λ

e−jkR

R

1 + cos Θ
2

(
Nxaξ +Nyaη

)
≡ Eξaξ + Eηaη (7.48)

ここで，

Nx =
¨
A

Eaxe
jk·ρdS, Ny =

¨
A

Eaye
jk·ρdS

Ea = Eaxax + Eayay (7.49)

• 開口面電界分布 Ea が x成分のみ（Ea · ay = 0）の場合，放射電界 Eは aξ 方向成分
のみ（E · aη = 0）で表される．

• 開口面電界分布 Ea が y 成分のみ（Ea · ax = 0）の場合，放射電界 Eは aη 方向成分
のみ（E · aξ = 0）で表される．
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7.3 遠方界およびフレネル領域の解析

前章で導出した式は，特定の条件下ではさらに単純化され，物理的に非常に重要な関係，
特にフーリエ変換という強力な数学的ツールに結びつく．アンテナの設計や解析において
極めて重要な「遠方界」と，それに次ぐ「フレネル領域」でのふるまいを明らかにすること
は，アンテナの性能を理解する上で不可欠である．

7.3.1 フラウンホーファ領域

アンテナから十分に離れた遠方領域では，放射電界のスカラ成分は次式で与えられる．

E = j
e−jkr

λr

1 + cos θ
2 g(θ, φ) (7.50)

ここで，

g(θ, φ) =
¨
A

Ea(ρ)ejk·ρdS (7.51)

このような遠方領域をフラウンホーファ領域（Fraunhofer region）と呼ぶ．観測距離 r が
フラウンホーファ領域とみなせる条件は，アンテナ開口径を D，波長を λ として，次式で
与えられる．

r >
2D2

λ
(7.52)

この条件は，アンテナの遠方界特性を測定する際に，測定距離を決定するための非常に重要
な指標となる．また，係数 1+cos θ

2 は，以前に学んだアレーアンテナにおける「素子単体の
指向性」に対応するものと見なすことができる．このアナロジーから，開口面を微小な波源
の連続的な集まりと捉えることの妥当性が示唆される．

7.3.2 フーリエ変換対

積分項 g(θ, φ) の位相項 ejk·ρ は，波数ベクトル k を用いて次のように書き換えられる．

k = kar = kxax + kyay + kzaz = kt + kzaz (7.53)

これより，

k · ρ = kt · ρ = kxx+ kyy (7.54)

これにより，放射パターンを計算する積分 g は，開口面分布 e(x, y) の 2次元フーリエ変換
（正確には逆変換の形式）となっていることがわかる．

E = j
1 + cos θ

2
e−jkr

λr
g(kx, ky) (7.55)
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ここで，

g(kx, ky) =
¨ ∞

−∞
e(x, y)ejkt·ρdxdy (7.56)

このとき，e(x, y) は次のように開口面 Aの外部でゼロとなる分布である．

e(x, y) =

Ea(x, y) (inside A)
0 (outside A)

(7.57)

フーリエ変換の関係は逆もまた成り立ち，逆フーリエ変換によって遠方界のパターン
g(kx, ky) から開口面分布 e(x, y) を求めることができる．

e(x, y) = 1
(2π)2

¨ ∞

−∞
g(kx, ky)e−jkt·ρdkxdky (7.58)

「開口面分布と遠方放射電界はフーリエ変換の関係にある」という事実は，開口面アンテナ
の理論における最も重要な結論の一つである．この関係により，高速フーリエ変換（FFT）
アルゴリズム（pythonによる計算例を見る）を用いた効率的な数値計算が可能になる*2．

7.3.3 フレネル領域

観測点がフラウンホーファ領域の条件を満たさない，アンテナにより近い「フレネル領
域」では，遠方界で用いた位相の近似では不十分となる．ここでは，この領域での計算方法
を説明する．
フレネル領域では，位相項の近似をより高次の項まで考慮する必要がある．波源上の点か
ら観測点までの距離 r′ と原点から観測点までの距離 rの差は，次のように近似される．

r − r′ ' −ar · ρ+ ρ2

2r (7.59)

これに対応する位相項は，

e−jk(r−r′) ' ejk·ρe−jk ρ2
2r (7.60)

となる．右辺第 2項が，フラウンホーファ近似からの 2次位相誤差補正項である．この近似
を用いたフレネル領域における放射電界の積分式は，以下のように与えられる．

E = j
1
λ

e−jkr

r

1 + cos θ
2 gr(r, θ, φ) (7.61)

gr(r, θ, φ) =
ˆ
A

Ea(ρ)e−jk ρ2
2r ejk·ρdS (7.62)

*2 python による計算は次の URL で確認できます．
https://www1.doshisha.ac.jp/~hdeguchi/Python/p3_ap_s1.html
アンテナ開口面と遠方界との変換だけでなく，放射近傍界への変換も行えます．
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この結果の優れた点は，フーリエ変換の強力な枠組みが，わずかな修正でフレネル領域にも
適用できることである．具体的には，2次位相誤差項を元の開口面分布に含めた「修正され
た開口面分布」er(r, x, y) を新たに定義すれば，フレネル領域の放射パターン gr(r, kx, ky)
は，この修正された波源のフーリエ変換として計算できる．

E = j
1
λ

1 + cos θ
2

e−jkr

r
gr(r, kx, ky) (7.63)

gr(r, kx, ky) =
¨ ∞

−∞
er(r, x, y)ejkt·ρdxdy (7.64)

er(r, x, y) = 1
(2π)2

¨ ∞

−∞
gr(r, kx, ky)e−jkt·ρdkxdky (7.65)

7.3.4 放射領域

アンテナからの距離に応じて，電磁界の性質は大きく変化する．これらの性質の違いに基
づき，アンテナ周辺の空間は次のような領域に分類できる．

• リアクティブ近傍界 (Reactive near-field): アンテナに最も近い領域である．ここで
は放射されずにアンテナ周辺に留まるエネルギー（リアクティブエネルギー）が支配
的であり，電磁界分布は非常に複雑である．本講義で扱った遠方界近似の手法では計
算できない．

• 放射近傍界 (Radiating near-field): リアクティブ近傍界の外側に広がる領域である．
アンテナ近傍といっても放射エネルギーが支配的で，放射パターンの形状が観測距離
に依存して変化するという特徴がある．

• フレネル領域 (Fresnel region): フレネル領域の計算式が適用できる範囲である．も
ちろん，放射パターンは観測距離に依存して変化するが，理解しやすい特性である．

• 遠方界／フラウンホーファ領域 (Far-field / Fraunhofer region): アンテナから最も
離れた領域 (r > 2D2/λ) である．ここでは放射パターンの形状は角度のみに依存し，
距離によって変化しなくなる．アンテナの指向性や利得といった主要な特性が定義さ
れるのは，この領域である．

7.4 まとめ

アンテナからの放射を解析する強力な理論的枠組みである開口面法について示した．ま
ず，仮想的な磁流源を導入したヘルムホルツ方程式から出発し，任意の波源に対する電磁界
の一般的な積分表示式を導いた．次に，この一般式をアンテナ問題に適用し，開口面上の電
磁界分布から外部の放射電磁界を計算する開口面法を定式化した．特に，開口面が平面であ
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るという実用的な仮定の下で放射電界を導出し，最終的に，開口面分布と遠方放射電界が
フーリエ変換の関係にあるという，アンテナ工学における極めて重要な結論に到達した．
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7.5 問題

�問題 7-1. 本文で示した式の中で見られる双対性を論ぜよ．

�問題 7-2. 球座標系 (r, θ, φ)と直角座標系 (x, y, z)の単位ベクトルの関係式を求めよ．

�問題 7-3. 1次元の連続フーリエ変換対における係数の積は 1/(2π)となる．確かめよ．

�問題 7-4. 高速フーリエ変換について説明せよ．
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CHAPTER 8

平面開口面分布による放射特性

平面開口面アンテナの利得や開口能率，ユニバーサル放射パターンなどの放射
特性について詳述します．具体的には，方形および円形開口面分布のアンテナに
ついて，その電界と放射特性の関係を具体的な計算式とともに説明しています．
特に，一様分布やコサインテーパ分布といった異なる開口面電界分布による放射
パターンのサイドローブレベルやビーム幅の計算方法を示します．

8.1 開口面アンテナの利得と最大利得の原理

本セクションでは，開口面アンテナの性能を評価するための基本的な定義を確立します．
利得は，アンテナが放射電力を特定の方向に集中させる能力を測る重要な指標であり，その
理解はアンテナ工学の基礎となります．

8.1.1 利得の定義と計算

絶対利得 Ga(θ, φ) は，アンテナへの入力電力 W に対する，放射強度 U(θ, φ) の比とし
て定義されます．放射強度は単位立体角あたりの放射電力を示します．

Ga(θ, φ) = 4πU(θ, φ)
W

(8.1)

単一偏波で動作する開口面アンテナを対象とし，遠方のフラウンホーファ領域で利得を考え
ます．この領域における放射強度 U は，放射電界 |E|2 に基づいて次のように表されます．

U = |E|2

Zw
r2 = r2

Zw

∣∣∣∣∣ jλ e
−jkr

r

1 + cos θ
2 g(θ, φ)

∣∣∣∣∣
2

= 1
Zw

1
λ2

(
1 + cos θ

2

)2

|g(θ, φ)|2 (8.2)



ここで，Zw は自由空間中の波動インピーダンスです．この式は遠方界の電界と指向性関数
g(θ, φ) を関連付けます．次に，アンテナへの入力電力 W を考えます．アンテナの具体的な
構造やそれに伴う損失を考慮しない段階では，入力電力 W は開口面上の電力 Pa にほぼ等
しいと見なすことができます (W ' Pa)．Pa は，開口面電界 Ea の二乗を開口面積 A で積
分することによって求められます．

Pa =
¨
A

|Ea|2

Zw
dS = 1

Zw

¨
A

|Ea|2dS (8.3)

これらの関係式を組み合わせることで，開口面アンテナの利得 G(θ, φ) の最終的な表現が得
られます．

G(θ, φ) = 4πU(θ, φ)
Pa

= 4π
λ2

(
1 + cos θ

2

)2 |g(θ, φ)|2¨
A

|Ea|2dS
(8.4)

ビーム走査を考慮しない単純な開口面アンテナでは，放射のピークはアンテナの正面方
向（ボアサイト方向）に生じます．この正面方向 (θ = 0, φ = 0) における利得のピーク値
G(0, 0) は，位相項 ejk·ρ が 1となり，(1 + cos θ)/2 項も 1となるため，次のように簡略化
されます．

G(0, 0) = 4π
λ2

∣∣∣∣∣
¨
A

EadS

∣∣∣∣∣
2

¨
A

|Ea|2dS
(8.5)

放射特性の解析を容易にするため，放射パターンをそのピーク値で正規化することが一般的
です．ピーク値 G(0, 0) で規格化した相対的な放射電力パターン Ḡ(θ, φ) は以下で定義され
ます．この正規化により，利得の絶対値からパターン形状の分析を分離でき，計算が簡素化
されます．

Ḡ(θ, φ) = G(θ, φ)
G(0, 0) =

(
1 + cos θ

2

)2

∣∣∣∣∣
¨
A

Eae
jk·ρdS

∣∣∣∣∣
2

∣∣∣∣∣
¨
A

EadS

∣∣∣∣∣
2 (8.6)

利得の定義が確立されたことで，次の論理的なステップは，与えられた開口面積に対して達
成可能な理論上の最大利得を決定することです．

8.1.2 一様開口面分布における最大利得の証明

本項では，アンテナ工学における基本的な原理を証明します．それは，与えられた開口面
積に対して，開口面上の電界分布が一定である「一様開口面分布」が絶対的な最大利得を達
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成するというものです．まず，開口面分布が一定値 Ea(x, y) = E0 である一様分布の場合の
利得 Gu0 を導出します．S を開口面積とすると，利得は次式で与えられます．この結果は，
利得が波長の二乗で正規化された開口面積に比例することを示しています．

Gu0 = 4π
λ2

∣∣∣∣∣E0

¨
A

dS

∣∣∣∣∣
2

|E0|2
¨
A

dS
= 4π
λ2
S2

S
= 4π S

λ2 (8.7)

次に，Gu0 が達成可能な最大利得であることを数学的に証明します．Ea を実数とし，パラ
メータ t を持つ次の積分 I を考えます．この積分は二乗項の積分であるため，その値は常
に 0以上でなければなりません．

I =
¨
A

t− Ea(x, y)2dS = t2S − 2t
¨
A

Ea(x, y)dS +
¨
A

E2
a(x, y)dS ≥ 0 (8.8)

この式は t に関する 2次関数であり，常に非負の値を取ります．したがって，この 2次方
程式の判別式 D/4 は 0以下でなければなりません．

D

4 =
(¨

A

Ea(x, y)dS
)2

− S

¨
A

E2
a(x, y)dS ≤ 0 (8.9)

この不等式を整理し，両辺に 4π/λ2 を乗じると，次の関係が得られます．

4π
λ2 ·

(¨
A

Ea(x, y)dS
)2

¨
A

E2
a(x, y)dS

≤ S · 4π
λ2 (8.10)

この不等式の左辺は，式 (5)で定義したピーク利得 G(0, 0) の形と一致します．これにより，
任意の開口面分布におけるピーク利得は，一様分布の場合の利得 Gu0 を超えられないこと
が証明されます．

G(0, 0) = 4π
λ2 ·

(¨
A

Ea(x, y)dS
)2

¨
A

E2
a(x, y)dS

≤ 4π
λ2 · S = Gu0 (8.11)

したがって，一様開口面分布のときの利得が最大である．実際のアンテナの開口面分布は完
全には一様でないため，アンテナの利得がこの理論上の最大値にどれだけ近いかを定量化す
る指標が必要です．これが次に説明する開口能率です．
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8.1.3 開口能率

開口能率は，開口面上の振幅や位相が不均一であることによって生じる利得の低下を定量
化する重要な性能指標です．これは，実際のアンテナのピーク利得 G0 と，同じ開口面積を
持つ一様分布アンテナの理論的最大利得 Gu0 との比で定義されます．

ηa = G0

Gu0
(8.12)

この定義は，開口能率（aperture efficiency）または利得係数（gain factor）とも呼ばれます．
正面方向にピークを持つ指向性の場合，開口能率 ηa は次の式で具体的に計算できます．

ηa = |g(0, 0)|2

S

¨
A

|Ea|2dS
(8.13)

これらの一般原則を適用し，次に一般的で重要なケースである方形開口の解析に移ります．

8.2 方形開口面分布による放射特性

8.2.1 フレネル領域と変数分離形分布

本セクションでは，方形開口を持つアンテナの放射特性を導出します．解析は，より一般
的なフレネル領域のケースから始め，その後，遠方界（フラウンホーファ領域）のケースに
簡略化します．フレネル領域の計算を特徴づける位相項 e−jk(x2+y2)/2r は，物理的には球面
波や光学系におけるデフォーカス（焦点ずれ）に相当し，遠方界との違いを明確にします．
サイズが a× b の方形開口面分布 Ea(x, y) によるフレネル領域の指向性関数 gr(r, θ, φ) は，
以下の積分で与えられます．

gr(r, θ, φ) =
ˆ a/2

−a/2

ˆ b/2

−b/2
Ea(x, y)e−jk x2+y2

2r ej(kxx+kyy)dydx (8.14)

計算を簡略化するため，座標とパラメータを正規化します．これにより，方程式が特定の寸
法に依存しなくなります．

x̄ ≡ 2x
a
, ȳ ≡ 2y

b
, ua ≡ a

2k sin θ cosφ, ub ≡ b

2k sin θ sinφ (8.15)

これにより，位相項は次のように変換されます．

kxx = (k sin θ cosφ)
(
a

2 x̄
)

= uax̄

kyy = (k sin θ sinφ)
(
b

2 ȳ
)

= ubȳ
(8.16)
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さらに，フレネル領域の特性を表すパラメータ ta と tb を導入します．

ta ≡ a2

8λr , tb ≡ b2

8λr (8.17)

これらのパラメータを用いると，フレネル領域に特有の位相項は次のように表されます．

k
x2

2r = 2π
λ

1
2r

(
a

2 x̄
)2

= 2π
(
a2

8λr

)
x̄2 = 2πtax̄2

k
y2

2r = 2π
λ

1
2r

(
b

2 ȳ
)2

= 2π
(
b2

8λr

)
ȳ2 = 2πtbȳ2

(8.18)

これらの置換により，フレネル領域の指向性関数は，より簡潔な二重積分で表現されます．

gr(r, θ, φ) = ab

4

ˆ 1

−1

ˆ 1

−1
Ea(x̄, ȳ)e−j2π(tax̄2+tbȳ2)ej(uax̄+ubȳ)dx̄dȳ (8.19)

ここで，解析的に便利な共通のケースとして，開口面分布が変数分離可能であると仮定し
ます．

Ea(x, y) = e1(x)e2(y) (8.20)

この仮定により，2次元の指向性関数積分は，2つの独立した 1次元積分の積に分離できま
す．フレネル領域では次のようになります．

gr(r, θ, φ) = ab

4

(ˆ 1

−1
e1(x̄)e−j2πtax̄2

ejuax̄dx̄

)(ˆ 1

−1
e2(ȳ)e−j2πtbȳ2

ejubȳdȳ

)
(8.21)

遠方のフラウンホーファ領域では，ta = tb = 0 となるため，式はさらに簡略化されます．

g(θ, φ) = ab

4

(ˆ 1

−1
e1(x̄)ejuax̄dx̄

)(ˆ 1

−1
e2(ȳ)ejubȳdȳ

)
(8.22)

この変数分離により，全体の開口能率 ηa は，各次元の能率 η1 と η2 の積として表すことが
できます．

ηa = η1η2 (8.23)

ここで，各次元の能率は次のように定義されます．

η1 =

∣∣∣∣∣
ˆ 1

−1
e1(x̄)dx̄

∣∣∣∣∣
2

2
ˆ 1

−1
|e1(x̄)|2dx̄

, η2 =

∣∣∣∣∣
ˆ 1

−1
e2(ȳ)dȳ

∣∣∣∣∣
2

2
ˆ 1

−1
|e2(ȳ)|2dȳ

(8.24)
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同様に，相対電界指向性 ḡ(θ, φ) も，2つの独立した関数の積に分離されます．

ḡ(θ, φ) =

ˆ 1

−1
e1(x̄)ejuax̄dx̄

ˆ 1

−1
e1(x̄)dx̄

·

ˆ 1

−1
e2(ȳ)ejubȳdȳ

ˆ 1

−1
e2(ȳ)dȳ

(8.25)

この変数分離形式は，正規化されたパラメータのみに依存する「ユニバーサル」なパターン
の作成を可能にし，次にこの概念を探求します．

8.2.2 ユニバーサル電界パターン

ユニバーサルパターンの概念は，アンテナ設計において非常に有用です．これにより，
エンジニアは，特定の寸法や動作周波数に関係なく，類似の分布を持つすべての方形アン
テナに適用可能な単一の正規化パターンを分析できます．xz 面 (φ = 0) の正規化放射パ
ターン Ḡ(θ, 0) を考えます．この平面では，式 (15)で定義したユニバーサルパラメータは
ua = πa

λ sin θ となり，ub = 0 となります．これにより，パターンは次のように導出され
ます．

Ḡ(θ, 0) =
(

1 + cos θ
2

)2

|ḡ1(ua)|2 (8.26)

ここで，ḡ1(ua) は x方向のユニバーサル電界パターンであり，ユニバーサル・パラメータ
ua のみの関数です．

ḡ1(ua) =

ˆ 1

−1
e1(x̄)ejuax̄dx̄

ˆ 1

−1
e1(x̄)dx̄

(8.27)

同様に，yz 面 (φ = π/2) では ua = 0，ub = πb
λ sin θ となり，正規化放射パターンは次のよ

うに表されます．

Ḡ(θ, π/2) =
(

1 + cos θ
2

)2

|ḡ2(ub)|2 (8.28)

ここで，ḡ2(ub) は y方向のユニバーサル電界パターンです．

ḡ2(ub) =

ˆ 1

−1
e2(ȳ)ejubȳdȳ

ˆ 1

−1
e2(ȳ)dȳ

(8.29)

以下のサブセクションでは，2つの重要で具体的な開口面分布（一様分布とコサインテーパ
分布）について，これらのユニバーサルパターンを計算します．
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8.2.3 方形一様開口面分布

最も基本的なケースである一様な電界分布を分析します．これは最大利得のベンチマーク
を提供します．方形開口面分布が一定値 Ea(x, y) = E0 の場合，指向性関数 g(θ, φ) は次の
積分から始まります．

g(θ, φ) = ab

4 E0

(ˆ 1

−1
ejuax̄dx̄

)(ˆ 1

−1
ejubȳdȳ

)
(8.30)

x方向と y 方向の積分は，それぞれ独立に計算でき，結果として sinc 関数（sin(x)/x）が
得られます．

ˆ 1

−1
ejuax̄dx̄ = 2 sin(ua)

uaˆ 1

−1
ejubȳdȳ = 2 sin(ub)

ub

(8.31)

これにより，指向性関数 g(θ, φ) は 2つの sinc関数の積として表されます．

g(θ, φ) = E0ab
sin(ua)
ua

sin(ub)
ub

(8.32)

ここから，相対電界パターン ḡ1 と ḡ2 を抽出できます．

ḡ1(θ, φ) = sin ua
ua

=
sin(πaλ sin θ cosφ)

πa
λ sin θ cosφ

ḡ2(θ, φ) = sin ub
ub

=
sin(πbλ sin θ sinφ)

πb
λ sin θ sinφ

(8.33)

したがって，x-z面と y-z面のユニバーサル電界パターンは，単純な sinc関数となります．

ḡ1(ua) = sin ua
ua

ḡ2(ub) = sin ub
ub

(8.34)

この sinc関数パターンのサイドローブレベルは，ピーク値に対して第 1サイドローブから
順に，−13.3, −17.8, −20.8 dBとなります．直感的には，電力を一方向に集中させればサ
イドローブは低くなるように思えますが，フーリエ変換の物理的性質により，利得を最大化
する一様分布は，必然的に高いサイドローブを伴います．この −13.3 dBという値は，最大
利得を達成するための固有のトレードオフです．半値全幅 (HPBW) Θ は，電力が半分にな
る点，つまり電界が 1/

√
2 になる点を求めることで導出されます．

1√
2

= sin u
u

(8.35)
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これを解くと u ≈ 1.3915 が得られます．x方向の開口長を a とすると，ビーム幅は次のよ
うに計算されます．

ua = πa

λ
sin Θ

2 = 1.3915 (8.36)

よって，

Θ = 2 sin−1
(

1.3915λ
πa

)
' 2 sin−1

(
0.443λ

a

)
(8.37)

大口径アンテナ (Θ � 1) の場合，これはさらに近似できます．

Θ ' 0.886λ
a

[rad] = 50.8λ
a

[deg] (8.38)

放射パターンのヌル（零点）は，sinc関数の分子が 0になる点，すなわち sin u = 0 となる
点に生じます．

ua = nπ (n = 1, 2, . . . ) =⇒ πa

λ
sin θ = nπ (8.39)

これにより，ヌルの角度 θ が決まります．

θ = sin−1
(
nλ

a

)
(8.40)

一様分布は利得を最大化しますが，その高いサイドローブは多くのアプリケーションで望ま
しくありません．

8.2.4 コサインテーパ分布

コサインテーパ分布は，利得の低下とビーム幅の増大を犠牲にして，サイドローブレベル
を低減する一般的な手法です．x方向の分布 e1(x) を次のように定義します．

e1(x) = cos
(
πx

a

)
= cos

(
π

2 x̄
)

(8.41)

この分布に対して，開口能率の計算に必要な積分を実行します．
ˆ 1

−1
e1(x̄)dx̄ =

ˆ 1

−1
cos

(
π

2 x̄
)
dx̄ = 4

π
(8.42)

また，
ˆ 1

−1
|e1(x̄)|2dx̄ =

ˆ 1

−1
cos2

(
π

2 x̄
)
dx̄ = 1 (8.43)
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式 (26)で定義された η1 の式に，式 (46)と (47)の積分結果を代入すると，1次元の開口能
率は次の値となります．

η1 =

∣∣∣ 4
π

∣∣∣2
2 · 1 = 8

π2 ' 0.81 (8.44)

ユニバーサル電界パターンを計算するための積分は次のようになります．
ˆ 1

−1
e1(x̄)ejuax̄dx̄ =

ˆ 1

−1
cos

(
π

2 x̄
)
ejuax̄dx̄ = 4

π
· cosua

1 − (2ua

π )2 (8.45)

これにより，xz 面のユニバーサル電界パターン ḡ1(ua) は次のように表されます．

ḡ1(ua) = cosua
1 − (2ua

π )2 (8.46)

このパターンのサイドローブレベルは，一様分布の場合よりも大幅に低く，−23.0, −30.7,
−35.9 dBとなります．最終的な正規化電力パターン Ḡ(θ, 0) は，以下の式で与えられます．

Ḡ(θ, 0) =
(

1 + cos θ
2

)2 ∣∣∣∣∣ cosua
1 − (2ua

π )2

∣∣∣∣∣
2

(8.47)

ここで，

ua = πa

λ
sin θ (8.48)

一様分布とコサインテーパ分布のケーススタディは，アンテナ設計における基本的なトレー
ドオフを示しています．すなわち，高い利得は高いサイドローブを伴い，サイドローブを低
減するには利得を犠牲にする必要があります．このトレードオフを最適化するために，「指
向性合成」という高度な手法が存在します．Dolph-Chebyshev分布や Taylor分布などの手
法を用いることで，サイドローブレベルを事前に設定し，それを達成するために必要な開口
面分布を導出することが可能になります．

8.3 円形開口面分布による放射特性

8.3.1 円形開口面分布

直径 Dの円形開口面分布 Ea(ρ, φ) によるフレネル領域の指向性関数 gr(R,Θ,Φ) は，

gr(R,Θ,Φ) =
ˆ 2π

0

ˆ D/2

0
Ea(ρ, φ)e−jk ρ2

2R ejkaR·ρρdρdφ (8.49)
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ここで，観測方向に沿う単位ベクトル aR，および開口面の座標を示す位置ベクトル ρは，

aR = sin Θ(cos Φax + sin Φay) + cos Θaz (8.50)
ρ = ρaρ = ρ(cosφax + sinφay) (8.51)

で表され，

aR · ρ = {sin Θ(cos Φax + sin Φay) + cos Θaz} · ρ(cosφax + sinφay)
= ρ sin Θ(cos Φ cosφ+ sin Φ sinφ)
= ρ sin Θ cos(Φ − φ) (8.52)

となる．また，位相項は次のようになる．

k(aR · ρ) = 2π
λ
ρ sin Θ cos(Φ − φ) (8.53)

いま，

ρ ≡ 2ρ
D
, u ≡ πD

λ
sin Θ (8.54)

とおくと，

k(aR · ρ) = uρ cos(Φ − φ) (8.55)

dρ = 2
D
dρ (8.56)

また，

t ≡ D2

8λR (8.57)

とおくと，

k
ρ2

2R = 2π
λ

· 1
2R

(
D

2 ρ
)2

= 2π
(
D2

8λR

)
ρ2 = 2πtρ2 (8.58)

これより，フレネル領域の指向性関数 gr(R,Θ,Φ)は次のようになる．

gr(R,Θ,Φ) =
(
D

2

)2 ˆ 2π

0

ˆ 1

0
Ea(ρ, φ)e−j2πtρ2

ejuρ cos(Φ−φ)ρdρdφ (8.59)
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8.3.2 回転対称な円形開口面分布

開口面分布 Ea が回転対称な場合，φに関する定積分が可能であり，

ejuρ cos(Φ−φ) =
∞∑

n=−∞
(j)nJn(uρ)ejn(Φ−φ) (8.60)

を用いると，指向性関数 gr(R,Θ,Φ)は次のようになる．

gr =
(
D

2

)2 ˆ 2π

0

ˆ 1

0
Ea(ρ)e−j2πtρ2

{ ∞∑
n=−∞

(j)nJn(uρ)ejn(Φ−φ)
}
ρdρdφ

=
(
D

2

)2 ˆ 1

0
Ea(ρ)e−j2πtρ2

{ ∞∑
n=−∞

(j)nJn(uρ)
ˆ 2π

0
ejn(Φ−φ)dφ

}
ρdρ

ただし，Jn は n次の第１種ベッセル関数を示す．上式の φに関する積分は，
ˆ 2π

0
ejn(Φ−φ)dφ =

{
2π (n = 0)
0 (n 6= 0) (8.61)

となる．よって，gr(R,Θ,Φ)は次のようになる．

gr(R,Θ,Φ) =
(
D

2

)2 ˆ 1

0
Ea(ρ)e−j2πtρ2 {

j0J0(uρ) · 2π
}
ρdρ

= 2π
(
D

2

)2 ˆ 1

0
Ea(ρ)e−j2πtρ2

J0(uρ)ρdρ (8.62)

8.3.3 円形一様開口面分布

開口面分布の振幅，位相が一様の場合，つまり Ea を一定と考えると，ベッセルの不定積
分公式

ˆ
J0(uρ)ρdρ = ρ

u
J1(uρ) (8.63)

より，フラウンホーファ領域（t = 0）の指向性関数 g(u)は次式で与えられる（Ea(x, y) = E0

は一定，S は円形開口面の面積）．

g(u) = 2π
(
D

2

)2
E0

ˆ 1

0
J0(uρ)ρdρ

= 2π
(
D

2

)2
E0

[
ρ

u
J1(uρ)

]1

0
= 2SE0

J1(u)
u

(8.64)

また，

g(0) = E0

¨
A

dS = E0S (8.65)
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相対電界指向性（ユニバーサル電界パターン）ḡ(u)は，

ḡ(u) = g(u)
g(0) =

2SEa J1(u)
u

EaS
= 2J1(u)

u
(8.66)

ユニバーサル電界パターンのサイロドーブレベルは，ピーク値に対して第 1 サイドローブ
から順に，−17.6，−23.8，−28.0，−31.2，−33.6，−35.7 dBとなる．また，規格化した相
対的な放射（電力）パターン Ḡ(θ, φ)は，

Ḡ(θ, φ) =
(

1 + cos θ
2

)2 ∣∣∣∣∣2J1(u)
u

∣∣∣∣∣
2

(8.67)
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図 8.1. 直線開口および円形開口（D = 6λ）の一様分布による放射パターン

8.3.4 放物線テーパ分布

回転対称の円形開口面分布において，半径 ρ方向に放物線テーパ（parabolic taper）のと
き，ρ = D

2 ρとおくと，

E(ρ) = 1 −
(2ρ
D

)2
= 1 − ρ2 = E(ρ) (8.68)
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これより，

g(0) =
¨
A

E(ρ)dS

=
ˆ 2π

0

ˆ D
2

0

{
1 −

(2ρ
D

)2}
ρdφdρ

=
(ˆ 2π

0
dφ

)(
D

2

)2 ˆ 1

0

(
ρ− ρ3

)
dρ

= 2π
(
D

2

)2 [ρ2

2 − ρ4

4

]1

0
= S

2 (8.69)

また，
¨
A

|E(ρ)|2dS =
ˆ 2π

0

ˆ a

0

{
1 −

(2ρ
D

)2}2

ρdφdρ

= 2π
(
D

2

)2 ˆ 1

0

(
ρ− 2ρ3 + ρ5

)
dρ

= 2π
(
D

2

)2 [ρ2

2 − ρ4

2 + ρ6

6

]1

0
= S

3 (8.70)

開口能率 ηa は，

ηa =

∣∣∣∣∣
¨
A

EadS

∣∣∣∣∣
2

S

¨
A

|Ea|2dS
=

(
S
2

)2

S · S3
= 3

4 = 0.75 (8.71)

フラウンホーファ領域（t = 0）の指向性関数 g(u)は，ベッセル関数に関わる積分公式を用
いて，

g(u) = 2π
(
D

2

)2 ˆ 1

0
Ea(ρ)J0(uρ)ρdρ

= 2S
ˆ 1

0
(1 − ρ2)J0(uρ)ρdρ

= 2S · 2J2(u)
u2 = S

4J2(u)
u2 (8.72)

相対電界指向性（ユニバーサル電界パターン）ḡ(u)は，

ḡ(u) = g(u)
g(0) =

S
4J2(u)
u2
S

2

= 8J2(u)
u2 (8.73)
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ユニバーサル電界パターンのサイロドーブレベルは，ピーク値に対して第 1 サイドローブ
から順に，−24.6，−33.6，−39.7，−44.5，−48.4，−51.6 dBとなる．また，規格化した相
対的な放射（電力）パターン Ḡ(θ, φ)は，

Ḡ(θ, φ) =
(

1 + cos θ
2

)2 ∣∣∣∣∣8J2(u)
u2

∣∣∣∣∣
2

(8.74)
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図 8.2. 放物線テーパ分布（D = 6λ）による放射パターン

8.4 まとめ

一様分布における方形と円形開口の放射パターンを比較すると，

�第 1サイドローブレベル 円形開口の第 1サイドローブレベルは −17.6 dBであり，方形
開口の −13.3 dBよりも大幅に低くなっています．これは円形開口の利点の一つです．

�ビーム幅 同じ特性寸法 D（方形の場合は辺の長さ，円形の場合は直径）を持つ場合，円
形開口のメインビームは方形開口よりもわずかに広くなります．半値電力となるユニバーサ
ルパラメータ u/π は，円形の場合が約 0.514であるのに対し，方形の場合は約 0.443です．

�パターン形状 両方のパターンは，単一のメインローブと減衰するサイドローブによって
特徴付けられますが，具体的なヌルの位置や減衰率は異なります．これは，基となる関数が
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方形の場合は sinc(u)，円形の場合は J1(u)/u であることに起因します．

8.5 問題

�問題 8-1. 次の極限を求めよ．

(a) lim
u→0

J1(u)
u

, (b) lim
u→0

J2(u)
u2 (8.75)

�問題 8-2. 方形開口面分布による放射パターンを求め，図示せよ．方形開口面分布はスラ
イドや本資料で示した分布以外で選定すること．

�問題 8-3. 円形開口面分布によるユニバーサル放射パターンを求め，図示せよ．円形開口
面分布はスライドや本資料で示した分布の中から選定すること．

�問題 8-4. 開口径とビーム幅および利得の関係を論ぜよ．
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CHAPTER 9

ホーンアンテナ

ホーンアンテナの設計と解析について詳述します．まず，導波管モードからの
電波放射を扱い，開口面法を用いた放射電界の計算法を詳細に説明します．角す
いホーンアンテナや円すいホーンアンテナについて，導波管の基本モードを給電
したときの放射パターン，特に E面と H面の特性，および利得の計算式を示し
ます．また，開口面位相分布による利得低下量を考慮し，最適ホーンアンテナに
ついても説明します．

9.1 導波管モードによる放射理論

ホーンアンテナの放射特性は，導波管の開口端に開口面法を適用することによって解析さ
れる．本節では，開口面上の既知の電磁界分布から遠方放射界を導出するための基本的な数
学的枠組みを構築する．
まず，導波管モードにおける基本的な関係式として，接線磁界Ht は接線電界 Et とモー
ドアドミタンス Y0 を用いて次のように表される．

Ht = Y0(az × Et), Y0 =

Y
TE

0 = βTE

ωµ (TE mode)
Y TM

0 = ωε
βTM (TM mode)

(9.1)

ここで az は導波管の軸方向の単位ベクトルである．
遠方の観測点 (r, θ, φ)における放射電界 Ep は，放射ベクトル Nを用いて次のように与



えられる．

Ep(r, θ, φ) = jk
e−jkr

4πr
{
(1 + l0 cos θ)(Nx cosφ+Ny sinφ)aθ

+(l0 + cos θ)(−Nx sinφ+Ny cosφ)aφ
}

(9.2)

ただし，

N = Nxax +Nyay =
¨
A

Ete
−jk(r′−r)dS (9.3)

開口面は z = 0の xy 平面に位置すると仮定している．諸パラメータは以下で定義される．

l0 = Zw
Z0

, Zw =
√
µ

ε
, k = 2π

λ
(9.4)

ここで，Zw は自由空間の波動インピーダンス，Z0 は導波管のモードに依存する特性イン
ピーダンスである．r′ は開口面上の波源から観測点までの距離，rは原点から観測点までの
距離である．また，球座標系の単位ベクトル aθ，aφ は以下で定義される．

aθ = cos θ(cosφax + sinφay) − sin θaz (9.5)
aφ = − sinφax + cosφay (9.6)

放射ベクトルNの位相項は，観測点までの距離に応じて近似される．フレネル領域では，
波面の曲率を考慮した 2次の位相項を含めて近似する．

−(r′ − r) ≈ ar · ρ − ρ2

2r (9.7)

より，

N ≈
¨
A

Ete
j

(
k·ρ− kρ2

2r

)
dS (9.8)

一方，フラウンホーファ領域（遠方界）では，2次位相項は無視でき，より単純なフーリエ
変換の形となる．

−(r′ − r) ≈ ar · ρ (9.9)

より，

N ≈
¨
A

Ete
jk·ρdS (9.10)

遠方放射磁界Hp は平面波の関係から次式で与えられる．

Hp = Yw(ar × Ep) (9.11)

136



この関係を用いると，アンテナ利得 G(θ, φ)は次のように表される．

G(θ, φ) =
4πr2<

(
(Ep × H∗

p) · ar
)

<
(¨

A

(Et × H∗
t ) · azdS

) = 4πr2|Ep|2

l0

¨
A

|Et|2dS
(9.12)

放射パターンを表すベクトル関数 F(θ, φ)を導入し，遠方放射電界 Ep を書き換える．

Ep ≡ j

λ

e−jkr

r
F(θ, φ) (9.13)

F(θ, φ) = 1
2
{
(1 + l0 cos θ)(Nx cosφ+Ny sinφ)aθ

+(l0 + cos θ)(−Nx sinφ+Ny cosφ)aφ
}

(9.14)

計算を簡便にするため，導波管のモード関数 e,hを導入する．これらは伝送電力が 1に
なるように正規化されている．

Et =
√
Z0e, Ht =

√
Y0h,

¨
A

|e|2dS =
¨
A

|h|2dS = 1 (9.15)

この正規化により，開口面を通過する全電力は次のように 1となる．
¨
A

(Et × H∗
t ) · azdS = 1

Z0

¨
A

|Et|2dS =
¨
A

|e|2dS = 1 (9.16)

正規化されたモード関数を用いると，放射ベクトルNは正規化放射ベクトル N̄を用いて次
のように表される．

N =
¨
A

Ete
−jk(r′−r)dS =

√
Z0

¨
A

ee−jk(r′−r)dS ≡
√
Z0N̄ (9.17)

これより，

N̄ ≡ N̄xax + N̄yay =
¨
A

ee−jk(r′−r)dS (9.18)

これらの正規化された形式を利得の式 (10)に代入すると，より簡潔な表現が得られる．

G(θ, φ) = 4π
λ2

|F(θ, φ)|2
Zw

(9.19)

ベクトル関数 F(θ, φ) は，モードの特性インピーダンスの違いを反映して，TE モードと
TMモードで異なる形式をとる．TEモードの場合：

Zw
ZTE

0
= ωµ

k
· β

TE

ωµ
= βTE

k
(9.20)
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これより，

F(θ, φ) =

√
ZTE

0

2

[ (
1 + βTE

k
cos θ

)
(N̄TE

x cosφ+ N̄TE
y sinφ)aθ

+
(

cos θ + βTE

k

)
(−N̄TE

x sinφ+ N̄TE
y cosφ)aφ

]
(9.21)

TMモードの場合：

Zw
ZTM

0
= k

ωε

ωε

βTM
= k

βTM
(9.22)

これより，

F(θ, φ) =

√
ZTM

0

2

[ (
1 + k

βTM
cos θ

)
(N̄TM

x cosφ+ N̄TM
y sinφ)aθ

+
(

cos θ + k

βTM

)
(−N̄TM

x sinφ+ N̄TM
y cosφ)aφ

]
(9.23)

実用上，ホーンの開口が十分に大きい場合，導波管のインピーダンスは自由空間インピーダ
ンスとほぼ等しいとみなせる（Z0 = Zw, l0 = 1）．このとき，式は大幅に簡略化される．

Ep = j

λ

e−jkr

r
F(θ, φ) ≈ j

λ

e−jkr

r

√
ZwF̄(θ, φ) (9.24)

F̄(θ, φ) ≡ 1 + cos θ
2 (N̄xaξ + N̄yaη) (9.25)

ただし，

aξ = cosφaθ − sinφaφ, aη = sinφaθ + cosφaφ (9.26)

この簡略化された形式を用いると，利得 G(θ, φ)は開口面積 S と開口能率 η を明示的に含
む形で表現できる．

G(θ, φ) ≈ 4π
λ2 |F̄(θ, φ)|2 = 4πS

λ2 · |F̄(0, 0)|2
S

· |F̄(θ, φ)|2

|F̄(0, 0)|2
(9.27)

これより，

G(0, 0) = 4πS
λ2 η, η = |F̄(0, 0)|2

S
(9.28)

この一般理論を，次に具体的な角すいホーンアンテナの解析に適用する．
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9.2 角すいホーンアンテナ

角すいホーンアンテナ (pyramidal horn antenna) は，方形導波管を E 面および H 面の
両方向に徐々に広げた構造を持ち，マイクロ波帯で標準アンテナとして広く利用されている
（図 9.1 参照）．通常，方形導波管の基本モードである TE10 モードによって励振される*1．

b

x

y

z

a

le

lh

θ

φ

r
P (r, θ, φ)

E y - z

H x - z

図 9.1. 角すいホーンアンテナの構造

開口面における電界分布 Ea(x′, y′)は，振幅分布と位相分布の積でモデル化できる．振幅分
布は給電導波管の TE10 モードが球面的に拡大したもの（cos(πx′/a)），位相分布はホーン
内部の球面波が平面波からずれる量 δ によって決まる．

Ea(x′, y′) ≈ ayA cos
(
πx′

a

)
e−jkδ(x′,y′) (9.29)

位相のずれ δ は，開口中心からの距離の 2乗に比例する 2次関数で近似できる．

δ(x′, y′) = 1
2

(
x′2

lh
+ y′2

le

)
(9.30)

この位相ずれは，ホーンのフレア角や開口径が大きくなるにつれて顕著になり，レンズの焦
点がずれる（デフォーカス）現象と同様に，アンテナの利得を低下させる要因となる．

9.2.1 放射パターン

開口径が大きい場合，放射電界 Eは開口面分布 Ea の積分で計算できる．

E = j

λ

e−jkr

r

1 + cos θ
2 (Nxaξ +Nyaη) (9.31)

N = Nxax +Nyay =
ˆ b/2

−b/2

ˆ a/2

−a/2
Ea(x′, y′)e−jk(r′−r)dx′dy′ (9.32)

*1 方形導波管のモードについては，python による計算で確認できます．
https://www1.doshisha.ac.jp/~hdeguchi/Python/p3_tlt_s12_mode_function.html
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ただし，

aξ = cosφaθ − sinφaφ, aη = sinφaθ + cosφaφ (9.33)

フレネル領域における位相項は，次のように近似される．

r′ − r ≈ − sin θ(x′ cosφ+ y′ sinφ) + x′2 + y′2

2r (9.34)

解析を一般化するために，観測方向 θに関するパラメータ ue, uhと，観測距離 rおよびホー
ンの電気長 le, lh に関するパラメータ te, th を導入する．

ue ≡ πb

λ
sin θ, uh ≡ πa

λ
sin θ (9.35)

te ≡ b2

8λ

( 1
le

+ 1
r

)
, th ≡ a2

8λ

( 1
lh

+ 1
r

)
(9.36)

uパラメータは観測角度に，tパラメータは 2次位相誤差の大きさに対応する．また，正規
化座標を次のように定義する．

x̄ ≡ 2x′

a
, ȳ ≡ 2y′

b
(9.37)

これらのパラメータを用いると，放射電界 Eは変数分離され，パターン関数 F は 2つの 1
次元積分の積で表される．

E(r, θ, φ) = j

λ

e−jkr

r
F (r, θ, φ)aη (9.38)

F (r, θ, φ) = ab

4
1 + cos θ

2 fx(th, uh)fy(te, ue) (9.39)

fx(th, uh) ≡
ˆ 1

−1
cos

(
πx̄

2

)
e−j2πthx̄2

ejuhx̄ cosφdx̄ (9.40)

fy(te, ue) ≡
ˆ 1

−1
e−j2πteȳ2

ejueȳ sinφdȳ (9.41)

次に，E面および H面のユニバーサルパターンを求めよう*2．

�E面パターン E面（φ = π/2）では，積分 fx は定数となり，放射パターンは fy によって
決まる．

fx

∣∣∣∣
E−plane

=
ˆ 1

−1
cos

(
πx̄

2

)
e−j2πthx̄2

dx̄ (constant) (9.42)

fy(ue)
∣∣∣∣
E−plane

=
ˆ 1

−1
e−j2πteȳ2

ejueȳdȳ (9.43)

*2 角すいホーンのユニバーサルパターンは，次のホームページで確認できます．
https://www1.doshisha.ac.jp/~hdeguchi/py2html/p3_ap_s2_py2_Gauss.html
また，python による計算でも確認できます．
https://www1.doshisha.ac.jp/~hdeguchi/Python/p3_ap_s2.html
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正面方向の値で規格化した E面ユニバーサル放射パターンは次式で与えられる．

fy(ue)
fy(0)

∣∣∣∣∣
E−plane

=

ˆ 1

−1
e−j2πteȳ2

ejueȳdȳ

ˆ 1

−1
e−j2πteȳ2

dȳ

(9.44)

ただし，

te = b2

8λ

( 1
le

+ 1
r

)
, ue = πb

λ
sin θ (9.45)

図 9.2に示すように，位相誤差パラメータ te が大きくなる（デフォーカス効果が強まる）に
つれて，ヌル点（放射がゼロになる角度）が埋まり，メインビームの幅が広がる．
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図 9.2. 角すいホーンアンテナの E 面ユニバーサル放射パターン

�H面パターン H面（φ = 0）では，積分 fy が定数となり，パターンは fxによって決まる．

fx(uh)
∣∣∣∣
H−plane

=
ˆ 1

−1
cos

(
πx̄

2

)
e−j2πthx̄2

ejuhx̄dx̄ (9.46)

fy

∣∣∣∣
H−plane

=
ˆ 1

−1
e−j2πteȳ2

dȳ (constant) (9.47)

規格化された H面ユニバーサル放射パターンは次式で与えられる．

fx(uh)
fx(0)

∣∣∣∣∣
H−plane

=

ˆ 1

−1
cos(πx̄2 )e−j2πthx̄2

ejuhx̄dx̄

ˆ 1

−1
cos(πx̄2 )e−j2πthx̄2

dx̄

(9.48)
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ただし，

th = a2

8λ

( 1
lh

+ 1
r

)
, uh = πa

λ
sin θ (9.49)

図 9.3に示す H面パターンは，E面パターンと比較して特徴的な違いがある．位相誤差が
ない場合（th = 0），H面の振幅分布がコサイン状にテーパしているため，E面の一様分布
に比べてサイドローブレベルが −23 dBと大幅に低くなる．
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図 9.3. 角すいホーンアンテナの H 面ユニバーサル放射パターン

9.2.2 利得

正面方向（θ = 0）のピーク利得 G0 を導出する．基本式は以下である．

G0 = 4π
λ2

∣∣∣∣F ∣∣∣r→∞,θ=0

∣∣∣∣2¨
A

|Ea(x′, y′)|2dx′dy′
(9.50)

まず分母の全放射電力は，開口面上の電界強度を面積分して得られる．
ˆ b/2

−b/2

ˆ a/2

−a/2
cos2

(
πx′

a

)
dx′dy′ = ab

4

ˆ 1

−1

ˆ 1

−1
cos2

(
π

2 x̄
)
dx̄dȳ

= ab

4

{
1
2

ˆ 1

−1
[1 + cos(πx̄)] dx̄

}{ˆ 1

−1
dȳ

}
= ab

2 (9.51)
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次に分子は，正面方向（θ = 0 =⇒ ue = uh = 0）での計算を行う．これらを利得の式に代
入すると，

G0 = 4π
λ2

∣∣∣∣∣ab4
ˆ 1

−1
cos(πx̄2 )e−j2πthx̄2

dx̄

ˆ 1

−1
e−j2πteȳ2

dȳ

∣∣∣∣∣
2

ab

2

= ab

λ2
π

2

∣∣∣∣∣
ˆ 1

−1
cos(πx̄2 )e−j2πthx̄2

dx̄

ˆ 1

−1
e−j2πteȳ2

dȳ

∣∣∣∣∣
2

(9.52)

ここで，理想的な場合，すなわち位相誤差がゼロ（te = th = 0）のときの積分値を計算する．
ˆ 1

−1
cos

(
πx̄

2

)
dx̄ = 4

π
,

ˆ 1

−1
dȳ = 2 (9.53)

この理想値で積分項を規格化することで，利得の式を物理的に意味のある各要素の積として
表現できる．

G0 = 4π ab
λ2 · 8

π2 ·
∣∣∣∣∣π4
ˆ 1

−1
cos(πx̄2 )e−j2πthx̄2

dx̄

∣∣∣∣∣
2

·
∣∣∣∣∣12
ˆ 1

−1
e−j2πteȳ2

dȳ

∣∣∣∣∣
2

(9.54)

この式をデシベル [dB]で表現すると，各項の寄与が加算の形で明確になる．

GdB = 10 log10

(
4π ab
λ2

)
+ 10 log10

( 8
π2

)
+ η′

e + η′
h (9.55)

各項の意味は以下の通りである．

• 第 1項: 開口面積 abを持つアンテナが一様な分布で放射した場合に得られる最大利
得（100%能率）．

• 第 2項: 10 log10(8/π2) ≈ −0.912 dB．これは TE10 モードのコサイン状の振幅分布
が，一様分布に比べて利得を低下させる量を示す．

• η′
e, η

′
h: E面および H面における 2次位相誤差による利得低下量 [dB]．

位相誤差による利得低下量は，以下の積分で定義される．

η′
e = 20 log10

∣∣∣∣∣12
ˆ 1

−1
e−j2πteȳ2

dȳ

∣∣∣∣∣ (9.56)

η′
h = 20 log10

∣∣∣∣∣π4
ˆ 1

−1
cos(πx̄2 )e−j2πthx̄2

dx̄

∣∣∣∣∣ (9.57)

図 9.4 は，これらの利得低下量を位相誤差パラメータ te, th の関数としてプロットしたも
のである．後述する最適ホーン設計では，このグラフから最適な位相誤差量が決定される
（例：te = 1/4で-0.967dB，th = 3/8で-1.007dBの損失）．
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図 9.4. 開口面位相分布による利得低下量

9.3 円すいホーンアンテナ

円すいホーンアンテナ (conical horn antenna) は，円形導波管を軸方向に沿って徐々に
広げた形状を持つ，もう一つの代表的なホーンアンテナである．その基本的な構造を図 9.5
に示す．

図 9.5. 円すいホーンアンテナの基本的な構造
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9.3.1 円形導波管のTE1n, TM1nモード

円形導波管における TE1n および TM1n モードの正規化された電界モード関数 e1n(ρ, ψ)
は次式で与えられる*3．

e1n = A1nχ̄1n

2a {−`J2(χ̄1nρ̄)(sin 2ψax − cos 2ψay) + J0(χ̄1nρ̄)ay} (9.58)

ここで，ρ̄ = ρ/aは正規化半径，Jn は n次のベッセル関数である．パラメータ `とベッセ
ル関数の零点 χ̄mn はモードにより異なる．

` =

1 (TE mode)
−1 (TM mode)

, χ̄mn =

χ′
mn (TEmnmode)
χmn (TMmnmode)

(9.59)

上式の第 2項（J0 項）が主偏波成分を表し，軸対称な分布を持つ．一方，第 1項（J2 項）
は主偏波の非対称性および交差偏波成分を生じさせる．振幅係数 Amn と次数mに関する係
数 εm は以下で定義される．

Amn =

A[mn] =
√

εm

π(χ′2
mn−m2)

1
|Jm(χ′

mn)| (TEmnmode)
A(mn) =

√
εm

π
1

χmn|Jm+1(χmn)| (TMmnmode)
, εm =

1 (m = 0)
2 (m = 1, 2, . . . )

(9.60)

ここでm,nはそれぞれ周方向，半径方向のモード次数，χmnと χ′
mnはベッセル関数 Jm(x)

とその導関数 J ′
m(x)の零点である．伝搬定数 γmn と遮断波長 λc,mn は次式で与えられる．

γmn = jkz,mn, k2 = k2
c,mn + k2

z,mn, kc,mn = χ̄mn
a

(9.61)

λc,mn = 2π
kc,mn

= 2πa
χ̄mn

(9.62)

表 1に低次の TE1n，TM1n モードの遮断波長を示す．TE11 モードが最も遮断波長が長く，
円形導波管の基本モードとなる．

表 9.1 円形導波管（半径 a）TE1n, TM1n モードの遮断波長 λc,1n

No. Mode χ̄1n λc,1n No. Mode χ̄1n λc,1n

1 TE11 1.841184 3.413a 4,5 TM11 3.831706 1.640a
9 TE12 5.331443 1.179a 14,15 TM12 7.015587 0.896a

20 TE13 8.536316 0.736a 29,30 TM13 10.173468 0.618a
37 TE14 11.706005 0.537a 48,49 TM14 13.323692 0.472a
60 TE15 14.863589 0.423a 73,74 TM15 16.470630 0.381a

*3 円形導波管のモードについては，python による計算で確認できます．
https://www1.doshisha.ac.jp/~hdeguchi/Python/p3_tlt_s13.html
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図 6は TE11 モードの電界を視覚化したものである．(a)は電気力線，(b)は主偏波と交
差偏波の成分を示す．図 7は，それらの成分の強度を等高線で示している．
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図 9.6. TE11 モードの電界モード関数
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図 9.7. TE11 モードの電界モード関数の等高線プロット

9.3.2 開口面分布と放射特性

フレア角が小さい円すいホーンでは，開口面分布 Ea(ρ, ψ)は TE11 モードの振幅分布と
球面波による位相分布で近似される．

Ea(ρ, ψ) ≈ emn(ρ, ψ)e−jkδ(ρ) (9.63)
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位相のずれ δ(ρ)とその位相項は次式で与えられる．

δ(ρ) =
√
L2 + ρ2 − L ≈ ρ2

2L (9.64)

kδ(ρ) ≈ kρ2

2L = 2πρ̄2D
2

8λ
1
L

(9.65)

フレネル領域における放射積分 N̄は次のように表される．

N̄(x
y

) =
ˆ 2π

0

ˆ a

0
e(x

y

)
,mn(ρ, ψ)e−j2πρ̄2 D2

8λ
1
L ej(k·ρ− kρ2

2r
)ρdρdψ (9.66)

ここで位相項を整理する．k · ρ項は次のように展開できる．

k · ρ = kρ sin θ cos(φ− ψ) = uρ̄ cos(φ− ψ) (9.67)

ただし，

u = πD

λ
sin θ (9.68)

また，2次位相項は次のようにまとめることができる．

kρ2

2r = 2πρ̄2D
2

8λ
1
r

(9.69)

2πρ̄2D
2

8λ
1
L

+ 2πρ̄2D
2

8λ
1
r

= 2πρ̄2t (9.70)

ただし，

t = D2

8λ

( 1
L

+ 1
r

)
(9.71)

ベッセル・フーリエ級数展開

ejuρ̄ cos(φ−ψ) =
∞∑

n′=−∞
jn

′
Jn′(uρ̄)ejn′(φ−ψ) (9.72)

を用いて積分を実行する．まず，

ejuρ̄ cos(φ−ψ) = J0(uρ̄) +
∞∑
n′=1

2jn′
Jn′(uρ̄) cosn′(φ− ψ) (9.73)

と変形して，

N̄ =
(
D

2

)2 ˆ 2π

0

ˆ 1

0
e1n(ρ̄, ψ)ejuρ̄ cos(φ−ψ)e−j2πtρ̄2

ρ̄dρ̄dψ

=
(
D

2

)2 A1nχ̄1n

D
·
ˆ 2π

0

ˆ 1

0
{−`J2(χ̄1nρ̄)(sin 2ψax − cos 2ψay) + J0(χ̄1nρ̄)ay}

·
{
J0(uρ̄) +

∞∑
n′=1

2jn′
Jn′(uρ̄) cosn′(φ− ψ)

}
e−j2πtρ̄2

ρ̄dρ̄dψ (9.74)
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N̄の式を展開する．

N̄ = DA1nχ̄1n

4

[ˆ 1

0
J0(χ1nρ̄)J0(uρ̄)

(ˆ 2π

0
dψay

)
e−j2πtρ̄2

ρ̄dρ̄

+
ˆ 1

0
`J2(χ1nρ̄)J0(uρ̄)

(ˆ 2π

0
sin 2ψdψax −

ˆ 2π

0
cos 2ψdψay

)
e−j2πtρ̄2

ρ̄dρ̄

+
ˆ 1

0
J0(χ1nρ̄)

∞∑
n′=1

2jn′
Jn′(uρ̄)

(ˆ 2π

0
cosn′(φ− ψ)dψay

)
e−j2πtρ̄2

ρ̄dρ̄

+
ˆ 1

0
`J2(χ1nρ̄)

∞∑
n′=1

2jn′
Jn′(uρ̄)

(ˆ 2π

0
sin 2ψ cosn′(φ− ψ)dψax

−
ˆ 2π

0
cos 2ψ cosn′(φ− ψ)dψay

)
e−j2πtρ̄2

ρ̄dρ̄

]
(9.75)

まず ψ に関する積分を実行する．三角関数の直交性を利用する．
ˆ 2π

0
dψ = 2π,

ˆ 2π

0
sin 2ψdψ = 0,

ˆ 2π

0
cos 2ψdψ = 0 (9.76)

ˆ 2π

0
cosn′(φ− ψ)dψ = 2πδn′0 (9.77)

ˆ 2π

0
sin 2ψ cosn′(φ− ψ)dψ = δ|n′|2 · π sinn′φ (9.78)

ˆ 2π

0
cos 2ψ cosn′(φ− ψ)dψ = δ|n′|2 · π cosn′φ (9.79)

これらの積分結果を代入すると，N̄は大幅に簡略化される．

N̄ = DA1nχ̄1n

4

[
2π
ˆ 1

0
J0(χ1nρ̄)J0(uρ̄)e−j2πtρ̄2

ρ̄dρ̄

+π
ˆ 1

0
−`J2(χ1nρ̄) · 2j2J2(uρ̄)(sin 2φax − cos 2φay)e−j2πtρ̄2

ρ̄dρ̄
]

(9.80)

残った半径方向の積分を Ii(t, u)と定義する．

Ii(t, u) ≡
ˆ 1

0
Ji(χ1nρ̄)Ji(uρ̄)e−j2πtρ̄2

ρ̄dρ̄ (i = 0, 2) (9.81)

最終的に，正規化放射ベクトル N̄は次のベクトル形式で表現される．

N̄ = πaA1nχ̄1n{I0ay − −`I2(sin 2φax − cos 2φay)}
= πaA1nχ̄1n{−`I2 sin 2φax + (I0 + `I2 cos 2φ)ay}
≡ πaA1nχ̄1n(N̂xax + N̂yay) (9.82)
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放射界は，この N̄の成分を用いて計算される．

N̂xaξ + N̂yaη = −`I2 sin 2φaξ + (I0 + `I2 cos 2φ)aη
= (I0 − `I2) sinφaθ + (I0 + `I2) cosφaφ (9.83)

振幅分布による開口能率 ηamp は，正面方向の放射ベクトルから次のように計算される．

ηamp = |F̄(0, 0)|2
S

= |N̄x|2 + |N̄y|2

πa2 = πA2
1nχ̄

2
1n

(
|N̂x|2 + |N̂y|2

)
(9.84)

TE11 モードのとき，

ηamp
∣∣∣
t=0

= 2
χ′2

11 − 1 (9.85)

図 9.8と図 9.9は，TE11 モードで励振された円すいホーンの E面および H面のユニバー
サル放射パターンを示す．その特性は角すいホーンと類似している*4．

• E 面パターン（図 8）: 開口面分布がほぼ一様であるため，サイドローブレベルが
高い．

• H面パターン（図 9）: 開口面分布がテーパしているため，サイドローブレベルは低
く，ビーム幅は E面より広い．

また，図 9.10に 45◦ 面の交差偏波成分のユニバーサル放射パターンを示す．交差偏波成分
は 45◦ 面に生じ，そのピーク値は比較的高いことがわかる．
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図 9.8. 円すいホーンアンテナの E 面ユニバーサル放射パターン

*4 円すいホーンのユニバーサルパターンは，次の python による計算で確認できます．
https://www1.doshisha.ac.jp/~hdeguchi/Python/p3_ap_s3.html

149

https://www1.doshisha.ac.jp/~hdeguchi/Python/p3_ap_s3.html


0 1 2 3 4 5
u/  with u = Dsin

50

40

30

20

10

0

10
Re

la
tiv

e 
po

we
r [

dB
]

t = 0.0
t = 0.2
t = 0.4
t = 0.6
t = 0.8
t = 1.0

0 1 2 3 4 5
u/  with u = Dsin

0

180

360

540

720

Re
la

tiv
e 

ph
as

e 
[d

eg
]

t = 0.0
t = 0.2
t = 0.4
t = 0.6
t = 0.8
t = 1.0

(a) 振幅 (b) 位相

図 9.9. 円すいホーンアンテナの H 面ユニバーサル放射パターン
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図 9.10. 円すいホーンアンテナの 45◦ 面の交差偏波成分のユニバーサル放射パターン

9.4 最適ホーン

最適ホーン (optimum horn)とは，ホーンの長さを一定とした場合に，利得が最大となる
ように開口径を設計したホーンのことである．開口径を小さくすると，開口面積の不足から
利得は低くなる．逆に開口径を大きくしすぎると，開口面上の 2次位相誤差が増大し，開口
中心部と端部からの放射波が遠方で互いに打ち消し合うため，かえって利得が低下してしま
う．この利得低下は，式 (28)で定義された位相のずれ δ が，開口面上の点からの物理的な
経路長差を数学的に表現しており，これが遠方での波の打ち消し合いを引き起こすために生
じる．したがって，利得を最大化する最適な開口径が存在する．最適ホーンの設計基準は，
開口端での許容位相誤差量として与えられる．

• 扇形ホーン: E面では開口端での位相ずれを λ/4 (0.25λ)，H面では 3λ/8 (0.375λ)に
設定するのが最適である．このときの利得低下量はそれぞれ −0.967 dB，−1.007 dB
となる．

150



• 角すいホーン: 最適設計された角すいホーンでは，振幅分布による損失（約-0.9dB）
と E/H両面の位相誤差による損失（合計約 −2.0 dB）を合わせ，一様分布の場合と
比較して合計で約 −2.9 dBの利得低下となる．

• 円すいホーン: 開口端の位相ずれが 3λ/8のときに最適設計となり，一様分布からの
利得低下量は約 −2.8 dBである．

• コルゲート円すいホーン: 高性能なコルゲートホーンの場合，最適な位相ずれは
0.49λで得られる．

9.5 まとめ

ホーンアンテナの理論と設計について詳述した．まず，導波管の開口からの放射に関する
一般理論を示し，開口面上の電磁界分布から遠方放射界を計算する方法を説明した．次に，
代表的なホーンアンテナとして角すいホーンと円すいホーンを取り上げた．角すいホーンに
ついては，その放射特性が E面と H面で変数分離可能であることを示し，それぞれのユニ
バーサル放射パターンを導出した．円すいホーンについては，円筒座標系とベッセル関数を
用いた解析が必要となることを示した．いずれのアンテナにおいても，開口面上の 2次位相
誤差が放射パターンの形状（ビーム幅やサイドローブレベル）およびアンテナ利得に影響を
与えることを明らかにした．最後に，実用的な設計指針として，ホーン長に対して利得を最
大化する最適ホーンを取り上げ説明した．これは開口面積の増大による利得向上と，それに
伴う位相誤差増大による利得低下とのトレードオフを考慮した設計法である．

9.6 問題

�問題 9-1. ホーンアンテナの交差偏波特性について論ぜよ．

�問題 9-2. ホーンアンテナのビーム幅の周波数特性について論ぜよ．

�問題 9-3. ホーンアンテナの開口面電界分布を求め，図示せよ．

�問題 9-4. 円すいホーンの放射近傍界の特性について論ぜよ．
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CHAPTER 10

反射鏡アンテナの基礎

反射鏡アンテナの基礎的事柄について詳述します．まず波長に対して開口径が
大きいアンテナ設計の基礎となる幾何光学の三法則を説明します．反射鏡アンテ
ナとしては，まず最初に単一鏡面の軸対称パラボラアンテナを取り上げ，その曲
面形状，焦点距離と開口径の関係，さらに開口面分布の求め方を説明します．次
に，ブロッキングのない構成が可能なオフセットパラボラアンテナについて示
し，低サイドローブ化に有効であることを述べています．このような反射鏡アン
テナの一次放射器としてホーンアンテナを取り上げ，設計指針について説明しま
す．最後，完全導体表面上に誘起される面電流を求める物理光学近似や二次放射
パターンを算出する電流分布法の一般式を示し，パラボラ反射鏡に対する具体的
な計算式も解説します．

10.1 はじめに

反射鏡アンテナは，主にマイクロ波帯以上の高い周波数で利用されるアンテナ形式であ
る．高周波数帯では電波の波長がアンテナの物理的な寸法に比べて非常に短くなるため，構
造全体が「電気的に大きい」状態となる．このようなアンテナの特性を解析する上で最も厳
密な方法は，電磁現象の基本法則であるマクスウェルの方程式を直接解くことである．しか
し，電気的に大きな構造に対してこれを実行しようとすると，計算量が膨大となり現実的で
はない．
この根本的な課題に対し，アンテナ工学では，電波の発見以前から望遠鏡などの光学機器
の設計で確立されていた「幾何光学（Geometrical Optics）」の理論体系を応用するという，
実用的かつ歴史的に検証された解決策が採用された．光と電波は同じ電磁波であり，波長が



構造物に対して十分に短いという条件下では，電波の伝搬を光線として近似的に扱うことが
できる．このアプローチにより，アンテナの形状設計や基本的な性能解析が大幅に簡略化さ
れるのである．
ここでは，まずこの幾何光学の基本法則を解説し，その応用例として軸対称パラボラアン
テナおよびオフセットパラボラアンテナの形状と特性について詳述する．さらに，幾何光学
的なアプローチの限界を超え，回折などの波動現象を考慮したより厳密な放射特性を求める
ための物理光学法（電流分布法）についても解説を進める．

10.2 反射鏡アンテナで用いられる幾何光学の法則

波長に比べて十分に大きな開口径を持つ反射鏡アンテナの設計においては，幾何光学の 3
つの基本法則が極めて有用な指針となる．これらの法則は，電磁波の伝搬を「光線」という
単純なモデルで捉えることにより，アンテナの形状決定や性能評価を可能にするものであ
る．本章では，これら 3つの法則，すなわち「光路長一定の法則」「エネルギー保存の法則」
「反射・屈折の法則」について解説する．

10.2.1 光路長一定の法則

位相が均一な面，すなわち等位相面を「波面（wavefront）」と定義する．この法則は，あ
る波面から別の波面へ至る光路長が，全ての光線において等しくなるという原理である．電
磁波の伝搬において，光線は常に波面と直交する方向に進む．したがって，二つの波面を繋
ぐ無数の光線の長さ（位相変化量）は全て等しくなる．
この法則は反射鏡アンテナの設計における根幹をなす．アンテナの利得を最大化するため
には，アンテナの開口面における電磁波の位相を均一に揃える必要がある．光路長一定の法
則を適用することで，焦点から放射された球面波を反射鏡で反射させ，開口面において位相
の揃った平面波に変換するような鏡面の形状を導き出すことができる．

10.2.2 幾何光学のエネルギー保存の法則

この法則は，エネルギーが光線に沿って運ばれるとみなす考え方である．具体的には，複
数の光線で構成される「光線のチューブ」を考えたとき，そのチューブを通過するエネル
ギーは，どの断面においても保存されると考える．ある波面上の微小面積要素 dS1 を通過
するエネルギーと，別の波面上の対応する微小面積要素 dS2 を通過するエネルギーは等し
くなる．
波面上の電界を E1，E2，媒質の屈折率を n1，n2 とすると，このエネルギー保存則は次
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式で表される．

n1|E1|2dS1 = n2|E2|2dS2 (10.1)

この法則を用いることで，一次放射器の放射パターンと反射鏡アンテナの開口面における電
界分布の関係を導出することが可能となる．

10.2.3 反射の法則と屈折の法則

異なる媒質の境界面において光線がどのように振る舞うかを規定するのが，反射の法則と
屈折の法則（スネルの法則）である．まず，境界面の法線，入射波の方向，反射波の方向，
そして透過（屈折）波の方向はすべて同一平面内に存在し，この面を「入射面」と呼ぶ．

θi θr

θt

n1

n2

si sr

st

n

図 10.1. 幾何光学的光線の反射および屈折

この入射面上で，法線と各光線がなす角度（入射角 θi，反射角 θr，屈折角 θt）の間には，
以下の関係が成り立つ．

θr = θi (反射の法則) (10.2)
n2 sin θt = n1 sin θi (屈折の法則) (10.3)

ここで，n1, n2は各媒質の屈折率であり，比誘電率を ε1, ε2とすると，以下の関係がある（た
だし比透磁率は 1と仮定）．

n1 = √
ε1, n2 = √

ε2 (10.4)

これらの法則は，ベクトル形式で表現することもできる．入射波，反射波，屈折波の進む
方向を示す単位ベクトルをそれぞれ si, sr, st，境界面の法線ベクトルを nとすると，各法則
は次のように表される．

sr = si − 2(si · n)n (10.5)
n2(st × n) = n1(si × n) (10.6)
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これらのベクトル形式は，3次元空間における光線の挙動を追跡するレイトレーシングなど
の数値計算プログラムを実装する際に特に有用である．式 (5)は，入射ベクトルの境界面に
接する成分は変化せず，法線成分のみが反転するということを表している．

10.3 軸対称パラボラアンテナ

軸対称パラボラアンテナは，その名の通り，放物線（パラボラ）をその対称軸周りに回転
させて得られる回転放物面を反射鏡として用いるアンテナである．この形状は，前述の「光
路長一定の法則」を応用することで容易に導出できる．設計思想の核心は，アンテナの焦点
に置かれた一次放射器から放射された球面波が，反射鏡のどの点で反射しても，開口面に到
達するまでの光路長がすべて等しくなるようにすることである．これにより，開口面では位
相の揃った平面波が形成され，高い利得と鋭い指向性が得られる．

10.3.1 反射鏡の曲面形状の導出

回転放物面の形状を導出するために，図 10.2に示す座標系を考える．アンテナの焦点を
原点に置き，焦点から反射鏡上の任意の点までの距離を rとする．この点から開口面（ここ
では焦点を含む z = 0の平面と仮定）までの光路長と，焦点からその点までの光路長 rの和
が一定になる条件を課す．
焦点から開口面までの全光路長 lは，次式で与えられる．

l = r + r(−ar) · az = r(1 + cos θ) (10.7)

この光路長 l が，鏡面のどの点 (θ)においても一定であるとする．特に軸上 (θ = 0)では，
光線は焦点距離 f を往復するため，光路長は 2f となる．したがって，この一定値を 2f と

z
az

a r

f

r

θ

図 10.2. 回転放物面
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おくと，

2f = r(1 + cos θ) (10.8)

これを rについて解くと，回転放物面を表す極形式の式が得られる．

r = 2f
1 + cos θ = 2f

2 cos2 θ
2

= f sec2 θ

2 (10.9)

次に，この関係をより一般的な円筒座標 (ρ, φ, z)を用いて表現する．式 (8)は座標の関係か
ら以下のように書き換えられる．

2f = r + r cos θ =
√
ρ2 + z2 − z (10.10)

この式の z を左辺に移項し，両辺を二乗すると，

(2f + z)2 = 4f2 + 4fz + z2 = ρ2 + z2 (10.11)

となり，z2 の項が消去され，よく知られた放物面の式が得られる．

ρ2 = 4f(z + f) (10.12)

あるいは，z について解くと以下のようになる．

z = ρ2 − 4f2

4f (10.13)

10.3.2 アンテナの主要パラメータの関係

軸対称パラボラアンテナの主要な寸法パラメータとして，開口径D，焦点距離 f，そして
焦点から鏡面を見込む角度の半値である開口角 θ0 がある．これらのパラメータ間の関係は，
先の幾何学的な関係式から導出される．

f

r

θ

D

0

0

図 10.3. 軸対称パラボラ
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焦点から鏡面のエッジまでの距離 r0 は，式 (9)に θ = θ0 を代入して得られる．

r0 = f sec2 θ0

2 (10.14)

開口径Dの半分，すなわち開口半径D/2は，r0 と sin θ0 の積で表される．三角関数の倍角
の公式を用いると，

D

2 = r0 sin θ0 = f sec2 θ0

2 · 2 sin θ0

2 cos θ0

2 = 2f tan θ0

2 (10.15)

この関係から，f/D 比と開口角 θ0 の関係式が導かれる．

f

D
= 1

4 cot θ0

2 ∴ θ0 = 2 tan−1
(
D

4f

)
(10.16)

これにより，アンテナの開口径Dと焦点距離 f が与えられれば，開口角 θ0 が一意に定まる
ことがわかる．

10.3.3 開口面分布の解析

幾何光学のエネルギー保存の法則を用いることで，一次放射器の放射パターン E1(θ)と，
それによって形成される開口面上の電界分布 E2(ρ)の関係を解析することができる．鏡面
に照射する電界を e−jkr

r E1(θ)，鏡面の開口面分布を E2(ρ)とおくと，エネルギー保存則は次
式となる．∣∣∣∣∣E1(θ)

r

∣∣∣∣∣
2

dS1 = |E2(ρ)|2dS2 (10.17)

ここで，球面波の面要素 dS1 および開口面の面要素 dS2 はそれぞれ以下で与えられる．

dS1 = r2 sin θdθdφ, dS2 = ρdρdφ (10.18)

これらを式 (17)に代入し整理すると，次式が得られる．

|E1(θ)|2 = |E2(ρ)|2 ρ

sin θ
dρ

dθ
(10.19)

ここで，式 (15)で示した半径 ρと角度 θの関係を微分すると，式 (20)が得られる．

dρ

dθ
= f sec2 θ

2 (10.20)

また，幾何学的な関係から式 (21)が成り立ち，式 (9)から rとの関係がわかる．

ρ

sin θ = r = f sec2 θ

2 (10.21)
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これらの関係式を (19)に代入すると，

|E1(θ)|2 = |E2(ρ)|2(f sec2 θ

2) · (f sec2 θ

2) = |E2(ρ)|2r2 (10.22)

となり，非常に簡潔な関係式が得られる．

|E2(ρ)| = |E1(θ)|
r

(10.23)

最も単純なケースとして，一次放射器が無指向性であると仮定する（E1(θ) = 1）．このと
き，開口中心 (ρ = 0, θ = 0, r = f)での値で規格化した相対的な開口面分布は，∣∣∣∣∣E2(ρ)

E2(0)

∣∣∣∣∣ = f

r
= cos2 θ

2 (10.24)

となる．この結果は重要な物理的意味を持つ．たとえ無指向性の均一な波源で反射鏡を照射
したとしても，形成される開口面分布は一様にはならず，中心部が最も強く，エッジに向か
うにつれて cos2(θ/2)に従ってレベルの低下する「テーパ」分布になることを示している．

10.3.4 実用的な特性と特徴の評価

実際に利用されている軸対称パラボラアンテナは，特定のパラメータ範囲内で設計される
ことが多い．

• 見込み角 2θ0: 120–180◦

• f/D比: 0.25 ≤ f/D ≤ 0.43
• 利得: 30–50 dB
• 開口能率 η: 50–60 %

アンテナの性能は，見込み角 2θ0（あるいは f/D比）の選び方によって大きく左右される．

• 見込み角が大きい場合（f/Dが小さい）: 開口面分布のテーパが強くなり，開口面を
有効に利用できなくなるため利得が低下する．一方で，焦点距離が短くアンテナ全体
の高さが低くなるため，特に大口径アンテナの機械的構造上有利である．ただし，鏡
面の曲率が大きくなるため，交差偏波成分が若干増加する傾向がある．

• 見込み角が小さい場合（f/Dが大きい）: この場合，一次放射器のビーム幅を非常に
狭くする必要があり，結果として一次放射器自体が大きくなる．この大きな放射器が
主反射鏡からの電波を遮蔽（ブロッキング）する影響が顕著になり，利得の低下やサ
イドローブレベルの上昇といった性能劣化を引き起こす．また，焦点距離が長くなる
ため，アンテナ全体の背が高くなり，構造的な課題がある．
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10.4 オフセットパラボラアンテナ

軸対称パラボラアンテナの主要な欠点の一つは，アンテナの開口面中心に配置される一次
放射器やその支持構造物が，主反射鏡からの電波を遮蔽（ブロッキング）してしまうことで
ある．このブロッキングは，利得の低下とサイドローブレベルの上昇を引き起こし，アンテ
ナ性能を劣化させる．この問題を解決するために考案されたのがオフセットパラボラアンテ
ナである．
オフセットパラボラアンテナは，回転放物面の一部を，その対称軸を含まないように切り
出して使用する．これにより，一次放射器を主反射鏡からの電波の通り道から外れた位置に
配置することができ，ブロッキングを完全に排除することが可能となる．その結果，ブロッ
キングがないことによる高い開口能率（65-80%）と，極めて低いサイドローブ特性を実現

(a) θ0 = 90◦ (b) θ0 = 80◦ (c) θ0 = 70◦ (d) θ0 = 60◦

(e) θ0 = 50◦ (f) θ0 = 40◦ (g) θ0 = 30◦

図 10.4. 見込み角の異なる軸対称パラボラと幾何光学的光線
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できる．一方で，構造が非対称になるため，交差偏波成分が発生しやすくなるという欠点も
持つ．

10.4.1 形状とパラメータの定義

オフセットパラボラアンテナの形状は，オフセット角 α，円錐の見込み半角 θm，焦点距
離 f によって定義される．開口径 Dは，これらのパラメータを用いて次式で与えられる．

D

f

θ0

θ0α

図 10.5. オフセットパラボラ

D = 2f tan α + θm
2 − 2f tan α− θm

2 (10.25)

この式を変形すると，

D

2f =
sin α+θm

2
cos α+θm

2
−

sin α−θm

2
cos α−θm

2

=
sin α+θm

2 cos α−θm

2 − sin α−θm

2 cos α+θm

2
cos α+θm

2 cos α−θm

2

=
sin

(
α+θm

2 − α−θm

2

)
1
2

{
cos

(
α+θm

2 + α−θm

2

)
+ cos

(
α+θm

2 − α−θm

2

)}
= 2 sin θm

cosα + cos θm

よって，オフセットパラボラの円形開口の半径 D/2は以下の形で表される．

D

2 = 2f sin θm
cos θm + cosα (10.26)

逆に，開口径 Dから焦点距離 f を求める式は次のようになる．

f = cos θm + cosα
sin θm

· D4 (10.27)
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同様に，開口面に投影した焦点（z 軸上）から円形開口の中心までの距離 ρc は，次式で定
義される．

ρc = 1
2

(
2f tan α + θm

2 + 2f tan α− θm
2

)
(10.28)

これも同様の計算を経て，

ρc
f

=
sin α+θm

2
cos α+θm

2
+

sin α−θm

2
cos α−θm

2

=
sin

(
α+θm

2 + α−θm

2

)
1
2

{
cos

(
α+θm

2 + α−θm

2

)
+ cos

(
α+θm

2 − α−θm

2

)}
= 2 sinα

cosα + cos θm

最終的に以下の簡潔な形で表すことができる．

ρc = 2f sinα
cos θm + cosα (10.29)

10.4.2 開口面の数式表現

焦点 Fm を原点とする回転放物面鏡を，半値角 θm の円すいで見込んだ場合，開口面（xy
平面）に投影される形状は円となる．この円の方程式は次のように表される．

図 10.6. 回転放物面鏡と開口面

(x− x0)2 + y2 = r2
a (10.30)
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ここで，円の半径 ra は式 (26)に相当し，

ra = 2f sin θm
cos θm + cosα (10.31)

円の中心 (x0, y0)は式 (29)から，

(x0, y0) =
(

2f sinα
cos θm + cosα, 0

)
(10.32)

と求められる．これらを代入すると，開口面の円の方程式は以下のようになる．(
x− 2f sinα

cos θm + cosα

)2

+ y2 =
(

2f sin θm
cos θm + cosα

)2

(10.33)

また，焦点を含む面を開口面とした場合，円形開口面の中心の位置ベクトル Pは，

P = x0im = 2f sinα im
cos θm + cosα = 2f (vm · im)im

cos θm − (vm · km) (10.34)

ここで，vm = (vm · im)im + (vm · km)km より，

P = x0im = 2f vm − (vm · km)km
cos θm − (vm · km) (10.35)

と表すことができる．ただし，im は x方向，km は回転軸方向の単位ベクトル，vm は円す
いの中心軸に沿う単位ベクトルである．

(a) θ0 = 30◦ (b) θ0 = 35◦ (c) θ0 = 38◦

図 10.7. オフセット角の異なるオフセットパラボラと幾何光学的光線
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10.5 1次放射器の概要

反射鏡アンテナの設計において，反射鏡自体の形状（パラボラ形状）は幾何光学の法則か
ら比較的単純に決定される．しかし，アンテナ全体の性能を最終的に決定づける最も重要な
要素は，焦点に置かれる「1次放射器」の設計である．一次放射器は，反射鏡を効率よく照
射し，所望の放射特性を実現するための源となるアンテナであり，一般的にはホーンアンテ
ナが用いられる．
一次放射器の設計において考慮すべき主要な要件は以下の通りである．

• 位相中心の配置: 反射鏡で反射した後の波が開口面で同位相になるよう，一次放射器
の位相中心を反射鏡の焦点位置に正確に一致させる必要がある．これがずれると，開
口面での位相誤差が生じ，利得の低下やビームの劣化を招く．

• ビーム幅の最適化: 一次放射器の放射ビーム幅は，アンテナ全体の利得を最大化する
ように慎重に決定される．ビームが広すぎると，電波が反射鏡から溢れてしまい（ス
ピルオーバー損失），アンテナ利得が直接低下する．逆にビームが狭すぎると，反射
鏡の中央部しか有効に利用できず（テーパ損失），実効的な開口面積が減少し，これ
もまた利得低下に繋がる．したがって，鏡面エッジにおける一次放射器の放射レベル
（エッジレベル）が-10dB程度になるよう最適化するのが一般的である．

• 軸長の短縮化: 実用上，一次放射器はコンパクトであることが望ましい．ホーンアン
テナの軸長を短くしつつ，良好な位相特性を保つための「最適ホーン」の設計条件を
用いることがある．

• 交差偏波特性: 特に，水平偏波と垂直偏波などの直交偏波を共用するシステムでは，
偏波の純度が重要となる．一次放射器自体が発生する交差偏波成分を極力低減する必
要があるため，コルゲートホーンやマルチモードホーンといった，優れた交差偏波特
性を持つ特殊なホーンアンテナが選定される．

10.6 反射鏡アンテナの放射特性の解析

これまで議論してきた幾何光学的なアプローチは，アンテナの形状決定や大まかな性能評
価には有効であるが，回折などの波動現象を考慮できないため，サイドローブや交差偏波と
いった詳細な放射特性を厳密に求めることはできない．より正確な解析を行うためには，電
磁波の物理的な性質に基づいた「物理光学法（Physical Optics method）」，あるいは「電流
分布法（Current-distribution method）」と呼ばれる手法が用いられる．この手法は，一次
放射器からの入射波によって反射鏡の導体表面に誘起される電流分布をまず計算し，次にそ
の電流分布が放射する電磁界を積分することによって，アンテナ全体の遠方放射特性を求め
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るものである．

10.6.1 完全導体表面上に誘起される面電流の導出

物理光学法の基礎となるのは，完全導体表面に誘起される面電流 Jsを求めることである．
完全導体表面では，電界の接線成分がゼロになるという境界条件が成立する．入射電磁界を
(Ei,Hi)，反射電磁界を (Er,Hr) とすると，導体表面上の全電磁界はそれぞれ次式で表さ
れる．

E = Ei + Er, H = Hi + Hr (10.36)

平面波を考え，入射波，反射波の伝搬方向を si, sr とすると，磁界は電界を用いて次のよう
に書ける．

Hi = Yw(si × Ei), Hr = Yw(sr × Er) (10.37)

ここで電界を入射面に対し垂直な成分（TE波）と平行な成分（TM波）に分解する．

Ei = Ai⊥(τ × n) + Ai‖si × (τ × n) (10.38)
Er = Ar⊥(τ × n) + Ar‖sr × (τ × n) (10.39)

ベクトル三重積の公式を用いると，これらは次のように展開できる．

Ei = Ai⊥(τ × n) + Ai‖(si · n)τ − Ai‖(si · τ )n (10.40)
Er = Ar⊥(τ × n) + Ar‖(sr · n)τ − Ar‖(sr · τ )n (10.41)

反射の法則のベクトル表示から，以下の関係が成り立つ．

sr = si − 2(n · si)n (10.42)
sr · n = −si · n (10.43)
sr · τ = si · τ (10.44)

よって，反射電界 Er は次のように書き換えられる．

Er = Ar⊥(τ × n) + Ar‖(−si · n)τ − Ar‖(si · τ )n (10.45)

完全導体表面では電界の接線成分がゼロになるので，n × (Ei + Er) = 0が成立する．

{Ai⊥(τ × n) + Ai‖(si · n)τ} + {Ar⊥(τ × n) − Ar‖(si · n)τ} = 0 (10.46)

この式から，各成分の振幅について以下の関係が導かれる．

Ar⊥ = −Ai⊥, Ar‖ = Ai‖ (10.47)
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これにより，入射電界と反射電界のベクトル関係は次のようにまとめられる．

n × Er = −n × Ei, n · Er = n · Ei (on S) (10.48)

さらに，式 (48)から Er は Ei を用いて次のように表せる．

Er = n × (Er × n) + n(Er · n) = −Ei + 2n(Ei · n) (10.49)

同様に磁界について計算を進めると，反射磁界の接線成分は入射磁界の接線成分と等しく
なる．

n × Hr = Yw{sr(n · Er) − Er(n · sr)} = · · · = n × Hi (10.50)

導体表面上の面電流密度 Js は，全磁界Hの接線成分に等しい（Js = n × H）ため，最終
的に以下の極めて重要な関係式が導出される．

Js = n × H = n × (Hi + Hr) = 2(n × Hi) (on S) (10.51)

この関係式は，複雑な境界値問題を解くことなく，入射磁界さえ分かっていれば反射鏡表面
の電流が直ちに決定できることを示す，物理光学法における極めて強力かつ重要な近似で
ある．

10.6.2 物理光学近似と電流分布法

物理光学近似とは，上式 (51)で求められた電流が，鏡面の照らされている部分（illuminated
region）にのみ存在し，影の部分（shadow region）ではゼロであると仮定する近似法で
ある．

Js = 2n × Hi (10.52)

この電流分布 Js を用いて放射電界を計算するためには，鏡面上の法線ベクトル nや面積要
素 dS を具体的に求める必要がある．鏡面上の位置ベクトルを r(θ, φ)とすると，法線ベク
トル nは次式で計算できる．

n = −
∂r
∂θ × ∂r

∂φ∣∣∣∂r
∂θ × ∂r

∂φ

∣∣∣ (10.53)

ベクトル面積要素 dSは dS = ndS (54) であり，球座標系では ∂r
∂θ × ∂r

∂φ (55) を計算するこ
とで，

∂r
∂θ

× ∂r
∂φ

= r2 sin θ
(

ar − 1
r

∂r

∂θ
aθ − 1

r sin θ
∂r

∂φ
aφ
)

(10.54)
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となり，法線ベクトルとベクトル面積要素が求まる (57, 58)．鏡面が回転対称な場合
（∂r/∂φ = 0），式はより単純化される．

n = −
ar − 1

r
∂r
∂θaθ√

1 + 1
r2

(
∂r
∂θ

)2
(10.55)

dS = −r2 sin θ
(

ar − 1
r

∂r

∂θ
aθ
)
dθdφ (10.56)

特に，回転放物面鏡の場合，式 (9)またはそれと等価な次式 (62)で与えられる rを用いる．

r = 2fm
1 − cos θ (10.57)

この rを微分すると，

1
r

∂r

∂θ
= − cot θ2 (10.58)

1√
1 + (1

r
∂r
∂θ )2

=
∣∣∣∣∣sin θ2

∣∣∣∣∣ (10.59)

となり，最終的に法線ベクトル nは以下のように具体的に計算できる．

n = − sin θ2ar − cos θ2aθ (0 ≤ θ < 2π) (10.60)

こうして求めた電流分布 Js を，鏡面 S 全体にわたって積分することで，遠方放射電界 Eを
求めることができる．これが電流分布法であり，その計算式は以下で与えられる．

E = −jkZw
e−jkR

4πR

¨
S

(¯̄I − arar) · Js
R

r
e−jk(r−R)dS (10.61)

ただし，¯̄Iは恒等ダイアディック，Zw は波動インピーダンスを示す．この積分を数値的に
実行することで，反射鏡アンテナの指向性，利得，サイドローブレベルなどの詳細な放射特
性を高精度に解析することが可能となる．

10.7 まとめ

反射鏡アンテナの基礎について，以下の項目を中心に解説した．

• 幾何光学の法則: 反射鏡アンテナ設計の基礎となる，光路長一定の法則，エネルギー
保存の法則，反射・屈折の法則について説明した．

• 軸対称パラボラアンテナ: 光路長一定の法則に基づき，回転放物面の形状を導出し，
その主要パラメータ，開口面分布，実用上の特徴について詳述した．
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• オフセットパラボラアンテナ: 軸対称アンテナのブロッキング問題を解決する手法と
して，その構造と利点・欠点，幾何学的パラメータについて解説した．

• 物理光学法（電流分布法）: 幾何光学の限界を超え，より厳密な放射特性を解析する
ための手法として，導体表面上の誘起電流の計算から放射電界の積分に至るプロセス
を概説した．

10.8 問題

�問題 10-1. 見込み角半値 θ0 = 100◦，開口径 D = 10 mのときの軸対称パラボラアンテ
ナの形状と光線を描け．

�問題 10-2. オフセット角 α = 75◦，見込み角半値 θ0 = 40◦，開口径D = 3 mのときのオ
フセットパラボラアンテナの形状と光線を描け．

�問題 10-3. 見込み角半値が 90◦ のときの軸対称パラボラアンテナの開口面電界振幅分布
を求め，開口の中心の値で規格化し，開口面の半径方向の座標の関数として図示せよ．一次
パターンは無指向性とする（一次パターンの位相中心はパラボラの焦点におく）．

� 問題 10-4 一次パターンの位相中心がパラボラの焦点からずれると，どのような特性の
変化が生じるか述べよ．
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CHAPTER 11

複反射鏡アンテナ

2枚反射鏡アンテナの設計と理論について詳述します．特に，グレゴリアンア
ンテナとカセグレンアンテナという 2 つの主要な軸対称およびオフセット形式
の構成を取り上げ，これらのアンテナの基礎となるだ円および双曲線の幾何学的
定義とその極座標形式に関する詳細な数式を導出します．また，ブロッキングが
アンテナの放射特性に与える影響を分析し，交差偏波成分を低減する条件につい
ても論じています．

11.1 はじめに

複反射鏡アンテナは，単一のパラボラ反射鏡を基本とするアンテナを進化させた，より高
度な形式である．主反射鏡に加えて副反射鏡を導入することにより，給電系の配置自由度の
向上や，開口面分布の精密な制御が可能となり，高性能化を実現する．ここでは，幾何光学
に基づき，複反射鏡アンテナの基本原理，主要な構成法，そして重要な設計指針について説
明する．解析対象として，まず基本となる軸対称（axisymmetric）形式を取り上げ，その構
成と特性を詳述する．次に，軸対称形式の主要な欠点であるブロッキングを解消するオフ
セット（offset）形式について解説する．

11.2 軸対称 2枚反射鏡アンテナ

軸対称 2枚反射鏡アンテナは，複反射鏡アンテナの基本的な形式であり，その構成と特性
を理解することは重要である．まず，副反射鏡にだ円面を用いるグレゴリアンアンテナにつ
いて，だ円の幾何学的性質から導出し，次に，双曲面を用いるカセグレンアンテナについて



同様に解析し，これら二つの主要な形式を比較していく．

11.2.1 グレゴリアンアンテナ

グレゴリアンアンテナは，主反射鏡として回転放物面，副反射鏡として回転だ円面を用い
る構成である．このアンテナの動作原理を理解するため，まず副反射鏡の形状であるだ円の
基本的な性質を数式で記述する．

だ円の基本式
だ円（ellipse）は，平面上の 2つの定点（焦点 F1, F2）からの距離の和が一定となる点の
軌跡として定義される．この一定値を 2a (a > 0)とする．焦点 F1, F2 からだ円上の任意の
点 Pまでの距離をそれぞれ R1, R2 とすると，だ円の定義は次式で与えられる．

R1 +R2 ≡ 2a (一定) (a > 0) (11.1)

2つの焦点を結ぶ直線を x軸，その中心を原点とする直角座標系 (x, y)を考える．焦点間の
距離を 2c (c > 0)とすると，焦点 F1, F2 の座標はそれぞれ (c, 0), (−c, 0)となる．これよ
り，R2

1 と R2
2 は次のように表される．

R2
1 = (x− c)2 + y2 (11.2)

R2
2 = (x+ c)2 + y2 = (2a−R1)2 = 4a2 − 4aR1 +R2

1 (11.3)

式 (11.2)と (11.3)の差を計算すると，

R2
1 − (4a2 − 4aR1 +R2

1) = −4xc (11.4)

これを R1 について整理すると，以下の関係式が得られる．

−4a2 + 4aR1 = −4xc
aR1 = a2 − xc (11.5)

この式を 2乗し，式 (11.2)を代入して整理を進める．

a2R2
1 = (a2 − xc)2

a2
(
(x− c)2 + y2

)
= a4 − 2a2xc+ x2c2

a2x2 − 2a2xc+ a2c2 + a2y2 = a4 − 2a2xc+ x2c2

(a2 − c2)x2 + a2y2 = a2(a2 − c2)
b2x2 + a2y2 = a2b2 (11.6)

ここで，

b2 = a2 − c2 (11.7)
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と定義した．これより，次のよく知られただ円の標準形が得られる．

x2

a2 + y2

b2 = 1 (11.8)

また，式 (11.5)と同様の操作を R2 に対して行うと，次式が得られる．

a(2a−R2) = a2 − xc

aR2 = a2 + xc (11.9)

だ円の極形式
アンテナの放射特性を解析する際には，直交座標系よりも，焦点を原点とする極座標系で
だ円を表現する方が実用的である．式 (11.5)の両辺を aで割り，離心率 e

e = c

a
(0 < e < 1) (11.10)

を導入すると，

R1 = a− x
c

a
= a− xe (11.11)

となる．焦点 F1 を原点とし，F1 から F2 へ向かう方向を基準軸とする極座標を考える．点
Pの方向と基準軸のなす角を ϑ1 とすると，

c− x = R1 cosϑ1 (11.12)

が成り立つ．式 (11.11)と (11.12)から xを消去し，c = aeを用いて cも消去する．

R1 = a− (c−R1 cosϑ1)e
R1(1 − e cosϑ1) = a− ce = a− ae2 = a(1 − e2) (11.13)

これより，R1 に関するだ円の極形式が得られる．

R1 = a(1 − e2)
1 − e cosϑ1

= −a(e2 − 1)
1 − e cosϑ1

(11.14)

同様に，焦点 F2 を原点とし，角度 ϑ2 を定義すれば，式 (11.9)から次の極形式が得られる．

R2 = a(1 − e2)
1 − e cosϑ2

= −a(e2 − 1)
1 − e cosϑ2

(11.15)

この極形式を用いて，グレゴリアンアンテナの幾何光学的な設計が行える．
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グレゴリアンアンテナの構成
グレゴリアンアンテナの幾何学的構成は，だ円の 2 つの焦点の性質を巧みに利用してい
る．主反射鏡は回転放物面であり，副反射鏡は回転だ円面である．まず，1次放射器の位相
中心をだ円の一方の焦点 F1 に配置する．そして，だ円のもう一方の焦点 F2 を，主反射鏡
である放物面の唯一の焦点と一致させる．
この配置により，光線の経路は以下のように制御される．焦点 F1 にある 1次放射器から
放射された球面波は，だ円面状の副反射鏡で反射される．だ円の定義により，F1 から放射
されだ円面で反射した波は，すべて他方の焦点 F2に集まる．この結果，あたかも焦点 F2に
点波源（仮想波源）が存在するかのような状態が作られる．この仮想波源は主反射鏡の焦点
と一致しているため，F2 から放射されたように振る舞う波は，放物面で反射された後，平
行な平面波となって前方に放射される．だ円面鏡としては，図 11.1に示すように，1次放射
器側から見て凹面 (a)または凸面 (b)があるが，通常，同図 (a)の凹面構成が用いられる．

F1 F2 F1 F2

(a) 凹面（δ = 1） (b) 凸面（δ = −1）

図 11.1. 回転だ円面（p = −1）の入射光線と反射光線
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11.2.2 カセグレンアンテナ

カセグレンアンテナは，大型の複反射鏡アンテナとして最も広く利用されている形式であ
り，副反射鏡に回転双曲面を用いる．その基本原理を理解するため，双曲線の幾何学的性質
を導出する．

双曲線の基本式
双曲線（hyperbola）は，平面上の 2つの定点（焦点 F1, F2）からの距離の差が一定とな
る点の軌跡として定義される．この一定値を ∓2a (a > 0)とする．焦点 F1, F2 から双曲線
上の点 Pまでの距離をそれぞれ R1, R2 とすると，双曲線の定義は次式で与えられる．

R1 −R2 ≡ ∓2a (一定) (a > 0) (11.16)

だ円の場合と同様に，焦点を結ぶ直線を x軸，その中心を原点とする座標系を考える．焦点
間の距離を 2c (c > 0)とすると，R2

1 と R2
2 は次のように表される．

R2
1 = (x− c)2 + y2 (11.17)

R2
2 = (x+ c)2 + y2 = (±2a+R1)2 = 4a2 ± 4aR1 +R2

1 (11.18)

これらの差をとると，

R2
1 − (4a2 ± 4aR1 +R2

1) = −4xc (11.19)

R1 について整理すると，

−4a2 ∓ 4aR1 = −4xc
∓aR1 = a2 − xc (11.20)

この式を 2乗し，式 (11.17)を代入して整理する．

a2R2
1 = (a2 − xc)2

a2
(
(x− c)2 + y2

)
= a4 − 2a2xc+ x2c2

(a2 − c2)x2 + a2y2 = a2(a2 − c2)

ここで，c > aであるから，b2 = c2 − a2 と定義すると，上式は −b2x2 + a2y2 = a2(−b2)と
なる．これにより，双曲線の標準形が得られる．

x2

a2 − y2

b2 = 1 (11.21)
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双曲線の極形式
式 (11.20)の両辺を ∓aで割り，離心率 e = c/a（e > 1）を導入すると，

R1 = ∓a± x
c

a
= ∓a± xe (11.22)

となる．焦点 F1 を原点とし，角度 ϑ1 を定義すると，

c− x = R1 cosϑ1 (11.23)

である．これらから xと cを消去すると，

R1 = ∓a± (c−R1 cosϑ1)e
R1(1 ± e cosϑ1) = ∓a± ce = ∓a± ae2 = ∓a(1 − e2) (11.24)

よって，双曲線の極形式は次のように得られる．

R1 = ∓a(1 − e2)
1 ± e cosϑ1

= ±a(e2 − 1)
1 ± e cosϑ1

(11.25)

上式の複号のうち，上側符号は焦点 F1 に近い方の曲線までの距離を，下側符号はもう一方
の曲線までの距離を示す．同様に，焦点 F2 を原点として角度 ϑ2 を定義すると，

R2 = ±a(e2 − 1)
1 ± e cosϑ2

(11.26)

となる．

カセグレンアンテナの構成
カセグレンアンテナは，主反射鏡に回転放物面，副反射鏡に回転双曲面を用いて構成され
る．1次放射器の位相中心を双曲面の一方の焦点 F1 に配置する．双曲面で反射された波は，
あたかももう一方の焦点 F2 から放射されたかのように直進する．この仮想的な焦点 F2 を，
主反射鏡である放物面の焦点と一致させる．これにより，1次放射器から出た波は，副反射
鏡で反射された後，主反射鏡の焦点から放射されたのと等価になり，主反射鏡で反射される
ことで平行な平面波となる．双曲面鏡としては，図 2 のように凹面側を用いる構成も考え
られるが，標準的なカセグレンアンテナでは，図 3 に示すように凸面側で副反射鏡を構成
する．

11.2.3 カセグレンアンテナの特徴

カセグレンアンテナは，特に利得が 50〜70 dBに達するような大口径アンテナで広く採
用されており，その優れた特徴は以下のとおりである．
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F1 F2 F1 F2

(a) 焦点 F1 から出る入射光線 (b) 焦点 F1 に集まる入射光線

図 11.2. 回転双曲面（p = 1）からなる凹面鏡（δ = 1）への入射・反射光線

F1 F2 F1 F2

(a) 焦点 F1 から出る入射光線 (b) 焦点 F1 に集まる入射光線

図 11.3. 回転双曲面（p = 1）からなる凸面鏡（δ = −1）への入射・反射光線

• 1次放射器を主反射鏡の頂点近傍に配置できる．これにより，大型で重量のある，あ
るいは冷却が必要な低雑音増幅器（LNA）等をアンテナの機械的構造の基部に設置
できる．もし 1 次放射器が主焦点にあれば，そこまで長くて損失の大きい伝送線路
（ケーブル）を引き回す必要があり，信号品質の劣化や構造上の複雑化を招くが，カ
セグレン構成ではこれを回避でき，低損失化が可能となる．

• 主反射鏡と副反射鏡の 2 つの鏡面形状をわずかに変形させる鏡面修整技術を適用す
ることで，開口面分布を最適化し，高能率化や低サイドローブ化を達成することが可
能である．

• 軸対称構成であるため，原理的に反射鏡による交差偏波の発生が極めて少ない．
• 1次放射器を設置するスペースに制約が少なく，開口の大きな（すなわち指向性の鋭
い）1次放射器を使用できる．
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これらの利点により，カセグレンアンテナは高性能アンテナの代表的な形式となっている．
しかしながら，軸対称構成ゆえ，副反射鏡による開口面のブロッキングという欠点があり，
次のセクションでその影響を定量的に解析する．

11.3 軸対称アンテナの特性解析

アンテナシステム全体の幾何学的形状を決定する見込み角の関係式を導出し，次に軸対称
構成の最大の欠点である開口ブロッキングが放射特性に与える影響について詳述する．

11.3.1 見込み角の関係

軸対称 2枚反射鏡アンテナの設計において重要なパラメータとして，2つの見込み角があ
る．一つは 1次放射器の位相中心から副反射鏡を見込む角度 2θf，もう一つは主反射鏡と副
反射鏡の共通焦点から主反射鏡を見込む角度 2θs である．これら 2つの角度の関係は，副反
射鏡の離心率 eを用いて，凸面カセグレンアンテナ（q = 1）およびグレゴリアンアンテナ
（q = −1）について，次式で統一的に表される．

tan θs2 = q
e+ 1
e− 1 tan θf2 (11.27)

なお，凹面カセグレンアンテナの場合は，次式となる．

tan θs2 = e− 1
e+ 1 tan θf2 (11.28)

例えば，図 11.4に示される設計例（Ds/D = 0.15，θf = 12◦，θs = 55◦）のように，これら
の関係式を用いることで，所望のアンテナ寸法と性能を満たす幾何学的パラメータが求め
易い．

11.3.2 ブロッキングの影響

軸対称構成の主な欠点は，副反射鏡とその支持ストラットが主反射鏡の開口面を物理的に
覆ってしまうこと（アパーチャブロッキング）である．このブロッキングがアンテナの放射
特性に与える影響を開口面法を用いて解析する．この問題は，重ね合わせの原理を用いてモ
デル化できる．ブロッキングのあるアンテナの放射パターンは，「ブロッキングがない完全
な開口面からの放射」から「ブロッキング領域に相当する小さな開口からの放射」を差し引
いたものとして計算できる．
開口径 Dの円形開口に一様な振幅・位相分布があり，その中心に半径比 α（半径 αD/2）
の円形ブロッキング領域が存在する場合を考える．指向性関数 g(u) は次のように計算さ
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(a) グレゴリアンアンテナ (b) カセグレンアンテナ

図 11.4. 軸対称 2 枚反射鏡アンテナ（Ds/D = 0.15，θf = 12◦，θs = 55◦）

れる*1．

g(u) = 2π
(
D

2

)2
E0

ˆ 1

α

J0(uρ)ρdρ = 2SE0

(
J1(u)
u

− α2J1(αu)
αu

)
(11.30)

ここで S はブロッキングのない円形開口の面積である．この式は，重ね合わせの原理を数
式で表現したものである．

g(u) = g0(u) − gα(u) (11.31)

ただし，

g0(u) = 2SE0
J1(u)
u

, gα(u) = 2SE0α
2J1(αu)

αu
(11.32)

である．ピーク利得 G(0)および開口能率 ηa は，ブロッキングがない場合の開口面積 S を
基準とすると，次式で与えられる．

G(0) = 4π
λ2
S2(1 − α2)2

S
= 4π S

λ2 (1 − α2)2, ηa = (1 − α2)2 (11.33)

図 11.5（α = 0.1）および図 11.6（α = 0.2）に示される放射パターンの計算結果から，ブ
ロッキングの主な影響は以下の 3点に要約される．

*1 ベッセルの不定積分公式ˆ
J0(uρ)ρdρ = ρ

u
J1(uρ) (11.29)
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図 11.5. ブロッキング半径比 α = 0.1 のときのユニバーサルパターン

図 11.6. ブロッキング半径比 α = 0.2 のときのユニバーサルパターン

1. 利得の低下：開口面積が物理的に減少するため，メインローブのピークレベルが低下
する．

2. 第 1サイドローブの上昇：ブロッキング領域が，それ自身広い放射パターンを持つ小
さな二次放射源として作用する．ブロッキングがない場合のパターンからこの二次放
射源のパターンを「差し引く」ことで全体のパターンが形成される．主開口の第 1サ
イドローブは主ローブと逆位相（負）であり，二次放射源のパターンは同位相（正）
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であるため，引き算（負の成分から正の成分を引く）の結果，建設的な干渉（強め合
い）が生じ，第 1サイドローブのレベルが上昇する．

3. 第 2以降のサイドローブの変化：第 2サイドローブは主ローブと同位相（正）である
ため，二次放射源のパターンを差し引くと破壊的な干渉（弱め合い）となりレベルが
低下する．このように，ブロッキングは主開口のサイドローブの位相に応じて干渉す
るため，サイドローブレベルが交互に上昇・低下する．

このブロッキング問題を根本的に解決するために，オフセット形式のアンテナが用いら
れる．

11.4 オフセット 2枚反射鏡アンテナ

オフセット構成は，軸対称アンテナの性能劣化の主因である開口ブロッキングを排除する
ために設計される．この構成では，給電ホーンや副反射鏡が主反射鏡からの放射経路を遮蔽
しないように配置される．ブロッキング問題は解決されるものの，鏡面が非軸対称になるこ
とで，新たな課題として交差偏波成分の放射が生じる．本節では，オフセットアンテナの基
本構成を説明し，この不要な交差偏波成分を能動的に打ち消すための重要な設計条件を提示
する．

11.4.1 オフセットアンテナの構成と交差偏波消去条件

オフセット 2枚反射鏡アンテナ（カセグレンおよびグレゴリアン）の構成を，図 11.7に
示す．これらは，親となる軸対称なアンテナシステムの一部を切り出して構成したものであ
る．1次放射器，副反射鏡，およびその支持構造が主開口からの放射ビームの経路を一切妨
げないように配置されている．
単一のオフセット反射鏡は大きな交差偏波成分を発生させるが，2枚の反射鏡を組み合わ
せたシステムでは，副反射鏡で発生する交差偏波と主反射鏡で発生する交差偏波が互いに打
ち消し合うように設計することが可能である．幾何光学的な交差偏波消去条件は，副反射鏡
の離心率 ēを以下の式で規定する*2．

ē = δpe =
sin β

2

sin
(
α− β

2

) (11.34)

ここで，αは焦点軸（OF）とアンテナの主軸とのなす角，β は給電部から副反射鏡を見込
む円錐の中心軸と主軸とのなす角である．また，パラメータ pと δは鏡面の種類を統一的に

*2 田中宏和，水沢丕雄，“オフセット複反射鏡アンテナにおける交差偏波の消去,” 信学論 (B)，vol. 58-b，
no. 12，pp. 643–650（1975）．
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(a) オフセットカセグレンアンテナ (b) オフセットグレゴリンアンテナ

図 11.7. オフセット 2 枚反射鏡アンテナ

扱うためのもので，次のように定義する．

p =
{

1 (回転双曲面)
−1 (回転だ円面) , δ =

{
1 (凹面)

−1 (凸面)

さらに，一次放射器を複数配置してマルチビームを得るために，図 11.8に示すフロント
フィード・オフセットカセグレン（Front-Fed Offset Cassegrain, FFOC）アンテナが開発
されている*3．もちろん，１つの一次放射器を機械的に駆動すれば，鏡面系を動かさずに可
動ビームを得ることもできる．

11.5 2次曲面系の極形式

2次曲面系の極形式をまとめると，

r = X

1 + ē cos θ (11.35)

ここで，放物線の場合，

X ≡ 2fm, ē = 1 (11.36)

また，だ円および双曲線の場合，

X ≡ pδa(ē2 − 1) (11.37)

*3 牧野 滋，小林右治，浦崎修治，片木孝至，“フロントフィード・オフセットカセグレン形式マルチピーム
アンテナのピーム偏向特性,” 信学論 (B)，vol. J69-8, no. 11, pp. 1453–1461 (1986).

180



F1

F2

図 11.8. フロントフィード・オフセットカセグレン（Front-Fed Offset Cassegrain, FFOC）ア
ンテナ

これより，

∂r

∂θ
= ē sin θ

1 + ē cos θr = Xē sin θ
(1 + ē cos θ)2 (11.38)

11.6 まとめ

複反射鏡アンテナの理論と設計について，幾何光学的な観点から体系的に解説した．ま
ず，基本構成である軸対称アンテナ（グレゴリアンおよびカセグレン）の原理を導出し，そ
の特徴を明らかにした．特に，性能限界である開口ブロッキングが利得低下とサイドローブ
上昇を引き起こすことを定量的に解析した．次に，このブロッキング問題を根本的に解決す
るオフセット構成について示した．オフセット化は交差偏波という新たな課題を生むが，交
差偏波消去条件を満たす鏡面系の設計が行えることを示した．
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11.7 問題

�問題 11-1. 式 (11.27)を導出せよ．

�問題 11-2. 式 (11.28)を導出せよ．

�問題 11-3. 軸対称 2 枚反射鏡アンテナにおいて，Ds/D = 0.15のとき（Dは主反射鏡の
開口径，Ds は副反射鏡の開口径），副反射鏡のブロッキングが放射特性に及ぼす影響につい
て論ぜよ．

�問題 11-4. オフセット 2枚反射鏡アンテナの特徴について，図示して説明せよ．
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CHAPTER 12

誘電体レンズおよびレドーム

誘電体レンズとレドームについて詳述します．まず，均質および不均質誘電体
レンズの設計原理，特に凸レンズ（双曲線レンズ）と凹レンズ（回転楕円面レン
ズ）の形状を光路長一定の条件から導出し，幾何光学的なエネルギー保存則を用
いて開口面における電界の振幅分布を求めます．また，レンズの軽量化を図るた
めのゾーニング技術，そしてルーネベルグレンズについても説明します．さら
に，誘電体境界面での平面波の反射係数・透過係数を解析し，無反射条件やブ
ルースター角について説明します．最後に，レーダー保護のためのレドームの種
類（単層，半波長板，サンドイッチ型）と，その無反射設計の原理を示し，アン
テナにおける電磁波の制御と整合層の役割を解説します．

12.1 はじめに

誘電体レンズとレドームに共通することは，誘電体の境界面における電波の反射と透過を
制御することにあります．誘電体レンズは，主に球面波を平面波に変換することでアンテナ
の利得を高める役割を担い，一方，レドームはアンテナを風雨などの外部環境から保護しつ
つ，電波の透過性能を最大限に維持する機能が求められます．ここでは，まず均質および不
均質誘電体レンズの設計原理について解説し，次にその性能を決定づける誘電体境界面での
反射・透過現象を数式モデルに基づいて詳細に解析します．最後に，これらの理論を応用し
たレドームの構造と特性について体系的に解説します．



12.2 均質誘電体レンズ

均質な誘電率を持つ材料で構成される誘電体レンズの基本的な設計手法について解説し
ます．アンテナとしてのレンズの主要な機能は，点波源から放射された球面波を，位相の
揃った平面波に変換することにあります．この機能を実現するための設計原理は，パラボラ
アンテナと同様に「光路長一定の条件」に基づいています．ここでは，この条件を用いてレ
ンズの曲面形状を導出し，その特性を明らかにします．

12.2.1 第 2面を平面とする凸レンズ

�設計原理の解説 レンズ第 2面を平面に固定した凸レンズの設計について考えます．この
設計の基本は，焦点 Fに置かれた一次放射器から出た波が，レンズの第 1面で屈折し，第 2
面を透過した後に，全ての光線が同相の平面波となるようにすることです．これを実現する
ため，「光路長一定の条件」を適用してレンズ第 1面の形状を決定します．

�光路長の定義 まず，基準となる中心軸（光軸）上の光路長を定義します．関連する変数
は次のとおりです．

• f(≥ 0)：焦点距離
• n = √

εr(≥ 1)：屈折率（εr は均質誘電体の比誘電率）
• t：中心軸上のレンズの厚み

�光路長一定条件式の導出 中心軸上において，焦点 Fからレンズ第 2面までの光路長は，
自由空間中の距離 f と誘電体中の光路長 nt の和，すなわち f + nt となります．次に，任
意の角度 θ 方向に進む光線の光路長を考えます．焦点 F からレンズ第 1 面までの距離を
r とすると，この区間の光路長は r です．レンズ内部を通過する物理的な距離は，図より
(f + t) − r cos θ となるため，この区間の光路長は n{(f + t) − r cos θ} となります．光路長
一定の条件から，これら 2つの光路長は等しくなければなりません．

f + nt = r + n{(f + t) − r cos θ}

この式を整理すると，次の関係式が導出されます．

(1 − n)f = r(1 − n cos θ) (12.1)

�レンズ形状の導出 式 (1)を，焦点 Fからレンズ第 1面までの距離 r について解くと，レ
ンズの曲面形状を表す次の式 (2)が得られます．この曲面は凸面であり，数学的には回転双
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図 12.1. 凸レンズ

曲面に相当するため，このレンズは「双曲線レンズ（hyperboloidal lens）」とも呼ばれます．

r = (n− 1)f
n cos θ − 1 （凸面，回転双曲面） (12.2)

�関連パラメータの計算式 レンズの具体的な寸法を決定するために，開口径を D，レンズ
の端を見込む角度（見込み角）を θ0 とすると，焦点距離 f は次式で計算できます．

f = n cos θ0 − 1
(n− 1) sin θ0

· D2 (12.3)

また，レンズ端部の厚みを t0 とした場合，レンズ中心の最も厚い部分の厚み t は次式で求
められます．

t = t0 + D

2 cot θ0 − f (12.4)

�双曲線パラメータとの関連付け 導出したレンズ形状が双曲線であることをより明確にす
るため，双曲線の標準的な極形式と比較します．離心率を e > 1，定数を a とした双曲線の
極形式は次式で与えられます．

r = (e2 − 1)a
e cos θ − 1 (> 0) (12.5)

式 (2)と式 (5)の形式を直接比較します．分母の n cos θ − 1 と e cos θ − 1 が対応すること
から，離心率 e は屈折率 n に等しいことがわかります．

e = n (12.6)

次に，分子を等しいとおくと (e2 − 1)a = (n − 1)f となります．この式に e = n を代入す
ると，(n2 − 1)a = (n− 1)f となります．n > 1 より n− 1 6= 0 であるため，両辺を n− 1
で割ると次式を得ます．

(e+ 1)a = f (12.7)
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よって，双曲線の定数 a はレンズのパラメータを用いて次のように表せます．

a = f

1 + e
= f

1 + n
(12.8)

これにより，レンズ第 1面の形状が数学的に双曲線であることが確認されました．ここで導
出したレンズ形状に基づき，次にこのレンズの開口面にどのような電界分布が形成されるか
を，幾何光学におけるエネルギー保存則を用いて解析します．

12.2.2 （双曲線）凸レンズの開口面分布

�解析手法の導入 ここでは，幾何光学におけるエネルギー保存の法則を用いて，レンズ透
過後の開口面における電界分布（開口面分布）を導出します．焦点に置かれた一次放射器か
らの放射パターン（一次パターン）と，レンズを透過した後の開口面分布の関係を明らかに
することが目的です．

�エネルギー保存則の定式化 一次放射器からの放射パターンを e−jkr

r E1(θ)，レンズ透過後
の開口面分布を E2(ρ) と定義します．エネルギー保存則は，一次放射器から放射された微
小立体角内のエネルギーが，レンズ透過後の対応する微小面積を通過するエネルギーに等し
いという考えに基づきます．これを数式で表すと次のようになります．∣∣∣∣∣E1(θ)

r

∣∣∣∣∣
2

dS1 = |E2(ρ)|2dS2 (12.9)

�面要素の定義 ここで，dS1 は焦点 Fを中心とする半径 r の球面上の微小面積要素，dS2

は開口面（平面）上の微小面積要素であり，それぞれ次式で定義されます．

dS1 = r2 sin θdθdφ, dS2 = ρdρdφ (12.10)

�分布関係式の導出 式 (9)に式 (10)を代入し，整理することで，一次パターンと開口面分
布の振幅の間に成り立つ関係式 (11)が得られます．

|E1(θ)|2 = |E2(ρ)|2 ρ

sin θ
dρ

dθ
(12.11)

�幾何学的関係式の導出 この関係式を解くためには，開口面上の半径 ρ と角度 θ の関係を
求める必要があります．レンズの幾何学的形状から，ρ = r sin θ であり，式 (2)の r を代入
すると次式が得られます．

ρ = r sin θ = (n− 1)f
n cos θ − 1 sin θ (12.12)
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これを θ で微分すると，dρ/dθ は次のようになります．

dρ

dθ
= r

n− cos θ
n cos θ − 1 (12.13)

� 開口面分布の最終形式 式 (12) と (13) を式 (11) に代入すると，次の関係式が得られ
ます．

|E1(θ)|2 = |E2(ρ)|2r · r n− cos θ
n cos θ − 1 (12.14)

これを |E2(ρ)| について解くと，開口面分布の振幅は次式で与えられます．

|E2(ρ)| = |E1(θ)|1
r

√
n cos θ − 1
n− cos θ (12.15)

�規格化された開口面分布 解析の一般性を高めるため，分布形状を評価する際には，開口
中心（ρ = 0, θ = 0）での値で規格化した相対的な分布が用いられます．開口中心では，レ
ンズの幾何学的関係から r = f となります．これらを式 (15)に代入すると，

|E2(0)| = |E1(0)| 1
f

√
n cos 0 − 1
n− cos 0 = |E1(0)| 1

f

√
n− 1
n− 1 = |E1(0)|

f

となります．したがって，規格化された開口面分布は次式で与えられます．∣∣∣∣∣E2(ρ)
E2(0)

∣∣∣∣∣ =
∣∣∣∣∣E1(θ)
E1(0)

∣∣∣∣∣ fr
√
n cos θ − 1
n− cos θ =

∣∣∣∣∣E1(θ)
E1(0)

∣∣∣∣∣ (n cos θ − 1)3/2

(n− 1)
√
n− cos θ

(12.16)

�具体例の提示 一次放射器の指向性として，実用的なモデルである E1(θ) = cosn θ を仮定
した場合，具体的な開口面分布は次のようになります．∣∣∣∣∣E2(ρ)

E2(0)

∣∣∣∣∣ = cosn θ (n cos θ − 1)3/2

(n− 1)
√
n− cos θ

(12.17)

凸レンズとは異なる構造を持つ凹レンズの設計原理について，次に解説します．

12.2.3 第 1面を球面とする凹レンズ

�設計原理の解説 次に，レンズの第 1面を球面とした凹レンズの設計原理を説明します．
焦点 Fを中心とする球面に第 1面を設計した場合，一次放射器からの光線は第 1面に垂直
に入射するため，この面では屈折しません．したがって，平面波を形成するための屈折はす
べて第 2面で行われます．ここでも光路長一定の条件に基づき，第 2面の形状を設計しま
す．なお，この場合の焦点距離 f は，焦点 Fからレンズ第 2面の頂点までの距離として定
義される点に注意が必要です．
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図 12.2. 凹レンズ

� 光路長一定条件式の導出 第 1 面の半径を r1，角度 θ 方向の第 2 面までの距離を r

とします．中心軸上の光路長は，自由空間部分 r1 と誘電体部分 n(f − r1) の和，すな
わち r1 + n(f − r1) となります．一方，角度 θ 方向の光路長は，自由空間部分 r1，誘
電体部分 n(r − r1)，そしてレンズ透過後の自由空間部分 (f − r cos θ) の和，すなわち
r1 + n(r − r1) + (f − r cos θ) となります．光路長一定の条件から，

r1 + n(f − r1) = r1 + n(r − r1) + (f − r cos θ)

この式を整理すると，半径 r1 の項が消去され，次の関係式が得られます．

(n− 1)f = r(n− cos θ) (12.18)

�レンズ形状の導出 式 (18)を r について解くと，レンズ第 2面の形状を表す式 (19)が得
られます．この曲面は凹面であり，数学的には回転だ円面に相当します．

r = (n− 1)f
n− cos θ （凹面，回転だ円面） (12.19)

�関連パラメータの計算式 開口径 D と見込み角 θ0 が与えられた場合，焦点距離 f は次
式で計算できます．

f = n− cos θ0

(n− 1) sin θ0
· D2 (12.20)

また，レンズ端部の厚み（r 方向）を t0 とした場合，レンズ中心の厚み t は次式で求めら
れます．

t = f − r1 = f − (r0 − t0) = t0 + f − D

2 sin θ0
(12.21)

�だ円パラメータとの関連付け このレンズ形状がだ円であることを示すため，だ円の極形
式と比較します．式 (19)を次のように変形します．

r =
n−1
n f

1 − 1
n cos θ

=
( 1
n − 1)f

1
n cos θ − 1

≡ (e2 − 1)a
e cos θ − 1 (12.22)
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だ円の極形式（式 (5)と同じ形式で，離心率は 0 < e < 1）と比較することで，離心率 e と
定数 a が次のように求められます．

e = 1
n

(12.23)

分子を比較すると (e2 − 1)a = ( 1
n − 1)f となり，(e+ 1)a = f が導かれます．よって，

a = f

1 + e
= f

1 + 1
n

= nf

1 + n
(12.24)

屈折率 n > 1 なので離心率 e = 1/n は 0 < e < 1 を満たし，この曲面がだ円であることが
確認できます．これまでに解説した 2 種類の均質誘電体レンズの具体的な形状例を次に示
し，視覚的な理解を深めます．

12.2.4 均質誘電体レンズアンテナの例

図 12.3は，指定されたパラメータ（見込み角半値 θ0 = 30◦，比誘電率 εr = 2.25 すなわ
ち屈折率 n = 1.5）で設計された 2種類の均質誘電体レンズの形状を示しています．左が第
2面を平面とする凸レンズ（双曲線レンズ），右が第 1面を球面とする凹レンズ（だ円面レ
ンズ）を示し，レンズ端部の厚みは両方とも D/100（Dは開口径）としている．

Rays=61, Edge T=3.0mm

Inner Surface
Outer Surface
Focus F

Inner Surface
Outer Surface
Focus F

(a) 双曲線（平面）凸レンズ (b) だ円面（球面）凹レンズ

図 12.3. 誘電体レンズ（見込み角半値 θ0 = 30◦，比誘電率 εr = 2.25）

12.2.5 ゾーニング

�ゾーニングの目的と原理 誘電体レンズは，特に波長が長いマイクロ波帯などで使用する
場合，大型化し重量が増すという実用上の課題があります．この問題を解決する手法の一つ
が「ゾーニング」です．その原理は，レンズの厚みを部分的に削減しても，開口面における
位相の均一性を保つというものです．具体的には，光路長が波長 λ0 の整数倍に相当する分
だけレンズの厚みを削っても，開口面での位相は 360°の整数倍だけ変化するため，結果的
に等価な位相分布が得られるという性質を利用します．
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�ステップ幅の導出 ゾーニングによって生じるきざみ幅（ステップ幅）を l とします．こ
の厚み l の誘電体部分を空気で置き換えたとき，両者の光路長の差が波長 λ0 の整数 i 倍に
なれば，位相は等価となります．この条件は nl = l + λ0 · i と表され，これを l について解
くと，ステップ幅は次のように求められます．

l = iλ0

n− 1 (i = 1, 2, . . . ) (12.25)

�効果の補足 ゾーニングには，重量を軽減するだけでなく，誘電体内を電波が通過する距
離が短くなるため，誘電体による損失（誘電体損）を低減する効果もあります．ただし，波
動的な観点からは，ゾーニングによって生じる不連続なステップ部分で電波の散乱が発生
し，サイドローブの増加や利得のわずかな低下を招く可能性があるため，設計上のトレード
オフが存在します．

�計算例 図 12.5は，ゾーニング誘電体レンズの計算例を示したもので，周波数 20 GHz，
自由空間波長で規格化した開口径D/λ = 20，見込み角半値 θ0 = 30◦，比誘電率 εr = 2.25，
レンズ端部の厚み 3 mmとし，ゾーニングするときの誘電体厚みの最小値を 10 mmに設定
している．

12.3 不均質誘電体レンズ

内部の誘電率が一定ではなく，場所によって連続的に変化する不均質誘電体を用いたレン
ズについて解説します．特に，広角走査アンテナとして優れた特性を持つ球形の「ルーネベ
ルグレンズ」に焦点を当て，その独自の構造と動作原理の重要性を説明します．

図 12.4. ゾーニング
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Ray Length from Unzoned Center = 0.2*Diameter

Inner Surface
Outer Surface
Focus F

Inner Surface
Outer Surface
Focus F

(a) 双曲線（平面）凸レンズ (b) 球面（だ円）凹レンズ

図 12.5. ゾーニング誘電体レンズ（見込み角半値 θ0 = 30◦，比誘電率 εr = 2.25，波長で規格化した
開口径 D/λ = 20）

12.3.1 ルーネベルグレンズ

�構造の定義 ルーネベルグレンズは球形の不均質誘電体であり，その比誘電率 εr が，球
の中心からの距離を球の半径 R0 で規格化した半径 r(= R/R0)（ただし 0 < r < 1）に対
して，次の関係式で変化するように設計されています．

εr = 2 − r2 (1 ≤ εr ≤ 2) (12.26)

�動作原理の解説 この特定の誘電率分布を持つことにより，ルーネベルグレンズは特異な
性質を示します．レンズ表面の一点に一次放射器（点波源）を置くと，そこから放射された
波はレンズ内部で屈折を繰り返し，レンズを透過する際には平行な平面波となって放射され
ます．

�利点の評価 ルーネベルグレンズは，実用上，他のアンテナ形式では実現が難しい優れた
利点を持ちます．

図 12.6. ルーネベルグレンズの原理
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• 広角走査: 一次放射器の位置をレンズの球表面上で移動させるだけで，アンテナ本体
を機械的に動かすことなく，ビームの放射方向を広範囲にわたって走査（スキャン）
することが可能です．

• マルチビーム: レンズ表面に複数の一次放射器を配置することで，それぞれが対応す
る方向に独立したビームを同時に複数形成することができます．

これらの利点は，反射鏡アンテナでは実現が困難な，レンズアンテナ特有の優れた機能と言
えます．

12.3.2 整合層

�問題提起 誘電体レンズの表面では，レンズを構成する誘電体と自由空間（空気）との間
でインピーダンスの不整合が生じます．これにより電波の一部が反射され，この反射波はア
ンテナの利得低下や，不要なサイドローブの発生といった放射パターンの劣化を引き起こす
原因となります．

�解決策の提示 この問題を軽減するために，レンズ表面には「整合層」と呼ばれる薄い誘
電体の層が設けられます．最も基本的な整合層の設計は，伝送線路理論で学ぶ 1/4波長イ
ンピーダンス変成器の原理を，自由空間中の平面波に直接応用したものです．具体的には，
屈折率が

√
n（n はレンズ本体の屈折率），厚さがその媒質中での波長（レンズ内波長）の

1/4となるような誘電体層をレンズ表面に設けることで，反射を大幅に抑制することができ
ます．

� 課題の言及 誘電体レンズは優れた電気的特性を持つ一方で，全般に共通する課題とし
て，重量が大きくなりがちな点，材料によっては耐熱性や耐候性に制約がある点などが挙げ
られます．整合層の原理をより深く理解するためには，その基礎となる誘電体境界面におけ
る平面波の反射と透過のメカニズムを理解することが不可欠です．次に，この現象について
詳細な数式を用いて解析します．
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12.4 誘電体境界面による反射・透過

誘電体レンズやレドームの性能を理解する上で不可欠な，異なる媒質の境界面における平
面波の振る舞いを解析します．電磁波が誘電体の境界に入射すると，一部は反射され，一部
は透過します．ここでは，入射する電磁波を電界の向きによって TE波と TM波に分解し，
それぞれの反射係数と透過係数を導出するプロセスを概説します．

12.4.1 境界面での反射・透過の基本

�スネルの法則 屈折率の異なる 2つの媒質（領域 1, 2）が z = 0 の平面で接しているとし
ます．この境界面において，接線方向の電磁界の連続条件が任意の場所で成り立つため，入
射角 θ1 と透過角（屈折角）θ2 の間には次の関係，すなわちスネルの法則が成り立ちます．

k1 sin θ1 = k2 sin θ2 (12.27)

(1) (2) 

k1 k2 

z = 0

図 12.7. 境界面での反射・透過

� 相対屈折率の導入 解析を簡便にするため，媒質 1 に対する媒質 2 の相対屈折率を
n ≡ k2/k1 と定義します．スネルの法則を用いると，透過角の余弦 cos θ2 は，入射角 θ1 と
相対屈折率 n を用いて次のように表すことができます．

cos θ2 =
√

1 − sin2 θ2 =

√√√√1 −
(

sin θ1

n

)2

= 1
n

√
n2 − sin2 θ1 (12.28)
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�TE/TM波分解の意義 一般の平面波を解析する際，入射する平面波を入射面（入射方向
と境界面の法線がなす面）に対して電界が垂直な TE波（垂直偏波）と，磁界が垂直なTM
波（平行偏波）の 2つの成分に分解する手法が極めて有効です．この分解により，境界条件
を満たすための連立方程式が TE波と TM波でそれぞれ独立に解けるようになり，解析が
大幅に簡略化されます．

12.4.2 反射係数・透過係数

境界面での接線電磁界の連続条件を解くことで，各偏波に対する反射係数と透過係数が得
られます（導出過程は省略）．TE波（垂直偏波）に対する反射係数 R⊥ と透過係数 T⊥ は，
次の式で与えられます．

R⊥ =
µ2 cos θ1 − µ1

√
n2 − sin2 θ1

µ2 cos θ1 + µ1

√
n2 − sin2 θ1

(12.29)

T⊥ = 2µ2 cos θ1

µ2 cos θ1 + µ1

√
n2 − sin2 θ1

(12.30)

同様に，TM 波（平行偏波）に対する反射係数 R‖ と透過係数 T‖ は，次の式で与えられ
ます．

R‖ = −
n2µ1 cos θ1 − µ2

√
n2 − sin2 θ1

n2µ1 cos θ1 + µ2

√
n2 − sin2 θ1

(12.31)

T‖ = 2nµ2 cos θ1

n2µ1 cos θ1 + µ2

√
n2 − sin2 θ1

(12.32)

12.4.3 反射電力・透過電力

�電力の定義 入射電力を 1としたとき，反射される電力の割合（反射電力 Pr）は，単純に
反射係数の絶対値の 2乗で与えられます．

Pr = |R|2 (12.33)

�透過電力の導出 一方，透過電力は，異なる媒質へエネルギーが伝搬するため，単純に透
過係数の絶対値の 2 乗とはなりません．媒質間の特性アドミタンス比と角度依存性を考慮
すると，透過電力は次式で計算されます．

Pt = Yw2

Yw1
|T |2 cos θ2

cos θ1
= µ1

µ2

√
n2 − sin2 θ1

cos θ1
|T |2 (12.34)
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�特殊な場合の簡略化 レドームのように，入射側の領域と最終的な透過側の領域が同じ媒
質（例えば，両側とも自由空間）である場合，電力の計算は簡略化され，透過電力は透過係
数の絶対値の 2乗に等しくなります．

Pt = |T |2 (12.35)

12.4.4 非磁性体媒質の場合

�式の簡略化 アンテナ工学で扱う多くの誘電体は非磁性体であり，透磁率が自由空間のそ
れと等しい（µ1 = µ2）と仮定できます．この仮定の下では，反射・透過係数の式は次のよ
うに簡略化されます．

R⊥ =
cos θ1 −

√
n2 − sin2 θ1

cos θ1 +
√
n2 − sin2 θ1

, T⊥ = 2 cos θ1

cos θ1 +
√
n2 − sin2 θ1

(12.36)

R‖ = −
n2 cos θ1 −

√
n2 − sin2 θ1

n2 cos θ1 +
√
n2 − sin2 θ1

, T‖ = 2n cos θ1

n2 cos θ1 +
√
n2 − sin2 θ1

(12.37)

�垂直入射の解析 最も基本的なケースとして，境界面に垂直に入射する場合（θ1 = 0）を
考えます．このとき，入射面の定義ができないため TE波と TM波の区別がなくなり，両
者の係数は一致します．

R⊥|θ1=0 = R‖|θ1=0 = −n− 1
n+ 1 , T⊥|θ1=0 = T‖|θ1=0 = 2

n+ 1 (12.38)

このときの電力は次のようになります．

Pr|θ1=0 = |R|2|θ1=0, Pt|θ1=0 = n|T |2|θ1=0 (12.39)

係数の式を詳しく見ると，特定の条件下で反射がゼロになる「無反射条件」が存在すること
がわかります．次に，特に TM波に特有の現象であるブルースター角について詳しく解説
します．

12.4.5 無反射条件とブルースター角

�TM 波の無反射条件 TM 波の反射係数 R‖ がゼロになる条件，すなわち分子がゼロ
になる条件 n2 cos θ1 −

√
n2 − sin2 θ1 = 0 を求めます．両辺を 2 乗して整理すると，

(n2 − 1){(n2 + 1) cos2 θ1 − 1} = 0 という関係式が導かれます．

�ブルースター角の導出 この式が成立するためには，n2−1 = 0または (n2+1) cos2 θ1−1 =
0 のいずれかが満たされる必要があります．第一の条件から n = ±1 が得られます．物理
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的に意味のある相対屈折率は n > 0 であるため，この条件は n = 1 となり，これは媒質が
同じで反射がない自明な場合に相当します．第二の条件から n2 = tan2 θ1 が導かれます．
よって，無反射条件は次のようになります．

n = 1, tan θ1 = n (12.40)

後者の条件 n = tan θ1 を満たす入射角 θ1 は「ブルースター角」と呼ばれ，TM波にのみ存
在する固有の重要な特性です．

� 具体例の提示と物理的意義 例えば，相対屈折率が n = 2 の場合，ブルースター角は
θ1 = arctan(2) ≈ 63.4◦ です．この特定の角度で TM波を入射させると，反射が全く起こら
ず，入射したエネルギーのすべてが媒質内に透過します．

�透過角との関係 ブルースター角で入射した際の透過角 θ2 は，スネルの法則とブルース
ター角の条件から cos θ1 = sin θ2 が導かれます．0 < θ1, θ2 < π/2 の範囲では，この関係は
以下を意味します．

θ2 = π/2 − θ1 (12.41)

�TE 波の無反射条件 同様に，TE 波の反射係数 R⊥ がゼロになる条件は cos θ1 =√
n2 − sin2 θ1 であり，これを解くと n2 = 1 が得られます．相対屈折率 n > 0 より，
無反射条件は次式のみとなります．

n = 1 (12.42)

これは，異なる媒質間（n 6= 1）では，TE波の反射をゼロにするような特別な入射角は存
在しないことを意味します．

�特性の比較と評価 TM波にのみブルースター角が存在するという事実は，偏光特性を利
用した光学デバイス（例：偏光子）の設計原理となるなど，物理的に非常に重要な現象で
す．図 12.8は，相対屈折率 n = 3 の場合の反射・透過係数の入射角依存性を示しています．
TM波（平行偏波）の反射係数が約 71.6°で急激にゼロ（-∞ dB）に落ち込んでいる点がブ
ルースター角です．位相特性を見ると，ブルースター角を境に TM波の反射係数の位相が
180°急変しており，反射波の電界の向きが反転することを示唆しています．

12.5 単層誘電体板における反射・透過

実際のレンズやレドームは有限の厚みを持つ「板」としてモデル化できます．このような
構造では，表面と裏面の 2つの境界面が存在し，それらの間の多重反射を考慮する必要があ
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ります．ここでは，この多重反射を考慮した反射係数，透過係数を導出し，無反射条件につ
いて議論します．

12.5.1 全体の反射・透過係数

領域 (1) と (3) の間に，厚さ d の誘電体板である領域 (2) が存在する 3 層構造を考えま
す．2つの境界面（z = 0 と z = d）での電磁界の連続条件を考慮し，多重反射の無限級数
和を計算することで，全体の反射係数 R と透過係数 T が得られます（導出は省略）．

R = R11 −R33e
−j2kz2d

1 −R11R33e−j2kz2d
, T = (1 −R11)(1 −R33)

1 −R11R33e−j2kz2d
e−jkz2d (12.43)

上式において，R11 は領域 (1)から領域 (2)への入射に対する単一境界面での反射係数，R33

は領域 (3)から領域 (2)への入射に対する反射係数，kz2 は領域 (2)における z 方向の波数
成分です．

R11 = Y1 − Y2

Y1 + Y2
, R33 = Y3 − Y2

Y3 + Y2
, kz2 = k2 cos θ2 (12.44)
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図 12.8. 誘電体による反射・透過（相対屈折率 n = 3, εr1 = 1, εr2 = 9）
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図 12.9. 単層誘電体板

偏波を考えて，

R11,⊥ = µ2 cos θ1 − nµ1 cos θ2

µ2 cos θ1 + nµ1 cos θ2
, R11,‖ = −nµ1 cos θ1 − µ2 cos θ2

nµ1 cos θ1 + µ2 cos θ2
(12.45)

R33,⊥ = µ2 cos θ3 − n′µ3 cos θ2

µ2 cos θ3 + n′µ3 cos θ2
, R33,‖ = −n′µ3 cos θ3 − µ2 cos θ2

n′µ3 cos θ3 + µ2 cos θ2
(12.46)

ここで，

n = k2

k1
, n′ = k2

k3
(12.47)

k1 sin θ1 = k2 sin θ2 = k3 sin θ3 (12.48)
sin θ1

n
= sin θ2 = sin θ3

n′ (12.49)

cos θ2 = 1
n

√
n2 − sin2 θ1 (12.50)

cos θ3 = 1
n′

√
n′2 − sin2 θ2 = 1

n

√
n2 − n′2 sin2 θ1 (12.51)

12.5.2 無反射条件（非対称構造）：整合層の原理

�無反射条件の探求 全体の反射係数 R がゼロになる条件 R11 −R33e
−j2kz2d = 0 を考えま

す．無損失媒質を仮定すると，この複素方程式の実部と虚部がそれぞれゼロになる必要があ
り，次の 2つの条件式が同時に満たされなければならないことが導かれます．

cos(kz2d) = 0, Y1Y3 − Y 2
2 = 0 (12.52)
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�整合層の条件式 上記の 2つの条件を，層の特性アドミタンス Y2 と厚み d について解く
と，無反射を実現するための条件として次の式が得られます．

Y2 =
√
Y1Y3 (12.53)

d = λ2

4
1

cos θ2
(12.54)

�物理的解釈と評価 これらの条件式は，まさに「整合層」の設計原理そのものです．条件
式 (12.53)は，整合層の特性アドミタンスが，接続する 2つの媒質のアドミタンスの幾何平
均になるべきことを示しています．条件式 (12.54)は，層の厚みが，その媒質中を伝搬する
波にとって 1/4波長に相当する光路長を持つべきことを示しています．

� 垂直入射の場合の具体化 特に重要なケースである垂直入射（θ2 = 0）の場合，厚みは
d = λ2/4 となります．

d = λ2

4 (12.55)

また，非磁性体媒質であれば，比誘電率に関する条件は εr2 = √
εr1εr3 となります．

εr2 = √
εr1εr3 (12.56)

図 12.10は，整合条件を満たす層で接続した例です．垂直入射 (0 deg)付近では反射が非常
に小さく，整合層が有効に機能していることがわかります．また，周波数特性は，設計周波
数である 10 GHzで反射が最小となる，典型的な 1/4波長変成器の特性を示しています．

12.5.3 無反射条件（対称構造）：半波長板の原理

�構造の定義 次に，領域 (3)が領域 (1)と同じ媒質である「対称構造」，例えば自由空間中
に置かれた単一の誘電体板を考えます．この場合，k1 = k3, Y1 = Y3, R11 = R33 となり，全
体の反射・透過係数の式は次のように簡略化されます．

R = R11(1 − e−j2kz2d)
1 −R2

11e
−j2kz2d

, T = 1 −R2
11

1 −R2
11e

−j2kz2d
e−jkz2d (12.57)

�無反射条件の探求 この構造で反射係数 R = 0 となる条件は，分子がゼロになるとき，す
なわち次のいずれかが満たされる場合です．

R11 = 0, または 1 − e−j2kz2d = 0 (12.58)
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図 12.10. 整合層による反射・透過（f0 = 10 GHz, εr1 = 1, εr2 = 3, εr3 = 9）

�物理的解釈と評価 R11 = 0 は，単一境界面で反射が起こらないことを意味し，TM波に
おけるブルースター角に相当します．一方，1 − e−j2kz2d = 0 は，位相項が 2kz2d = 2Nπ
(N は整数) となることを意味します．物理的には，これは板の第 1面（z = 0）で反射した
波と，第 1面を透過し第 2面（z = d）で反射した後，再び第 1面から領域 (1)へ透過して
くる波が，互いに逆位相となって打ち消し合う干渉条件に相当します．この条件を満たす厚
み d は次式で与えられます．

d = Nλ0

2
√
εr2 − sin2 θ1

(N = 0, 1, 2, . . . ) (12.59)

�半波長板の原理 特に N = 1で垂直入射の場合，厚み d は媒質内波長 λ2 の半分 (λ2/2)
となります．この原理を用いた板は「半波長板」として知られており，レドーム設計におい
て重要な役割を果たします．これまでに確立した反射・透過の理論は，アンテナを物理的に
保護する「レドーム」の設計に直接応用されます．次のセクションでは，様々な種類のレ
ドームの構造と特性について解説します．
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12.6 レドーム

レドーム（radome）という名称は，レーダー（radar）を保護するドーム（dome）に由来
し，アンテナを風雨，雪，氷などの厳しい外部環境から保護する役割を果たします．単なる
物理的なカバーではなく，内部のアンテナの電気的性能を損なわないよう，電波を高い効率
で透過させることが求められる構造物であり，その設計にはこれまで議論してきた無反射条
件の理論が応用されます．

12.6.1 レドームの種類

レドームは，その構造によって大きく次のように分類されます．

• 単層レドーム (Single-layer radome)
– 低誘電率単層レドーム
– 薄壁レドーム (N = 0 に相当)
– 半波長板レドーム (N = 1 に相当)

• サンドイッチ型レドーム (Sandwich-type radome)
• その他 (例：金網を用いるレドーム)
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図 12.11. 半波長誘電体板による反射・透過（f0 = 10 GHz, εr1 = εr3 = 1, εr2 = 2.25）
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12.6.2 半波長誘電体板レドーム

対称構造における無反射条件式 (12.59)で次数を N = 1 としたものが，半波長板レドー
ムの基本原理です．板の厚みを，通過する電波の媒質内波長の半分に相当する光路長に設計
することで，表面と裏面からの反射波が互いに打ち消し合い，結果として高い透過率を実現
します．図 12.11の例では，設計周波数 10 GHzの垂直入射 (0 deg)で反射が最小になって
います．入射角が大きくなるにつれて反射は増加し，特に TE波（垂直偏波）でその傾向が
顕著です．

12.6.3 サンドイッチ型レドーム

サンドイッチ型レドームは，コアと呼ばれる中心層と，それを両側から挟む 2 枚の表皮
（スキン層）からなる 3層構造です．この構造には，主に 2つの異なる設計思想が存在しま
す．一つは，2枚の薄い表皮からの反射波の打ち消しを利用する「薄皮サンドイッチ型」で
あり，もう一つは，各境界面での反射そのものを抑制するインピーダンス整合の原理を応用
した「1/4波長表皮サンドイッチ型」です．
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図 12.12. 薄皮サンドイッチ型（f0 = 10 GHz, εr1 = εr3 = 4, εr2 = 1.15）
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�薄皮サンドイッチ型 このタイプの設計思想は，強度と軽量化，そして低反射を両立させ
ることにあります．中心のコア層には，ハニカム構造のような軽量で誘電率が低い材料を用
い，外側の表皮層には，機械的強度に優れた高誘電率の材料を非常に薄くして使用します．
電気的には，2枚の薄い表皮からの反射波が，コア層の厚みを調整することによって互いに
打ち消し合うように設計されています．図 12.12の例では，半波長板に比べて，より広い入
射角範囲で低い反射を維持する「広角特性」が改善される場合があります．

�1/4 波長表皮サンドイッチ型 このタイプの設計思想は，4.2 節で解説した非対称構造に
おける整合層の原理を応用したものです．コア材料と自由空間との間のインピーダンスの不
整合を解消するために，表皮層を 1/4 波長変成器として機能するように設計します．つま
り，表皮の比誘電率をコアと自由空間の比誘電率の幾何平均に近づけ，その厚みを 1/4 波
長とすることで，各境界面での反射を積極的に抑制します．図 12.13 の例より，設計周波
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図 12.13. 1/4 波長表皮サンドイッチ型（f0 = 10 GHz, εr1 = εr3 = 3, εr2 = 9）

数 10 GHzの周辺で反射が小さい帯域が非常に広いことがわかります．この原理は多層化す
ることでさらなる性能向上が可能であり，高性能なレドームやレンズの整合層に応用され
ます．
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12.7 問題

�問題 12-1. レンズ第 2面を平面とする凸レンズ（双曲線レンズ）とレンズ第 2面を球面
とする凹レンズ（だ円面レンズ）の形状と光線を，次の条件で作図せよ．

• 比誘電率 εr = 2.25
• 見込み角半値 θ0 = 36◦

• 自由空間波長で規格化したレンズ開口径 D/λ0 = 20
• レンズ端部の厚み t0 = D/100
• 焦点から描く光線の角度間隔 1◦

�問題 12-2. 問題 12-1で求めたレンズを基にしてゾーニングレンズを次の条件で設計し，
レンズ形状を作図せよ．

• 比誘電率 εr = 2.25
• 見込み角半値 θ0 = 36◦

• 周波数 20 GHz
• 自由空間波長で規格化したレンズ開口径 D/λ0 = 20
• レンズ端部の厚み t0 = D/100
• ゾーニングのときの誘電体厚みの最小値は 10 mm

�問題 12-3. 比誘電率 4の無損失誘電体からなる（単層）半波長板の反射係数・透過係数
の入射角特性を求めよ．

�問題 12-4. 比誘電率 4の無損失誘電体からなる（単層）半波長板の反射係数・透過係数
の周波数特性を求めよ．
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CHAPTER 13

小形アンテナ

逆 L アンテナや八木・宇田アンテナといった線状素子，ならびにスロットア
ンテナやマイクロストリップアンテナのような磁流素子など，代表的な小形アン
テナを取り上げ詳述します．各形式について，電流分布や放射パターン，影像法
を用いた考え方を説明します．また，漏えい波アンテナについても，設計に不可
欠な複素伝搬定数や減衰定数を説明し，主ビーム方向を理論的に解析します．全
体として，小形アンテナの放射原理や設計を行うための基礎的事項を解説してい
ます．

13.1 電流素子による放射

アンテナ工学の基本素子である微小電流素子（ダイポール）や，その応用である半波長ダ
イポールアンテナの概念を起点として，そこから派生する様々なアンテナ設計について解説
する．これらのアンテナは，基本的なダイポール構造に変更を加えることで，小形化，特定
方向への指向性の強化，あるいは放射パターンの制御といった特定の性能を実現するもので
ある．最初の例として，高さを抑えるために考案された逆 Lアンテナから見ていく．

13.1.1 逆 Lアンテナ

逆 Lアンテナ (Inverted L Antenna)は，半波長モノポールアンテナを変形させた構造を
持つ．半波長モノポールアンテナ自体は，完全導体平面（大地）上に垂直に立てた 1/4波長
の素子であり，影像法により仮想的な下半分の素子を考えることで，空間的には半波長ダイ
ポールアンテナとして動作する．逆 Lアンテナは，この垂直なモノポールアンテナの先端



を水平に折り曲げることで，アンテナ全体の高さを物理的に低減させることを目的として
いる．
形状は L字を逆さにしたものとなるが，アンテナ上の電流分布は元の直線状アンテナと
大きくは変わらない．すなわち，給電点に近い中央部で電流が最も強く，先端に向かうにつ
れて弱くなる．放射特性は主に電流の強い部分によって決まるため，逆 Lアンテナは形状
が変化しても，本質的には半波長アンテナと同様の放射特性を示す．この低姿勢化は，筐体
内部にアンテナを収めるための初期の代表的な技術である．

13.1.2 反射板付きダイポールアンテナ

半波長ダイポールアンテナの背後に導体板（反射板）を設置すると，アンテナの放射特性
を大きく変化させることができる．影像法によれば，導体板の背後に，元のアンテナとは逆
位相の電流が流れる鏡像（イメージ）アンテナが仮想的に存在すると考えることができる．
これにより，実際のアンテナと鏡像アンテナからなる 2素子アレーアンテナが形成される．
このアンテナの放射パターンは，ダイポールと反射板の距離 S によって決まる．

• 前方への放射を強める場合（エンドファイア放射），ダイポールからの直接波と反射
板からの反射波が同相になるように距離 S を設定する．鏡像電流は元々逆位相であ
るため，前方で同相になるためには，経路差 2S が半波長（λ/2），すなわち S = λ/4
となるのが理想的である．このとき，逆位相の電流が半波長の遅延を経て同相とな
り，前方に強いビームが形成される．なお，距離をさらに近付ける（例えば S = λ/8）
と，ビームはより広くなる傾向がある．

• 一方，経路差 2S が一波長（λ），すなわち S = λ/2 の場合を考える．このとき，元々
逆位相の電流がさらに一波長分の遅延を受けるため，前方では逆位相のままとなり，
互いに打ち消し合ってヌル（放射の極小点）が生じる．

このように，アレーアンテナにおける素子間隔の調整が，ビームの方向や放射パターンを制
御する上で極めて重要な役割を果たすことがわかる．

13.1.3 コーナリフレクターアンテナ

平面の反射板をある角度で折り曲げたコーナリフレクター (Corner Reflector) を用いる
ことで，より高い指向性を得ることができる．励振用のダイポールアンテナを，90度や 60
度に開いた導体板のコーナーに配置すると，影像法により複数のイメージアンテナが生成さ
れる．

• 90度コーナーリフレクター：励振素子に対して 3つのイメージアンテナが生成され
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る．これにより，合計 4素子のアレーアンテナと等価になる．電荷の場合は電気磁気
学の問題でも見られる*1．

• 60度コーナーリフレクター：励振素子に対して 5つのイメージアンテナが生成され，
合計 6素子のアレーアンテナと等価になる．

このように，イメージの数が増えることで実効的なアレーの素子数が多くなり，アンテナの
指向性（利得）は平面反射板の場合と比較して向上する．ただし，この解析は反射板が無限
に大きいという理想的な仮定に基づいている．実際のアンテナでは反射板の大きさは有限で
あるため，広角度方向では放射パターンが理想的な場合とは異なってくる．

13.1.4 八木・宇田アンテナ

八木・宇田アンテナ (Yagi-Uda Antenna)*2は，単純な構造ながら高い利得を実現するア
ンテナであり，その動作原理は比較的複雑である．アンテナは，給電線が接続された一つの
「放射器（ラジエータ）」，それよりわずかに長い一本の「反射器（リフレクタ）」，そして放
射器よりわずかに短い一本以上の「導波器（ディレクタ）」から構成される．給電されるの
は放射器のみであり，反射器と導波器は給電線に接続されない無給電素子である．
これらの無給電素子は，放射器からの電波を受けて電流が誘起され，その電流によって再
び電波を放射する．この再放射波と，放射器からの直接波との干渉を巧みに利用すること
で，一方向に非常に鋭いビームを形成する．

• 反射器：放射器より少し長く設計されている．これにより，誘起される電流の位相が
放射器の電流より遅れる．この位相の遅れと素子間隔による伝搬遅延が組み合わさ
り，アンテナの前方（導波器側）では放射器からの波と強め合い，後方では弱め合う
ように作用する．

• 導波器：放射器より少し短く設計されている．これにより，誘起される電流の位相が
進む．この位相の進みが，次々と後段の導波器へエネルギーを伝達し，電波を前方に
「引き出す」ように作用してビームを鋭く絞り込む．

発明当時の計算機環境で，このような高度なアンテナが考案・設計されたことは特筆に値す

*1 山田 直平，“電気磁気学,” 3 版改訂, 6.5 問題 10, p. 135, 電気学会 (2002).
*2 次のように，まず国内で発表 [1,2]，その後，海外で八木先生が発表 [3]．
• [1] S. Uda, ”On the wireless beam of short electric waves,” J. IEEJ, no. 450, p. 1128 (1925).
• [2] H. Yagi and S. Uda, ”Projector of the sharpest beam of electric waves,” Proc. Imperial Academy

Japan, vol. 2, no. 2, pp. 49–52 (1926).
• [3] H. Yagi, ”Beam Transmission of Ultra Short Waves,” Proc. IRE, vol. 16, no. 6, pp. 715–741

(1928), Reprint appeared in Proc. IEEE, vol. 72, no. 5, pp. 634–645 (1985).
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る．反射器と導波器の長さおよびそれらの間隔を精密に調整することで，各素子からの再放
射波の位相関係を最適化し，高い指向性を実現する．この画期的な発明は IEEE（米国電気
電子学会）によって歴史的偉業として認定されている．

13.1.5 垂直モードヘリカルアンテナ

垂直モードヘリカルアンテナ (Normal Mode Helical Antenna)は，半波長ダイポールや
モノポールアンテナの導体をらせん状（ヘリカル）に巻くことで，アンテナの物理的な長さ
を短縮する手法である．「垂直モード」（あるいはノーマルモード）という名称は，アンテナ
の放射がヘリカルの軸に対して垂直（Normal）な方向，すなわち元の直線状ダイポールア
ンテナと同様の方向に行われることに由来する．このアンテナの主な利点は，直線状アンテ
ナと類似した放射特性を維持しながら，その物理的寸法を大幅に小型化できる点にある．こ
れにより，スペースに制約のある機器への搭載が可能となる．

13.1.6 1波長ループアンテナ

ループアンテナには，ループのサイズが波長に比べて非常に小さい微小ループアンテナと，
ループの周長が 1 波長に等しい 1 波長ループアンテナ (One-Wavelength Loop Antenna)
があり，両者は動作原理も放射特性も全く異なる．

1波長ループアンテナの動作は，全長が半波長の平行二線式伝送線路の終端を短絡させた
ものを，円形に曲げたものとして理解することができる．終端が短絡された半波長伝送線路
上では，定在波が立ち，両方の導線に流れる電流は，線路の中央部で向きが逆転する．これ
を円形に曲げると，ループの上半分と下半分で電流が同じ方向に流れる分布となる．この結
果，1波長ループアンテナは，円弧状の 2つの半波長ダイポールアンテナが横に並び，同相
で駆動されている 2素子アレーアンテナと等価なものと見なせる．そのため，ループ面に垂
直な方向に最も強く放射し，微小ループ（磁気ダイポール）の放射パターンとは全く異なる
指向性を持つ．

13.2 磁流素子による放射

自然界には磁気モノポールは存在しないが，「磁流」という概念は，等価定理を用いて導
体上の開口面（アパーチャ）やスロットの電界から定義できる．これより，特定構造のアン
テナを，等価的な磁流が放射源であるかのようにモデル化して解析することが可能になる．
最初の例として，微小電流ループをこの観点から考察する．
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13.2.1 微小電流ループアンテナ

双対性（Duality）の原理を用いると，微小なループに流れる電流（微小電流ループ）は，
解析上，微小な磁気ダイポールと等価であると見なすことができる．磁気ダイポールは，
微小電気ダイポールの双対的な存在である．したがって，微小電流ループアンテナ (Small
Current Loop Antenna)が放射する電磁界は，微小電気ダイポールの電界と磁界を入れ替
えたものとなる．すなわち，電気ダイポールが作る電界 Eのパターンは磁気ダイポールが
作る磁界Hのパターンに，電気ダイポールの磁界Hのパターンは磁気ダイポールの電界 E
のパターンにそれぞれ対応する．この等価性は，磁流を放射源とするアンテナを理解するた
めの基本的な概念である．

13.2.2 方形マイクロストリップアンテナ

マイクロストリップアンテナ (Rectangular Microstrip Antenna)，いわゆるパッチアン
テナは，現代の通信機器で広く用いられている代表的な磁流素子アンテナである．その放射
メカニズムは以下のように分解して理解できる．

1. 物理構造：誘電体基板の片面に方形の金属導体（パッチ）が形成され，もう一方の面
は全面が導体（地導体板）で覆われている．

2. 放射原理：アンテナとして機能させるため，パッチの一辺の長さは，基板の誘電率を
考慮した波長（管内波長 λg）の約半分（λg/2）に設計される．給電されると，パッ
チと地導体板の間には定在波が立ち，パッチの開放端である 2つの辺（放射エッジ）
で電界が外部空間に漏れ出す（フリンジング電界）．放射は主にこのフリンジング電
界によって生じる．

3. 等価定理の適用：等価定理（Jm = E × n）によれば，この 2つの放射エッジに存在す
る接線方向の電界は，それぞれ等価的な磁流に置き換えることができる．2つのエッ
ジの電界 Eは互いに逆向きであるが，計算に用いる境界面の法線ベクトル nも逆向
きとなるため，結果として 2つの等価磁流は平行かつ同相となる．

4. 解析モデル：したがって，方形マイクロストリップアンテナは，2つの磁流素子（ス
ロット）が平行に並んだ 2素子アレーアンテナとして解析することができる．

5. 給電方式：給電方法には，裏面から同軸ケーブルの芯線を直接パッチに接続する「同
軸給電」，パッチと同じ平面上のマイクロストリップ線路から給電する「インセット
給電」，地導体板に設けたスロットを介して裏面の線路から電磁界結合で給電する
「電磁結合給電」など，様々な方式がある．
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13.2.3 板状逆Fアンテナ

板状逆 Fアンテナ (Planar Inverted-F Antenna, PIFA）*3は，マイクロストリップアンテ
ナの代表的な小形化技術であり，以下のような手順で導出される．

1. 標準的な半波長（λ/2）のパッチアンテナでは，電界（電圧）の定在波分布は両端で
最大，中央でゼロとなる．

2. 電圧がゼロである中央点では，パッチと地導体板の電位差がない．したがって，この
点を導線（ショーティングピン）で地導体板に短絡しても，元の電磁界分布はほとん
ど乱されない．

3. 中央点が短絡されたことで，アンテナの片側半分を切り取っても，残りの部分でアン
テナとして動作させることが可能になる．

4. この結果，元の半分の長さ，すなわち 1/4波長（λ/4）で共振する構造が得られる．
その形状がアルファベットの「F」を逆さにしたように見えることから，逆 Fアンテ
ナと呼ばれる．

13.2.4 スロットアンテナ

スロットアンテナ (Slot Antenna)は，双対性の原理に基づいて理解される．無限に広い
導体板に，長さが半波長（λ/2）の細い長方形の開口（スロット）を設けたものが，半波長
スロットアンテナである．この構造は，導体部分と何もない空間部分を入れ替えると，半波
長ダイポールアンテナになる「相補的な構造」である．したがって，半波長スロットアンテ
ナの放射パターンは，半波長ダイポールアンテナのそれと全く同じ形状を持つが，電界と磁
界の偏波面が 90度回転したものとなる．

13.2.5 導波管スロットアンテナ

導波管スロットアンテナ (Waveguide Slot Antenna)は，導波管の壁面にスロットを設け
ることで構成されるアレーアンテナである．その放射メカニズムは，導波管の壁面を流れる
表面電流とスロットとの相互作用に基づいている．

• 導波管内部を伝搬する電磁波に伴い，その壁面には特定の分布を持つ表面電流が流れ
ている．

• この電流の流路を遮るようにスロットを設けると，電流はスロットを迂回せざるを

*3 春木 宏志, 小林 敦, “携帯無線機用逆 F 形アンテナ,” 電子情報通信学会総合全国大会, vol. 3, no. 613,
p. 66 (1982). 電子情報通信学会は，創立 100 周年を記念し，社会や産業に多大な影響を与えた研究開発
成果として，携帯無線機用逆 F 形アンテナを「マイルストーン」として認定・公開．
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得なくなり，スロットの両端に電荷が溜まる．これによりスロット間に電界が励起さ
れ，スロットがアンテナ素子として機能し，外部空間へ電磁波を放射する．

• したがって，スロットの配置と向きは極めて重要である．例えば，導波管の幅広面の
中心線に沿って，管軸と平行にスロットを設けた場合，そのスロットは電流の流れを
ほとんど妨げないため，効率的な放射は起こらない．

導波管内部を伝わる一つの進行波によって，多数のスロットを適切な位置・向きで配置・
励振することで，給電回路を簡素化しつつ，高性能なアレーアンテナを構成することがで
きる．

13.3 漏えい波アンテナ

漏えい波アンテナ (Leaky-Wave Antenna)は，導波管に連続的なスリット（切れ目）を設
けるなど，波をガイドしながら同時にエネルギーがスリットに沿って連続的に外部へ放射
（漏えい）するように設計されたアンテナである．エネルギーが連続的に漏れ出すため，導
波管内を伝搬する波は，その進行に伴って振幅が減衰していくという特徴を持つ．

13.3.1 主ビーム方向

漏えい波アンテナの線路に沿った伝搬を記述する伝搬定数は，放射による減衰を考慮に入
れるため，複素数で表現される．位相定数を β，漏洩による減衰定数を α とすると，複素
伝搬定数 κ は次式で与えられる．

κ = β − jα (13.1)

このアンテナの主ビーム方向 θ0 は，アンテナを連続的なリニアアレーと見なし，各点から
放射される波が遠方で同相になる条件（共相励振条件）から求めることができる．

−βz ' −kz cos θ0 (13.2)

ここで，k は自由空間の波数（k = 2π/λ）である．したがって，主ビームの放射角は次式で
決まる．

cos θ0 ' β

k
= λ

λg
(13.3)

ただし，λ は自由空間波長，λg は線路の管内波長を示す．

211



13.3.2 開口面分布と減衰定数

漏えい波アンテナの放射パターンは，アンテナの開口面に沿った電磁界の振幅分布 A(z)
によって決まる．そして，この開口面分布を実現するためには，線路に沿った減衰定数 α(z)
を適切に制御する必要がある．
線路上の電力 P (z) と開口面分布 A(z) の間には，微小長 ∆z から放射される電力が

aA2(z)∆z（aは比例定数）に等しいという関係から，以下の微分方程式が成り立つ．

−dP (z)
dz

= aA2(z) (13.4)

一方，減衰定数 α(z) の定義から，電力の減衰は次式でも表される．

−dP (z)
dz

= 2α(z)P (z) (13.5)

式 (13.4)と (13.5)から，α(z) と A(z), P (z) の関係式が得られる．線路の始点 (z = 0) か
ら終点 (z = L) までの関係を積分を用いて解くと，所望の開口面分布 A(z) を実現するため
に必要な減衰定数分布 α(z) は次式で与えられる．

α(z) = 1
2

A2(z)
P (L)

P (0) − P (L)

ˆ L

0
A2(z)dz +

ˆ L

z

A2(z)dz
(13.6)

ここで，P (0) は入力電力，P (L) は終端に残る電力である．理論上，入力電力をすべて放
射するためには終端電力 P (L) をゼロにする必要がある．しかし，上式からわかるように，
P (L) → 0 とすると，アンテナ終端で必要な減衰定数が α(L) → ∞ となり，物理的に実現
が困難となる．そのため，実際の設計では，入力電力の 10%程度の電力を終端に残し，整
合終端器で吸収させることが多い．例えば P (L)/P (0) = 1/10 とすると，係数項は以下の
ように簡略化される．

P (L)
P (0) − P (L) =

P (L)
P (0)

1 − P (L)
P (0)

'
1
10

1 − 1
10

= 1
9 (13.7)

このようにして，与えられた開口面分布 A(z) から，実現すべき減衰定数 α(z) を決定する
ことができる．

13.4 問題

�問題 13-1. 90◦，60◦以外の角度のコーナリフレクターアンテナを一つ考えて，説明せよ．

�問題 13-2. 微小ループアンテナと１波長ループアンテナの違いを説明せよ．
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�問題 13-3. 設計周波数 f0 = 10 GHzで背面給電方式の方形マイクロストリップアンテナ
を設計せよ．

�問題 13-4. 導波管スロットアンテナと導波管漏えい波アンテナの違いを説明せよ．
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CHAPTER 14

円偏波アンテナ

アンテナ工学における電波の偏波特性とその数学的表現，および代表的なア
ンテナ形式について詳述します．電界ベクトルの軌跡に基づき，直線偏波，円偏
波，だ円偏波の三種類を定義し，それぞれの振幅や位相差による分類を示し，軸
比やチルト角といっただ円偏波の特性を表す式を導出します．また，実用的な応
用例として，円偏波を発生させる軸モードヘリカルアンテナや 2 点給電方式の
方形パッチアンテナの構造と動作原理を紹介しています．最後に，複数の円偏波
を合成することで直線偏波が得られるといった，異なる偏波状態間の相互関係に
ついても説明します．

14.1 だ円偏波

14.1.1 だ円偏波の表示式

電磁波の偏波を理解する上で，最も一般的で包括的な状態が「だ円偏波」です．ここで
は，+z 方向に伝搬する平面波を考えます．この平面波の電界ベクトルは，一般的に x成分
と y成分を持ち，それぞれの振幅と初期位相は異なると考えられます．この一般的な条件か
ら，だ円偏波の概念が導入されます．
平面波の電界の x成分 (Ex)と y 成分 (Ey)の瞬時値は，次のように表現できます．

Ex = Ax cos(ωt− kz + θx), Ey = Ay cos(ωt− kz + θy) (14.1)

ここで，Ax, Ay は各成分の振幅の絶対値，θx, θy は初期位相をそれぞれ示します．式の時間
依存性と空間依存性を単一の変数にまとめることで，電界成分間の代数的な関係を導き出し
やすくするため，変数変換 X ≡ ωt− kz + θy を行います．これにより，電界の各成分は以



下のように書き換えられます．三角関数の加法定理を Ex の式に適用します．

Ex
Ax

= cos(X + (θx − θy)) = cosX cos(θx − θy) − sinX sin(θx − θy) (14.2)

Ey
Ay

= cosX (14.3)

上の 2式から cosX と sinX を消去するプロセスを進めます．まず，

sinX =
√

1 − cos2 X =
√

1 − (Ey/Ay)2 (14.4)

の関係を用いて，

Ex
Ax

= Ey
Ay

cos(θx − θy) −

√√√√1 −
(

Ey
Ay

)2

sin(θx − θy) (14.5)

この式を整理することで，時間 tと位置 z に依存しない Ex と Ey の関係式，すなわち電界
ベクトルの先端が描く軌跡の方程式が得られます．(

Ex
Ax

)2

− 2 Ex
Ax

Ey
Ay

cos(θx − θy) +
(

Ey
Ay

)2

= sin2(θx − θy) (14.6)

この方程式は，xy 平面上のだ円を表しています．したがって，瞬時電界ベクトル (~E =
Exax + Eyay) の軌跡はだ円を描き，この状態を「だ円偏波」と呼びます．このだ円の長軸と
短軸の長さの比は「だ円偏波率」あるいは「軸比（axial ratio）」と定義され，偏波の純度を
示す重要な指標となります．このだ円は，一般に座標軸（x, y 軸）に対して傾いています．

14.1.2 だ円偏波のチルト角

だ円偏波によって描かれるだ円の長軸および短軸は，一般に座標軸に対して傾いていま
す．この傾きの角度は「チルト角（tilt angle）」と呼ばれ，だ円偏波の向きを特徴づける重
要なパラメータです．チルト角を求めるために，だ円の主軸（長軸・短軸）に沿った新しい
座標系 (x′, y′)を導入します．この座標系ではだ円の主軸が座標軸に一致するため，交差項
(E ′
xE

′
y) が消え，方程式が単純化されます．元の座標系 (x, y)との関係は，回転角 αを用い

た以下の回転変換式で与えられます．

Ex = E ′
x cosα− E ′

y sinα, Ey = E ′
x sinα + E ′

y cosα (14.7)

この変換式をだ円偏波の一般式に代入します．新しい座標系 (x′, y′)ではだ円の軸が座標軸
と一致するため，交差項である E ′

xE
′
y の係数がゼロになるはずです．この条件を計算する

と，以下の関係式が得られます．

− 1
A2
x

cosα sinα + 1
A2
y

sinα cosα− 1
AxAy

(cos2 α− sin2 α) cos(θx − θy) = 0 (14.8)
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この式を簡略化するために，三角関数の倍角の公式を適用します．

cosα sinα = 1
2 sin 2α, cos2 α− sin2 α = cos 2α (14.9)

これらの公式を用いて式を整理すると，(
− 1
A2
x

+ 1
A2
y

)
1
2 sin 2α− 1

AxAy
cos 2α cos(θx − θy) = 0 (14.10)

となり，tan 2αについて解くことができます．

tan 2α = sin 2α
cos 2α = 2AxAy

A2
x − A2

y

cos(θx − θy) (14.11)

最終的に，逆三角関数を用いてチルト角 αを陽に表現できます．

α = 1
2 tan−1

(
2AxAy
A2
x − A2

y

cos(θx − θy)
)

(14.12)

このように，だ円偏波の特性は，電界成分の振幅比と位相差だけでなく，座標系に対する傾
きであるチルト角によっても完全に記述されます．

14.2 直線偏波

だ円偏波の特殊なケースとして，最も基本的な偏波状態である「直線偏波」が定義され
ます．これは，電界の x 成分と y 成分が同相，すなわち位相差がゼロ（θx = θy）である
場合に発生します．この条件をだ円偏波の一般式に代入すると，cos(θx − θy) = 1 かつ
sin(θx − θy) = 0 となるため，式は以下のように簡略化されます．

(
Ex
Ax

)2

− 2 Ex
Ax

Ey
Ay

+
(

Ey
Ay

)2

= 0 (14.13)

この式は因数分解することができ，最終的に Ex と Ey の間に単純な比例関係があることを
示します．(

Ex
Ax

− Ey
Ay

)2

= 0 ∴
Ex
Ax

= Ey
Ay

(14.14)

この関係式は xy平面上での直線を表しており，電界ベクトルの軌跡が直線を描くことを意
味します．この状態を「直線偏波」と呼びます．この直線の向きは一般に座標軸に対して傾
いています．実用上，電界の軌跡と伝搬方向を含む面を「偏波面」と呼びます．特に，電界
ベクトルが大地に対して垂直な場合を「垂直偏波」，平行な場合を「水平偏波」と定義しま
す．アンテナ工学では，アンテナの放射特性を記述するために「E面（E-plane）」と「H面
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（H-plane）」という用語が用いられます．E 面は主放射方向と放射電界ベクトルを含む面，
H面は主放射方向と磁界ベクトルを含む面を指します．
直線偏波の条件をチルト角の導出過程に適用してみましょう．cos(θx − θy) = 1 を代入す
ると，式は次のようになります．(

− 1
A2
x

+ 1
A2
y

)
cosα sinα− 1

AxAy
(cos2 α− sin2 α) = 0 (14.15)

この式を cos2 α で割り，tanα を用いて整理すると，(
− 1
A2
x

+ 1
A2
y

)
tanα− 1

AxAy
(1 − tan2 α) = 0 (14.16)

これは tanα に関する二次方程式となります．

tan2 α +
(
Ax
Ay

− Ay
Ax

)
tanα− 1 = 0 (14.17)

この方程式はきれいに因数分解でき，
(

tanα− Ay
Ax

)(
tanα + Ax

Ay

)
= 0 (14.18)

2つの解が得られます．

tanα = Ay
Ax

, −Ax
Ay

(14.19)

これらの解は，物理的に直交する 2つの方向を示しています．一方の解を α1 とすると，も
う一方の解 α2 は次のような関係にあります．

tanα2 = −Ax
Ay

= − 1
tanα1

= − cotα1 = tan
(
α1 + π

2

)
(14.20)

これは，2つの解が 90◦ 異なることを意味しており，だ円が直線に縮退した際の主軸（直線
そのもの）とそれに直交する軸（長さがゼロの短軸）に対応しています．これは，直線偏波
がだ円の軸比が無限大に発散した極限状態であることを物理的に示しているのです．一つの
主軸（直線偏波の向き）の長さは有限ですが，それに直交するもう一つの主軸の長さはゼロ
であると解釈できます．
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14.3 円偏波

14.3.1 円偏波の定義と条件

だ円偏波のもう一つの重要な特殊ケースが「円偏波」です．円偏波は，電界の x成分と y

成分の振幅が等しく (Ax = Ay)，かつ位相差が 90◦ (θx − θy = ±π/2) であるという，2つ
の条件が同時に満たされたときに発生します．これらの条件をだ円偏波の一般式に適用する
と，cos(θx − θy) = 0 および sin2(θx − θy) = 1 となり，式は大幅に簡略化されます．

E 2
x + E 2

y = A2
x = A2

y (14.21)

この式は xy平面上での円の方程式そのものです．このとき，電界ベクトルの先端の軌跡は
円を描き，この状態を「円偏波（circular polarization）」と呼びます．円偏波は，電磁波の
伝搬方向に沿って観測したときに，電界ベクトルが時間と共に回転する方向によって「左旋
円偏波」と「右旋円偏波」の 2種類に分類されます．

14.3.2 左旋円偏波と右旋円偏波

伝搬方向に向かって見たとき，電界ベクトルが時間とともに反時計回り（左回り）に回転
するものを「左旋円偏波」と定義します．これは，位相条件が θx ≡ 0, θy = π/2 であり，振
幅が等しい (Ax = Ay ≡ A) 場合に対応します．このときの瞬時電界ベクトル ~E l は，以下
のように表されます．

~E l = A cos(ωt− kz)ax + A cos
(
ωt− kz + π

2

)
ay

= A{cos(ωt− kz)ax − sin(ωt− kz)ay} (14.22)

この実数ベクトルを複素数を用いて表現するために，cosφ = <(ejφ), sinφ = <(−jejφ) の
関係を利用します．

~E l = A{<(ej(ωt−kz))ax + <(−jej(ωt−kz))ay}
= <{A(ax − jay)(−j)ej(ωt−kz)} = <{A(ax + jay)ej(ωt−kz)} (14.23)

ここで，<(·)は複素数の実部を取る操作を示します．この結果から，時間変動項 ejωt を含
む複素ベクトル表現が導出されます．
逆に，電界ベクトルが時計回り（右回り）に回転するものを「右旋円偏波」と定義します．
これは位相条件が θx ≡ 0, θy = −π/2 の場合に対応します．右旋円偏波の瞬時電界ベクト
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ル ~Er も同様に導出されます．

~Er = A cos(ωt− kz)ax + A cos
(
ωt− kz − π

2

)
ay

= A{cos(ωt− kz)ax + sin(ωt− kz)ay}
= <{A(ax − jay)ej(ωt−kz)} (14.24)

以上の議論を一般化し，時間項を除いた複素フェーザ表示で任意の初期位相 θl, θr を持つ左
旋および右旋円偏波の電界を表現すると，それぞれ以下のようになります．これらは，より
複雑な偏波状態を解析する際の基礎となります．

El = Al(ax + jay)e−jkz+jθl (14.25)

Er = Ar(ax − jay)e−jkz+jθr (14.26)

ここで，Al, Ar はそれぞれ左旋，右旋円偏波成分の振幅（実数）を示します．

14.4 各種偏波の関係と合成

14.4.1 だ円偏波の合成モデルと軸比

これまでの議論を統合すると，任意のだ円偏波は，左旋円偏波と右旋円偏波という 2つの
基本的な円偏波の合成として表現できる，という重要な概念に至ります．このモデルは，偏
波の特性，特に軸比を物理的に直感的な形で理解することを可能にします．
左旋円偏波の複素電界 El と右旋円偏波の複素電界 Er の和として，任意のだ円偏波の複
素電界 E を次のように表します．

E = El + Er = {Alejθl(ax + jay) + Are
jθr(ax − jay)}ej(ωt−kz) (14.27)

計算を簡略化するため，位相項を Θl ≡ ωt− kz + θl，Θr ≡ ωt− kz + θr とおき，オイラー
の公式を用いて実部と虚部に展開します．

E = Al(cos Θl + j sin Θl)(ax + jay) + Ar(cos Θr + j sin Θr)(ax − jay) (14.28)

この複素電界の実部 <(E) を取ることで，瞬時電界ベクトルが得られます．その x成分と y

成分は以下のようになります．

<(E) = (Al cos Θl + Ar cos Θr)ax + (−Al sin Θl + Ar sin Θr)ay (14.29)
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この瞬時電界ベクトルの大きさの 2乗 |<(E)|2 を計算すると，

|<(E)|2 = (Al cos Θl + Ar cos Θr)2 + (−Al sin Θl + Ar sin Θr)2

= A2
l + A2

r + 2AlAr cos(Θl + Θr) (14.30)

この式から，|<(E)| の最大値と最小値は，cos項がそれぞれ +1と −1になるときに得られ
ます．

|Al − Ar| ≤ |<(E)| ≤ Al + Ar (14.31)

これは，合成されただ円偏波の短軸の長さが |Al −Ar|，長軸の長さが Al +Ar に対応する
ことを意味します．この結果から，軸比 AR は，2つの円偏波成分の振幅の和と差の比とし
て，非常に直感的な形で与えられます．

AR = Al + Ar
|Al − Ar|

(14.32)

14.4.2 円偏波と直線偏波の相互変換

円偏波と直線偏波は，数学的に密接に関連しています．この関係は，ベクトル空間におけ
る正規直交基底の概念を複素ベクトルに拡張することで，より明確に理解することができ
ます．
まず，大きさが 1の複素単位ベクトル ėl と ėr を以下のように定義します．これらはそ
れぞれ左旋，右旋円偏波の状態を表す基底ベクトルとなります．

ėl ≡ ax + jay
|ax + jay|

= ax + jay√
2

(14.33)

ėr ≡ ax − jay
|ax − jay|

= ax − jay√
2

= ė∗
l (14.34)

ここで ∗ は複素共役を示します．これらの複素ベクトル基底は，実数ベクトルの直交基底
と同様に，以下のスカラ積の関係（正規直交性）を満たします．

ėl · ė∗
l = 1, ėr · ė∗

r = 1, ėl · ė∗
r = 0, ėr · ė∗

l = 0 (14.35)

この新しい基底を用いると，左旋・右旋円偏波の電界は以下のように簡潔に表現できます．

El =
√

2Alej(ωt−kz+θl)ėl (14.36)
Er =

√
2Arej(ωt−kz+θr)ėr (14.37)

任意の電界 E は，この円偏波基底の線形結合，あるいは従来の直線偏波基底 (ax, ay) の線
形結合として表現できます．

E = Elėl + Erėr = E′
xax + E′

yay (14.38)
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両者の変換関係を導出するため，スカラ積を利用します．まず，円偏波成分 El, Er を直線
偏波成分 E′

x, E
′
y で表すには，上式の両辺に ė∗

l と ė∗
r のスカラ積をそれぞれ取ります．

El = E · ė∗
l = (E′

xax + E′
yay) · ax − jay√

2
= 1√

2
(E′

x − jE′
y) (14.39)

Er = E · ė∗
r = (E′

xax + E′
yay) · ax + jay√

2
= 1√

2
(E′

x + jE′
y) (14.40)

逆に，直線偏波成分 E′
x, E

′
y を円偏波成分で表すには，ax と ay のスカラ積をそれぞれ取り

ます．

E′
x = E · ax = (Elėl + Erėr) · ax = 1√

2
(El + Er) (14.41)

E′
y = E · ay = (Elėl + Erėr) · ay = j√

2
(El − Er) (14.42)

14.4.3 演習：直線偏波の合成

これまでの理論の理解を深めるため，具体的な演習問題を考えます．「同振幅の右旋およ
び左旋円偏波を合成すると直線偏波が得られることを示せ」という問いです．

�解説 問題設定として，+z 方向に伝搬する平面波を考え，同振幅 (Al = Ar ≡ 1) の左旋
円偏波 El と右旋円偏波 Er の複素電界を以下のように与えます．

El = (ax + jay)ej(ωt−kz+θl) (14.43)
Er = (ax − jay)ej(ωt−kz+θr) (14.44)

これらの和 E = El + Er を計算します．共通項をまとめ，ax と ay の成分で整理します．

E = ej(ωt−kz){ax(ejθl + ejθr) + jay(ejθl − ejθr)} (14.45)

ここで，計算を簡略化するために位相に関する変数変換を行います．

ψ = θr + θl
2 , α = θr − θl

2 (14.46)

この関係を代入し，オイラーの公式を用いて式を整理していきます．

E = ej(ωt−kz+ψ){ax(e−jα + ejα) + jay(e−jα − ejα)}
= ej(ωt−kz+ψ){ax2 cosα + jay(−2j sinα)}
= 2ej(ωt−kz+ψ)(ax cosα + ay sinα) (14.47)

ここで，新たな単位ベクトル aα を次のように定義します．

aα = ax cosα + ay sinα (14.48)
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この単位ベクトル aα は，xy平面上で x軸から角度 αだけ傾いた方向を指します．最終的
に，合成された電界は以下のように表現されます．

E = 2ej(ωt−kz+ψ)aα (14.49)

その実部を取ると，瞬時電界が得られます．

<(E) = 2 cos(ωt− kz + ψ)aα (14.50)

この結果は，電界ベクトルが常に aα の方向を向き，その大きさが時間と共に正弦波状に変
化することを示しています．これはまさしく直線偏波の定義であり，同振幅の左旋・右旋円
偏波の合成が直線偏波を生成することが証明されました．

14.5 円偏波アンテナの実装例

14.5.1 直交偏波の合成による円偏波生成

理論から実践へと移行し，円偏波アンテナの基本的な実現方法について解説します．最も
一般的な手法の一つは，直交する 2 つの直線偏波を放射するアンテナを用意し，それらを
90◦ の位相差で給電・合成することです．
直交直線偏波アンテナから放射される，垂直偏波励振時の電界を EV，水平偏波励振時の
電界を EH とします．直角座標系において，これらは次のように成分表示できます．

EV = EV
x ax + EV

y ay (14.51)
EH = EH

x ax + EH
y ay (14.52)

これらの電界を，それぞれ振幅 1/
√

2，位相差 ±90◦ で励振し合成します．例えば，主偏波
が左旋円偏波となるような合成電界 ELr は，次式で与えられます．

ELr = 1√
2

(EV + jEH) (14.53)

この合成電界を円偏波基底で展開すると，

ELr = ELr
l ėl + ELr

r ėr (14.54)

となります．左旋成分 ELr
l （主偏波）と右旋成分 ELr

r （交差偏波）は，前節で導出した変換
関係を用いて計算できます．

ELr
l = ELr · ė∗

l = 1
2{(EV

x + EH
y ) + j(EH

x − EV
y )} (14.55)

ELr
r = ELr · ė∗

r = 1
2{(EV

x − EH
y ) + j(EH

x + EV
y )} (14.56)

223



同様に，主偏波が右旋円偏波となる場合の合成電界 ERl は，

ERl = 1√
2

(jEV + EH) (14.57)

となり，その左旋・右旋成分 ERl
l , E

Rl
r は以下のように計算されます．

ERl
l = ERl · ė∗

l = 1
2{(EH

x + EV
y ) + j(EV

x − EH
y )} (14.58)

ERl
r = ERl · ė∗

r = 1
2{(EH

x − EV
y ) + j(EV

x + EH
y )} (14.59)

アンテナの遠方界を解析する際には球座標系 (R,Θ,Φ) を用いるのが一般的です．同様の計
算を適用することで，円偏波の各成分は以下のように求められます．

ELr
l = 1

2{(EV
Θ + EH

Φ ) + j(EH
Θ − EV

Φ )} (14.60)

ELr
r = 1

2{(EV
Θ − EH

Φ ) + j(EH
Θ + EV

Φ )} (14.61)

ERl
l = 1

2{(EH
Θ + EV

Φ ) + j(EV
Θ − EH

Φ )} (14.62)

ERl
r = 1

2{(EH
Θ − EV

Φ ) + j(EV
Θ + EH

Φ )} (14.63)

ここで，球座標系における直線偏波の電界は次のように表現されます．

EV = EV
Θ aΘ + EV

Φ aΦ (14.64)
EH = EH

Θ aΘ + EH
Φ aΦ (14.65)

14.5.2 具体的なアンテナ構造例

理論的な原理に基づき，実際に円偏波を生成・受信するために様々なアンテナ構造が考案
されています．ここでは，代表的な円偏波アンテナの構造と動作原理を概説します．

軸モードヘリカルアンテナ
らせん状の導体を用いたアンテナで，その構造自体が本質的に円偏波を生成します．らせ
んのピッチ（1巻きの長さ）を波長に対して適切な値に設定すると，導体上の電流分布によ
り，らせんの軸方向に伝搬する円偏波が直接励振されます．アンテナの主放射方向がヘリカ
ル構造の軸方向と一致するため，「軸モード」ヘリカルアンテナと呼ばれます．

2点給電方式の円偏波方形パッチアンテナ
マイクロストリップアンテナの一種である方形パッチアンテナを用いて円偏波を生成す
る方式です．方形パッチ上の直交する 2点に給電点を設け，一方から垂直偏波，もう一方か
ら水平偏波を励振します．この 2 つの給電点に ±90◦ の位相差を持つ信号を入力すること
で，放射された 2つの直交直線偏波が空間で合成され，結果として円偏波が得られます．
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ホーンアンテナ
開口面アンテナであるホーンアンテナも，高品質な円偏波を生成するために広く用いられ
ます．

• コルゲート円すいホーンアンテナ: 開口部内壁にコルゲーションと呼ばれる周期的な
溝構造を設けたホーンアンテナです．この構造は，高品質な垂直偏波と水平偏波（す
なわち，本来ゼロであるべき交差偏波成分が極めて小さい電界）を生成します．これ
を第 5.1節で述べた原理で合成することにより，軸比の優れた円偏波が実現されるの
です．

• デュアルモード円すいホーンアンテナ: 基本的な伝搬モード（TE11 モード）に，意
図的に高次モード（TM11 モード）を重畳させることで円偏波特性を改善する方式で
す．高次モードの放射パターンが基本モードの交差偏波成分を打ち消すように位相と
振幅を調整することで，コルゲートホーンと同様に，交差偏波成分の少ない良好な円
偏波特性を得ることができます．
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CHAPTER 15

アンテナ測定

アンテナの放射特性を正確に評価するための様々な測定手法と，その基礎とな
る理論を詳述します．主な内容として，電波が平面波とみなせる距離で測定する
遠方界測定，アンテナ近傍のデータを活用する近傍界測定，そして室内に平面波
を擬似的に作り出すコンパクトレンジの 3つが挙げられます．理論面では，電力
伝送の基本となるフリスの電力伝達公式や，地面反射が測定に与える影響，さら
に波面を解析する電波ホログラフィーについても説明します．また，屋外での測
定だけでなく，反射を抑えた電波暗室や吸音材の活用など，高精度な測定データ
を得るための方法を解説します．

15.1 放射特性の測定領域

放射特性の測定領域は次のように，遠方界領域と放射近傍界領域に大別される．

• 遠方界領域 (Radiating Far-Field Region): アンテナから放射された電波が局所
的に平面波とみなせる，アンテナから十分に離れた領域である．ここで行われる遠方
界測定は，原理が直接的である一方，しばしば長大な測定距離を要するため屋外測定
サイトが利用される．コンパクトレンジは，この遠方界条件を電波暗室のような限ら
れた空間内で人工的に創出するための高度な設備である．

• 放射近傍界領域 (Radiating Near-Field Region): この領域では，近傍界アンテ
ナ測定（Near-Field Antenna Measurement, NFAM）が実施される．この手法は電
波暗室内での高精度な測定に適しており，屋外での試験が望ましくない衛星搭載アン
テナ等の評価に広く用いられる．また，大型反射鏡アンテナにおいては，一次放射器



を焦点から意図的にずらして遠方界を模擬するデフォーカス法もこの領域の測定技
術に含まれる．

これらを踏まえ，アンテナ測定における 3つの主要な手法，すなわち遠方界測定，近傍界測
定，およびコンパクトレンジについて，その原理から応用までを詳述する．

15.2 電波無反射室（電波暗室）

電波無反射室（電波暗室）は，内面の壁，天井，床の全面を高性能な電波吸収体で覆うこ
とにより，電波の反射を極限まで抑制するように設計された特殊な実験施設である．この設
備は，屋外の開けた場所と同等の「自由空間」環境を屋内に模擬することを目的とする．こ
れにより，地面反射や他の物体からの散乱，外部からの電波干渉といった不確定要素を排除
し，再現性の高い高精度なアンテナ測定を実現する．壁面には通常，炭素を含浸させた発泡
ウレタン製のピラミッド形状吸収体が用いられ，垂直入射の電波に対して −50 dBという
優れた反射減衰性能を発揮する．使用可能な周波数の下限は，吸収体の厚み（ピラミッドの
高さ）によって決まる．

図 15.1. 電波暗室と電波吸収体

15.3 フリスの電力伝達公式

フリスの電力伝達公式は，自由空間における無線通信システムのリンクバジェット解析の
基礎となる重要な方程式である．この公式は，送信アンテナへの入力電力，送受信アンテナ
の利得，伝搬距離，波長といった基本的な物理パラメータを関連付け，受信アンテナで取得
可能な最大電力を定量的に示す．これにより，衛星通信や携帯電話網といった多様な無線シ
ステムの設計において，要求される通信品質を確保するためのアンテナ性能や送信電力のト
レードオフを合理的に評価することが可能となる．
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15.3.1 公式の導出

まず，図 15.2のような送受信モデルにおいて，送信アンテナへの入力電力を Wt，単位立
体角あたりの放射電力（放射強度）を Psr としたとき，送信アンテナの絶対利得 Gt は，全
方向に均等に放射する等方性アンテナを基準として，

Gt = Psr
Wt/(4π) (15.1)

次に，アンテナから距離 d 離れた地点における電力密度 P は，放射強度 Psr を距離の 2乗
で割った P = Psr/d

2 として定義される．これを上式に代入すると，

Gt = 4πd2P

Wt
(15.2)

上式を電力密度 P について解くことで，受信点における電力密度が送信パラメータを用い
て表される．

P = WtGt

4πd2 (15.3)

受信アンテナが受信可能な最大電力 Pr は，この電力密度 P に受信アンテナの実効開口面
積 Ae を乗じることで得られる．

Wr = PAe = WtGt

4πd2 Ae (15.4)

ここで，任意のアンテナにおいて，その利得 Gr と実効開口面積 Ae の間には，物理的な制
約から以下の関係が成り立つ．

Gr = 4πAe
λ2 ∴ Ae = λ2

4πGr (15.5)

これより，受信電力WR が送受信システムの全パラメータで記述されたフリスの電力伝達
公式が導出される．

Wr = WtGt

4πd2 · λ
2

4πGr =
(
λ

4πd

)2

GtGrWt (15.6)

図 15.2. 自由空間中の電波伝送
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15.3.2 伝送損失

フリスの電力伝達公式は，伝送損失に関するいくつかの重要な概念の基礎となる*1．

• 自由空間伝送係数: 送受信アンテナの利得を含めた，送信電力と受信電力の比を示
し，システム全体の性能を表す．

Wr

Wt
=
(
λ

4πd

)2

GtGr (15.7)

• 自由空間基本伝送係数: 送受信アンテナがともに理想的な等方性アンテナ（Gt =
Gr = 1）であると仮定した場合の伝送損失であり，伝搬路のみの純粋な減衰特性を
示す．

Wr

Wt
=
(
λ

4πd

)2

(15.8)

逆数のデジベル値をとった自由空間基本伝送損 Lb は，

Lb = 10 log10

(
Wt

Wr

)
= 20 log10

(
4πd
λ

)
[dB] (15.9)

例えば，自由空間基本伝送損は，送受信間距離が 2倍になると 6 dB 増加する．

15.4 屋外測定における地面反射

屋外環境でアンテナ測定を行う場合，図 15.3に示すように，送信アンテナから直接受信
アンテナに到達する「直接波」と，地面で一度反射してから到達する「反射波」との間で干
渉が生じる．この二つの波の経路長差に起因する位相差により，受信点での信号強度は空間
的に複雑なフェージングを生じさせ，測定の信頼性を著しく損なう主要な誤差要因となる．

15.4.1 直接波と反射波の干渉

受信点における総電界 E は，直接波と反射波のベクトル和として表され，地面による複
素反射係数を R とすると次式で与えられる．

E = E0

(
e−jkr1

r1
f(u1) +R

e−jkr2

r2
f(u2)

)
(15.10)

ここで，解析を単純化するため無指向性アンテナ (f(u) ≈ 1) を仮定し，送受信点間の距離
がアンテナ高に比べて十分大きい (r1 ≈ r2) として振幅項を近似すると，電界は次のように

*1 デジベル値で損失を計算する場合は，マイナス符号がつかないように逆数のデジベルをとることに注意．
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簡略化できる．

E ' E0
1
r1

(
e−jkr1 +Re−jkr2

)
(15.11)

送信アンテナの高さ h1，受信アンテナの高さ h2，水平距離 d を用いると，経路長 r1, r2 は
幾何学的に次式で与えられる．

r1,2 =
√
d2 + (h2 ∓ h1)2 (15.12)

d � h1, h2 の条件下では，二項近似を用いて次のように展開できる．

r1,2 = d

{
1 + (h2 ∓ h1)2

d2

}1/2

' d

{
1 + 1

2
(h2 ∓ h1)2

d2

}
=
(
d+ h2

2 + h2
1

2d

)
∓ h1h2

d

(15.13)

共通項を r0 と定義し，

r0 ≡ d+ h2
2 + h2

1
2d (15.14)

r1, r2 を書き換えると以下のようになる．

r1,2 = r0 ∓ h1h2

d
(15.15)

地面が理想的な完全導体であると仮定し，水平偏波に対する反射係数を R = −1 とすると，
電界 E は

E = E0
e−jkr0

r1

(
ejkh1h2/d − e−jkh1h2/d

)
= E0

e−jkr0

r1
j2 sin

(
k
h1h2

d

)
(15.16)

となり，その振幅 |E| は次のように正弦関数で記述される．

|E| = |E0|
r1

2
∣∣∣∣∣sin

(
k
h1h2

d

)∣∣∣∣∣ (15.17)

この式は，受信電界の振幅が受信アンテナの高さ h2 に対して周期的に変動することを示し
ている．

h1

d

h2

�i�¼�Ú�g�j

�i�½�Ë�g�j

���M�_

�ó�M�_
r1

r2

�C���[�W
�å�n

図 15.3. 直接波と反射波
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15.4.2 ハイトパターン

受信アンテナの高さ h2 を垂直方向に変化させた際に観測される，受信信号強度の周期的
変動を「ハイトパターン」と呼ぶ．式 (15.16), 式 (15.17)の正弦関数の周期性から，ハイト
パターンの空間周期 H2 は次式で与えられる．

H2 = λd

2h1
(15.18)

15.4.3 対策

屋外測定における地面反射の影響を抑制または管理するための対策には，以下の方法が
ある．

• ハイレベル測定場 (High level test range): 送受信アンテナを地面から十分に高
い位置に設置し，地面への入射角を大きくすることで反射波の寄与を低減する．

• 反射波防止板 (Reflection-preventing plate): 送受信アンテナ間の地面反射点に，
電波吸収体や回折エッジを持つ衝立を設置し，物理的に反射波を遮蔽または散乱さ
せる．

• グランドレベル測定場 (Ground level test range): 測定プローブを意図的に地面
すれすれに設置する手法．これにより直接波と反射波の経路長差がほぼゼロになり，
かつ地面反射（R ≈ −1）と幾何学的な位相関係により，両波が強め合う（同相にな
る）ため，安定した測定環境を構築できる．

15.5 遠方界測定

遠方界測定は，アンテナから放射された電磁波が平面波とみなせる距離で測定を行う，ア
ンテナ特性評価の最も基本的な手法である．この条件下では，放射電界の角度依存性が距離
によらず一定となるため，放射パターンや利得といったアンテナの根源的な性能指標を単純
化された形で，かつ直接的に決定することが可能で，広く利用されてきた測定技術である．

15.5.1 遠方界の条件

有効な遠方界測定を確立するためには，以下の物理的条件が満たされなければならない．

• 波面の平たん度 (Wavefront Flatness): 測定距離 R は，アンテナから放射された
球面波の波面が，測定領域において十分に平坦であるとみなせる距離でなければなら
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ない．そのための主要な条件式は以下で与えられる．

R >
2D2

λ
(15.19)

ここで，D は測定対象アンテナ（Antenna Under Test, AUT）の開口径，λ は波長
である．

• 振幅の一様度 (Amplitude Uniformity): 測定に用いるプローブアンテナは，その
実効開口面積にわたって入射電界の振幅が一定とみなせるほど，十分に小さい必要が
ある．これにより，点でのサンプリングという理想的な測定が近似される．

• 回転軸のずれ (Rotational Axis Deviation): 放射パターン測定時にアンテナを
回転させる機械的な軸と，アンテナの電気的な位相中心を含む開口面との間のずれ
は，測定精度を損なわないよう十分に小さく抑制する必要がある．

• 放射電界の優位性 (Dominance of Radiated Field): 測定点において，アンテナ
の真の放射特性を示す放射電界成分が，エネルギーを蓄積するだけの誘導電界成分に
比べて支配的に大きいことが必須である．

15.5.2 利得の測定

アンテナ利得の測定法は，比較測定と絶対測定に大別される．比較測定は，利得が既知の
標準アンテナの受信電力と測定対象アンテナの受信電力を比較し，その差から利得を決定す
る相対的な手法である．一方，絶対測定は，より基本的な物理量から利得を導出する．利得
Gs が既知の標準送信アンテナを用い，送信電力 Wt と測定対象アンテナでの受信電力 Wr

を精密に測定する．このとき，測定対象アンテナの利得 G は，後述するフリスの電力伝達
公式から次式のように直接求められる．

G =
(4πR

λ

)2 Wr

Wt

1
Gs

(15.20)

ここで，R はアンテナ間の距離，λ は波長である．

15.5.3 指向性利得の評価

指向性利得 Gd(θ, φ) は，2 次元の電力指向性パターン F (θ, φ) を全立体角にわたって測
定し，次式を用いて計算できる．

Gd(θ, φ) = 4πF (θ, φ)‹
F (θ′, φ′)dΩ′

(15.21)

なお，利得 Gは，指向性利得 Gd とアンテナ内部の損失を表す放射効率 η の積，すなわち
G = ηGd で与えられる．
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全立体角にわたる積分は手間を要するため，より簡易な評価法がある．これは，直交する
2平面における半値全幅ビーム幅 Θ1,Θ2（単位：度）を用いて指向性利得を概算するもので
あり，詳細な計算の妥当性を確認するために極めて有用である．

Gd ≈ K

Θ1Θ2
(15.22)

ここで，定数 K は開口面分布によって決まり，一様な円形開口分布では K ≈ 3.4 × 104，
一様な方形開口分布では K ≈ 3.2 × 104 となる．

15.5.4 標準アンテナ校正法

利得測定の基準となる標準アンテナの利得を決定（校正）するには，以下の手法が用いら
れる．

• 同一アンテナ 2台による方法 (Two-Identical-Antennas Method): 同一特性を
持つアンテナを 2 台用意し，送受信機として対向させる．送信電力 Wt と受信電力
Wr を測定すれば，フリスの伝達公式から各アンテナの利得 G が次式で一意に定
まる．

G = 4πR
λ

√
Wr

Wt
(15.23)

• 単一アンテナと反射板による方法 (Single-Antenna and Reflector Method): 1
台のアンテナと十分大きな金属反射板を対向させ，アンテナ自身とその鏡像との間の
送受信とみなして利得を測定する手法である．

• 3 アンテナ法 (Three-Antenna Method): 利得が未知の任意のアンテナを 3 台
（A, B, C）用意し，A-B，A-C，B-Cの 3つの組み合わせで送受信電力を測定する．
これにより得られる 3 元連立方程式を解くことで，各アンテナの利得を個別に決定
できる．

15.6 近傍界測定

近傍界測定（Near-Field Antenna Measurement, NFAM）は，広大な遠方界測定サイトの
物理的な制約を回避するための，計算処理を導入した測定手法である．この技術では，アン
テナ直近の幾何学的な測定面（平面，円筒面，球面）上で，プローブを走査して電界の振幅
と位相を精密にサンプリングする．取得された膨大な近傍界データセットに対し，フーリエ
変換を基盤とする数学的アルゴリズムを適用して，そこから遠方界の放射特性を厳密に計算
する．これにより，大型アンテナや趙高周波アンテナなど，遠方界条件の達成が物理的に困
難な対象であっても，天候に左右されない安定した室内環境で評価することが可能になる．
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15.6.1 特徴と利点

近傍界測定は，従来の遠方界測定と比較して数多くの技術的利点を有する．

• 電波暗室内での測定が可能であり，天候や外部からの電波干渉といった環境要因から
完全に隔離される．

• 測定プロセス全体を高度に自動化でき，長時間の連続運転や高密度なデータ取得が容
易である．

• 遠方界放射パターンだけでなく，アンテナの開口面照度分布，反射鏡の表面誤差，ア
レーアンテナの素子診断など，より詳細な電気的・物理的特性を評価するための豊富
な情報を提供する．

• これらの特徴から，大口径アンテナ，ミリ波帯アンテナ，複雑な構造を持つ衛星搭載
アンテナの評価に特に有効である．

15.6.2 測定法の分類

近傍界測定は，電界をサンプリングする測定面の幾何学的形状によって，主に 3つの方式
に分類される．

• 平面走査近傍界測定 (Planar near-field measurement): 平面上でプローブを走
査してデータを取得する．指向性が鋭いアンテナの測定に適しており，最も広く利用
されている．

• 円筒面走査近傍界測定 (Cylindrical near-field measurement): アンテナを回転
させながら，直線状にプローブを走査し，円筒面上のデータを取得する．ファンビー
ムアンテナなどに適する．

• 球面走査近傍界測定 (Spherical near-field measurement): アンテナを 2軸で回
転させ，固定されたプローブで球面上のデータを取得する．広角に放射するアンテナ
の全方向特性評価に適している．

15.7 応用技術

近傍界測定で用いられる計算方法は，アンテナ測定の枠を超え，大型アンテナの物理的な
形状計測や，光学天文学のような関連分野においても高度な応用技術として発展している．
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15.7.1 電波ホログラフィック測定

電波ホログラフィは，大型反射鏡アンテナの鏡面精度（ひずみ）を波長以下の精度で計測
するための強力な技術である．その核心的原理は，理想的な反射鏡が焦点からの球面波を完
全な平面波に変換し，結果として開口面上で均一な位相分布を形成するという点にある．測
定では，静止衛星等が発信する位相が安定したビーコン電波を受信し，その遠方界における
振幅と位相分布を精密に測定する．この複素データを逆フーリエ変換することでアンテナ
の開口面電界分布を再構成する．このとき，理想的な平面波からの位相のずれ（位相誤差）
は，重力によるたわみや製造誤差に起因する物理的な鏡面誤差を直接的に反映したマップと
なる．これにより，機械的な測定では困難な，アンテナ全体の微小な変形を極めて高い精度
で明らかにすることができる．

図 15.4. 人工衛星電波を用いた鏡面精度測定

15.7.2 光学望遠鏡における波面補正

電波ホログラフィと同様の概念は，ハワイの「すばる望遠鏡」に代表される大型光学望遠
鏡にも応用されている．地球大気のゆらぎは，遠方天体からの光の波面を乱し，画像の鮮明
さを著しく低下させる．この問題を克服するため，「シャック・ハルトマン波面センサー」
と「可変形鏡」を組み合わせた補償光学システムが用いられる．このセンサーは，微小なレ
ンズを多数配列したレンズアレーを用いて，入射してきた波面の局所的な傾きを同時に多数
の点で測定する．この傾き情報から波面全体の形状を高速度で計算し，その結果に基づいて
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制御システムが可変形鏡の表面形状をリアルタイムで変形させる．これにより，大気による
波面の乱れが動的に補正され，望遠鏡の回折限界に近い分解能を達成する．これは，電波領
域における位相計測と補正の概念を光学領域で実現した，極めて類似性の高い技術である．

15.8 コンパクトレンジ

コンパクト・アンテナ・テスト・レンジ（CATR）は，遠方界の測定環境を屋内の限られ
た空間で高精度に模擬するための先進的な設備である．その基本原理は，大型で精密に加工
された反射鏡（通常はオフセットパラボラ）を用いて，給電ホーンからの球面波を広範囲に
わたる均一な平面波に変換することにある．この理想的な平面波が生成される領域は「クワ
イエットゾーン」と呼ばれ，ここに測定対象のアンテナを設置することで，あたかも無限遠
の送信源からの電波を受信しているかのような理想的な遠方界条件を再現し，高精度な測定
を可能にする．

15.8.1 要求性能

コンパクトレンジが正確な測定環境を提供するためには，以下の厳格な性能が要求さ
れる．

• テストゾーン内において，主偏波成分の振幅と位相が極めて一様であること．
• テストゾーン内に，測定誤差の主要因となる交差偏波成分が実質的に存在しない
こと．

• 反射鏡の鏡面精度が非常に高いこと．この鏡面誤差の大きさが，測定可能な周波数の
上限を物理的に決定する．

15.8.2 構成と設計

コンパクトレンジは，要求性能を満たすために様々な設計上の工夫が凝らされている．

単一反射鏡形式 (Single-Reflector Type)
最も一般的な構成として，オフセットパラボラ反射鏡が用いられる．給電ホーンが反射鏡
からの光路を遮蔽しないため，純粋な平面波を生成しやすいという利点がある．

鏡面エッジ形状 (Reflector Edge Shaping)
反射鏡の端（エッジ）で発生する回折波は，クワイエットゾーンの品質を劣化させる不要
な電波となる．これを抑制するため，エッジをのこぎり歯状（serrated edge）に加工した
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り，滑らかに丸めたり（rolled edge）する設計が採用される．これらの形状は，回折波をク
ワイエットゾーンとは異なる方向に散乱させ，その影響を効果的に低減する．

双反射鏡形式 (Dual-Reflector Type)
主反射鏡と副反射鏡の 2枚を用いる形式（例：グレゴリアン構成）も存在する．この構成
は，より均一な振幅分布を実現しやすく，給電ホーンに起因する交差偏波成分を打ち消す効
果がある．また，光学系を折り畳むことでシステム全体をよりコンパクトに設計できる利点
も持つ．

15.9 問題

�問題 15-1. アンテナのフレネル領域の放射特性を測定する方法を論ぜよ．

�問題 15-2. 電波吸収体の厚みやピラミッドの高さについて考察せよ．

�問題 15-3. フリスの電力伝達公式の応用例を３つあげよ．

�問題 15-4. 指向性利得の概算値を表す式 (15.22)の定数 K を求めよ．
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CHAPTER 16

電波応用計測

電波を用いた計測技術について詳述します．まず，物体の内部を画像化するト
モグラフィの理論として，ラドン変換やバックプロジェクションを説明します．
次に，電磁波で遠方の対象を探査するリモートセンシングの概念を述べ，能動
的・受動的手法の違いを整理します．そして，レーダについて，パルス型や連続
波（CW）型，FM-CW型といった主要な方式の仕組みを説明し，実用例として，
中層・超高層大気を観測する MUレーダや，気象予測に不可欠な気象用レーダ
を取り上げ解説します．

16.1 トモグラフィ

トモグラフィ (Tomography)とは，様々な方向から計測対象に光や電波のような波を照
射し，その透過情報などの観測値（プロジェクションデータ）をもとに，対象物の断層画
像といった内部の状態を推定する手法である．この技術の最も代表的な応用例として X線
CT（Computed Tomography）が挙げられ，医療分野で広く活用されている．X線は波長
が非常に短いため幾何光学的に扱えるが，電波は波長が長く回折の影響を受けるため，電波
を用いたトモグラフィでは X線 CTほどの高い分解能を得ることは難しい．ここでは，電
波応用計測におけるトモグラフィの基本原理，特に断層画像の再構成アルゴリズムについて
解説する．



16.1.1 座標系と座標変換

断層画像の再構成原理を数学的に記述するために，2つの直角座標系を導入する．一つは
基準となる直交座標系 (x, y) であり，もう一つは原点の周りで角度 θ だけ回転させた直交
座標系 (r, s) である．それぞれの座標系における単位ベクトルを (ax, ay) および (ar, as) と
すると，両者の間には以下の関係が成り立つ．

ar = cos θax + sin θay
as = − sin θax + cos θay

(16.1)

任意の位置ベクトル ρ は，両方の座標系で表現することができる．

図 16.1. 直角座標系 (x, y)，(r, s)

ρ = rar + sas
= r(cos θax + sin θay) + s(− sin θax + cos θay)
= (r cos θ − s sin θ)ax + (r sin θ + s cos θ)ay
= xax + yay

(16.2)

したがって，2つの座標系の座標値 (x, y) と (r, s) の間には，以下の変換式が成立する．

x = r cos θ − s sin θ
y = r sin θ + s cos θ (16.3)

図 16.2. 光線の r 方向走査
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16.1.2 ラドン変換と断層画像の再構成

計測の原理は，内部の減衰率分布が f(x, y) で表される物体に対し，s 方向に沿って波
を透過させ，その振幅を観測することである．このとき，ある r の位置で受信される振幅
P (r) は，経路上での減衰率の積分値として与えられる．

P (r) =
ˆ
f(x, y)ds (16.4)

この測定を，物体に対する波の入射角 θ を変えながら繰り返すことで，受信振幅は r と θ

の両方の関数 P (r, θ) として得られる．この操作は数学的に次のように記述される．

P (r, θ) =
ˆ
f(r cos θ − s sin θ, r sin θ + s cos θ)ds (16.5)

この積分変換はラドン変換として知られている．
次に，この測定データ P (r, θ) から内部の減衰率分布 f(x, y) を再構成するプロセスを考
える．まず，f(x, y) の 2次元フーリエ変換を F (X,Y ) と定義する．

F (X,Y ) =
¨ ∞

−∞
f(x, y)e−j2π(xX+yY )dxdy (16.6)

ここで，F (X,Y ) は断層画像 f(x, y) の 2次元フーリエスペクトルに相当する．フーリエ空
間の座標 (X,Y ) を極座標 (R, θ) を用いて以下のように変換する．

X ≡ R cos θ, Y ≡ R sin θ (16.7)

この変換を用いると，F は次のように書き換えられる．

F (R cos θ,R sin θ) =
¨ ∞

−∞
f(x, y)e−j2πR(x cos θ+y sin θ)dxdy (16.8)

ここで，指数部分の項と面積要素は，座標変換の関係式を用いて簡略化できる．

x cos θ + y sin θ = (r cos θ − s sin θ) cos θ + (r sin θ + s cos θ) sin θ = r (16.9)
dxdy = drds (16.10)

これらの関係式を式 (8)に代入すると，以下の重要な関係が導かれる．

F (R cos θ,R sin θ) =
¨ ∞

−∞
f(r cos θ − s sin θ, r sin θ + s cos θ)e−j2πRrdsdr

=
ˆ ∞

−∞

{ˆ ∞

−∞
f(r cos θ − s sin θ, r sin θ + s cos θ)ds

}
· e−j2πRrdr

=
ˆ ∞

−∞
P (r, θ)e−j2πRrdr
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(16.11)

この式 (11)は，測定された投影像 P (r, θ) の r に関する 1次元フーリエ変換が，元の画像
f(x, y) の 2次元フーリエスペクトル F (X,Y ) を角度 θ の断面で切り取ったものに等しい
ことを示している．この定理に基づき，様々な角度 θ で測定した P (r, θ) をフーリエ変換す
ることで，2次元フーリエ空間 F (X,Y ) 全体を満たすことができる．最終的に，得られた
F (X,Y ) を逆 2次元フーリエ変換することで，目的の断層画像 f(x, y) が再構成される．

f(x, y) =
¨ ∞

−∞
F (X,Y )ej2π(xX+yY )dXdY (16.12)

投影像 P (r, θ) から断層画像 f(x, y) を得るこの変換プロセスを逆ラドン変換と呼び，全体
の一連の処理はバックプロジェクションとして知られている．これにより，外部からの計測
データのみを用いて物体の内部構造を可視化することが可能となる．

16.2 リモートセンシング

リモートセンシング (Remote Sensing)とは，電磁波や音波などを媒体として，対象物に
直接触れることなく遠隔から探知・探査（間接的に測定）する技術の総称である．この用語
は，特に地球の表面や大気といった自然の状態を観測する場合に頻繁に用いられる．電波を
利用したリモートセンシングは，その手法によって大きく 2つに分類される．
能動的 (Active): 自ら電波を発射し，対象物からの反射波や散乱波を受信することで情
報を得る手法である．

• レーダ (Radar): 気象観測，大気観測，資源探査，地中・水中探査*1など，幅広い分
野で利用される．

• マイクロ波散乱計 (Microwave Scatterometer): 主に海上の風速や風向の観測に
用いられる．

受動的 (Passive): 対象物自体が自然に放射する電波を受信するのみで，自らは電波を発
射しない手法である．

• 電波天文 (Radio Astronomy): 電波望遠鏡，電波干渉計，VLBIを用いて，宇宙
から到来する微弱な電波を観測し，天体の構造や物理現象を研究する．

• マイクロ波放射計 (Microwave Radiometer): 地表面や大気から放射されるマイ
クロ波を測定し，温度や水蒸気量などを推定する．

*1 佐藤 源之, “地中レーダ（GPR）の電磁界に関する考察と地雷検知への応用,” 電気学会 電磁界理論研究会,
EMT-25-101, pp. 133–137 (2025).
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これらの技術の中でも，特にレーダは能動的リモートセンシングの代表格であり，その応用
範囲は極めて広い．

16.3 レーダの原理

レーダ（RADAR: Radio Detection and Ranging）は，物体に向けて電波を発射し，その
物体からの反射波（エコー）を解析することで，物体の存在，大きさ，距離，速度などを探
知する装置である．煙，雲，霧，雨といった障害物を透過して遠方の物体を探知できる能力
を持つため，航空，船舶，気象観測など多岐にわたる分野で不可欠な技術となっている．

16.3.1 レーダの分類と種類

レーダは，反射波の性質やその応用目的によって様々に分類される．まず，反射波の性質
による分類では，以下の 2種類に大別される．

• 一次レーダ (Primary Radar): 送信した電波が対象物から受動的に反射される波
を利用する，最も一般的な形式のレーダ．

• 二次レーダ (Secondary Radar): 対象物が電波を受信すると，能動的に応答信号
を再発射する方式．航空管制などで航空機の識別情報（ID）を取得するために用いら
れる．

また，レーダの応用分野は非常に広く，以下のような種類が存在する．

• 通常のレーダ: 船舶や航空機など，人工的な物体を計測対象とする．
• リモートセンシング用レーダ: 電離層，気象，大気など，自然の状態を遠隔測定する．
• 電波航法: 航空機や船舶が自身の位置を把握するために利用する．
• その他: スピードガン，自動車の衝突防止レーダ，地中探査レーダなど，特定の用途
に特化したもの．

16.3.2 パルスレーダ

パルスレーダは，短いパルス状の電波を周期的に送信し，目標からのエコーパルスが戻っ
てくるまでの時間差を測定することで，目標までの距離を算出する最も基本的なレーダ方式
である．パルスの繰り返し周期が短すぎると，遠方からのエコーが次のパルスのエコーと誤
認される「2次エコー」の問題が発生するため，探知したい最大距離に応じて適切に設定す
る必要がある．目標までの距離 R は，パルスの発射から受信までの時間 ∆t と光速 c を用
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図 16.3. レーダの基本原理

いて次式で計算される．

R = c∆t
2 (16.13)

目標の方向は，鋭いビームを持つアンテナを走査（スキャン）し，受信電力が最大となる角
度を検出することで決定される．
さらに，ドップラー効果を利用することで，目標のレーダに対する相対速度 vr を測定す
ることができる．送信波の角周波数を ω，目標までの距離を R(t) とすると，受信信号の位
相項は次のように表される．

ejωte−j2kR(t) = ejωte−j2k(R0−vrt) = ej(ω+2kvr)tejφ0 = ej(ω+ωd)tejφ0 (16.14)

ここで，k は波数，R0 は初期距離，φ0 は定数項である．この式から，受信信号の角周波数
が ωd だけずれることがわかる．このドップラー角周波数 ωd は次のように導出される．

ωd = dφ

dt
= d

dt
(−2kR) = −2kdR

dt
= 2kvr = 22π

λ
vr = 2πfd (16.15)

ここで fd はドップラー周波数である．この関係から，ドップラー周波数 fd は次式で与え
られる．

fd = 2vr
λ

= 2vr
c
f (16.16)

したがって，測定されたドップラー周波数 fd から，目標の相対速度 vr を算出できる．

vr = cfd
2f (16.17)

16.3.3 散乱断面積とレーダ方程式

散乱断面積 (Scattering Cross-Section, σ) は，目標がどれだけ効率的に電波を散乱
させるかを示す指標である．特に，レーダの方向に電波を反射する能力を示すものを後方散
乱断面積，またはレーダ断面積 (Radar Cross-Section, RCS)と呼ぶ．
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レーダの送受信性能を総合的に表す式がレーダ方程式である．その導出過程を以下に示
す．送信電力 Pt でレーダから電波が放射されたとき，距離 R 離れた点での放射電力密度
は，無指向性アンテナの場合，次式で与えられる．

Pt
4πR2 (16.18)

アンテナ利得を Gとすると，放射電力密度は上の値を G倍して，

PtG

4πR2 (16.19)

となる．この点に RCS σ を持つ物体があると，レーダ方向に反射される電力は，

PtG

4πR2 · σ (16.20)

となる．よって，レーダのある点で観測される電力密度は，

PtGσ

4πR2 · 1
4πR2 (16.21)

となる．最後に，アンテナの有効開口面積を Aとおくと（G = 4πA/λ2 の関係がある），総
受信電力 S は，

S = PtGσ

(4πR2)2 · A = PtGσ

(4πR2)2 · Gλ
2

4π = PtG
2λ2σ

(4π)3R4 (16.22)

これがレーダ方程式である．この式から，最小受信可能信号電力 Smin に基づいて，レーダ
の最大探知距離 Rmax を導出できる．

Rmax =
(
PtG

2λ2σ

(4π)3Smin

) 1
4

(16.23)

この式は，目標の RCS σ が小さいほど探知が困難になることを示しており，ステルス技術
の基本原理となっている．

16.3.4 CWレーダ

CW（Continuous wave）レーダは，単一周波数の連続波を送信する方式である．送信波
と受信波の周波数差（ドップラー周波数）を計測することで目標の速度を非常に正確に測定
できるが，パルスのような時間基準がないため，距離を測定することはできない．原理的に
近距離の目標を探知できないブラインドゾーンがないという利点がある．
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図 16.4. CW レーダの系統図

16.3.5 FM-CWレーダ

FM-CWレーダは，CWレーダの欠点である距離測定不能を克服するため，送信する連
続波の周波数を時間的に変化（周波数変調）させる方式である．例えば，周波数を三角波状
に変化させると，送信信号と受信信号（目標からの反射によって時間遅延が生じる）の間に
周波数差（ビート周波数）が生じる．目標が静止している場合，このビート周波数 fr は目
標までの距離 R に比例し，次式で与えられる．

fr = 4Rfm∆f
c

(16.24)

ここで，fm は FMの繰り返し周波数，∆f は周波数偏移幅である．目標が移動している場

(a) 目標が静止しているとき (b) 目標が移動しているとき

図 16.5. FM-CW レーダの周波数対時間の関係

合は，この距離に起因するビート周波数 fr にドップラー周波数 fd が加算または減算され，
観測されるビート周波数 fb は fb = fr ± fd となる．これにより，距離と速度を同時に測定
することが可能となる．これらの基本原理を組み合わせることで，特定の用途に合わせた多
様なレーダシステムが設計される．
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16.4 レーダの例

レーダの理論的原理は，科学研究や公共の安全を守るための高度なシステムに応用されて
いる．ここでは，日本におけるその代表的な二つの例を紹介する．

16.4.1 大気観測用レーダ：MUレーダ

京都大学生存圏研究所の信楽 MU 観測所*2に設置されているMU レーダ（Middle and
Upper Atmosphere Radar）は，日本を代表する大気観測用レーダである．その名の通り，
中層大気（高度 10〜100km）から超高層大気（高度 100km以上）の風速や大気擾乱などを
精密に観測することを主目的としている．

図 16.6. MU レーダ

• 形式: 直径 103mの円形敷地に，475素子の直交 3素子八木・宇田アンテナを配列し
たアクティブ・フェーズドアレー方式．

• 周波数: 46.5 MHz (VHF帯)．

このレーダは，本来の大気観測に加えて，近年問題となっている高速で飛来するスペースデ
ブリ（宇宙ゴミ）の観測・研究にも活用されており，宇宙空間の環境監視においても重要な
役割を担っている．

*2 http://www.rish.kyoto-u.ac.jp/mu/radar.html
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16.4.2 気象用レーダ：富士山頂レーダ

かつて日本の気象観測網の要であった富士山頂レーダは，その名の通り富士山の山頂に設
置されていた気象レーダである．主な役割は，台風や集中豪雨をもたらす雨雲や降雨地域を
早期に探知することであった．

図 16.7. 富士山頂レーダ

• 所在地: 標高 3776mの富士山頂．
• 諸元: 周波数 2.88 GHz，アンテナ開口径 5m．
• 運用期間: 1965年から 1999年までの 35年間．
• 性能: 最大探知距離は 800kmに及び，日本列島の広範囲をカバーした．

富士山頂という極めて過酷な気象条件下で長期間安定して稼働させるため，アンテナはレ
ドームと呼ばれる球状のカバーで保護されていた．その技術的功績は国際的にも高く評価さ
れており，米国の電気電子学会（IEEE）から歴史に残る優れた電気工学技術として表彰さ
れている．
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CHAPTER A

付録



A.1 影像電磁流の導出

�微小電流素子による電界，磁界 電流を原点におき，電流の向きを z 軸方向とする微小電
流素子（電気ダイポール）によって生じる観測点 (r, θ, φ)における電界 Ee，磁界He は，

Ee(r, θ, φ) = I∆z · e−jkr

j2πωε

(
jk

r2 + 1
r3

)
cos θ ar

+I∆z · e−jkr

j4πωε

(
−k2

r
+ jk

r2 + 1
r3

)
sin θ aθ

= I∆z
2π jωµ

(
1
jkr

+ 1
(jkr)2

)
e−jkr

r
cos θar

+I∆z
4π jωµ

(
1 + 1

jkr
+ 1

(jkr)2

)
e−jkr

r
sin θ aθ

≡ fe(r) cos θar + ee(r) sin θaθ

He(r, θ, φ) = I∆z · e−jkr

4π

(
jk

r
+ 1
r2

)
sin θ aφ

= I∆z
4π jk

(
1 + 1

jkr

)
e−jkr

r
sin θ aφ

≡ he(r) sin θaφ (A.1)

ただし，ar，aθ，aφは，r，θ，φ方向に沿う単位ベクトルを示す．観測点を円柱座標 (ρ, φ, z)
として表すこともでき，単位ベクトルの関係は次のようになる．

aρ = cosφax + sinφay
ar = sin θ

(
cosφax + sinφay

)
+ cos θaz = sin θaρ + cos θaz

aθ = cos θ
(

cosφax + sinφay
)

− sin θaz = cos θaρ − sin θaz
aφ = − sinφax + cosφay

ただし，aρ は ρ方向に沿う単位ベクトルを示す．これより，Ee を円筒座標系の単位ベクト
ルを用いて表すと，

Ee = fe(r) cos θ(sin θaρ + cos θaz) + ee(r) sin θ(cos θaρ − sin θaz)
= (fe(r) + ee(r)) sin θ cos θaρ + (fe(r) cos2 θ − ee(r) sin2 θ)az
= Eρ(r, θ)aρ + Ez(r, θ)az = E

∣∣∣
x−y

+ E
∣∣∣
φ−z

(A.2)
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�微小磁流素子による電界，磁界 微小磁流（振幅 K）による電界 Em および磁界Hm は，
双対性より（Ee → Hm，He → −Em，I → K），

−Em = K∆z
4π jk

(
1 + 1

jkr

)
e−jkr

r
sin θ aφ ≡ em(r) sin θaφ

Hm = K∆z
2π jωµ

(
1
jkr

+ 1
(jkr)2

)
e−jkr

r
cos θar

+K∆z
4π jωµ

(
1 + 1

jkr
+ 1

(jkr)2

)
e−jkr

r
sin θ aθ

≡ fm(r) cos θar + hm(r) sin θaθ
= (fm(r) + hm(r)) sin θ cos θaρ

+(fm(r) cos2 θ − hm(r) sin2 θ)az
= Hρ(r, θ)aρ +Hz(r, θ)az (A.3)

� 地導体に垂直な微小電流素子 導体板が z = −d の x − y 面にある場合，接線電界
Ee1

∣∣∣
tan
は，

Ee1
∣∣∣
tan

= E
∣∣∣
x−y

= Eρ(r, θ)aρ = (fe(r) + ee(r)) sin θ cos θaρ (A.4)

ただし，E
∣∣∣
x−y
は z 方向に直交する x− y 面上の成分からなる電界，導体板がある場合，影

像素子を考えて解けばよいので，影像素子は点 (x = 0, y = 0, z = −2d)におき，電流の向
きは +z 方向とする．電界の境界条件によって影像素子の振幅を決定していく．影像素子に
よる電界を表すために，影像素子の位置を原点とする円柱座標 (ρ, φ, z′)，球座標 (r′, θ′, φ)
を考えると z′ = z + 2d．導体面上では θ′ = π − θゆえ，

sin θ′ = sin(π − θ) = − sin(−θ) = sin θ (A.5)
cos θ′ = cos(π − θ) = − cos(−θ) = − cos θ sin θ′ = sin θ, cos θ′ = − cos θ (A.6)

影像素子による導体面上の接線電界 E′
e1

∣∣∣
tan
は，r′ = rより，

E′
e1

∣∣∣
tan

= E′
∣∣∣
φ−z

= E′
ρaρ = (fe(r′) + ee(r′)) sin θ′ cos θ′aρ

= (fe(r) + ee(r)) sin θ(− cos θ)aρ = −Ee1
∣∣∣
tan

(A.7)

影像素子の励振係数を I ′ とすると，導体面上における電界の境界条件より，

IEe1
∣∣∣
tan

+ I ′E′
e1

∣∣∣
tan

= 0 (A.8)

よって，

IEe1
∣∣∣
tan

+ I ′(−Ee1
∣∣∣
tan

) = (I − I ′)Ee1
∣∣∣
tan

= 0
I − I ′ = 0
∴ I ′ = I (A.9)
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影像素子の振幅 I ′ は，電流素子の振幅 I と等しい値となる．

�地導体に垂直な微小磁流素子 微小磁流素子の場合は，双対性より電界 Em は，および磁
界Hm は，

Em(r, θ, φ) = −em(r) sin θaφ (A.10)
Hm(r, θ, φ) = Hr(r) cos θar +Hθ(r) sin θaθ (A.11)

導体板が磁流素子と垂直であるから，導体面上では θ′ = π − θゆえ，

sin θ′ = sin(π − θ) = sin θ (A.12)

影像磁流素子による電界の接線成分 E′
m1

∣∣∣
tan
は，r′ = rより，

E′
m1

∣∣∣
tan

= −em(r′) sin θ′aφ = −em(r) sin θaφ = Em1
∣∣∣
tan

(A.13)

影像素子の振幅を K ′ とすると，導体面上の電界の境界条件より，

KEm1
∣∣∣
tan

+K ′E′
m1

∣∣∣
tan

= 0 (A.14)

KEm1
∣∣∣
tan

+K ′Em1
∣∣∣
tan

= (K +K ′)Em1
∣∣∣
tan

= 0 (A.15)
∴ K ′ = −K (A.16)

�地導体に平行な微小電流素子 導体板が ρ = dにおいて，aR(= cos Φax + sin Φay)に直
交する場合，接線電界 Ee2

∣∣∣
tan
は，

Ee2
∣∣∣
tan

= Eρ(r, θ)(aρ · aΦ)aΦ + Ez(r, θ)az = Ezaz
= (Er(r) + Eθ(r)) sin θ cos θ sinφay

= (Er(r) cos2 θ − Eθ(r) sin2 θ)az (A.17)

ここで，

aρ · aΦ = (cosφax + sinφay) · (− sin Φax + cos Φay)
= − cosφ sin Φ + sinφ cos Φ = sin(φ− Φ) (A.18)

円筒座標 (ρ, φ, z) において，影像素子は点 (ρ = 2d, φ = Φ, z = 0) におき，電流の向きは
+z 方向とする．影像素子の位置を原点とする円柱座標 (ρ′′, φ′′, z)，球座標 (r′′, θ′′, φ′′)を考
えると，導体面上では φ′′ − Φ = π − (φ− Φ)ゆえ，

sin(φ′′ − Φ) = sin(π − (φ− Φ)) = sin(φ− Φ) (A.19)
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影像素子による接線電界 E′
e2

∣∣∣
tan
は，ρ′′ = ρ，r′′ = r，θ′′ = θより，E′

ρ(r′′, θ′′) = Eρ(r, θ)，
E′
z(r′′, θ′′) = Ez(r, θ)ゆえ，

E′
e2

∣∣∣
tan

= Eρ(r′′, θ′′) sin(φ′′ − Φ)aΦ + Ez(r′′, θ′′)az
= (Er(r′) cos2 θ′ − Eθ(r′) sin2 θ′)az
= Eρ(r, θ) sin(φ− Φ)aΦ + Ez(r, θ)az
= (Er(r) cos2 θ − Eθ(r) sin2 θ)az = Ee2

∣∣∣
tan

(A.20)

影像素子の振幅を I ′′ とすると，導体面上における電界の境界条件より，

IEe2
∣∣∣
tan

+ I ′′E′
e2

∣∣∣
tan

= 0 (A.21)

よって，

IEe2
∣∣∣
tan

+ I ′′Ee2
∣∣∣
tan

= (I + I ′′)Ee2
∣∣∣
tan

= 0
I + I ′′ = 0
∴ I ′′ = −I (A.22)

�地導体に平行な微小磁流素子 導体板に平行な磁流素子による接線電界 Em2
∣∣∣
tan
は，

Em2
∣∣∣
tan

= −em(r) sin θ(aφ · aΦ)aΦ (A.23)

ここで，

aφ · aΦ = (− sinφax + cosφay) · (− sin Φax + cos Φay)
= sinφ sin Φ + cosφ cos Φ = cos(φ− Φ) (A.24)

導体面上では φ′′ − Φ = π − (φ− Φ)ゆえ，

cos(φ′′ − Φ) = cos(π − (φ− Φ)) = − cos(φ− Φ) (A.25)

よって，影像素子による接線電界 E′
m2

∣∣∣
tan
は，

E′
m2

∣∣∣
tan

= −em(r′′) sin θ′′ cos(φ′′ − Φ)aΦ

= em(r) sin θ cos(φ− Φ)aΦ = −Em2
∣∣∣
tan

(A.26)

影像素子の振幅を K ′ とすると，導体面上での電界の境界条件より，

KEm2
∣∣∣
tan

+K ′′E′
m2

∣∣∣
tan

= 0 (A.27)

KEm2
∣∣∣
tan

+K ′′(−Em2
∣∣∣
tan

) = (K −K ′′)Em2
∣∣∣
tan

= 0 (A.28)
∴ K ′′ = K (A.29)
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A.2 開口面の境界線での不連続を考慮した積分表示

A.2.1 電荷の保存則（連続の式）

電流密度を J，電荷密度を ρとすると，電荷の保存則は，

∇ · J = −∂ρ

∂t
= −jωρ (A.30)

微小な領域において体積積分して，ガウスの発散定理より，˚
∇ · JdV =

‹
J · dS

= −
˚

∂ρ

∂t
dV = −jω

˚
ρdV (A.31)

面 S 上の面電流密度を Js，面電荷密度を ρs とすると，

∇s · Js = −∂σ

∂t
= −jωρs (A.32)

ただし，∇s は面 S 上の 2 次元微分演算子を示す．微小な面上の領域において面積積分し
て，2次元のガウスの発散定理より，¨

∇s · JsdS =
˛

Js · nsd`

= −
¨

∂σ

∂t
dS = −jω

¨
ρsdS (A.33)

A.2.2 面電流分布の不連続

面 S 上において領域 1,2が接している境界線上周辺に面積積分の積分範囲をとる．いま，
境界線に沿う微小長さを dl，境界線に垂直な微小幅を hとおくと，(

J(2)
s − J(1)

s

)
· n1dl = − lim

h→0

∂σ

∂t
hdl = −∂σl

∂t
dl

= − lim
h→0

jωρshdl = −jωσdl (A.34)

ただし，n1 は面 S 上の領域 1 から 2 に向く法線ベクトル，σ は境界線上の線電荷密度を
示し，

σ ≡ lim
h→0

hρs (A.35)

また，J(1)
s ，J(2)

s は，領域 1,2の境界線での等価的な面電流密度を各々示し，面 S 上の磁界
をH1，H2 とおくと，

J(i)
s = n × Hi (i = 1, 2) (A.36)
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境界線に沿う単位ベクトルを τ とおき，τ = n × n1 とすると，不連続な面電流分布に対す
る境界条件の式が得られる*1．(

J(2)
s − J(1)

s

)
· n1 =

(
n × H2 − n × H1

)
· n1

= (n1 × n) · (H2 − H1)
= −τ · (H2 − H1)
= τ · (H1 − H2)
= −jωσ (A.37)

A.2.3 線電荷，線磁荷の周回積分による電磁界

境界線上の領域 1の面上の磁界をHとし（H1 = H，H2 = 0），

τ · H1 = τ · H = −jωσ (A.38)

∴ σ = −τ · H
jω

(A.39)

領域 1の周囲の線電荷密度 σ による電界 EC は，等価波源の面積分を線積分として，

EC = 1
4π

˛
C

σ

ε
∇ψds

= − 1
4πjωε

˛
C

∇ψ(τ · H)ds (A.40)

領域 1の電界を Eとし（E1 = E，E2 = 0），双対性より，境界線上の線磁荷密度 σm は，

σm = τ · E
jω

(A.41)

この線磁荷による磁界 HC もまた，等価波源の面積分を線積分として，あるいは双対性
より，

HC = 1
4π

˛
C

σm
µ

∇ψds

= 1
4πjωµ

˛
C

∇ψ(τ · E)ds (A.42)

A.2.4 有限の開口面分布による電磁界の積分表示式

開口面分布の面積分の項に加えて，開口面の内部と外部とで連続の式を満足するように
開口面の周囲の線電荷・線磁荷の周回積分の項を加え，開口面分布によって生じる電界 Ep，

*1 Julius Adams Stratton, ”Electromagnetic Theory,” 8.16. Discontinuous Surface Distributions, p.468,
McGraw-Hill, New York (1941), Wiley-IEEE Press (2007), Kindle Edition (2013)
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磁界Hp は*2，

Ep = − 1
4πjωε

˛
C

∇ψ(τ · H)ds

+ 1
4π

¨
A

{−jωµ(n × H)ψ + (n × E) × ∇ψ + (n · E)∇ψ} dS (A.43)

Hp = 1
4πjωµ

˛
C

∇ψ(τ · E)ds

+ 1
4π

¨
A

{jωε(n × E)ψ + (n × H) × ∇ψ + (n · H)∇ψ} dS (A.44)

式 (A.40)の積分項について，直角座標系 (x1, x2, x3)を考え，xi (i = 1, 2, 3)方向の単位ベ
クトルを ii とすると，

˛
C

∇ψ(τ · H)ds =
˛
C

( 3∑
i=1

∂ψ

∂xi
ii
)

(τ · H)ds

=
3∑
i=1

ii
˛
C

∂ψ

∂xi
H · τds (A.45)

ただし，τ は周回積分路に沿う方向の単位ベクトルを示す．上式の周回積分は，次のように
ストークスの定理より，周回積分路 C に囲まれた面 Aの面積分に変換できる．

˛
C

∂ψ

∂xi
H · τds =

¨
A

{
∇ ×

(
∂ψ

∂xi
H
)}

· ndS (A.46)

被積分関数は，{
∇ ×

(
∂ψ

∂xi
H
)}

· n =
{(

∇ ∂ψ

∂xi

)
× H + ∂ψ

∂xi
(∇ × H)

}
· n

=
{(

∇ ∂ψ

∂xi

)
× H

}
· n + ∂ψ

∂xi

(
∇ × H

)
· n

= (H × n) ·
(

∇ ∂ψ

∂xi

)
+ ∂ψ

∂xi

(
jωεE

)
· n

= −(n × H) ·
(

∇ ∂ψ

∂xi

)
+ jωε

∂ψ

∂xi

(
n · E

)
(A.47)

電流源 J0 = 0，導電率 σ = 0として，

∇ × H = (jωε+ σ)E + J0 = jωεE (A.48)

*2 Samuel Silver, ”Microwave Antenna Theory and Design,” 5.11. The Aperture-field Method, McGraw
Hill (1949), IEE, reprint (1984).
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つまり，周回積分項は，
˛
C

∇ψ(τ · H)ds

=
3∑
i=1

ii
˛
C

∂ψ

∂xi
H · τds

=
3∑
i=1

ii
¨
A

{
∇ ×

(
∂ψ

∂xi
H
)}

· ndS

=
3∑
i=1

ii
¨
A

{
jωε

∂ψ

∂xi

(
n · E

)
− (n × H) ·

(
∇ ∂ψ

∂xi

)}
dS

=
¨
A

[
jωε

(
n · E

) 3∑
i=1

ii
∂ψ

∂xi
−

3∑
i=1

ii
{

(n × H) ·
(

∇ ∂ψ

∂xi

)}]
dS

=
¨
A

{
jωε

(
n · E

)
∇ψ − (n × H) · ∇(∇ψ)

}
dS (A.49)

ここで，

∇ψ =
3∑
i=1

ii
∂ψ

∂xi
(A.50)

A.2.5 ベクトルの勾配

ベクトル関数 Fの勾配 ∇Fは，

∇F = ∇

 3∑
j=1

Fjij


=
 3∑
j=1

∇Fj

 ij

=
3∑
j=1

(
∂Fj
∂x1

i1 + ∂Fj
∂x2

i2 + ∂Fj
∂x3

i3
)

ij

=
3∑
j=1

( 3∑
i=1

∂Fj
∂xi

ii
)

ij

=
3∑
i=1

3∑
j=1

∂Fj
∂xi

iiij (A.51)

となり，ダイアディック関数で表される．これより，

F =
3∑
j=1

Fjij = ∇ψ =
3∑
j=1

∂ψ

∂xj
ij (A.52)
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とおくと，スカラ関数 ψ の勾配の勾配 ∇(∇ψ)は，

∇(∇ψ) =
3∑
i=1

3∑
j=1

∂2ψ

∂xi∂xj
iiij (A.53)

いま，

J = n × H (A.54)

ψ′
j = ∂ψ

∂xj
(A.55)

とおいて，周回積分の第 2項の被積分関数を計算していくと，
3∑
j=1

ij
{

(n × H) ·
(

∇ ∂ψ

∂xj

)}
=

3∑
j=1

(J · ∇ψ′
j)ij

=
3∑
j=1

( 3∑
i=1

Ji
∂ψ′

j

∂xi

)
ij

=
3∑
i=1

Ji
∂

∂xi

 3∑
j=1

ψ′
jij


=

3∑
i=1

Ji
∂

∂xi

 3∑
j=1

∂ψ

∂xj
ij


= J ·

 3∑
i=1

3∑
j=1

∂2ψ

∂xi∂xj
iiij


= J · ∇(∇ψ)
= (n × H) · ∇(∇ψ) (A.56)

よって，EC は，

EC = − 1
4πjωε

˛
C

∇ψ(τ · H)ds

= 1
4π

¨
A

{
−(n · E)∇ψ + 1

jωε
(n × H) · ∇(∇ψ)

}
dS (A.57)

一方，面積分で求められる電界 ES は，

ES = 1
4π

¨
A

{−jωµ(n × H)ψ + (n × E) × ∇ψ + (n · E)∇ψ} dS (A.58)

領域 1の面 Aの開口面分布によって生じる電界 Ep は，両者の和より，

Ep = ES + EC

= 1
4π

¨
A

{
− jωµ(n × H)ψ

+ 1
jωε

(n × H) · ∇(∇ψ) + (n × E) × ∇ψ
}
dS (A.59)

258



同様にして，磁界Hp は，

Hp = ES + EC

= 1
4π

¨
A

{
jωε(n × E)ψ

− 1
jωµ

(n × E) · ∇(∇ψ) + (n × H) × ∇ψ
}
dS (A.60)

このような積分表示式を開口面法（aperture-field method）という．

A.2.6 開口面法（開口面が曲面の場合）

開口面の電磁界を Ea，Ha，観測点 P での電磁界を Ep，Hp とすると，k2 = ω2εµより，
開口面法（aperture-field method）の基本式は次のようになる．

Ep = 1
4πjωε

¨
A

{
k2(n × Ha)ψ

+ (n × Ha) · ∇(∇ψ) + jωε(n × Ea) × ∇ψ
}
dS (A.61)

同様にして，磁界Hp は（導出省略），

Hp = − 1
4πjωµ

¨
A

{
k2(n × Ea)ψ

+ (n × Ea) · ∇(∇ψ) − jωµ(n × Ha) × ∇ψ
}
dS (A.62)

開口面のある点から観測点 P までの距離および単位ベクトルを r，ar とすると，開口面の
座標に関わる微分演算子 ∇の勾配は，

∇ψ = ∇
(
e−jkr

r

)

= (−ar)
(

−jk − 1
r

)
e−jkr

r

= jk

(
1 + 1

jkr

)
ψar (A.63)

さらに，

∇(∇ψ) =
3∑
i=1

3∑
j=1

∂2ψ

∂xi∂xj
iiij (A.64)

放射波（1/r に比例する項）を求めることにすると，kr � 1とみなして次のように近似で
きる．

∇ψ ' jkψar (A.65)
∇(∇ψ) ' (jk)2ψarar (A.66)
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これより，放射電界 Ep は次のようになる．

Ep ' 1
4πjωε

¨
A

{
k2(n × Ha)

+ (n × Ha) · (−k2)arar + jωε(n × Ea) × jkar
}
ψdS (A.67)

ベクトル公式

a × (b × c) = (a · c)b − (a · b)c (A.68)

を用いれば，

ar × (ar × J) = (ar · J)ar − (ar · ar)J = (ar · J)ar − J
J = (ar · J)ar − ar × (ar × J) (A.69)

および J = n × Ha より，

n × Ha = {ar · (n × Ha)}ar − ar × {ar × (n × Ha)}
∴ n × Ha − {(n × Ha) · ar}ar = −ar × {ar × (n × Ha)} (A.70)

したがって，

Ep = jk

4π

¨
A

[√
µ

ε
ar × {ar × (n × Ha)} − ar × (n × Ea)

]
ψdS (A.71)

座標原点から観測点までの距離をRとし，kR � 1のとき，次のように近似できる（R ' r）．

Ep = −jk
4π

e−jkR

R

¨
A

(
ar ×

[
(n × Ea) −

√
µ

ε

{
ar × (n × Ha)

}])
· R
r
e−jk(r−R)dS (A.72)

同様にして，磁界Hは，

Hp = −jk
4π

e−jkR

R

¨
A

(
ar ×

[
(n × Ha) +

√
ε

µ

{
ar × (n × Ea)

}])

· R
r
e−jk(r−R)dS (A.73)

さらに，aR ' ar のとき，

Ep = jk

4π
e−jkR

R
aR ×

¨
A

[√
µ

ε
{aR × (n × Ha)} + (Ea × n)

]
· e−jk(r−R)dS (A.74)
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開口面の電界 Ea，磁界Ha から，等価的な 2次波源

J ≡ n × Ha (A.75)
M ≡ Ea × n (A.76)

を定義すれば，開口面法の式は次のようになる．

Ep = jk

4π
e−jkR

R
aR ×

¨
A

(√
µ

ε
aR × J + M

)
e−jk(r−R)dS

= jkG0aR ×
¨
A

(
aR × Z0J + M

)
e−jk(r−R)dS (A.77)

任意電磁流分布による放射電磁界の積分表示式と同様の結果となる．ここで，

G0 = e−jkR

4πR , Z0 =
√
µ

ε
(A.78)
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A.3 フレネル積分を用いた角すいホーンのフレネル領域放射
電界の表示式について

角すいホーン（基本モード）のフレネル領域での放射電界を求める積分をフレネル積分を
用いて表すことを考える．

A.3.1 フレネル積分

フレネル正弦積分 C(α)，フレネル余弦積分 S(α) は（正規化されたフレネル積分とも
いう）*3，

C(x) =
ˆ x

0
cos

(
π

2 ξ
2
)
dξ, C(x) = −C(x) (A.79)

S(x) =
ˆ x

0
sin

(
π

2 ξ
2
)
dξ, S(−x) = −S(x) (A.80)

図 A.1に計算値を図示している．

4 2 0 2 4
x

1.0

0.5

0.0

0.5

1.0

C
(x

),
S
(x

)

S(x)

C(x)

図 A.1. フレネル積分

*3 https://www1.doshisha.ac.jp/~hdeguchi/Python/p2_Fresnel_integral_2024.html
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A.3.2 被積分関数の位相項

まず，フレネル領域放射電界の積分の被積分関数の位相項を次のように変形する．

−j2πteȳ2 + jueȳ sinφ = −j π2

(
4teȳ2 − 2

π
ueȳ sinφ

)

= −j π2

(2
√
teȳ − ue sinφ

2π
√
te

)2

− u2
e sin2 φ

4π2te

 = −j π2 ξ
2 + j

u2
e sin2 φ

8πte
(A.81)

ここで，

ξ ≡ 2
√
teȳ − ue sinφ

2π
√
te

(A.82)

より，

dξ ≡ 2
√
tedȳ (A.83)

よって，

fy =
ˆ ξ2

ξ1

e−j π
2 ξ

2+j u2
e sin2 φ

8πte
dξ

2
√
te

= ej
u2

e sin2 φ

8πte

2
√
te

ˆ ξ2

ξ1

e−j π
2 ξ

2
dξ (A.84)

ここで，

ξ(1
2

) = 2
√
te(∓1) − ue sinφ

2π
√
te

= ∓2
√
te − ue sinφ

2π
√
te

(A.85)

積分項はフレネル積分 C(α)，S(α)を用いて，
ˆ ξ2

ξ1

e−j π
2 ξ

2
dξ = −

ˆ ξ1

0
e−j π

2 ξ
2
dξ +

ˆ ξ2

0
e−j π

2 ξ
2
dξ

= −
{
C(ξ1) − jS(ξ1)

}
+
{
C(ξ2) − jS(ξ2)

}
=
{
C(ξ2) − C(ξ1)

}
− j

{
S(ξ2) − S(ξ1)

}
(A.86)

また，オイラーの公式

cos
(
πx̄

2

)
= ej

πx̄
2 − e−j πx̄

2

2 (A.87)

より，

fx = 1
2

ˆ 1

−1

(
ej

πx̄
2 + e−j πx̄

2
)
e−j2πthx̄2

ejuhx̄ cosφdx̄

= 1
2

ˆ 1

−1
e−j2πthx̄2

ej(uh cosφ+ π
2 )x̄dx̄+ 1

2

ˆ 1

−1
e−j2πthx̄2

ej(uh cosφ− π
2 )x̄dx̄
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上式の位相項は，

−j2πthx̄2 + j
(
uh cosφ± π

2

)
x̄

= −j π2

{
4thx̄2 −

( 2
π
uh cosφ± 1

)
x̄
}

= −j π2

(2
√
thx̄−

uh cosφ± π
2

2π
√
th

)2

−
(uh cosφ± π

2 )2

4π2th


= −j π2 ζ

2
± + j

(uh cosφ± π
2 )2

8πth
(A.88)

ここで，

ζ± ≡ 2
√
thx̄−

uh cosφ± π
2

2π
√
th

(A.89)

より，

dζ± ≡ 2
√
thdx̄ (A.90)

よって，

fx = 1
2

ˆ ζ2+

ζ1+
e−j π

2 ζ
2
+e

j
(uh cos φ+ π

2 )2

8πth
dζ+

2
√
th

− 1
2

ˆ ζ2−

ζ1−
e−j π

2 ζ
2
−e

j
(uh cos φ− π

2 )2

8πth
dζ−

2
√
th

= 1
4
√
th

(
e
j

(uh cos φ+ π
2 )2

8πth

ˆ ζ2+

ζ1+
e−j π

2 ζ
2
+dζ+ +ej

(uh cos φ− π
2 )2

8πth

ˆ ζ2−

ζ1−
e−j π

2 ζ
2
−dζ−

)
(A.91)

ここで，

ζ1± = −2
√
th −

uh cosφ+ π
2

2π
√
th

, ζ2± = 2
√
th −

uh cosφ− π
2

2π
√
th

(A.92)

積分項は，次のようにフレネル積分 C(α)，S(α)を用いて表すことができる．
ˆ ζ2±

ζ1±

e−j π
2 ζ

2
±dζ± =

{
C(ζ2±) − C(ζ1±)

}
− j

{
S(ζ2±) − S(ζ1±)

}
(A.93)
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A.4 三角関数の公式

数式の導出に必要となる三角関数の公式について説明する．

A.4.1 積和公式

三角関数の積和公式（積→和・差）をオイラーの公式より求めよう．まず，

ej(α+β) + ej(α−β) = ejα(ejβ + e−jβ) = (cosα + j sinα)2 cos β
= 2 cosα cos β + j2 sinα cos β} (A.94)

あるいは，

ej(α+β) + ej(α−β) =
{

cos(α + β) + cos(α− β)
}

+ j
{

sin(α + β) + sin(α− β)
}
(A.95)

よって，

2 cosα cos β + j2 sinα cos β =
{

cos(α + β) + cos(α− β)
}

+ j
{

sin(α + β) + sin(α− β)
}

(A.96)

実部，虚部を等しくおけば，三角関数の積和公式が得られる．

2 cosα cos β = cos(α + β) + cos(α− β)
2 sinα cos β = sin(α + β) + sin(α− β) (A.97)

同様にして，第 1項と第 2項の差を求めて，

ej(α+β) − ej(α−β) = ejα(ejβ − e−jβ) = (cosα + j sinα)j2 sin β
= j2 cosα sin β − 2 sinα sin β

=
{

cos(α + β) − cos(α− β)
}

+ j
{

sin(α + β) − sin(α− β)
}

(A.98)

よって，三角関数の積和公式は，

2 cosα sin β = sin(α + β) − sin(α− β)
−2 sinα sin β = cos(α + β) − cos(α− β) (A.99)

A.4.2 和積公式

三角関数の和積公式（和・差→積）は，A = α + β，B = α− β とおいて，

α = A+B

2 , β = A−B

2 (A.100)

265



より，

eα + ejβ = ej
(

A+B
2 + A−B

2

)
+ ej

(
A+B

2 − A−B
2

)
= ej

A+B
2
(
ej

A+B
2 + ej

A−B
2
)

=
{

cos
(
A+B

2

)
+ j sin

(
A+B

2

)}
2 cos

(
A−B

2

)
= cosA+ cosB + j(sinA+ sinB) (A.101)

また，

eα − ejβ = ej
(

A+B
2 + A−B

2

)
− ej

(
A+B

2 − A−B
2

)
= ej

A+B
2
(
ej

A+B
2 − ej

A−B
2
)

=
{

cos
(
A+B

2

)
+ j sin

(
A+B

2

)}
j2 sin

(
A−B

2

)
= cosA− cosB + j(sinA− sinB) (A.102)

これより，三角関数の和積公式は，

cosA+ cosB = 2 cos
(
A+B

2

)
cos

(
A−B

2

)
(A.103)

sinA+ sinB = 2 sin
(
A+B

2

)
cos

(
A−B

2

)
(A.104)

cosA− cosB = −2 sin
(
A+B

2

)
sin

(
A−B

2

)
(A.105)

sinA− sinB = 2 cos
(
A+B

2

)
sin

(
A−B

2

)
(A.106)
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