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CHAPTER 1

開口面法

　アンテナの開口面における電磁界分布から，そのアンテナが放射する電磁界を計算
する手法について解説する．まず，電荷保存則と面電流の不連続性といった基本的な
電磁気学の原理から出発し，線電荷や線磁荷を用いた電磁界の積分表現を導出する．
次に，有限の開口面における電磁界の積分表示式を詳細に示し，ストークスの定理や
ベクトル演算子を用いて複雑な積分項を求めていく．そして，開口面が曲面や平面の
場合の放射電界の近似式，特に観測点が十分遠方にあるフラウンホーファ領域と比較
的近いフレネル領域での解析を取り上げ説明する．さらに，導波管モードによる放射
特性の解析，特に単一モードや多モードの場合について，電界と磁界の関係，アンテ
ナ利得の計算式を詳しく説明する．最後に，円形開口面分布を持つアンテナの放射特
性を，一様分布や放物線テーパ分布の具体例を挙げて解説し，ベッセル関数を用いた
指向性関数の導出とサイドローブレベルについて説明する．

1.1 開口面の境界線での不連続を考慮した積分表示

1.1.1 電荷の保存則（連続の式）

電流密度を J，電荷密度を ρとすると，電荷の保存則は，

∇ · J = −∂ρ

∂t
= −jωρ (1.1)

微小な領域において体積積分して，ガウスの発散定理より，˚
∇ · JdV =

‹
J · dS

= −
˚

∂ρ

∂t
dV = −jω

˚
ρdV (1.2)
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面 S 上の面電流密度を Js，面電荷密度を ρs とすると，

∇s · Js = −∂σ

∂t
= −jωρs (1.3)

ただし，∇s は面 S 上の 2 次元微分演算子を示す．微小な面上の領域において面積積分し
て，2次元のガウスの発散定理より，¨

∇s · JsdS =
˛

Js · nsd`

= −
¨

∂σ

∂t
dS = −jω

¨
ρsdS (1.4)

1.1.2 面電流分布の不連続

面 S 上において領域 1,2が接している境界線上周辺に面積積分の積分範囲をとる．いま，
境界線に沿う微小長さを dl，境界線に垂直な微小幅を hとおくと，(

J (2)
s − J (1)

s

)
· n1dl = − lim

h→0

∂σ

∂t
hdl = −∂σl

∂t
dl

= − lim
h→0

jωρshdl = −jωσdl (1.5)

ただし，n1 は面 S 上の領域 1 から 2 に向く法線ベクトル，σ は境界線上の線電荷密度を
示し，

σ ≡ lim
h→0

hρs (1.6)

また，J (1)
s ，J (2)

s は，領域 1,2の境界線での等価的な面電流密度を各々示し，面 S 上の磁界
をH1，H2 とおくと，

J (i)
s = n × Hi (i = 1, 2) (1.7)

境界線に沿う単位ベクトルを τ とおき，τ = n × n1 とすると，不連続な面電流分布に対す
る境界条件の式が得られる*1．(

J (2)
s − J (1)

s

)
· n1 =

(
n × H2 − n × H1

)
· n1

= (n1 × n) · (H2 − H1)
= −τ · (H2 − H1)
= τ · (H1 − H2)
= −jωσ (1.8)

*1 Julius Adams Stratton, ”Electromagnetic Theory,” 8.16. Discontinuous Surface Distributions, p.468,
McGraw-Hill, New York (1941), Wiley-IEEE Press (2007), Kindle Edition (2013)
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1.1.3 線電荷，線磁荷の周回積分による電磁界

境界線上の領域 1の面上の磁界をH とし（H1 = H，H2 = 0），

τ · H1 = τ · H = −jωσ (1.9)

∴ σ = −τ · H

jω
(1.10)

領域 1の周囲の線電荷密度 σ による電界 EC は，等価波源の面積分を線積分として，

EC = 1
4π

˛
C

σ

ε
∇ψds

= − 1
4πjωε

˛
C

∇ψ(τ · H)ds (1.11)

領域 1の電界を E とし（E1 = E，E2 = 0），双対性より，境界線上の線磁荷密度 σm は，

σm = τ · E

jω
(1.12)

この線磁荷による磁界 HC もまた，等価波源の面積分を線積分として，あるいは双対性
より，

HC = 1
4π

˛
C

σm
µ

∇ψds

= 1
4πjωµ

˛
C

∇ψ(τ · E)ds (1.13)

1.1.4 有限の開口面分布による電磁界の積分表示式

開口面分布の面積分の項に加えて，開口面の内部と外部とで連続の式を満足するように開
口面の周囲の線電荷・線磁荷の周回積分の項を加え，開口面分布によって生じる電界 Ep，
磁界Hp は*2，

Ep = − 1
4πjωε

˛
C

∇ψ(τ · H)ds

+ 1
4π

¨
A

{−jωµ(n × H)ψ + (n × E) × ∇ψ + (n · E)∇ψ} dS (1.14)

Hp = 1
4πjωµ

˛
C

∇ψ(τ · E)ds

+ 1
4π

¨
A

{jωε(n × E)ψ + (n × H) × ∇ψ + (n · H)∇ψ} dS (1.15)

*2 Samuel Silver, ”Microwave Antenna Theory and Design,” 5.11. The Aperture-field Method, McGraw
Hill (1949), IEE, reprint (1984).

3



式 (1.11)の積分項について，直角座標系 (x1, x2, x3)を考え，xi (i = 1, 2, 3)方向の単位ベ
クトルを ii とすると，

˛
C

∇ψ(τ · H)ds =
˛
C

( 3∑
i=1

∂ψ

∂xi
ii

)
(τ · H)ds

=
3∑
i=1

ii

˛
C

∂ψ

∂xi
H · τds (1.16)

ただし，τ は周回積分路に沿う方向の単位ベクトルを示す．上式の周回積分は，次のように
ストークスの定理より，周回積分路 C に囲まれた面 Aの面積分に変換できる．

˛
C

∂ψ

∂xi
H · τds =

¨
A

{
∇ ×

(
∂ψ

∂xi
H

)}
· ndS (1.17)

被積分関数は，{
∇ ×

(
∂ψ

∂xi
H

)}
· n =

{(
∇ ∂ψ

∂xi

)
× H + ∂ψ

∂xi
(∇ × H)

}
· n

=
{(

∇ ∂ψ

∂xi

)
× H

}
· n + ∂ψ

∂xi

(
∇ × H

)
· n

= (H × n) ·
(

∇ ∂ψ

∂xi

)
+ ∂ψ

∂xi

(
jωεE

)
· n

= −(n × H) ·
(

∇ ∂ψ

∂xi

)
+ jωε

∂ψ

∂xi

(
n · E

)
(1.18)

電流源 J0 = 0，導電率 σ = 0として，

∇ × H = (jωε+ σ)E + J0 = jωεE (1.19)

つまり，周回積分項は，˛
C

∇ψ(τ · H)ds

=
3∑
i=1

ii

˛
C

∂ψ

∂xi
H · τds

=
3∑
i=1

ii

¨
A

{
∇ ×

(
∂ψ

∂xi
H

)}
· ndS

=
3∑
i=1

ii

¨
A

{
jωε

∂ψ

∂xi

(
n · E

)
− (n × H) ·

(
∇ ∂ψ

∂xi

)}
dS

=
¨
A

[
jωε

(
n · E

) 3∑
i=1

ii
∂ψ

∂xi
−

3∑
i=1

ii

{
(n × H) ·

(
∇ ∂ψ

∂xi

)}]
dS

=
¨
A

{
jωε

(
n · E

)
∇ψ − (n × H) · ∇(∇ψ)

}
dS (1.20)
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ここで，

∇ψ =
3∑
i=1

ii
∂ψ

∂xi
(1.21)

1.1.5 ベクトルの勾配

ベクトル関数 F の勾配 ∇F は，

∇F = ∇

 3∑
j=1

Fjij


=
 3∑
j=1

∇Fj

 ij

=
3∑
j=1

(
∂Fj
∂x1

i1 + ∂Fj
∂x2

i2 + ∂Fj
∂x3

i3

)
ij

=
3∑
j=1

( 3∑
i=1

∂Fj
∂xi

ii

)
ij

=
3∑
i=1

3∑
j=1

∂Fj
∂xi

iiij (1.22)

となり，ダイアディック関数で表される．これより，

F =
3∑
j=1

Fjij = ∇ψ =
3∑
j=1

∂ψ

∂xj
ij (1.23)

とおくと，スカラ関数 ψ の勾配の勾配 ∇(∇ψ)は，

∇(∇ψ) =
3∑
i=1

3∑
j=1

∂2ψ

∂xi∂xj
iiij (1.24)

いま，

J = n × H (1.25)

ψ′
j = ∂ψ

∂xj
(1.26)
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とおいて，周回積分の第 2項の被積分関数を計算していくと，
3∑
j=1

ij

{
(n × H) ·

(
∇ ∂ψ

∂xj

)}
=

3∑
j=1

(J · ∇ψ′
j)ij

=
3∑
j=1

( 3∑
i=1

Ji
∂ψ′

j

∂xi

)
ij

=
3∑
i=1

Ji
∂

∂xi

 3∑
j=1

ψ′
jij


=

3∑
i=1

Ji
∂

∂xi

 3∑
j=1

∂ψ

∂xj
ij


= J ·

 3∑
i=1

3∑
j=1

∂2ψ

∂xi∂xj
iiij


= J · ∇(∇ψ)
= (n × H) · ∇(∇ψ) (1.27)

よって，EC は，

EC = − 1
4πjωε

˛
C

∇ψ(τ · H)ds

= 1
4π

¨
A

{
−(n · E)∇ψ + 1

jωε
(n × H) · ∇(∇ψ)

}
dS (1.28)

一方，面積分で求められる電界 ES は，

ES = 1
4π

¨
A

{−jωµ(n × H)ψ + (n × E) × ∇ψ + (n · E)∇ψ} dS (1.29)

領域 1の面 Aの開口面分布によって生じる電界 Ep は，両者の和より，

Ep = ES + EC

= 1
4π

¨
A

{
− jωµ(n × H)ψ

+ 1
jωε

(n × H) · ∇(∇ψ) + (n × E) × ∇ψ
}
dS (1.30)

同様にして，磁界Hp は，

Hp = ES + EC

= 1
4π

¨
A

{
jωε(n × E)ψ

− 1
jωµ

(n × E) · ∇(∇ψ) + (n × H) × ∇ψ
}
dS (1.31)

このような積分表示式を開口面法（aperture-field method）という．
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1.2 開口面法（開口面が曲面の場合）

開口面の電磁界をEa，Ha，観測点 P での電磁界をEp，Hp とすると，k2 = ω2εµより，
開口面法（aperture-field method）の基本式は次のようになる．

Ep = 1
4πjωε

¨
A

{
k2(n × Ha)ψ

+(n × Ha) · ∇(∇ψ) + jωε(n × Ea) × ∇ψ
}
dS (1.32)

同様にして，磁界Hp は（導出省略），

Hp = − 1
4πjωµ

¨
A

{
k2(n × Ea)ψ

+(n × Ea) · ∇(∇ψ) − jωµ(n × Ha) × ∇ψ
}
dS (1.33)

開口面のある点から観測点 P までの距離および単位ベクトルを r，ar とすると，開口面の
座標に関わる微分演算子 ∇の勾配は，

∇ψ = ∇
(
e−jkr

r

)

= (−ar)
(

−jk − 1
r

)
e−jkr

r

= jk

(
1 + 1

jkr

)
ψar (1.34)

さらに，

∇(∇ψ) =
3∑
i=1

3∑
j=1

∂2ψ

∂xi∂xj
iiij (1.35)

放射波（1/r に比例する項）を求めることにすると，kr � 1とみなして次のように近似で
きる．

∇ψ ' jkψar (1.36)
∇(∇ψ) ' (jk)2ψarar (1.37)

これより，放射電界 Ep は次のようになる．

Ep ' 1
4πjωε

¨
A

{
k2(n × Ha)

+(n × Ha) · (−k2)arar + jωε(n × Ea) × jkar

}
ψdS (1.38)

ベクトル公式

a × (b × c) = (a · c)b − (a · b)c (1.39)
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を用いれば，

ar × (ar × J) = (ar · J)ar − (ar · ar)J = (ar · J)ar − J

J = (ar · J)ar − ar × (ar × J) (1.40)

および J = n × Ha より，

n × Ha = {ar · (n × Ha)}ar − ar × {ar × (n × Ha)}
∴ n × Ha − {(n × Ha) · ar}ar = −ar × {ar × (n × Ha)} (1.41)

したがって，

Ep = jk

4π

¨
A

[√
µ

ε
ar × {ar × (n × Ha)} − ar × (n × Ea)

]
ψdS (1.42)

座標原点から観測点までの距離をRとし，kR � 1のとき，次のように近似できる（R ' r）．

Ep = −jk
4π

e−jkR

R

¨
A

(
ar ×

[
(n × Ea) −

√
µ

ε

{
ar × (n × Ha)

}])
·R
r
e−jk(r−R)dS (1.43)

同様にして，磁界H は，

Hp = −jk
4π

e−jkR

R

¨
A

(
ar ×

[
(n × Ha) +

√
ε

µ

{
ar × (n × Ea)

}])

·R
r
e−jk(r−R)dS (1.44)

さらに，aR ' ar のとき，

Ep = jk

4π
e−jkR

R
aR ×

¨
A

[√
µ

ε
{aR × (n × Ha)} + (Ea × n)

]
·e−jk(r−R)dS (1.45)

開口面の電界 Ea，磁界Ha から，等価的な 2次波源

J ≡ n × Ha (1.46)
M ≡ Ea × n (1.47)

を定義すれば，開口面法の式は次のようになる．

Ep = jk

4π
e−jkR

R
aR ×

¨
A

(√
µ

ε
aR × J + M

)
e−jk(r−R)dS

= jkG0aR ×
¨
A

(
aR × Z0J + M

)
e−jk(r−R)dS (1.48)

任意電磁流分布による放射電磁界の積分表示式と同様の結果となる．ここで，

G0 = e−jkR

4πR , Z0 =
√
µ

ε
(1.49)
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1.3 開口面法（開口面が平面の場合）

電界 Ea と磁界Ha の関係が，

Ha = α(s × Ea) (1.50)

とおける場合（後述するホーン），電界 Ep の式に見られるHa の項は，√
µ

ε
(n × Ha) =

√
µ

ε
n × α(s × Ea)

= α

√
µ

ε

{
(n · Ea)s − (n · s)Ea

}
(1.51)

これより，電界 Ep は 2次波源の磁界Ha を消去して次のようになる．

Ep = −jk
4πRe

−jkR a
R

×
¨
Si

[
n × Ea − a

R
× α

√
µ

ε

{
(n · Ea)s − (n · s)Ea

}]
ejψ1dS(1.52)

あるいは，一様媒質の空間中で 2次波源 Ea，Ha が，局所的な平面波とみなせるとき，

Ha =
√
ε

µ
(s × Ea) (1.53)

この場合には，次のように Ea を用いて表すことができる．√
µ

ε
(n × Ha) = n × (s × Ea)

= (n · Ea)s − (n · s)Ea (1.54)

これより，電界 Ep は 2次波源の磁界Ha を消去して次のようになる．

Ep = −jk
4πRe

−jkR a
R

×
¨
Si

[n × Ea − a
R

× {(n · Ea)s − (n · s)Ea}] ejψ1dS

= −jk
4πRe

−jkR a
R

×
¨
Si

[{n + (n · s)a
R
} × Ea − (n · Ea)aR

× s] ejψ1dS

ただし，k は自由空間波数，Rは原点から観測点までの距離，a
R
は観測方向の単位ベクト

ル，E は開口面 Si 上の電界，nは開口面上の法線ベクトル，sは電磁界に直交する単位ベ
クトル，ψ1 = −r +R（rは開口面から観測点までの距離）である．
積分領域である曲面を波面上にとれば，s = n，n · Ea = 0 が成り立ち，このとき，放射
電界 Ep は次のようになる．

Ep = −jk
4πRe

−jkR a
R

×
¨
A

{(n + a
R
) × Ea} ejψ1dS (1.55)

ただし，Aは開口面（aperture）を示し，Eaを通常，開口面分布（aperture-field distribution）
という．

9



さらに，波面が平面の場合（nは積分変数に依らない），放射電界 Ep は次のようになる．

Ep = −jk
4πRe

−jkR a
R

× {(n + a
R
) × N} (1.56)

ただし，

N =
¨
A

Eae
jψ1dS (1.57)

直角座標系 (x, y, z)において，n = az のとき，放射電界 Ep は次のようになる．

Ep = −jk
4πRe

−jkR a
R

× {(az + a
R
) × N} (1.58)

ただし，

N = (N · ax)ax + (N · ay)ay =
¨
A

Eae
jψ1dS (1.59)

ただし，N · az = 0．ここで，ax，ay，az は，x，y，z に沿う単位ベクトルを各々示す．図
に示す球座標系 (R,Θ,Φ)において，Θ，Φに沿う単位ベクトル aΘ，aΦ は，

aΘ = cos Θ(cos Φax + sin Φay) − sin Θaz (1.60)
aΦ = − sin Φax + cos Φay (1.61)

新たに

ax

ay

az

x 

y 

z Ea 
0 

RaR

rar

n = az

Θ Φ

aR

aR

aΘ
aΘ

aΦ

aΦ aη

aξ

(R, Θ, Φ) Φ
ρ

図 1.1. 開口面法に関わる座標系の定義

aξ ≡ cos ΦaΘ − sin ΦaΦ (1.62)
aη ≡ sin ΦaΘ + cos ΦaΦ (1.63)

を定義する．これより，次のように変形する（問題参照）．

a
R

× {(az + a
R
) × N} = −(1 + cos Θ){(N · ax)aξ + (N · ay)aη} (1.64)
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開口面分布 Ea(≡ Exax + Eyay)による放射電界 Ep は次のようになる．

Ep = jk

4πRe
−jkR(1 + cos Θ){(N · ax)aξ + (N · ay)aη}

= j
1 + cos Θ

2λ · e
−jkR

R
(Nxaξ +Nyaη)

≡ Eξaξ + Eηaη (1.65)

ここで，

Nx = N · ax =
¨
A

(Ea · ax)ejψ1dS =
¨
A

Exe
jψ1dS (1.66)

Ny = N · ay =
¨
A

(Ea · ay)ejψ1dS =
¨
A

Eye
jψ1dS (1.67)

ただし，ψ1 ≡ −k(r −R)．これより，電界ベクトル Ep の直交成分 Eξ，Eη は，

E(ξ
η

)(R,Θ,Φ) = j
1 + cos Θ

2λ · e
−jkR

R

¨
A

E(x
y

)(x, y)e−jk(r−R)dS (1.68)

したがって，開口面電界分布Ea が x成分のみ (Ea · ay = 0)の場合，放射電界Ep は aξ 方
向成分のみ (Ep · aη = 0)で表され，逆に開口面電界分布Ea が y成分のみ (Ea · ax = 0)の
場合，放射電界Ep は aη 方向成分のみ (Ep · aξ = 0)で表される．このようにして各々の成
分は独立な式で扱うことができ，直線偏波の場合，ベクトルの成分（スカラ）だけで解析す
ればよい．開口面 (平面)における励振偏波成分と放射電界における主偏波および交差偏波
成分との対応関係をまとめると次のようになる．

表 1.1 開口面法に基づく偏波の対応関係

励振偏波 ax (垂直) ay (水平)
主偏波 aξ 成分 aη 成分
交差偏波 aη 成分 aξ 成分

問題

式 (1.64)を導出せよ．

�略解 球座標系 (R,Θ,Φ)の単位ベクトル aR，aΘ，aΦ は，

aR = sin Θ
(

cos Φax + sin Φay
)

+ cos Θaz (1.69)

aΘ = cos Θ
(

cos Φax + sin Φay
)

− sin Θaz (1.70)
aΦ = − sin Φax + cos Φay (1.71)
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ここで，

aR = aΘ × aΦ (1.72)
aΘ = aΦ × aR (1.73)
aΦ = aR × aΘ (1.74)

逆の関係は，

ax = cos Φ
(

sin ΘaR + cos ΘaΘ
)

− sin ΦaΦ (1.75)

ay = sin Φ
(

sin ΘaR + cos ΘaΘ
)

+ cos ΦaΦ (1.76)
az = cos ΘaR − sin ΘaΘ (1.77)

これより，

aR × ax = aR ×
{

cos Φ
(

sin ΘaR + cos ΘaΘ
)

− sin ΦaΦ
}

= cos Φ cos ΘaΦ + sin ΦaΘ (1.78)
aR × ay = aR ×

{
sin Φ

(
sin ΘaR + cos ΘaΘ

)
+ cos ΦaΦ

}
= sin Φ cos ΘaΦ − cos ΦaΘ (1.79)

式 (1.64)の左辺は，

aR ×
{
(az + aR) × N

}
= aR ×

{
(az + aR) × (Nxax +Nyay)

}
= aR ×

{
Nx(ay + aR × ax) +Ny(−ax + aR × ay)

}
= Nx

{
aR × ay + aR × (cos Φ cos ΘaΦ + sin ΦaΘ)

}
+Ny

{
− aR × ax + aR × (sin Φ cos ΘaΦ − cos ΦaΘ)

}
= Nx

{
(sin Φ cos ΘaΦ − cos ΦaΘ) + (− cos Φ cos ΘaΘ + sin ΦaΦ)

}
+Ny

{
− (cos Φ cos ΘaΦ + sin ΦaΘ) + (− sin Φ cos ΘaΘ − cos ΦaΦ)

}
= Nx

{
− cos Φ(1 + cos Θ)aΘ + sin Φ(cos Θ + 1)aΦ

}
+Ny

{
− sin Φ(1 + cos Θ)aΘ − cos Φ(cos Θ + 1)aΦ

}
= −(1 + cos Θ)

{
Nx(cos ΦaΘ − sin Φaφ) +Ny(sin ΦaΘ + cos Φaφ)

}
単位ベクトル

aξ = cos ΦaΘ − sin ΦaΦ (1.80)
aη = sin ΦaΘ + cos ΦaΦ (1.81)
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を用いると，

aR = aξ × aη (1.82)
aξ = aη × aR (1.83)
aη = aR × aξ (1.84)

したがって，次式が得られる．

aR ×
{
(az + aR) × N

}
= −(1 + cos Θ)

(
Nxaξ +Nyaη

)
= −(1 + cos Θ)

{
(N · ax)aξ + (N · ay)aη

}
(1.85)

1.4 フラウンホーファ領域放射電界

電界ベクトル Ep の直交するスカラ成分 Eξ，Eη は，

E(ξ
η

)(R,Θ,Φ) = j
1 + cos Θ

2λ · e
−jkR

R

¨
A

E(x
y

)(x, y)e−jk(r−R)dS (1.86)

観測点が十分遠方の場合，次のように近似する．

r −R ' −ρ (a
R

· aρ) (1.87)

ここで，

a
R

= sin Θ (cos Φax + sin Φay) + cos Θaz (1.88)
aρ = cosϕax + sinϕay (1.89)

ただし，a
R
は観測点を表す極座標系 (R,Θ,Φ)の R方向に沿う単位ベクトル，aρ は開口面

を表す円筒座標系 (ρ, ϕ, z)の ρ方向に沿う単位ベクトル，ax，ay，az は直角座標系 (x, y, z)
の直交単位ベクトルを示す．波数ベクトル kより，横断面内波数ベクトル kt を

k = ka
R

= kxax + kyay + kzaz

= kt + kzaz (1.90)

で定義すると，

kρ(a
R

· aρ) = (ka
R
) · (ρaρ)

= k · ρ = kt · ρ

= kxx+ kyy (1.91)
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放射電界 Ep と開口面分布 Ea との関係は，逆フーリエ変換によって次のように表される．

Ep = j
1 + cos Θ

2λ · e
−jkR

R
g(kx, ky) (1.92)

g(kx, ky) =
¨ ∞

−∞
u(x, y)ejkt·ρdxdy (1.93)

u(x, y) =
{
Ea(x, y) (inside A)
0 (outside A) (1.94)

ただし，kt は横断面内波数ベクトルを示し，次のように定義される．

kt = kxax + kyay (1.95)

ここで，

kx = k sin Θ cos Φ (1.96)
ky = k sin Θ sin Φ (1.97)

さらに，フーリエ変換より，

u(x, y) = 1
(2π)2

¨ ∞

−∞
g(kx, ky)e−jkt·ρdkxdky (1.98)

が成り立ち，放射特性を表す g(kx, ky)がわかれば，逆に開口面分布を表す u(x, y)が得られ
ることになる．このような連続フーリエ変換対は，離散フーリエ変換対として扱われること
が多い．
さて，式 (1.100) の近似について，具体的に考えてみる．式 (1.100) の第 2 項の ρ2

2R が
十分小さい場合であり，開口径を D とすると，ρ の最大値は D/2 であり，このとき，式

(1.100)の第 2項の最大値は (D/2)2

2R となる．この最大値が λ/16以下となれば（λは波長），

第 1項が支配的であるとみなしてよい．つまり，(D/2)2

2R <
λ

16 のとき，近似が妥当であり，
Rの条件式は，

R
2D2

λ
(1.99)

となる．この範囲の放射領域を，フラウンホーファ領域（Fraunhofer region）という．

1.5 フレネル領域放射電界

電界ベクトル Ep の直交するスカラ成分 Eξ，Eη は，

E(ξ
η

)(R,Θ,Φ) = j
1 + cos Θ

2λ · e
−jkR

R

¨
A

E(x
y

)(x, y)e−jk(r−R)dS (1.100)
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第 2項までで近似して，

r −R ' −ρ (a
R

· aρ) + ρ2

2R (1.101)

このとき，e−jk(r−R) は次のように近似できる．

e−jk(r−R) ' ejkt·ρe−jk ρ2
2R (1.102)

とすると，放射電界 Epは次のようになり，このような領域をフレネル領域（Fresnel region）
という．

Ep = j
1 + cos Θ

2λ · e
−jkR

R
gr(kx, ky, R) (1.103)

gr(kx, ky, R) =
¨ ∞

−∞
ur(x, y, R)ejkt·ρdxdy (1.104)

ur(x, y, R) =

 Ea(x, y)e−jk ρ2
2R (inside A)

0 (outside A)
(1.105)

このときも開口面分布はフーリエ変換によって求めることができ，

ur(x, y, R) = 1
(2π)2

¨ ∞

−∞
gr(kx, ky, R)e−jkt·ρdkxdky (1.106)

この場合もフーリエ変換対によって表され，高速フーリエ変換を用いて計算できる．フレネ
ル領域の距離 Rの下限については，はっきりとした定義がないが，一つの目安として，無
視した位相の第３項が λ/16以下とすると，(D/2)4

8R3 <
λ

16 より，

2D2

λ
> R >

D

2

(
D

λ

)1/3
(1.107)

を満たす範囲となる．一方，1/R の項で近似できる領域は放射近傍領域と呼ばれ，1/R の
項だけでは表せない波源の近傍は，誘導性近傍領域と呼ばれる．

1.6 導波菅モードによる放射特性

1.6.1 単一モード

単一のモードが導波管開口へ入射した場合を考え，その横断面内電界分布を EINC
t ，反射

係数を Γとおくと，開口面上の横断面内電界分布 Et は，

Et = (1 + Γ)EINC
t (1.108)
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また，入射波の横断面内磁界分布H INC
t ，および反射波HREF

t は（管軸方向が z 軸），

H INC
t = Y0(az × EINC

t ) (1.109)
HREF

t = −Y0(az × EREF
t ) (1.110)

ここでは，無損失の導波菅における伝搬モードを考え，特性アドミタンス Y0 は次のように
実数となる．

Y0 = 1
Z0

=


Y TE

0 = 1
ZTE

0
= βTE

ωµ
(TE mode)

Y TM
0 = 1

ZTM
0

= ωε

βTM
(TM mode)

(1.111)

よって，開口面上の横断面内磁界分布Ht は，

Ht = H INC
t + HREF

t

= Y0
{
az × (EINC

t − EREF
t )

}
= Y0(1 − Γ)

(
az × EINC

t

)
= Y0(1 − Γ)

(
az × Et

1 + Γ

)

= Y0
1 − Γ
1 + Γ

(
az × Et

)
≡ α

(
az × Et

)
(1.112)

ここで，

α ≡ Y0
1 − Γ
1 + Γ (1.113)

逆の関係より，開口面上の横断面内電界分布 Et は，

Et = 1
α

(Ht × az) (1.114)

このとき，開口面は xy面ゆえ，その法線ベクトルは n = az とおける．これより，電界Ep

の被積分関数のHa の項は，√
µ

ε
(n × Ha) =

√
µ

ε

{
az × (Ht +Hzaz)

}
=
√
µ

ε
(az × Ht)

=
√
µ

ε
az × α(az × Et)

= α

√
µ

ε

{
(az · Et)az − (az · az)Et

}
= −α

√
µ

ε
Et (1.115)

また，

n × Ea = az × (Et + Ezaz) = az × Et (1.116)

16



これより，電界 Ep は 2次波源の磁界Ha を消去して次のようになる．

Ep = −jk
4πRe

−jkR a
R

×
¨
A

[
n × Ea +

√
µ

ε
a

R
× (n × Ha)

]
e−jk(r−R)dS

= −jk
4πRe

−jkR a
R

×
¨
Si

[
az × Et + a

R
× α

√
µ

ε
Et

]
e−jk(r−R)dS

= −jk
4πRe

−jkR a
R

×
[(

az + α

√
µ

ε
a

R

)
×
¨
Si

Ete
−jk(r−R)dS

]
(1.117)

同様にして，

Hp = −jk
4πRe

−jkR a
R

×
¨
A

[
n × Ha +

√
ε

µ
a

R
× (n × Ea)

]
e−jk(r−R)dS

= −jk
4πRe

−jkR a
R

×
¨
A

[
−αEt +

√
ε

µ
a

R
× (az × Et)

]
e−jk(r−R)dS

= jk

4πRe
−jkR

√
ε

µ
a

R
×
¨
A

[
α

√
µ

ε
Et − a

R
× (az × Et)

]
e−jk(r−R)dS (1.118)

ここで，

N ≡
¨
Si

Ete
jψ1dS ≡ Nxax +Nyay (1.119)

l0 ≡ α

√
µ

ε
(1.120)

ψ1 = −k(r −R) (1.121)

とおくと，

Ep = −jk
4πRe

−jkR a
R

× [(l0a
R

+ az) × N ] (1.122)

Hp = jk

4πRe
−jkR

√
ε

µ
a

R
× (l0N − a

R
× az × N ) (1.123)

両者の関係は，√
ε

µ
(a

R
× Ep) =

√
ε

µ
a

R
×
{

−jk
4πRe

−jkR a
R

× [(l0a
R

+ az) × N ]
}

= jk

4πRe
−jkR

√
ε

µ
a

R
× (l0N − a

R
× az × N )

= Hp (1.124)

ここで，ベクトル公式 a × (b × c) = (a · c)b − (a · b)c より，

a
R

× a
R

× (l0a
R

× N ) = a
R

· (l0a
R

× N )a
R

− (a
R

· a
R
)(l0a

R
× N )

= −l0a
R

× N (1.125)
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そして，Ep の被積分関数は，

a
R

× [(az + l0a
R
) × N ] = (a

R
· N ) (az + l0a

R
) −

{
a

R
· (az + l0a

R
)
}

N (1.126)

直角座標系 (x, y, z) の単位ベクトル az を球座標系 (R, θ, φ) の単位ベクトルで次のように
表し，

az = cos θa
R

− sin θaθ (1.127)

これより，

a
R

× [(az + l0a
R
) × N ]

= (a
R

· N ) (cos θa
R

− sin θaθ + l0a
R
) −

{
a

R
· (cos θa

R
− sin θaθ + l0a

R
)
}

N

= (a
R

· N )
{

(l0 + cos θ)a
R

− sin θaθ
}

− (l0 + cos θ)N

= (l0 + cos θ)
{

(a
R

· N )a
R

− N
}

− sin θ(a
R

· N )aθ

= −(l0 + cos θ)
{

(N · aθ)aθ + (N · aφ)aφ
}

− sin θ(N · a
R
)aθ

= −
{

(l0 + cos θ)(N · aθ) + sin θ(N · a
R
)
}

aθ − (l0 + cos θ)(N · aφ)aφ (1.128)

ここで，

a
R

= sin θ(cosφax + sinφay) + cos θaz (1.129)
aθ = cos θ(cosφax + sinφay) − sin θaz (1.130)
aφ = − sinφax + cosφay (1.131)

より，

N · a
R

= sin θ(cosφNx + sinφNy) (1.132)
N · aθ = cos θ(cosφNx + sinφNy) (1.133)
N · aφ = − sinφNx + cosφNy (1.134)

これより，

a
R

× [(az + l0a
R
) × N ]

= −
{

(l0 + cos θ) cos θ(cosφNx + sinφNy) + sin θ sin θ(cosφNx + sinφNy)
}

aθ

− (l0 + cos θ)(− sinφNx + cosφNy)aφ
= −(1 + l0 cos θ)(Nx cosφ+Ny sinφ)aθ
− (l0 + cos θ)(−Nx sinφ+Ny cosφ)aφ (1.135)
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よって，

Ep = jk

4πRe
−jkR

[
(1 + l0 cos θ)(Nx cosφ+Ny sinφ)aθ

+ (l0 + cos θ)(−Nx sinφ+Ny cosφ)aφ
]

(1.136)

いま，開口面への入射波を，モード関数 e，hを用いて，

EINC
t =

√
Z0e (1.137)

H INC
t =

√
Y0h (1.138)

ここで，
¨
A

|e|2dS =
¨
A

|h|2dS = 1 (1.139)

これより，¨
A

(Et × H∗
t ) · azdS =

¨
A

(H∗
t × az) · EtdS

= α

ˆ
A

∣∣∣Et

∣∣∣2dS
= α(1 + Γ)2

ˆ
A

∣∣∣EINC
t

∣∣∣2dS
= α(1 + Γ)2Z0

¨
A

∣∣∣e∣∣∣2dS
= (1 + Γ)2Z0 · Y0

1 − Γ
1 + Γ

= 1 − Γ2 (1.140)

また，

N =
¨
A

Ete
−jk(ra−r)dS

= (1 + Γ)
¨
A

EINC
t e−jk(ra−r)dS

= (1 + Γ)
√
Z0

¨
A

e e−jk(ra−r)dS

≡ (1 + Γ)
√
Z0N̄ (1.141)

ここで，

N̄ ≡ N̄xax + N̄yay

=
¨
A

e e−jk(ra−r)dS (1.142)
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このとき，アンテナ利得 G(θ, φ)は，

G(θ, φ) = 4π
λ2 · |F (θ, φ)|2

Zw(1 − Γ2) (1.143)

F (θ, φ) = 1 + Γ
2

√
Z0

{(
1 + l0 cos θ

)(
Ñx cosφ+ Ñy sinφ

)
aθ

+
(
l0 + cos θ

)(
− Ñx sinφ+ Ñy cosφ

)
aφ

}
(1.144)

ここで，

l0 = αZw = Zw
Z0

· 1 − Γ
1 + Γ (1.145)

より，(
1 + Γ

)(
1 + l0 cos θ

)
=
(
1 + Γ

)(
1 + Zw

Z0
· 1 − Γ

1 + Γ cos θ
)

= 1 + Γ + Zw
Z0

(1 − Γ) cos θ

= 1 + Zw
Z0

cos θ + Γ
(

1 − Zw
Z0

cos θ
)

(1.146)

また，(
1 + Γ

)(
l0 + cos θ

)
=
(
1 + Γ

)(Zw
Z0

· 1 − Γ
1 + Γ + cos θ

)

= Zw
Z0

(1 − Γ) + (1 + Γ) cos θ

= cos θ + Zw
Z0

+ Γ
(

cos θ − Zw
Z0

)
(1.147)

これより，

F (θ, φ) =
√
Z0

2

[{
1 + Zw

Z0
cos θ + Γ

(
1 − Zw

Z0
cos θ

)}
·
(
N̄x cosφ+ N̄y sinφ

)
aθ

+
{

cos θ + Zw
Z0

+ Γ
(

cos θ − Zw
Z0

)}
·
(

− N̄x sinφ+ N̄y cosφ
)
aφ
]

(1.148)

反射を無視すると，Γ = 0 とおき，

F (θ, φ)
∣∣∣∣
Γ=0

=
√
Z0

2

[(
1 + Zw

Z0
cos θ

) (
N̄x cosφ+ N̄y sinφ

)
aθ

+
(

cos θ + Zw
Z0

) (
− N̄x sinφ+ N̄y cosφ

)
aφ

]
(1.149)
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また，

l0

∣∣∣∣
Γ=0

= Zw
Z0

(1.150)

アンテナ利得 G(θ, φ)は，

G(θ, φ) = 4π
λ2 ·

∣∣∣∣F (θ, φ)
∣∣∣∣
Γ=0

∣∣∣∣2
Zw

= 4π S
λ2

∣∣∣∣F (θ, φ)
∣∣∣∣
Γ=0

∣∣∣∣2
SZw

≡ 4π S
λ2 F̂ (θ, φ) (1.151)

ここで，

F̂ (θ, φ) = 1√
S

√
Zw

F (θ, φ)
∣∣∣∣
Γ=0

(1.152)

導波管モードの特性インピーダンス Z0 を自由空間波動インピーダンス Zw で規格化して，

z0 ≡ Z0

Zw
≡ 1
y0

(1.153)

これより，

F̂ (θ, φ) =
√
z0

S

[
1 + y0 cos θ

2
(
N̄x cosφ+ N̄y sinφ

)
aθ

+y0 + cos θ
2

(
− N̄x sinφ+ N̄y cosφ

)
aφ

]
(1.154)

1.6.2 TEモード

TEモードのとき，

Zw
ZTE

0
= ωµ

k
· β

TE

ωµ
= βTE

k
= 1
zTE0

= yTE0 (1.155)

放射電界 Ep は，

ETE
p = j

λ

e−jkr

r
F TE(θ, φ) (1.156)

(1.157)

ここで，

F TE(θ, φ) =

√
ZTE

0

2

[{
1 + βTE

k
cos θ + Γ

(
1 − βTE

k
cos θ

)}
·
(
N̄TE
x cosφ+ N̄TE

y sinφ
)
aθ

+
{

cos θ + βTE

k
+ Γ

(
cos θ − βTE

k

)}
·
(

− N̄TE
x sinφ+ N̄TE

y cosφ
)
aφ
]

(1.158)
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反射を無視すると，Γ = 0 とおき，

F TE(θ, φ)
∣∣∣∣
Γ=0

=

√
ZTE

0

2

[(
1 + βTE

k
cos θ

) (
N̄TE
x cosφ+ N̄TE

y sinφ
)
aθ

+
(

cos θ + βTE

k

)(
− N̄TE

x sinφ+ N̄TE
y cosφ

)
aφ

]
(1.159)

1.6.3 TMモード

一方，TMモードのとき，

Zw
ZTM

0
= k

ωε

ωε

βTM
= k

βTM
= 1
zTM0

= yTM0 (1.160)

放射電界 Ep は，

ETM
p = j

λ

e−jkr

r
F TM(θ, φ) (1.161)

ここで，

F TM(θ, φ) =

√
ZTM

0

2

[{
1 + k

βTM
cos θ + Γ

(
1 − k

βTM
cos θ

)}
·
(
N̄TM
x cosφ+ N̄TM

y sinφ
)
aθ

+
{

cos θ + k

βTM
+ Γ

(
cos θ − k

βTM

)}
·
(

− N̄TM
x sinφ+ N̄TM

y cosφ
)
aφ
]

(1.162)

反射を無視すると，Γ = 0 とおき，

F TM(θ, φ)
∣∣∣∣
Γ=0

=

√
ZTM

0

2

[(
1 + k

βTM
cos θ

) (
N̄TM
x cosφ+ N̄TM

y sinφ
)
aθ

+
(

cos θ + k

βTM

)(
− N̄TM

x sinφ+ N̄TM
y cosφ

)
aφ

]
(1.163)

1.6.4 開口径が十分大きい場合

導波管の開口径が十分大きい場合，Z0 ' Zw，k ' β（l0 ' 1）．さらに，反射も無視して
Γ = 0 とおき，

Ep ' j

λ

e−jkr

r

1 + cos θ
2

√
Zw

(
N̄xaξ + N̄yaη

)
= j

λ

e−jkr

r

√
ZwF̄ (θ, φ) (1.164)
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ここで，

F̄ (θ, φ) ≡ 1 + cos θ
2

(
N̄xaξ + N̄yaη

)
(1.165)

このとき，アンテナ利得 Gは次のようになる．

G(θ, φ) ' 4π
λ2

∣∣∣F̄ (θ, φ)
∣∣∣2 = 4π S

λ2

∣∣∣∣∣F̄ (θ, φ)√
S

∣∣∣∣∣
2

= 4π S
λ2

∣∣∣F̂ (θ, φ)
∣∣∣2 (1.166)

ここで，

F̂ (θ, φ) = F̄ (θ, φ)√
S

=
F (θ, φ)

∣∣∣∣
Γ=0√

S
√
Zw

(1.167)

1.6.5 多モード（伝搬モード，無損失）

開口面での反射がないとして（Γ = 0），開口面上の横断面内電界 Et が，伝搬モードの合
成で与えられている場合を考える．

Et(ρ′) =
∑
i

ci
√
Ziei(ρ′) (1.168)

ただし，ci は i番目のモード係数を示す．このとき，横断面内磁界Ht は，

Ht(ρ′) =
∑
i

ci
√
Yihi(ρ′)

=
∑
i

ci
√
Yi

{
az × ei(ρ′)

}
(1.169)

いま，モード係数 ci は次のように規格化されているとする．ˆ
S

(Et × H∗
t ) · azdS

≡
ˆ
S

{(∑
i

ci
√
Ziei

)
×
(∑

j

c∗
j

√
Yjhj

)}
· azdS

=
ˆ
S

{∑
i

∑
j

cic
∗
j

√
Zi
√
Yj
(
ei × hj

)
· az

}
dS

=
∑
i

|ci|2 ≡ 1 (1.170)

多モードの放射電界 Ep は，

Ep =
∑
i

ciEp,i = j

λ

e−jkr

r

∑
i

ciFi(θ, φ) (1.171)
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ここで，

Fi(θ, φ) =
√
Zi
2

[(
1 + Zw

Zi
cos θ

) (
N̄x,i cosφ+ N̄y,i sinφ

)
aθ

+
(

cos θ + Zw
Zi

) (
− N̄x,i sinφ+ N̄y,i cosφ

)
aφ

]
(1.172)

さらに，Zw ' Zi のとき，

Ep ' j

λ

e−jkr

r

√
Zw

∑
i

ciF̄i(θ, φ) (1.173)

F̄i(θ, φ) ≡ 1 + cos θ
2

(
N̄x,iaξ + N̄y,iaη

)
(1.174)

N̄i = N̄x,iax + N̄y,iay =
ˆ
S

eie
−jk(ra−r)dS (1.175)

G(θ, φ) ' 4π
λ2

∣∣∣∣∣∑
i

ciF̄i(θ, φ)
∣∣∣∣∣
2

= 4π S
λ2

∣∣∣∣∣∑
i

ciF̂i(θ, φ)
∣∣∣∣∣
2

(1.176)

ただし，ei は i 番目の電界モード関数，ci はそのモード係数，S は開口の面積を示す．こ
こで，

F̂i(θ, φ) = F̄i(θ, φ)√
S

=
√
zi
S

[
1 + yi cos θ

2
(
N̄x,i cosφ+ N̄y,i sinφ

)
aθ

+yi + cos θ
2

(
− N̄x,i sinφ+ N̄y,i cosφ

)
aφ

]
(1.177)

1.7 円形開口面分布による放射特性

1.7.1 円形開口面分布

直径 Dの円形開口面分布 Ea(ρ, φ) によるフレネル領域の指向性関数 gr(R,Θ,Φ) は，

gr(R,Θ,Φ) =
ˆ 2π

0

ˆ D/2

0
Ea(ρ, φ)e−jk ρ2

2R ejkaR·ρρdρdφ (1.178)

ここで，観測方向に沿う単位ベクトル aR，および開口面の座標を示す位置ベクトル ρは，

aR = sin Θ(cos Φax + sin Φay) + cos Θaz (1.179)
ρ = ρaρ = ρ(cosφax + sinφay) (1.180)
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で表され，

aR · ρ = {sin Θ(cos Φax + sin Φay) + cos Θaz} · ρ(cosφax + sinφay)
= ρ sin Θ(cos Φ cosφ+ sin Φ sinφ)
= ρ sin Θ cos(Φ − φ) (1.181)

また，位相項は次のようになる．

k(aR · ρ) = 2π
λ
ρ sin Θ cos(Φ − φ) (1.182)

いま，

ρ ≡ 2ρ
D

(1.183)

u ≡ πD

λ
sin Θ (1.184)

とおくと，

k(aR · ρ) = uρ cos(Φ − φ) (1.185)

dρ = 2
D
dρ (1.186)

また，

t ≡ D2

8λR (1.187)

とおくと，

k
ρ2

2R = 2π
λ

· 1
2R

(
D

2 ρ
)2

= 2π
(
D2

8λR

)
ρ2

= 2πtρ2 (1.188)

これより，フレネル領域の指向性関数 gr(R,Θ,Φ)は次のようになる．

gr(R,Θ,Φ) =
(
D

2

)2 ˆ 2π

0

ˆ 1

0
Ea(ρ, φ)e−j2πtρ2

ejuρ cos(Φ−φ)ρdρdφ (1.189)

1.7.2 回転対称な円形開口面分布

開口面分布 Ea が回転対称な場合，φに関する定積分が可能で，

ejuρ cos(Φ−φ) =
∞∑

n=−∞
(j)nJn(uρ)ejn(Φ−φ) (1.190)
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を用いると，指向性関数 gr(R,Θ,Φ)は次のようになる．

gr =
(
D

2

)2 ˆ 2π

0

ˆ 1

0
Ea(ρ)e−j2πtρ2

{ ∞∑
n=−∞

(j)nJn(uρ)ejn(Φ−φ)
}
ρdρdφ

=
(
D

2

)2 ˆ 1

0
Ea(ρ)e−j2πtρ2

{ ∞∑
n=−∞

(j)nJn(uρ)
ˆ 2π

0
ejn(Φ−φ)dφ

}
ρdρ

ただし，Jn は n次の第１種ベッセル関数を示す．上式の φに関する積分は，
ˆ 2π

0
ejn(Φ−φ)dφ =

{
2π (n = 0)
0 (n 6= 0) (1.191)

よって，gr(R,Θ,Φ)は次のようになる．

gr(R,Θ,Φ) =
(
D

2

)2 ˆ 1

0
Ea(ρ)e−j2πtρ2 {

j0J0(uρ) · 2π
}
ρdρ

= 2π
(
D

2

)2 ˆ 1

0
Ea(ρ)e−j2πtρ2

J0(uρ)ρdρ (1.192)

1.7.3 円形一様開口面分布

開口面分布の振幅，位相が一様の場合，つまり Ea を一定と考えると，ベッセルの不定積
分公式ˆ

J0(uρ)ρdρ = ρ

u
J1(uρ) (1.193)

より，フラウンホーファ領域（t = 0）の指向性関数 g(u)は（Ea(x, y) = E0 は一定，S は
円形開口面の面積），

g(u) = 2π
(
D

2

)2
E0

ˆ 1

0
J0(uρ)ρdρ

= 2π
(
D

2

)2
E0

[
ρ

u
J1(uρ)

]1

0

= 2SE0
J1(u)
u

(1.194)

また，

g(0) = E0

¨
A

dS = E0S (1.195)

相対電界指向性（ユニバーサル電界パターン）ḡ(u)は，

ḡ(u) = g(u)
g(0) =

2SEa J1(u)
u

EaS

= 2J1(u)
u

(1.196)
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ユニバーサル電界パターンのサイロドーブレベルは，ピーク値に対して第 1 サイドローブ
から順に，−17.6，−23.8，−28.0，−31.2，−33.6，−35.7 dBとなる．また，規格化した相
対的な放射（電力）パターン Ḡ(θ, φ)は，

Ḡ(θ, φ) =
(

1 + cos θ
2

)2 ∣∣∣∣∣2J1(u)
u

∣∣∣∣∣
2

(1.197)

0 1 2 3 4 5 6

u/π

−0.25

0.00

0.25

0.50

0.75

1.00

R
e

la
ti
ve

a
m

p
lit

u
d

e

D =6/λ

sin u/u

2J1(u)/u

0.70711

u/π =0.443

u/π =0.514

-0.217

-0.132

0 1 2 3 4 5 6

u/π

−50

−40

−30

−20

−10

0

R
e

la
ti
ve

a
m

p
lit

u
d

e

sin u/u

2J1(u)/u

0.70711

u/π =0.443

u/π =0.514

-13.26 [dB]

-17.57 [dB]

−80 −60 −40 −20 0 20 40 60 80

Angle θ [deg]

−50

−40

−30

−20

−10

0

R
e

la
ti
ve

p
o
w

e
r

[d
B

]

sin u/u

2J1(u)/u

0.70711

u/π =0.443

u/π =0.514

-13.26 [dB]

-17.57 [dB]

図 1.2. 直線開口および円形開口（D = 6λ）の一様分布による放射パターン

1.7.4 放物線テーパ分布

回転対称の円形開口面分布において，半径 ρ方向に放物線テーパ（Parabolic taper）のと
き，ρ = D

2 ρとおいて，

E(ρ) = 1 −
(2ρ
D

)2

= 1 − ρ2 = E(ρ) (1.198)
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これより，

g(0) =
¨
A

E(ρ)dS

=
ˆ 2π

0

ˆ D
2

0

{
1 −

(2ρ
D

)2}
ρdφdρ

=
(ˆ 2π

0
dφ

)(
D

2

)2 ˆ 1

0

(
ρ− ρ3

)
dρ

= 2π
(
D

2

)2 [ρ2

2 − ρ4

4

]1

0

= S

2 (1.199)

また，
¨
A

|E(ρ)|2dS =
ˆ 2π

0

ˆ a

0

{
1 −

(2ρ
D

)2}2

ρdφdρ

= 2π
(
D

2

)2 ˆ 1

0

(
ρ− 2ρ3 + ρ5

)
dρ

= 2π
(
D

2

)2 [ρ2

2 − ρ4

2 + ρ6

6

]1

0

= S

3 (1.200)

開口能率 ηa は，

ηa =

∣∣∣∣∣
¨
A

EadS

∣∣∣∣∣
2

S

¨
A

|Ea|2dS

=

(
S
2

)2

S · S3
= 3

4 = 0.75 (1.201)

フラウンホーファ領域（t = 0）の指向性関数 g(u)は，ベッセル関数に関わる積分公式を用
いて，

g(u) = 2π
(
D

2

)2 ˆ 1

0
Ea(ρ)J0(uρ)ρdρ

= 2S
ˆ 1

0
(1 − ρ2)J0(uρ)ρdρ

= 2S · 2J2(u)
u2 = S

4J2(u)
u2 (1.202)
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相対電界指向性（ユニバーサル電界パターン）ḡ(u)は，

ḡ(u) = g(u)
g(0) =

S
4J2(u)
u2
S

2

= 8J2(u)
u2 (1.203)

ユニバーサル電界パターンのサイロドーブレベルは，ピーク値に対して第 1 サイドローブ
から順に，−24.6，−33.6，−39.7，−44.5，−48.4，−51.6 dBとなる．また，規格化した相
対的な放射（電力）パターン Ḡ(θ, φ)は，

Ḡ(θ, φ) =
(

1 + cos θ
2

)2 ∣∣∣∣∣8J2(u)
u2

∣∣∣∣∣
2

(1.204)
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図 1.3. 放物線テーパ分布（D = 6λ）による放射パターン

問題

次の極限を求めよ．

(a) lim
u→0

J1(u)
u

, (b) lim
u→0

J2(u)
u2 (1.205)
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�略解 (a) u = 0 のとき，ロピタルの定理より，

lim
u→0

J1(u)
u

=
lim
u→0

d

du
J1(u)

lim
u→0

d

du
u

=
lim
u→0

1
2{J0(u) − J2(u)}

1
= 1

2J0(0) = 1
2 (1.206)

ここで，

d

dx
Jn(x) = 1

2
(
Jn−1(x) − Jn+1(x)

)
(1.207)

また，

J0(0) = 1, J1(0) = 0, J2(0) = 0 (1.208)

�略解 (b)

lim
u→0

J2(u)
u2 = 1

8 (1.209)
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CHAPTER 2

方形導波菅開口からの放射

　方形導波管の開口部からの電磁波の放射特性について詳細に解説する．まず，方
形開口からの放射を記述する一般的な式を導入し，フレネル領域における電界の積
分表現を示していく．次に，TE (Transverse Electric) モードと TM (Transverse
Magnetic) モードそれぞれのモード関数と，それらによって生じる遠方放射界の計算
方法を詳しく説明する．特に，様々な TEモード（TE0n, TE01, TEm0, TE10 など）
における放射パターンとピーク利得の例を示し，最後に複数のモードを組み合わせ
た開口面からの放射，特に交差偏波成分を低減するためのモード合成の条件を議論
する．

2.1 方形導波管開口からの放射特性

2.1.1 方形開口からの放射

方形導波管の断面寸法を a × bとし，導波管の中心軸上に z 軸をとる直角座標 (x′, y′, z)
を考えると，x = x′ + a/2，y = y′ + b/2となる．開口面への横断面内入射電界 EINC

t とし
て，モード関数 e(ρ′)

e(ρ′) = ex(x′, y′)ax + ey(x′, y′)ay (2.1)

を考えると，

N̄ =
ˆ
S

e(ρ′)e−jk(ra−r)dS

= N̄xax + N̄yay

=
{ˆ

S

ex(x′, y′)e−jk(ra−r)dS

}
ax +

{ˆ
S

ey(x′, y′)e−jk(ra−r)dS

}
ay (2.2)
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ここで，フレネル領域では，

−(ra − r) ' sin θ(x′ cosφ+ y′ sinφ) − x′2 + y′2

2r (2.3)

ただし，ra は開口面上の波源から観測点までの距離，r は原点から観測点までの距離を示
す．これより，

N̄(x
y

) '
ˆ a

2

− a
2

ˆ b
2

− b
2

e(x
y

)(x′, y′)ejk sin θ(x′ cosφ+y′ sinφ)e−jk x′2+y′2
2r dy′dx′ (2.4)

さらに，

x′ = a

2 · x̄, y′ = b

2 · ȳ (2.5)

で変数変換すると，

dx = a

2dx̄, dy = b

2dȳ (2.6)

kx′ sin θ = 2π
λ

· a2 x̄ sin θ = πa

λ
sin θ · x̄ ≡ uxx̄ (2.7)

ky′ sin θ = 2π
λ

· b2 ȳ sin θ = πb

λ
sin θ · ȳ ≡ uyȳ (2.8)

ここで，

ux ≡ πa

λ
sin θ, uy ≡ πb

λ
sin θ (2.9)

また，

k
x′2 + y′2

2r = 2π
λ

1
2r


(
a

2 x̄
)2

+
(
b

2 ȳ
)2


= 2π
8λr

(
a2x̄2 + b2ȳ2

)
(2.10)

ここで，

tx ≡ a2

8λr , ty ≡ b2

8λr (2.11)

とおくと，

k
x′2 + y′2

2r = 2π
(
txx̄

2 + tyȳ
2
)

(2.12)

これより，

N̄(x
y

) = ab

4

ˆ 1

−1

ˆ 1

−1
e(x

y

)(x̄, ȳ)ej(x̄ux cosφ+ȳuy sinφ)e−j2π(txx̄2+ty ȳ2)dȳdx̄ (2.13)
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2.1.2 方形導波管モードによる放射特性

方形導波管のモード関数は次のように変数分離形

ex(x̄, ȳ) = Bxex1(x̄)ex2(ȳ) (2.14)
ey(x̄, ȳ) = Byey1(x̄)ey2(ȳ) (2.15)

で与えられるので（Bx，By は定数），

N̄(x
y

) = ab

4

ˆ 1

−1

ˆ 1

−1
e(x

y

)
1(x̄)e(x

y

)
2(ȳ)

·ej(x̄ux cosφ+ȳuy sinφ)e−j2π(txx̄2+ty ȳ2)dȳdx̄

= B(x
y

)ab
4

[ˆ 1

−1
e(x

y

)
1(x̄)ejx̄ux cosφe−j2πtxx̄2

dx̄

]

·
[ˆ 1

−1
e(x

y

)
2(ȳ)ejȳuy sinφe−j2πty ȳ2

dȳ

]
(2.16)

無限遠方では，

N̄(x
y

) = B(x
y

)ab
4

[ˆ 1

−1
e(x

y

)
1(x̄)ejx̄ux cosφdx̄

] [ˆ 1

−1
e(x

y

)
2(ȳ)ejȳuy sinφdȳ

]
(2.17)

2.2 方形導波管のTEmnモードによる遠方放射界

2.2.1 方形導波管のTEmnモード関数

方形導波管の TEmn モードの電界のモード関数 e[mn] は，

e[mn] = A[mn]

[
nπ

b
cos

(
mπx

a

)
sin

(
nπy

b

)
ax

−mπ

a
sin

(
mπx

a

)
cos

(
nπy

b

)
ay

]
= A[mn]

[
nπ

b
cos mπ2

(
x̄+ 1

)
sin nπ2

(
ȳ + 1

)
ax

−mπ

a
sin mπ2

(
x̄+ 1

)
cos nπ2

(
ȳ + 1

)
ay

]
(2.18)

ここで，

x = x′ + a

2 = a

2(x̄+ 1), x′ = a

2 x̄ (2.19)

y = y′ + b

2 = b

2(ȳ + 1), y′ = b

2 ȳ (2.20)
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また，TEmn モードの正規化係数 A[mn] は，

A[mn] = 1
π

√
abεmεn

(mb)2 + (na)2 =

√√√√√√
εmεn
ab

(mπ
a

)2 + (nπ
b

)2

=
√
εmεn
ab

1
kc,[mn]

(2.21)

2.2.2 遠方放射電界

方形導波管の TEmn モードによる遠方界は，

N̄x[mn] = A[mn]
nπ

b

ab

4 Ic1Is2

=
√
εmεn
ab

1
kc,[mn]

nπ

b

ab

4 Ic1Is2

=
√
ab

√
εmεn

nπ
b

4kc,[mn]
Ic1Is2 (2.22)

N̄y[mn] = −A[mn]
mπ

a

ab

4 Is1Ic2

= −
√
ab

√
εmεn

mπ
a

4kc,[mn]
Is1Ic2 (2.23)

ここで，x̄ に関する積分項は，

Is1 ≡
ˆ 1

−1
sin mπ2

(
x̄+ 1

)
ejx̄ux cosφdx̄ (2.24)

Ic1 ≡
ˆ 1

−1
cos mπ2

(
x̄+ 1

)
ejx̄ux cosφdx̄ (2.25)

同様にして，ȳ に関する積分項は，

Is2 ≡
ˆ 1

−1
sin nπ2

(
ȳ + 1

)
ejȳuy cosφdȳ (2.26)

Ic2 ≡
ˆ 1

−1
cos nπ2

(
ȳ + 1

)
ejȳuy sinφdȳ (2.27)

これらの不定積分は，次のような式が計算できればよい．

Is =
ˆ

sin(Bv)eAvdv (2.28)

Ic =
ˆ

cos(Bv)eAvdv (2.29)
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上の不定積分を実行すると，ˆ
eAv sinBv dv =

ˆ
eAxv

1
j2
(
ejBv − e−jBv

)
dv

= −j
2

(ˆ
e(A+jB)vdv −

ˆ
e(ā−jb̄)vdv

)

= −j
2

(
e(A+jB)v

A+ jB
− e(A−jB)v

A− jB

)

= −jeAv

2
(A− jB)ejBv − (A+ jB)e−jBv

(A+ jB)(A− jB)

= eAv

Ā2 + B̄2

(
A sinBv −B cosBv

)
(2.30)

A± jB = 0 のとき，
ˆ
eAx sinBx dx = −j

2

(
±
ˆ
dx∓

ˆ
e(A∓jB)xdx

)

= ∓j
2

(
x− e(A∓jB)x

A∓ jB

)
(2.31)

あるいは，不定積分した式 (2.30)より，A± jB = 0 のとき，
ˆ
eAv sinBv dv = −j

2

(
e(A+jB)v

(A+ jB)vv − e(A−jB)v

(A− jB)vv
)

= ∓j
2

(
v − e(A∓jB)v

A∓ jB

)
(2.32)

同様にして，ˆ
eAv cosBv dv =

ˆ
eAv

1
2
(
ejBv + e−jBx

)
dv

= 1
2

(ˆ
e(A+jB)vdv +

ˆ
e(A−jB)vdv

)

= 1
2

(
e(A+jB)v

A+ jB
+ e(A−jB)v

A− jB

)

= eAv

2
(A− jB)ejBv + (A+ jB)e−jBv

(A+ jB)(A− jB)

= eAv

A2 +B2

(
A cosBv +B sinBv

)
(2.33)
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A± jB = 0のとき，
ˆ
eAv cosBv dv = 1

2

(ˆ
dv +

ˆ
e(A∓jB)vdv

)

= 1
2

(
v + e(A∓jB)v

ā∓ jB

)
(2.34)

あるいは，不定積分した式 (2.33)より，A± jB = 0のとき，
ˆ
eAv cosBv dv = 1

2

(
e(A+jB)v

(A+ jB)vv + e(A−jB)v

(A− jB)vv
)

= 1
2

(
v + e(A∓jB)v

A∓ jB

)
(2.35)

これより，v = x̄+ 1とおくと，dv = dx̄ゆえ，
ˆ
eA(x̄+1) sinB(x̄+ 1) dx̄

= eA(x̄+1)

A2 +B2

{
A sinB(x̄+ 1) −B cosB(x̄+ 1)

}
(2.36)

ˆ
eA(x̄+1) cosB(x̄+ 1) dx̄

= eA(x̄+1)

A2 +B2

{
A cosB(x̄+ 1) +B sinB(x̄+ 1)

}
(2.37)

よって，
ˆ
eAx̄ sinB(x̄+ 1) dx̄ = eAx̄

A2 +B2

{
A sinB(x̄+ 1) −B cosB(x̄+ 1)

}
(2.38)

ˆ
eAx̄ cosB(x̄+ 1) dx̄ = eAx̄

A2 +B2

{
A cosB(x̄+ 1) +B sinB(x̄+ 1)

}
(2.39)

同様にして，v = ȳ + 1とおくと，dv = dȳ ゆえ，
ˆ
eAȳ sinB(ȳ + 1) dȳ = eAȳ

A2 +B2

{
A sinB(ȳ + 1) −B cosB(ȳ + 1)

}
(2.40)

ˆ
eAȳ cosB(ȳ + 1) dȳ = eAx̄

A2 +B2

{
A cosB(ȳ + 1) +B sinB(ȳ + 1)

}
(2.41)

定積分 Ic1 については，

A → jux cosφ, B → mπ

2
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とすると，

Ic1 =
[

ejx̄ux cosφ

(jux cosφ)2 + (mπ2 )2

·
{

(jux cosφ) cos mπ2 (x̄+ 1) + mπ

2 sin mπ2 (x̄+ 1)
}]1

−1

= jux cosφ
−(ux cosφ)2 + (mπ2 )2

(
ejux cosφ cosmπ − e−jux cosφ cos 0

)

= jux cosφ
−(ux cosφ)2 + (mπ2 )2

(
ej(ux cosφ+mπ) − e−jux cosφ

)

=
2ux cosφ sin

(
ux cosφ+ mπ

2

)
(ux cosφ)2 − (mπ2 )2 ej

mπ
2 (2.42)

同様にして，A → juy sinφ，B → nπ
2 とおけば，Ic2 は次のようになる．

Ic2 =
2uy sinφ sin

(
uy sinφ+ nπ

2

)
(uy sinφ)2 − (nπ2 )2 ej

nπ
2 (2.43)

また，Is1 については，

Is1 =
[

ejx̄ux cosφ

(jux cosφ)2 + (mπ2 )2

·
{

(jux cosφ) sin mπ2 (x̄+ 1) − mπ

2 cos mπ2 (x̄+ 1)
}]1

−1

=
−mπ

2
−(ux cosφ)2 + (mπ2 )2

(
ejux cosφ cosmπ − e−jux cosφ cos 0

)

=
mπ
2

(ux cosφ)2 − (mπ2 )2

(
ej(ux cosφ+mπ) − e−jux cosφ

)

=
mπ
2 ej

mπ
2

(ux cosφ)2 − (mπ2 )2 j2 sin
(
ux cosφ+ mπ

2

)

=
jmπ sin

(
ux cosφ+ mπ

2

)
(ux cosφ)2 − (mπ2 )2 ej

mπ
2 (2.44)

同様にして，ā → juy sinφ，b̄ → nπ
2 とおけば，Is2 は次のようになる．

Is2 =
jnπ sin

(
uy sinφ+ nπ

2

)
(uy sinφ)2 − (nπ2 )2 ej

nπ
2 (2.45)

よって，

Ic1Is2 = 2ux cosφ · jnπ ej
(m+n)π

2

·
sin

(
ux cosφ+ mπ

2

)
(ux cosφ)2 − (mπ2 )2 ·

sin
(
uy sinφ+ nπ

2

)
(uy sinφ)2 − (nπ2 )2 (2.46)
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ここで，

Ψmn(θ, φ) ≡
sin

(
ux cosφ+ mπ

2

)
(ux cosφ)2 − (mπ2 )2 ·

sin
(
uy sinφ+ nπ

2

)
(uy sinφ)2 − (nπ2 )2 je

j (m+n)π
2

=
sinc

(
ux cosφ+ mπ

2

)
ux cosφ− mπ

2
·

sinc
(
uy sinφ+ nπ

2

)
uy sinφ− nπ

2
ej

(m+n+1)π
2 (2.47)

とおくと，

Ic1Is2 = 2nπux cosφ · Ψmn(θ, φ) (2.48)

同様にして，

Is1Ic2 = 2mπuy sinφ · Ψmn(θ, φ) (2.49)

ux cosφ+ mπ
2 = 0 のとき，

sin
(
ux cosφ+ mπ

2

)
(ux cosφ)2 − (mπ2 )2 =

sin
(
ux cosφ+ mπ

2

)
(ux cosφ+ mπ

2 )(ux cosφ− mπ
2 )

= 1
ux cosφ− mπ

2
(2.50)

また，ux cosφ− mπ
2 = 0 のとき，三角関数の積和公式

2 sinα cos β = sin(α + β) + sin(α− β) (2.51)
2 cosα sin β = sin(α + β) − sin(α− β) (2.52)

より，

sin
(
ux cosφ+ mπ

2

)
(ux cosφ)2 − (mπ2 )2

=
2 cos(ux cosφ) sin(mπ2 ) + sin

(
ux cosφ− mπ

2

)
(ux cosφ+ mπ

2 )(ux cosφ− mπ
2 ) (2.53)

ロピタルの定理より，上式は，
−2 sin(ux cosφ) sin(mπ2 )

2ux cosφ + 1
ux cosφ+ mπ

2

= −sinc(ux cosφ) sin
(
mπ

2

)
+ 1
ux cosφ+ mπ

2
(2.54)

同様にして，uy sinφ+ nπ
2 = 0 のとき，

sin
(
uy sinφ+ nπ

2

)
(uy sinφ)2 − (nπ2 )2

=
sin

(
uy sinφ+ nπ

2

)
(uy sinφ+ nπ

2 )(uy sinφ− nπ
2 ) = 1

uy sinφ− nπ
2

(2.55)
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また，uy sinφ− nπ
2 = 0のとき，三角関数の積和公式より

sin
(
uy sinφ+ nπ

2

)
(uy sinφ)2 − (nπ2 )2 =

2 cos(uy sinφ) sin(nπ2 ) + sin
(
uy sinφ− nπ

2

)
(uy sinφ+ nπ

2 )(uy sinφ− nπ
2 ) (2.56)

ロピタルの定理より，上式は，

−2 sin(uy sinφ) sin(nπ2 )
2uy sinφ + 1

uy sinφ+ nπ
2

= −sinc(uy sinφ) sin
(
nπ

2

)
+ 1
uy sinφ+ nπ

2
(2.57)

これより，

N̄x[mn] = A[mn]
nπa

4 Ic1Is2

= A[mn]
n2π2aux

2 cosφ Ψmn(θ, φ) (2.58)

N̄y[mn] = −A[mn]
mπb

4 Is1Ic2

= −A[mn]
m2π2buy

2 sinφ Ψmn(θ, φ) (2.59)

よって，

N̄x[mn] cosφ+ N̄y[mn] sinφ

= A[mn]

(
n2π2aux

2 cos2 φ− m2π2buy
2 sin2 φ

)
Ψmn(θ, φ)

= −A[mn]
πa2b2

2λ sin θ
{(

mπ

a
sinφ

)2
−
(
nπ

b
cosφ

)2
}

Ψmn(θ, φ) (2.60)

また，

−N̄x[mn] sinφ+ N̄y[mn] cosφ

= A[mn]

(
−n2π2aux

2 cosφ sinφ− m2π2buy
2 sinφ cosφ

)
Ψmn(θ, φ)

= −A[mn]
πa2b2

2λ sin θ sinφ cosφ
{(

mπ

a

)2
+
(
nπ

b

)2
}

Ψmn(θ, φ)

= −A[mn]
πa2b2k2

c,[mn]

2λ sin θ sinφ cosφ Ψmn(θ, φ) (2.61)

よって，方形導波管の TEmn モードによる遠方放射電界 Ep[mn] は，

Ep[mn] = j

λ

e−jkr

r
F[mn](θ, φ) (2.62)
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ここで，

F[mn](θ, φ) = −A[mn]
π(ab)2

4λ sin θ Ψmn(θ, φ)
√
Z[mn]

·
[{

1 +
β[mn]

k
cos θ + Γ

(
1 −

β[mn]

k
cos θ

)}

·
{(

mπ

a
sinφ

)2
−
(
nπ

b
cosφ

)2
}

aθ

+
{

cos θ +
β[mn]

k
+ Γ

(
cos θ −

β[mn]

k

)}
·k2
c,[mn] sinφ cosφ aφ

]
(2.63)

反射を無視すると，Γ = 0 とおき，

F[mn](θ, φ)
∣∣∣∣
Γ=0

= −A[mn]
π(ab)2

4λ sin θ Ψmn(θ, φ)
√
Z[mn]

·
[(

1 +
β[mn]

k
cos θ

) {(
mπ

a
sinφ

)2
−
(
nπ

b
cosφ

)2
}

aθ

+
(

cos θ +
β[mn]

k

)
k2
c,[mn] sinφ cosφ aφ

]
(2.64)

さらに，低次のモードについて開口径が十分大きい場合，Z[mn] ' Zw，β[mn] ' k より，

Ep[mn] = j

λ

e−jkr

r
F[mn](θ, φ)

' j

λ

e−jkr

r

√
Zw

F[mn](θ, φ)
∣∣∣∣
Γ=0√

Zw

' j

λ

e−jkr

r

√
ZwF̄[mn](θ, φ) (2.65)
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ここで，

F[mn](θ, φ)
∣∣∣∣
Γ=0√

Zw
= −A[mn]

π(ab)2

4λ sin θ Ψmn(θ, φ)
√
Z[mn]

Zw

·
[(

1 + Zw
Z[mn]

cos θ
) {(

mπ

a
sinφ

)2
−
(
nπ

b
cosφ

)2
}

aθ

+
(

cos θ + Zw
Z[mn]

)
k2
c,[mn] sinφ cosφ aφ

]

= −A[mn]
π(ab)2

4λ sin θ Ψmn(θ, φ)
√√√√ k

β[mn]

·
[(

1 +
β[mn]

k
cos θ

) {(
mπ

a
sinφ

)2
−
(
nπ

b
cosφ

)2
}

aθ

+
(

cos θ +
β[mn]

k

)
k2
c,[mn] sinφ cosφ aφ

]
(2.66)

あるいは，自由空間の波動インピーダンス Zw で規格化したモードの特性インピーダンス
z[mn]，規格化特性アドミタンス y[mn] を，

z[mn] ≡
Z[mn]

Zw
≡ 1
y[mn]

(2.67)

とおくと，

F[mn](θ, φ)
∣∣∣∣
Γ=0√

Zw
= −A[mn]

π(ab)2

4λ sin θ Ψmn(θ, φ)√z[mn]

·
[(

1 + y[mn] cos θ
) {(mπ

a
sinφ

)2
−
(
nπ

b
cosφ

)2
}

aθ

+
(
cos θ + y[mn]

)
k2
c,[mn] sinφ cosφ aφ

]
(2.68)

ここで，TEmn モード関数の正規化係数 A[mn] は，

A[mn] = 1
π

√
abεmεn

(mb)2 + (na)2 =
√
εmεn
ab

1
kc,[mn]

=
√
εmεn
ab

λc,[mn]

2π =
√
εmεn
2

λc,[mn]

π
√
ab

(2.69)
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これより，

F[mn](θ, φ)
∣∣∣∣
Γ=0√

Zw
= −ab

√
abεmεn
4

λc,[mn]

λ
sin θ Ψmn(θ, φ)√z[mn]

·
[

1 + y[mn] cos θ
2

{(
mπ

a
sinφ

)2
−
(
nπ

b
cosφ

)2
}

aθ

+
cos θ + y[mn]

2 k2
c,[mn] sinφ cosφ aφ

]
(2.70)

また，β[mn] ' k より，

F̄[mn](θ, φ) = −A[mn]
π(ab)2

4λ sin θ
(
1 + cos θ

)
Ψmn(θ, φ)

·
[{(

mπ

a
sinφ

)2
−
(
nπ

b
cosφ

)2
}

aθ

+
{(

mπ

a

)2
+
(
nπ

b

)2
}

sinφ cosφ aφ

]
(2.71)

次の直交する単位ベクトル

aθ = cosφaξ + sinφaη (2.72)
aφ = − sinφaξ + cosφaη (2.73)

を用いると，

F̄[mn](θ, φ) = −A[mn]
π(ab)2

4λ sin θ
(
1 + cos θ

)
Ψmn(θ, φ)

·
[{(

mπ

a

)2
sin2 φ−

(
nπ

b

)2
cos2 φ

}(
cosφaξ + sinφaη

)
+
{(

mπ

a

)2
+
(
nπ

b

)2
}

sinφ cosφ
(

− sinφaξ + cosφaη
)]

= −A[mn]
π(ab)2

2λ
1 + cos θ

2 sin θ Ψmn(θ, φ)

·
{

−
(
nπ

b

)2
cosφ aξ +

(
mπ

a

)2
sinφ aη

}

= ab
√
abεmεn
4

λc,[mn]

λ

1 + cos θ
2 sin θ Ψmn(θ, φ)

·
{(

nπ

b

)2
cosφ aξ −

(
mπ

a

)2
sinφ aη

}
(2.74)
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2.3 方形TEモードによる放射特性の例

2.3.1 方形TE0nモード（m = 0）による遠方界

TE0n モードのとき，m = 0とおいて，

F[0n](θ, φ)
∣∣∣∣
Γ=0√

Zw
= −ab

√
abε0εn
4

λc,[0n]

λ
sin θ Ψ0n(θ, φ)√z[0n]

·
[

1 + y[0n] cos θ
2

{(0π
a

sinφ
)2

−
(
nπ

b
cosφ

)2
}

aθ

+
cos θ + y[0n]

2 k2
c,[0n] sinφ cosφ aφ

]
(2.75)

ここで，

kc,[0n] = nπ

b
(2.76)

λc,[0n] = 2π
kc,[0n]

= 2π b

nπ
= 2b

n
(2.77)

ε0 = 1, εn(6=0) = 2 (2.78)

また，

Ψ0n(θ, φ) = sinc (ux cosφ)
ux cosφ ·

sinc
(
uy sinφ+ nπ

2

)
uy sinφ− nπ

2
ej

(n+1)π
2 (2.79)

ej
(n+1)π

2 = ej
nπ
2 ej

π
2 = jej

nπ
2 = j cos nπ2 − sin nπ2 (2.80)

ここで，

ux = πa

λ
sin θ (2.81)

より，

Ψ0n(θ, φ) = λ

πa

sinc (ux cosφ)
ux cosφ Φy,n (2.82)

Φy,n ≡
sinc

(
uy sinφ+ nπ

2

)
uy sinφ− nπ

2
ej

(n+1)π
2 (2.83)

これらより，

F[0n](θ, φ)
∣∣∣∣
Γ=0√

Zw
= −ab

√
ab · 2
4

nπ

b

1
λ

sin θ λ
πa

sinc (ux cosφ)
ux cosφ Φy,n

√
z[0n]

·
(
nπ

b

)2
[

1 + y[0n] cos θ
2 (− cos2 φ)aθ +

cos θ + y[0n]

2 sinφ cosφ aφ

]
(2.84)
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整理して，

F[0n](θ, φ)
∣∣∣∣
Γ=0√

Zw
= nπ

√
ab√

2
sinc(ux cosφ)Φy,n

√
z[0n]

·
(

1 + y[0n] cos θ
2 cosφ aθ −

y[0n] + cos θ
2 sinφ aφ

)
(2.85)

開口径が十分大きい場合，z[0n] ' 1，y[0n] ' 1と近似して，

F̄[0n](θ, φ) = nπ
√
ab√

2
1 + cos θ

2 sinc (ux cosφ)

·
sin

(
uy sinφ+ nπ

2

)
(uy sinφ)2 − n2π2

4
ej

(n+1)π
2 aξ (2.86)

ここで，

aξ = cosφaθ − sinφaφ (2.87)

正面方向（θ = 0，φ = 0）では，

F̄[0n](0, 0) = nπ
√
ab√

2
· 1 · 1 ·

sin
(
nπ
2

)
−n2π2

4
ej

(n+1)π
2 ax (2.88)

ここで，

sin nπ2 ej
(n+1)π

2 = sin nπ2

(
j cos nπ2 − sin nπ2

)
= −

(
sin nπ2

)2
= −1(odd), 0(even) (2.89)

より，nが偶数の場合，正面でヌルになる．また，nが奇数の場合，

F̄[0n](0, 0) = 2
√

2ab
nπ

ax (2.90)

G[0n]

∣∣∣∣
θ=0

= 4π ab
λ2

∣∣∣∣∣2
√

2
nπ

∣∣∣∣∣
2

= 4π ab
λ2 · 8

n2π2 (2.91)

2.3.2 方形TE01モード（m = 0，n = 1）による遠方界

TE01 モードのとき，m = 0，n = 1とおいて，

A[01] = 1
π

√
2b
a

(2.92)

F̄[01](θ, φ) = −π
√
ab√
2

1 + cos θ
2 sinc

(
ux cosφ

) cos
(
uy sinφ

)
(
uy sinφ

)2
− π2

4

aξ (2.93)
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E面は φ = 0のときで，sinφ = 0，cosφ = 1より，

F̄[01](θ, 0) = 2
√

2ab
π

1 + cos θ
2 sinc

(
ux
)

ax (2.94)

一方，H面は φ = π/2のときで，sinφ = 1，cosφ = 0より，

F̄[01](θ, π/2) = −π
√
ab√
2

1 + cos θ
2

cos
(
uy
)

u2
y − π2

4
ax (2.95)

2.3.3 方形TEm0モード（n = 0）による遠方界

同様にして，TEm0 モードのとき，n = 0とおいて，

F[m0](θ, φ)
∣∣∣∣
Γ=0√

Zw
= −ab

√
abε0εn
4

λc,[m0]

λ
sin θ Ψm0(θ, φ)√z[m0]

·
[

1 + y[m0] cos θ
2

{(
mπ

a
sinφ

)2
−
(0π
b

cosφ
)2}

aθ

+
cos θ + y[m0]

2 k2
c,[0n] sinφ cosφ aφ

]
(2.96)

ここで，

kc,[m0] = mπ

a
(2.97)

λc,[m0] = 2π
kc,[m0]

= 2π a

mπ
= 2a
m

(2.98)

ε0 = 1, εm( 6=0) = 2 (2.99)

また，

Ψm0(θ, φ) =
sinc

(
ux cosφ+ mπ

2

)
ux cosφ− mπ

2
· sinc (uy sinφ)

uy sinφ ej
(m+1)π

2 (2.100)

ここで，

uy = πb

λ
sin θ (2.101)

より，

Ψm0(θ, φ) = λ

πb

sinc (uy sinφ)
uy sinφ Φx,n (2.102)

Φx,n ≡
sinc

(
ux cosφ+ mπ

2

)
ux cosφ− mπ

2
ej

(m+1)π
2 (2.103)
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これらより，

F[m0](θ, φ)
∣∣∣∣
Γ=0√

Zw
= −ab

√
ab · 2
4

mπ

a

1
λ

sin θ λ
πb

sinc (uy sinφ)
uy sinφ Φx,n

√
z[m0]

·
(
mπ

a

)2
[

1 + y[m0] cos θ
2 sin2 φaθ +

cos θ + y[m0]

2 sinφ cosφ aφ

]
(2.104)

整理して，

F[m0](θ, φ)
∣∣∣∣
Γ=0√

Zw
= −mπ

√
ab√

2
sinc(uy sinφ)Φx,n

√
z[m0]

·
(

1 + y[m0] cos θ
2 sinφ aθ +

y[m0] + cos θ
2 cosφ aφ

)
(2.105)

開口径が十分大きい場合，z[m0] ' 1，y[m0] ' 1と近似して，

F̄[m0](θ, φ) = −mπ
√
ab√

2
1 + cos θ

2 sinc (uy sinφ)

·
sin

(
ux cosφ+ mπ

2

)
(ux cosφ)2 − m2π2

4
ej

(m+1)π
2 aη (2.106)

ここで，

aη = sinφaθ + cosφaφ (2.107)

正面方向（θ = 0，φ = 0）では，n が偶数の場合，正面でヌルになる．また，n が奇数の
場合，

F̄[m0](0, 0) = −2
√

2ab
mπ

ay (2.108)

G[m0]

∣∣∣∣
θ=0

= 4π ab
λ2

∣∣∣∣∣2
√

2
mπ

∣∣∣∣∣
2

= 4π ab
λ2 · 8

m2π2 (2.109)

2.3.4 方形TE10モード（m = 1，n = 0）による遠方界

TE10 モードのとき，m = 1，n = 0とおいて，

F̄[10](θ, φ) = −π
√
ab√
2

1 + cos θ
2

cos
(
ux cosφ

)
(
ux cosφ

)2
− π2

4

sinc
(
uy sinφ

)
aη (2.110)

E面は φ = π/2のときで，sinφ = 1，cosφ = 0より，

F̄[10](θ, π/2) = 2
√

2ab
π

1 + cos θ
2 sinc

(
uy
)

ay (2.111)
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一方，H面は φ = 0のときで，sinφ = 0，cosφ = 1より，

F̄[10](θ, 0) = −π
√
ab√
2

1 + cos θ
2

cos
(
ux
)

u2
x − π2

4
ay (2.112)

2.3.5 ピーク利得

TE01 モードのピーク利得 G[01]

∣∣∣∣
θ=0
は，

G[01]

∣∣∣∣
θ=0

= 4π ab
λ2

∣∣∣∣∣2
√

2
π

∣∣∣∣∣
2

= 4π ab
λ2 · 8

π2 (2.113)

また，TE10 モードのピーク利得 G[10]

∣∣∣∣
θ=0
は，

G[10]

∣∣∣∣
θ=0

= 4π ab
λ2

∣∣∣∣∣2
√

2
π

∣∣∣∣∣
2

= 4π ab
λ2 · 8

π2 = G[01]

∣∣∣∣
θ=0

(2.114)

47



2.4 方形TEmnモードによるフレネル領域の放射界

積分項が tx 6= 0 のとき，

Is1 ≡
ˆ 1

−1
sin mπ2

(
x̄+ 1

)
ejx̄ux cosφe−j2πtxx̄2

dx̄ (2.115)

Ic1 ≡
ˆ 1

−1
cos mπ2

(
x̄+ 1

)
ejx̄ux cosφe−j2πtxx̄2

dx̄ (2.116)

また，ty 6= 0 のとき，

Is2 ≡
ˆ 1

−1
sin nπ2

(
ȳ + 1

)
ejȳuy cosφe−j2πty ȳ2

dȳ (2.117)

Ic2 ≡
ˆ 1

−1
cos nπ2

(
ȳ + 1

)
ejȳuy sinφe−j2πty ȳ2

dȳ (2.118)

上式は，次の不定積分が計算できればよい．

Is =
ˆ

sinB(v + 1)eAve−j π
2Cv

2
dv (2.119)

Ic =
ˆ

cosB(v + 1)eAve−j π
2Cv

2
dv (2.120)

2.4.1 フレネル積分

フレネル積分 S(x)，C(x)は，

S(x) =
ˆ x

0
sin

(
π

2 t
2
)
dt =

√
2
π

ˆ √π
2 x

0
sin(t2)dt (2.121)

C(x) =
ˆ x

0
cos

(
π

2 t
2
)
dt =

√
2
π

ˆ √π
2 x

0
cos(t2)dt (2.122)

不定積分を変形して，

Is =
ˆ

sinB(v + 1)eAve−j π
2Cv

2
dv

= 1
j2

ˆ (
ejB(v+1) − e−jB(v+1)

)
eAve−j π

2Cv
2
dv

= ejB

j2

ˆ
e(A+jB)ve−j π

2Cv
2
dv − e−jB

j2

ˆ
e(A−jB)ve−j π

2Cv
2
dv (2.123)

Ic =
ˆ

cosB(v + 1)eAve−j π
2Cv

2
dv

= 1
2

ˆ (
ejB(v+1) + e−jB(v+1)

)
eAve−j π

2Cv
2
dv

= ejB

2

ˆ
e(A+jB)ve−j π

2Cv
2
dv + e−jB

2

ˆ
e(A−jB)ve−j π

2Cv
2
dv (2.124)
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ˆ x

0
ej

π
2 t

2
dt = C(x) + jS(x)（Cornu のらせん）

いま，jAi ≡ A± jB (i = 1, 2)とおくと，

Is = ejB

j2

ˆ
ejA1ve−j π

2Cv
2
dv − e−jB

j2

ˆ
ejA2ve−j π

2Cv
2
dv (2.125)

Ic = ejB

2

ˆ
ejA1ve−j π

2Cv
2
dv + e−jB

2

ˆ
ejA2ve−j π

2Cv
2
dv (2.126)

積分項をまとめると，
ˆ
ejAive−j π

2Cv
2
dv =

ˆ
ej(Aiv− π

2Cv
2)dv ≡

ˆ
ejΘi(v)dv (2.127)

49



位相項 Θi(v)を変形して，

Θi(v) = Aiv − π

2Cv
2

= −π

2

(
Cv2 − 2

π
Aiv

)

= −π

2


(√

Cv − Ai

π
√
C

)2

− A2
i

π2C


= −π

2

(√
Cv − Ai

π
√
C

)2

+ A2
i

2πC (2.128)

ここで，

ti(v) ≡
√
Cv − Ai

π
√
C

(2.129)

とおくと，

dti =
√
Cdv (2.130)

積分範囲は，

ti(∓1) = ∓
√
C − Ai

π
√
C

≡ ti∓ (2.131)

これより積分項は，
ˆ 1

−1
ejΘi(v)dv =

ˆ ti+

ti−

e−j π
2 t

2
i ej

A2
i

2πC
dti√
C

= ej
A2

i
2πC

√
C

ˆ ti+

ti−

e−j π
2 t

2
i dti (2.132)

よって，
ˆ ti+

ti−

e−j π
2 t

2
i dti =

ˆ ti+

ti−

cos
(
π

2 t
2
i

)
dti − j

ˆ ti+

ti−

sin
(
π

2 t
2
i

)
dti

= C(ti+) − C(ti−) − j
{
S(ti+) − S(ti−)

}
(2.133)

いま，

v → x̄, A → jux cosφ, B → mπ

2 , C → 4tx
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とすると（jAi ≡ A± jB (i = 1, 2)），

t1∓ = ∓
√
C − A1

π
√
C

= ∓
√
C − −jA+B

π
√
C

= ∓2
√
tx −

ux cosφ+ mπ
2

2π
√
tx

(2.134)

t2∓ = ∓
√
C − A2

π
√
C

= ∓
√
C − −jA−B

π
√
C

= ∓2
√
tx −

ux cosφ− mπ
2

2π
√
tx

(2.135)

このとき，

ej
A2

1
2πC

√
C

= 1
2
√
tx
ej

(ux cos φ+ mπ
2 )2

8πtx (2.136)

ej
A2

2
2πC

√
C

= 1
2
√
tx
ej

(ux cos φ− mπ
2 )2

8πtx (2.137)

同様にして，

v → ȳ, A → juy sinφ, B → nπ

2 , C → 4ty

として，

t′1∓ = ∓2
√
ty −

uy sinφ+ nπ
2

2π√
ty

(2.138)

t′2∓ = ∓2
√
ty −

uy sinφ− nπ
2

2π√
ty

(2.139)

このとき，

ej
A2

1
2πC

√
C

= 1
2√

ty
e
j

(uy sin φ+ nπ
2 )2

8πty (2.140)

ej
A2

2
2πC

√
C

= 1
2√

ty
e
j

(uy sin φ− nπ
2 )2

8πty (2.141)
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よって，

Is1 = ejB

j2

ˆ 1

−1
ejΘ1x̄dx̄− e−jB

j2

ˆ 1

−1
ejΘ2x̄dx̄

= 1
j4

√
tx

(
ej

mπ
2 ej

(ux cos φ+ mπ
2 )2

8πtx

ˆ t1+

t1−

e−j π
2 t

2
dt

−e−jmπ
2 ej

(ux cos φ− mπ
2 )2

8πtx

ˆ t2+

t2−

e−j π
2 t

2
dt

)

= 1
j4

√
tx

·
(
ej

mπ
2 ej

(ux cos φ+ mπ
2 )2

8πtx

[
C(t1+) − C(t1−) − j

{
S(t1+) − S(t1−)

}]

−e−jmπ
2 ej

(ux cos φ− mπ
2 )2

8πtx

[
C(t2+) − C(t2−) − j

{
S(t2+) − S(t2−)

}])
(2.142)

Ic1 = ejB

2

ˆ 1

−1
ejΘ1x̄dx̄+ ejB

2

ˆ 1

−1
ejΘ2x̄dx̄

= 1
4
√
tx

·
(
ej

mπ
2 ej

(ux cos φ+ mπ
2 )2

8πtx

[
C(t1+) − C(t1−) − j

{
S(t1+) − S(t1−)

}]

+e−jmπ
2 ej

(ux cos φ− mπ
2 )2

8πtx

[
C(t2+) − C(t2−) − j

{
S(t2+) − S(t2−)

}])
(2.143)

同様にして，

Is2 = 1
j4√

ty

·
(
ej

nπ
2 e

j
(uy sin φ+ nπ

2 )2

8πty

[
C(t′1+) − C(t′1−) − j

{
S(t′1+) − S(t′1−)

}]

−e−j nπ
2 e

j
(uy cos φ− nπ

2 )2

8πty

[
C(t′2+) − C(t′2−) − j

{
S(t′2+) − S(t′2−)

}])
(2.144)

Ic2 = 1
4√

ty

·
(
ej

nπ
2 e

j
(uy sin φ+ nπ

2 )2

8πty

[
C(t′1+) − C(t′1−) − j

{
S(t′1+) − S(t′1−)

}]

+e−j nπ
2 e

j
(uy sin φ− nπ

2 )2

8πty

[
C(t′2+) − C(t′2−) − j

{
S(t′2+) − S(t′2−)

}])
(2.145)
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ここで，

F̄[mn] = 1 + cos θ
2

(
N̄x[mn]aξ + N̄y[mn]aη

)
= A[mn]

ab

4
1 + cos θ

2

(
nπ

b
Ic1Is2aξ + mπ

a
Is1Ic2aη

)
(2.146)

また，

N̄x[mn] = A[mn]
nπa

4 Ic1Is2 (2.147)

N̄y[mn] = −A[mn]
mπb

4 Is1Ic2 (2.148)
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2.5 方形TMmnモードによる放射

方形導波管の TMmn モードの電界のモード関数 e(mn) は，

e(mn) = −A(mn)

[
mπ

a
cos

(
mπx

a

)
sin

(
nπy

b

)
ax

+nπ
b

sin
(
mπx

a

)
cos

(
nπy

b

)
ay

]
= −A(mn)

[
mπ

a
cos mπ2

(
x̄+ 1

)
sin nπ2

(
ȳ + 1

)
ax

+nπ
b

sin mπ2
(
x̄+ 1

)
cos nπ2

(
ȳ + 1

)
ay

]
(2.149)

ここで，正規化係数 A(mn) は，

A(mn) = 2
π

√
ab

(mb)2 + (na)2

= 2

√√√√ 1
ab

(mπa )2 + (nπb )2

= 2√
abkc,(mn)

(2.150)

これより，

N̄x(mn) = −A(mn)
mπb

4 Ic1Is2 (2.151)

N̄y(mn) = −A(mn)
nπa

4 Is1Ic2 (2.152)

したがって（導出省略），

N̄x(mn) = −A(mn)
mnπ2bux

2 cosφ Ψmn(θ, φ) (2.153)

N̄y(mn) = −A(mn)
mnπ2auy

2 sinφ Ψmn(θ, φ) (2.154)

これより，

N̄x(mn) cosφ+ N̄y(mn) sinφ = −A(mn)
mnπ3ab

2λ sin θ Ψmn(θ, φ) (2.155)

− N̄x(mn) sinφ+ N̄y(mn) cosφ = 0 (2.156)

よって，

Ep(mn) = j

λ

e−jkr

r
F(mn)(θ, φ) (2.157)
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F(mn)(θ, φ) = −A(mn)
mnπ3ab

4λ sin θ Ψmn(θ, φ)
√
Z(mn)

·
{

1 + k

β(mn)
cos θ + Γ

(
1 − k

β(mn)
cos θ

)}
aθ (2.158)

反射を無視すると，Γ = 0 とおき，

F(mn)(θ, φ)
∣∣∣∣
Γ=0

= −A(mn)
mnπ3ab

4λ sin θ Ψmn(θ, φ)
√
Z(mn)

(
1 + k

β(mn)
cos θ

)
aθ(2.159)

さらに，低次のモードについて開口径が十分大きい場合，Z[mn] ' Zw，β[mn] ' k より，

Ep[mn] = j

λ

e−jkr

r
F[mn](θ, φ)

' j

λ

e−jkr

r

√
Zw

F[mn](θ, φ)
∣∣∣∣
Γ=0√

Zw

' j

λ

e−jkr

r

√
ZwF̄[mn](θ, φ) (2.160)

ここで，

F(mn)(θ, φ)
∣∣∣∣
Γ=0√

Zw
= −A(mn)

mnπ3ab

4λ sin θ Ψmn(θ, φ)
√
Z(mn)

Zw

(
1 + Zw

Z(mn)
cos θ

)
aθ

= −A(mn)
mnπ3ab

4λ sin θ Ψmn(θ, φ)
√
β(mn)

k

(
1 + k

β(mn)
cos θ

)
aθ(2.161)

あるいは，自由空間の波動インピーダンス Zw で規格化したモードの特性インピーダンス
z(mn)，規格化特性アドミタンス y(mn) を，

z(mn) ≡
Z(mn)

Zw
≡ 1
y(mn)

(2.162)

とおくと，

F(mn)(θ, φ)
∣∣∣∣
Γ=0√

Zw
= −A(mn)

mnπ3ab

4λ sin θ Ψmn(θ, φ)√z(mn)
(
1 + y(mn) cos θ

)
aθ

(2.163)

ここで，TMmn モード関数の正規化係数 A(mn) は，

A(mn) = 2
π

√
ab

(mb)2 + (na)2 = 2√
ab

1
kc,(mn)

= 2√
ab

λc,(mn)

2π =
λc,(mn)

π
√
ab

(2.164)
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これより，

F(mn)(θ, φ)
∣∣∣∣
Γ=0√

Zw
= −mnπ2

√
ab

2
λc,(mn)

λ
sin θ

· √
z(mn)

1 + y(mn) cos θ
2 Ψmn(θ, φ)aθ (2.165)

また，

F̄(mn)(θ, φ) = −A(mn)
mnπ3ab

4λ sin θ (1 + cos θ) Ψmn(θ, φ)aθ

= −mnπ2
√
ab

4
λc,(mn)

λ
sin θ (1 + cos θ) Ψmn(θ, φ)aθ

= −mnπ2
√
ab

2
λc,(mn)

λ
sin θ 1 + cos θ

2 Ψmn(θ, φ)aθ (2.166)
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2.6 正方形導波管のモードとその放射パターンの例

2.6.1 正方形導波管TE10モード
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図 2.3. 正方形導波管の TE10 電界モード関数の x 成分 ex および y 成分 ey
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図 2.4. 正方形導波管の TE10 電界モード関数の x 成分 ex および y 成分 ey
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図 2.5. TE10 モードの放射パターンの aη 成分および aξ 成分

57



2.6.2 正方形導波管TE12モード
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図 2.6. 正方形導波管の TE12 電界モード関数の x 成分 ex および y 成分 ey
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図 2.7. 正方形導波管の TE12 電界モード関数の x 成分 ex および y 成分 ey
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図 2.8. TE12 モードの放射パターンの aη 成分および aξ 成分
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2.6.3 正方形導波管TM12モード
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図 2.9. 正方形導波管の TM12 電界モード関数の x 成分 ex および y 成分 ey
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図 2.10. 正方形導波管の TM12 電界モード関数の x 成分 ex および y 成分 ey
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図 2.11. TM12 モードの放射パターンの aη 成分および aξ 成分
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2.6.4 正方形導波管TE01モード
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図 2.12. 正方形導波管の TE01 電界モード関数の x 成分 ex および y 成分 ey
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図 2.13. 正方形導波管の TE01 電界モード関数の x 成分 ex および y 成分 ey
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図 2.14. TE01 モードの放射パターンの aη 成分および aξ 成分
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2.6.5 正方形導波管TE21モード
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図 2.15. 正方形導波管の TE21 電界モード関数の x 成分 ex および y 成分 ey
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図 2.16. 正方形導波管の TE21 電界モード関数の x 成分 ex および y 成分 ey
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図 2.17. TE21 モードの放射パターンの aη 成分および aξ 成分
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2.6.6 正方形導波管TM21モード
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図 2.18. 正方形導波管の TM21 電界モード関数の x 成分 ex および y 成分 ey
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図 2.19. 正方形導波管の TM21 電界モード関数の x 成分 ex および y 成分 ey
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図 2.20. TM21 モードの放射パターンの aη 成分および aξ 成分
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2.7 2.7　多モード方形導波管開口からの放射

2.7.1 多モードを合成した開口面分布

開口面分布が方形導波管の伝搬モード（TEmn モードおよび TMmn モード）の合成で与
えられている場合を考える．いま，モード係数を c[mn]，c(mn) とすると，横断面内電界 Et

および磁界Ht は，

Et =
∑
m,n

c[mn]
√
Z[mn]e[mn] +

∑
m,n

c(mn)
√
Z(mn)e(mn)

=
∑
i

ci
√
Ziei (2.167)

Ht =
∑
m,n

c[mn]
√
Y[mn]h[mn] +

∑
m,n

c(mn)
√
Y(mn)h(mn)

=
∑
i

ci
√
Yihi (2.168)

ただし，モード係数 ci は次のように規格化されているとする．ˆ
S

(Et × H∗
t ) · azdS

≡
ˆ
S

{(∑
i

ci
√
Ziei

)
×
(∑

j

c∗
j

√
Yjhj

)}
· azdS

=
ˆ
S

{∑
i

∑
j

cic
∗
j

√
Zi
√
Yj
(
ei × hj

)
· az

}
dS

=
∑
i

∑
j

cic
∗
j

√
Zi
√
Yj

ˆ
S

ei · ejdS

=
∑
i

|ci|2 ≡ 1 (2.169)

つまり，
∑
m,n

∣∣∣c[mn]
∣∣∣2 +

∑
m,n

∣∣∣c(mn)
∣∣∣2 = 1 (2.170)
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2.7.2 開口面での反射が小さい場合

放射電界 Ep は，

Ep =
∑
i

ciEp,i

=
∑
m,n

c[mn]Ep[mn] +
∑
m,n

c(mn)Ep(mn)

= j

λ

e−jkr

r

(∑
m,n

c[mn]F[mn] +
∑
m,n

c(mn)F(mn)

)
(2.171)

ここで，

F̂[mn] =
F[mn](θ, φ)

∣∣∣∣
Γ=0√

S
√
Zw

= −
ab

√
εmεn
4

λc,[mn]

λ
sin θ Ψmn(θ, φ)√z[mn]

·
[

1 + y[mn] cos θ
2

{(
mπ

a
sinφ

)2
−
(
nπ

b
cosφ

)2
}

aθ

+
cos θ + y[mn]

2 k2
c,[mn] sinφ cosφ aφ

]
(2.172)

また，

F̂[mn] =
F(mn)(θ, φ)

∣∣∣∣
Γ=0√

S
√
Zw

= −mnπ2

2
λc,(mn)

λ
sin θ√z(mn)

1 + y(mn) cos θ
2 Ψmn(θ, φ)aθ (2.173)

このとき，各モードの正規化された放射電界は，

Ep,mn = j

λ

e−jkr

r
Fmn(θ, φ) (2.174)

アンテナ利得 G(θ, φ)は，正面方向の交差偏波成分がない場合，

G(θ, φ) = 4π S
λ2

1
SZw

∣∣∣∣∣∑
m,n

c[mn]F[mn] +
∑
m,n

c(mn)F(mn)

∣∣∣∣∣
2

= 4π S
λ2

∣∣∣∣∣∑
m,n

c[mn]F̂[mn] +
∑
m,n

c(mn)F̂(mn)

∣∣∣∣∣
2

(2.175)
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2.7.3 開口径が大きい場合

開口径が大きくなっていくと，開口における反射は十分小さくなる．このとき，β[mn] ' k，
β(mn) ' k より，

Ep ' j

λ

e−jkr

r

√
S
√
Zw

(∑
m,n

c[mn]F̂[mn] +
∑
m,n

c(mn)F̂(mn)

)
(2.176)

G(θ, φ) ' 4π S
λ2

∣∣∣∣∣∑
m,n

c[mn]F̂[mn] +
∑
m,n

c(mn)F̂(mn)

∣∣∣∣∣
2

(2.177)

ここで，

F̂[mn](θ, φ) = ab
√
εmεn
4

λc,[mn]

λ

1 + cos θ
2 sin θ Ψmn(θ, φ)

·
{(

nπ

b

)2
cosφ aξ −

(
mπ

a

)2
sinφ aη

}
(2.178)

F̂(mn)(θ, φ) = −mnπ2

2
λc,(mn)

λ
sin θ 1 + cos θ

2 Ψmn(θ, φ)aθ

= −mnπ2

2
λc,(mn)

λ
sin θ 1 + cos θ

2 Ψmn(θ, φ)
(

cosφaξ + sinφaη

)
(2.179)

2.7.4 モードの合成による交差偏波成分の低減

TEmn モードと TMmn モードの指向性関数の aξ 成分の比をとると，

F̂(mn) · aξ

F̂[mn] · aξ
=

−mnπ2

2
λc,(mn)
λ sin θ 1+cos θ

2 Ψmn cosφ
ab

√
εmεn

4
λc,[mn]
λ

1+cos θ
2 sin θ Ψmn

(
nπ
b

)2
cosφ

= −2mnπ2
√
εmεn

a
bn

2π2 = − 2
√
εmεn

b

a

m

n
(2.180)

ここで，m 6= 0，n 6= 0より，εm = 2，εn = 2 ゆえ，

F̂(mn) · aξ

F̂[mn] · aξ
= − b

a

m

n
(2.181)

主偏波成分が aη のとき，TEmn モードと TMmn モードによって交差偏波成分を消去する
条件は，

c[mn]F̂[mn] · aξ + c(mn)F̂(mn) · aξ = 0 (2.182)

整理して，

F̂[mn] · aξ

c[mn] + c(mn)
F̂(mn) · aξ

F̂[mn] · aξ

 = 0 (2.183)
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F̂[mn] · aξ 6= 0より，

c[mn] − c(mn)
b

a

m

n
= 0 (2.184)

これより，交差偏波成分を消去するモード係数の関係は，次のようになる．

c(mn) = a

b

n

m
c[mn] ≡ αYpol

mn c[mn] (2.185)

遠方放射電界 Ep および利得 G は，

Ep ' j

λ

e−jkr

r

√
S
√
Zw

{∑
m=1

c[m0]F̂[m0] +
∑
m=1

∑
n=1

c[mn]

(
F̂[mn] + αYpol

mn F̂(mn)

)}
(2.186)

G(θ, φ) ' 4π S
λ2

∣∣∣∣∣∑
m=1

c[m0]F̂[m0] · aη +
∑
m=1

∑
n=1

c[mn]

(
F̂[mn] · aη + αYpol

mn F̂(mn) · aη

)∣∣∣∣∣
2

(2.187)

例えば，TE10 モードの入射によって発生する高次の次数の等しい TEモードと TMモード
を考える．TE10 モードは，開口面においては ay 方向，遠方放射電界では aη 方向の成分が
主偏波であり，交差偏波は開口面において ax 方向，遠方放射電界では aξ 方向ゆえ，モー
ド係数の関係は，TE/TM12 モードの場合，m = 1，n = 2とおいて，

c(12) = 2
1
a

b
c[12] = 2a

b
c[12] (2.188)

TE/TM32 モードの場合，m = 3，n = 2とおいて，

c(32) = 2
3
a

b
c[32] (2.189)

TE/TM14 モードの場合，m = 1，n = 2とおいて，

c(14) = 4
1
a

b
c[14] = 4a

b
c[14] (2.190)

TE/TM34 モードの場合，m = 3，n = 4とおいて，

c(34) = 4
3
a

b
c[34] (2.191)

TE/TM52 モードの場合，m = 5，n = 2とおいて，

c(52) = 2
5
a

b
c[52] (2.192)

TE/TM16 モードの場合，m = 1，n = 6とおいて，

c(16) = 6
1
a

b
c[16] = 6a

b
c[16] (2.193)
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　同様にして，aη 成分の比をとると，

F̂(mn) · aη

F̂[mn] · aη
= a

b

n

m
(2.194)

主偏波成分が aξ のとき，TEmn モードと TMmn モードによって交差偏波成分を消去する
モード係数の関係は，

c(mn) = − b

a

m

n
c[mn] ≡ αXpol

mn c[mn] (2.195)

TE01 モードの入射によって発生する高次の次数の等しい TEモードと TMモードを考える
と，TE10 モードは，開口面においては ax 方向，遠方放射電界では aξ 方向の成分が主偏
波であり，交差偏波は開口面において ay 方向，遠方放射電界では aη 方向ゆえ，モード係
数の関係は，添字の交換以外には，符号の違いと，a, bの交換をすれば求められる．
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CHAPTER 3

円形導波菅開口からの放射

　円形導波管の開口からの電磁波の放射について詳しく解説する．まず，円形導波管
の中心軸を基準とした座標系を定義し，開口面における入射電界をモード関数で表
す．次に，軸対称導波管の TEモードと TMモードについて，それぞれの電界成分
をベッセル関数を用いて詳細に導出する．そして，これらのモードを重畳した多モー
ドの場合の放射電界やアンテナ利得の計算方法を示し，特に開口径が大きい場合の低
次モードにおける特性について議論する．

3.1 円形導波管開口からの放射

円形導波管の断面の半径を aとし，導波管の中心軸上に z 軸をとる円筒座標 (ρ′, φ′, z)を
定義する．開口面への横断面内入射電界として，モード関数 e(ρ′)

e(ρ′) ≡ ex(ρ′, φ′)ax + ey(ρ′, φ′)ay (3.1)

を考えると，観測点が遠方の場合，

N̄(x
y

) =
ˆ 2π

0

ˆ a

0
e(x

y

)(ρ′, φ′)ejk·ρρ′dρ′dφ′ (3.2)

ここで，

k · ρ′ = kar · ρ′aρ

= k
{

sin θ(cosφax + sinφay) + cos θaz
}

·ρ′
(

cosφ′ax + sinφ′ay
)

= kρ′ sin θ
(

cosφ cosφ′ + sinφ sinφ′
)

= kρ′ sin θ cos
(
φ− φ′

)
(3.3)
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いま，

ρ̄ ≡ ρ′

a
(3.4)

u ≡ 2πa
λ

sin θ (3.5)

とおくと，

k · ρ′ = 2π
λ
aρ̄ sin θ cos

(
φ− φ′

)
= uρ̄ cos

(
φ− φ′

)
(3.6)

このとき，ρ′dρ′ = a2ρ̄dρ̄．これより，

N̄(x
y

) = a2
ˆ 2π

0

ˆ 1

0
e(x

y

)(ρ̄, φ′)ejuρ̄ cos(φ−φ′)ρ̄dρ̄dφ′ (3.7)

3.1.1 TEモード

TEmn モードの場合，

e[mn] =
A[mn]

a

[
∓m

ρ̄
Jm (χ′

mnρ̄)
cos
sin mφ′ aρ

+χ′
mnJ

′
m (χ′

mnρ̄)
sin
cos mφ

′ aφ

]
(3.8)

ベッセル関数の公式

Jm(z) = z

2m
{
Jm−1(z) + Jm+1(z)

}
(3.9)

J ′
m(z) = 1

2
{
Jm−1(z) − Jm+1(z)

}
(3.10)

より，

e[mn] =
A[mn]χ

′
mn

2a

[
∓
{
Jm−1 (χ′

mnρ̄) + Jm+1 (χ′
mnρ̄)

}cos
sin mφ′ aρ

+
{
Jm−1 (χ′

mnρ̄) − Jm+1 (χ′
mnρ̄)

}sin
cos mφ

′ aφ

]

= ∓
A[mn]χ

′
mn

2a

[{
Jm−1 (χ′

mnρ̄) + Jm+1 (χ′
mnρ̄)

}cos
sin mφ′ aρ

+
{

− Jm−1 (χ′
mnρ̄) + Jm+1 (χ′

mnρ̄)
} sin

− cos mφ
′ aφ

]
(3.11)
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主偏波成分の係数が正になるように，上側は逆符号にして，

e[mn] =
A[mn]χ

′
mn

2a

[{
Jm−1 (χ′

mnρ̄) + Jm+1 (χ′
mnρ̄)

}cos
sin mφ′ aρ

∓
{
Jm−1 (χ′

mnρ̄) − Jm+1 (χ′
mnρ̄)

}sin
cos mφ

′ aφ

]
(3.12)

3.1.2 TMモード

一方，TMmn モードでは，

e(mn) =
A(mn)

a

[
−χmnJ ′

m (χmnρ̄)
sin
cos mφ

′ aρ

∓m

ρ̄
Jm (χmnρ̄)

cos
sin mφ′ aφ

]

= −
A(mn)χmn

2a

[{
Jm−1 (χmnρ̄) − Jm+1 (χmnρ̄)

}sin
cos mφ

′ aρ

+
{

− Jm−1 (χmnρ̄) − Jm+1 (χmnρ̄)
}− cos

sin mφ′ aφ

]
(3.13)

TEモードの正弦モードと余弦モードに合わせるため上側と下側を入れ替え，その係数が正
となるように逆符号にして，

e(mn) =
A(mn)χmn

2a

[{
Jm−1 (χmnρ̄) − Jm+1 (χmnρ̄)

}cos
sin mφ′ aρ

∓
{
Jm−1 (χmnρ̄) + Jm+1 (χmnρ̄)

}sin
cos mφ

′ aφ

]
(3.14)

3.1.3 TE/TMをまとめた表示式

TEモードと TMモードを次のようにまとめて表すことができる．

emn = Amnχ̄mn
2a

[{
Jm−1 (χ̄mnρ̄) + `Jm+1 (χ̄mnρ̄)

}cos
sin mφ′ aρ

+
{
Jm−1 (χ̄mnρ̄) − `Jm+1 (χ̄mnρ̄)

}− sin
cos mφ′ aφ

]
(3.15)

ただし，

` =
{

1 (TE mode)
−1 (TM mode) , χ̄mn =

{
χ′
mn (TEmn mode)
χmn (TMmn mode) (3.16)
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さらに，

aρ = cosφ′ax + sinφ′ay (3.17)
aφ = − sinφ′ax + cosφ′ay (3.18)

これより，

cos
sin mφ′ · cosφ′ + − sin

cos mφ′ · (− sinφ′) = cos
sin (m− 1)φ′ (3.19)

cos
sin mφ′ · sinφ′ + − sin

cos mφ′ · cosφ′ = − sin
cos (m− 1)φ′ (3.20)

cos
sin mφ′ · cosφ′ − − sin

cos mφ′ · (− sinφ′) = cos
sin (m+ 1)φ′ (3.21)

cos
sin mφ′ · sinφ′ − − sin

cos mφ′ · cosφ′ = −− sin
cos (m+ 1)φ′ (3.22)

直角座標成分で表すと，

emn = Amnχ̄mn
2a

[{
Jm−1 (χ̄mnρ̄)

cos
sin (m− 1)φ′

+`Jm+1 (χ̄mnρ̄)
cos
sin (m+ 1)φ′

}
ax

+
{
Jm−1 (χ̄mnρ̄)

− sin
cos (m− 1)φ′

−`Jm+1 (χ̄mnρ̄)
− sin
cos (m+ 1)φ′ay

}]
(3.23)

3.2 円形導波管のTE1nおよびTM1nモードの特性

円形導波管の基本モードは TE11 モードであり，これに関連する周方向の次数 m = 1の
モードについて偏波方向を考えてみる．上式の上側より，

e1n = A1nχ̄1n

2a

{
J0 (χ̄1nρ̄) ax + `J2 (χ̄1nρ̄)

(
cos 2φ′ax + sin 2φ′ay

)}
(3.24)

中心 ρ̄ = 0では，J0(0) = 1，J2(0) = 0 ゆえ，このとき電界 e1n(0)は x方向偏波となって
いる．そして，主偏波の非対称性および交差偏波成分は上式の第 2項によるものである．一
方，下側については，

e1n = A1nχ̄1n

2a

{
`J2 (χ̄1nρ̄)

(
sin 2φ′ax − cos 2φ′ay

)
+ J0 (χ̄1nρ̄) ay

}
(3.25)

このとき，中心 ρ̄ = 0 での電界 e1n(0)は y 方向偏波である．
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3.3 フラウンホーファ領域

円形導波管モードによる放射界を計算するため，

N̄x = a2Amnχ̄mn
2a

ˆ 2π

0

ˆ 1

0

{
Jm−1 (χ̄mnρ̄)

cos
sin(m− 1)φ′

+`Jm+1 (χ̄mnρ̄)
cos
sin(m+ 1)φ′

}
ejuρ̄ cos(φ−φ′)ρ̄dρ̄dφ′ (3.26)

N̄y = a2Amnχ̄mn
2a

ˆ 2π

0

ˆ 1

0

{
− Jm−1 (χ̄mnρ̄)

sin
− cos(m− 1)φ′

+`Jm+1 (χ̄mnρ̄)
sin

− cos(m+ 1)φ′
}
ejuρ̄ cos(φ−φ′)ρ̄dρ̄dφ′ (3.27)

における積分

INx1 =
ˆ 2π

0

ˆ 1

0
Jm−1 (χ̄mnρ̄)

cos
sin(m− 1)φ′ejuρ̄ cos(φ−φ′)ρ̄dρ̄dφ′ (3.28)

INx2 =
ˆ 2π

0

ˆ 1

0
Jm+1 (χ̄mnρ̄)

cos
sin(m+ 1)φ′ejuρ̄ cos(φ−φ′)ρ̄dρ̄dφ′ (3.29)

INy1 =
ˆ 2π

0

ˆ 1

0
−Jm−1 (χ̄mnρ̄)

sin
− cos(m− 1)φ′ejuρ̄ cos(φ−φ′)ρ̄dρ̄dφ′ (3.30)

INy2 =
ˆ 2π

0

ˆ 1

0
Jm+1 (χ̄mnρ̄)

sin
− cos(m+ 1)φ′ejuρ̄ cos(φ−φ′)ρ̄dρ̄dφ′ (3.31)

を，<b>ベッセル - フーリエ級数</b>（Bessel-Fourier series）

ejλρ cos(φ−φ′) = J0(λρ) +
∞∑
n=1

2jnJn(λρ) cosn(φ− φ′) (3.32)

を用いて積分する．
まず，N̄x の第 1項の積分 INx1 は，

INx1 =
ˆ 2π

0

ˆ 1

0
Jm−1 (χ̄mnρ̄)

cos
sin(m− 1)φ′

·
{
J0(uρ̄) +

∞∑
n′=1

2jn′
Jn′(uρ̄) cosn′(φ− φ′)

}
ρ̄dρ̄dφ′

=
ˆ 1

0
Jm−1 (χ̄mnρ̄) J0(uρ̄)ρ̄dρ̄

ˆ 2π

0

cos
sin(m− 1)φ′dφ′

+
∞∑
n′=1

2jn′
ˆ 1

0
Jm−1 (χ̄mnρ̄) Jn′(uρ̄)ρ̄dρ̄

·
ˆ 2π

0

cos
sin(m− 1)φ′ cosn′(φ− φ′)dφ′ (3.33)
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ここで，
ˆ 2π

0
cos(m∓ 1)φ′dφ′ = 2πδm,±1 (3.34)

ˆ 2π

0
sin(m∓ 1)φ′dφ′ = 0 (3.35)

また，

cos(m∓ 1)φ′ cosn′(φ− φ′)

= 1
2

[
cos

(
(m∓ 1)φ′ + n′(φ− φ′)

)
+ cos

(
(m∓ 1)φ′ − n′(φ− φ′)

)]
= 1

2

[
cos

(
(m∓ 1 − n′)φ′ + n′φ

)
+ cos

(
(m∓ 1 + n′)φ′ − n′φ

)]
= 1

2

[
cos(m∓ 1 − n′)φ′ cosn′φ− sin(m∓ 1 − n′)φ′ sinn′φ

+ cos(m∓ 1 + n′)φ′ cosn′φ+ sin(m∓ 1 + n′)φ′ sinn′φ
]

(3.36)

これを積分すると，1 ≤ n′ = m∓ 1，−m± 1（m = 0, 1, 2, · · ·）のとき値をもち，このとき，
ˆ 2π

0
cos(m∓ 1)φ′ cosn′(φ− φ′)dφ′ = 1

2 cosn′φ

ˆ 2π

0
dφ′

= π cosn′φ (3.37)

上側符号では，m = 0 のとき n′ = −m + 1 = 1，m = 1 のとき n′ ≥ 1 となるケースはな
し，m = 2 のとき n′ = m− 1 = 1，m = 3, 4, · · · のとき n′ = m− 1 である．したがって，

ˆ 2π

0
cos(m− 1)φ′ cosn′(φ− φ′)dφ′

=
{
π cos |m− 1|φ (n′ = |m− 1|, m = 0, 2, 3, 4, · · · )

0 (otherwise) (3.38)

また，下側符号では，m = 0 のとき n′ = m+ 1 = 1，m = 1, 2, · · · のとき n′ = m+ 1 で
ある．したがって，

ˆ 2π

0
cos(m+ 1)φ′ cosn′(φ− φ′)dφ′

=
{
π cos(m+ 1)φ (n′ = m+ 1)

0 (otherwise) (3.39)
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同様にして（導出省略），
ˆ 2π

0
sin(m− 1)φ′ cosn′(φ− φ′)dφ′

=
{
π sin |m− 1|φ (n′ = |m− 1|, m = 0, 2, 3, 4, · · · )

0 (otherwise) (3.40)
ˆ 2π

0
sin(m+ 1)φ′ cosn′(φ− φ′)dφ′

=
{
π sin(m+ 1)φ (n′ = m+ 1)

0 (otherwise) (3.41)

よって，積分項は，

INx1 = jm−12π cos
sin(m− 1)φ

ˆ 1

0
Jm−1 (χ̄mnρ̄) Jm−1(uρ̄)ρ̄dρ̄ (3.42)

同様にして，N̄x の第 2項の積分 INx2 は，

INx2 =
ˆ 2π

0

ˆ 1

0
Jm+1 (χ̄mnρ̄)

cos
sin(m+ 1)φ′

·
{
J0(uρ̄) +

∞∑
n′=1

2jn′
Jn′(uρ̄) cosn′(φ− φ′)

}
ρ̄dρ̄dφ′

= jm+12π cos
sin(m+ 1)φ

ˆ 1

0
Jm+1 (χ̄mnρ̄) Jm+1(uρ̄)ρ̄dρ̄ (3.43)

さらに，N̄y の第 1項の積分 INy1 は，

INy1 =
ˆ 2π

0

ˆ 1

0
−Jm−1 (χ̄mnρ̄)

sin
− cos(m− 1)φ′ · ejuρ̄ cos(φ−φ′)ρ̄dρ̄dφ′

= −jm−12π sin
− cos(m− 1)φ

ˆ 1

0
Jm−1 (χ̄mnρ̄) Jm−1(uρ̄)ρ̄dρ̄ (3.44)

また，N̄y の第 2項の積分 INy2 は，

INy2 =
ˆ 2π

0

ˆ 1

0
Jm+1 (χ̄mnρ̄)

sin
− cos(m+ 1)φ′ · ejuρ̄ cos(φ−φ′)ρ̄dρ̄dφ′

= jm+12π sin
− cos(m+ 1)φ

ˆ 1

0
Jm+1 (χ̄mnρ̄) Jm+1(uρ̄)ρ̄dρ̄ (3.45)

積分項は，

Im±1,n ≡
ˆ 1

0
Jm±1 (χ̄mnρ̄) Jm±1(uρ̄)ρ̄dρ̄ (3.46)

ベッセル関数の不定積分公式 (α 6= β)
ˆ
zJν(αz)Jν(βz)dz = z

α2 − β2 {βJν(αz)J ′
ν(βz) − αJ ′

ν(αz)Jν(βz)} (3.47)
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より，
ˆ 1

0
zJν(αz)Jν(βz)dz = 1

α2 − β2 {βJν(α)J ′
ν(β) − αJ ′

ν(α)Jν(β)} (3.48)

よって，

Im±1,n = 1
χ̄2
mn − u2

{
uJm±1(χ̄mn)J ′

m±1(u) − χ̄mnJ
′
m±1(χ̄mn)Jm±1(u)

}

3.4 フレネル領域

フレネル領域（距離 r），あるいは円すいホーン（開口径 D，軸長 L）に対しては，

t = D2

8λ

(1
r

+ 1
L

)
(3.49)

を導入して，積分項は，

Im±1,n ≡
ˆ 1

0
Jm±1 (χ̄mnρ̄) Jm±1(uρ̄)e−j2πtρ̄2

ρ̄dρ̄ (3.50)

このとき，

F̄mn = 1 + cos θ
2

(
N̄xaξ + N̄yaη

)
(3.51)

ここで，

N̄x = jm−1Amnπaχ̄mn

{
Im−1,n

cos
sin(m− 1)φ− `Im+1,n

cos
sin(m+ 1)φ

}
(3.52)

N̄y = −jm−1Amnπaχ̄mn

·
{
Im−1,n

sin
− cos(m− 1)φ+ `Im+1,n

sin
− cos(m+ 1)φ

}
(3.53)

これより，

N̄x cosφ+ N̄y sinφ
= jm−1Amnπaχ̄mn

·
[{
Im−1,n

cos
sin(m− 1)φ− `Im+1,n

cos
sin(m+ 1)φ

}
cosφ

−
{
Im−1,n

sin
− cos(m− 1)φ+ `Im+1,n

sin
− cos(m+ 1)φ

}
sinφ

]
(3.54)
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上式の [ ]の中は，

Im−1,n

{
cos
sin(m− 1)φ cosφ− sin

− cos(m− 1)φ sinφ
}

−`Im+1,n

{
cos
sin(m+ 1)φ cosφ+ sin

− cos(m+ 1)φ sinφ
}

= Im−1,n
cos
sinmφ− `Im+1,n

cos
sinmφ

=
(
Im−1,n − `Im+1,n

)cos
sinmφ (3.55)

また，

−N̄x sinφ+ N̄y cosφ
= jm−1Amnπaχ̄mn

·
[
−
{
Im−1,n

cos
sin(m− 1)φ− `Im+1,n

cos
sin(m+ 1)φ

}
sinφ

−
{
Im−1,n

sin
− cos(m− 1)φ+ `Im+1,n

sin
− cos(m+ 1)φ

}
cosφ

]
(3.56)

上式の [ ]の中は，

−Im−1,n

(
cos
sin(m− 1)φ sinφ+ sin

− cos(m− 1)φ cosφ
)

−`Im+1,n

(
−cos

sin(m+ 1)φ sinφ+ sin
− cos(m+ 1)φ cosφ

)

= −Im−1,n
sin

− cosmφ− `Im+1,n
sin

− cosmφ

= −
(
Im−1,n + `Im+1,n

) sin
− cosmφ (3.57)

したがって，

N̄x cosφ+ N̄y sinφ = jm−1Amnπaχ̄mn

(
Im−1,n − `Im+1,n

)cos
sinmφ (3.58)

− N̄x sinφ+ N̄y cosφ = −jm−1Amnπaχ̄mn

(
Im−1,n + `Im+1,n

) sin
− cosmφ (3.59)

上式の積分項を計算するため，ベッセル関数の不定積分公式
ˆ
zJν(αz)Jν(βz)dz

= z

α2 − β2 {βJν(αz)J ′
ν(βz) − αJ ′

ν(αz)Jν(βz)} (α 6= β) (3.60)
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を次のように変形する．ˆ {
Jν−1(αz)Jν−1(βz) ± Jν+1(αz)Jν+1(βz)

}
z dz

= z

α2 − β2

{
βJν−1(αz)J ′

ν−1(βz) − αJ ′
ν−1(αz)Jν−1(βz)

±βJν+1(αz)J ′
ν+1(βz) ∓ αJ ′

ν+1(αz)Jν+1(βz)
}

= z

α2 − β2

[
βJν−1(αz)

{
ν − 1
βz

Jν−1(βz) − Jν(βz)
}

−α
{
ν − 1
αz

Jν−1(αz) − Jν(αz)
}
Jν−1(βz)

±βJν+1(αz)
{
Jν(βz) − ν + 1

βz
Jν+1(βz)

}

∓α
{
Jν(αz) − ν + 1

αz
Jν+1(αz)

}
Jν+1(βz)

]
= z

α2 − β2

{
− βJν−1(αz)Jν(βz) + αJν(αz)Jν−1(βz)

±βJν+1(αz)Jν(βz) ∓ αJν(αz)Jν+1(βz)
}

= z

α2 − β2

[
αJν(αz)

{
Jν−1(βz) ∓ Jν+1(βz)

}
−β

{
Jν−1(αz) ∓ Jν+1(αz)

}
Jν(βz)

]
(3.61)

上側符号については，
ˆ {

Jν−1(αz)Jν−1(βz) + Jν+1(αz)Jν+1(βz)
}
z dz

= 2z
α2 − β2

{
αJν(αz)J ′

ν(βz) − βJ ′
ν(αz)Jν(βz)

}
(3.62)

一方，下側符号については，
ˆ {

Jν−1(αz)Jν−1(βz) − Jν+1(αz)Jν+1(βz)
}
z dz

= z

α2 − β2

{
αJν(αz)

2ν
βz
Jν(βz) − β

2ν
αz
Jν(αz)Jν(βz)

}
= 2ν
αβ

Jν(αz)Jν(βz) (3.63)
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したがって，定積分は，

Im−1,n + Im+1,n

=
ˆ 1

0

(
Jm−1 (χ̄mnρ̄) Jm−1(uρ̄) + Jm+1 (χ̄mnρ̄) Jm+1(uρ̄)

)
ρ̄dρ̄

= 2
χ̄2
mn − u2

[
ρ̄
{
χ̄mnJm(χ̄mnρ̄)J ′

m(uρ̄) − uJ ′
m(χ̄mnρ̄)Jm(uρ̄)

}]1

0

= 2
χ̄2
mn − u2

{
χ̄mnJm(χ̄mn)J ′

m(u) − uJ ′
m(χ̄mn)Jm(u)

}
(3.64)

また，

Im−1,n − Im+1,n

=
ˆ 1

0

(
Jm−1 (χ̄mnρ̄) Jm−1(uρ̄) − Jm+1 (χ̄mnρ̄) Jm+1(uρ̄)

)
ρ̄dρ̄

= 2m
χ̄mnu

[
Jm(χ̄mnρ̄)Jm(uρ̄)

]1

0

= 2m
χ̄mnu

Jm(χ̄mn)Jm(u) (3.65)

TEmn モードのとき，χ̄mn = χ′
mn，J ′

m(χ′
mn) = 0，` = 1 より，

Im−1,n − `Im+1,n = Im−1,n − Im+1,n

= 2m
χ′
mnu

Jm(χ′
mn)Jm(u) (3.66)

Im−1,n + `Im+1,n = Im−1,n + Im+1,n

= 2χ′
mn

χ′2
mn − u2Jm(χ′

mn)J ′
m(u) (3.67)

これより，

N̄TE
x cosφ+ N̄TE

y sinφ = jm−1A[mn]πa
2m
u
Jm(χ′

mn)Jm(u) cos
sinmφ (3.68)

− N̄TE
x sinφ+ N̄TE

y cosφ

= −jm−1A[mn]πa
2

1 −
(

u
χ′

mn

)2Jm(χ′
mn)J ′

m(u) sin
− cosmφ (3.69)

よって，

Ep[mn] = j

λ

e−jkr

r
F[mn](θ, φ) (3.70)
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ここで，

F[mn](θ, φ) = jm−1A[mn]πaJm(χ′
mn)

√
Z[mn]

1
2

·
[{

1 +
β[mn]

k
cos θ + Γ

(
1 −

β[mn]

k
cos θ

)}

·2m
u
Jm(u) cos

sinmφaθ

−
{

cos θ +
β[mn]

k
+ Γ

(
cos θ −

β[mn]

k

)}
2J ′

m(u)
1 −

(
u

χ′
mn

)2 · sin
− cosmφ aφ

]
(3.71)

3.4.1 TMモード

一方，TMmn モードのとき，χ̄mn = χmn，Jm(χmn) = 0，` = −1 より，

Im−1,n − `Im+1,n = Im−1,n + Im+1,n = − 2u
χ2
mn − u2J

′
m(χmn)Jm(u) (3.72)

Im−1,n + `Im+1,n = Im−1,n − Im+1,n = 0 (3.73)

また，

N̄TM
x cosφ+ N̄TM

y sinφ

= −jm−1A(mn)πaχmn

2u
χ2

mn

1 −
(

u
χmn

)2J
′
m(χmn)Jm(u) cos

sinmφ (3.74)

− N̄TM
x sinφ+ N̄TM

y cosφ = 0 (3.75)

よって，

Ep(mn) = j

λ

e−jkr

r
F(mn)(θ, φ) (3.76)

ここで，

F(mn)(θ, φ) = −jm−1A(mn)πaJ
′
m(χmn)

2u
χmn

1 −
(

u
χmn

)2Jm(u) cos
sinmφ

√
Z(mn)

·12

{
1 + k

β(mn)
cos θ + Γ

(
1 − k

β(mn)
cos θ

)}
aθ
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3.5 開口径が十分大きい場合

3.5.1 TEモード

低次のモードについて開口径が十分大きい場合，Γ ' 0，β[mn] ' k より，

F̄[mn](θ, φ) ' jm−1A[mn]πaJm(χ′
mn)

(
1 + cos θ

)
·
[
m

u
Jm(u) cos

sinmφ aθ − J ′
m(u)

1 −
(

u
χ′

mn

)2
sin

− cosmφ aφ

]
(3.77)

m = 1のとき（TE1n モード），

F̄[1n](θ, φ) = A[1n]πaJ1(χ′
1n)
(
1 + cos θ

)
·
[
J1(u)
u

cos
sin φ aθ − J ′

1(u)
1 −

(
u
χ′

1n

)2
sin

− cos φ aφ

]
(3.78)

ここで，

aθ = cosφaξ + sinφaη (3.79)
aφ = − sinφaξ + cosφaη (3.80)

これより，上側符号については，

F̄[1n](θ, φ) = A[1n]
πaJ1(χ′

1n)
1 −

(
u
χ′

1n

)2
1 + cos θ

2

[{
J0(u) − uJ1(u)

χ′2
1n

}
aξ

+
{
J2(u) − uJ1(u)

χ′2
1n

}
cos 2φaξ

+
{
J2(u) − uJ1(u)

χ′2
1n

}
sin 2φaη

]
(3.81)

正面方向 u = 0で有限値をとるのは第 1項で，電界の偏波方向は aξ 方向である．そして，
第 2項は主偏波の非対称性，第 3項は交差偏波成分を示している．また，交差偏波成分ピー
ク値は 45◦ 面に生じることがわかる．このとき，正面方向（θ = 0，φ = 0）では，

F̄[1n](0, 0) = A[1n]πaJ1(χ′
1n)aξ

=
√

2
χ′2

1n − 1
√
πa sign

(
J1(χ′

1n)
)

aξ (3.82)

ここで，

A[1n] =
√

2
π(χ′2

1n − 1)
1

|J1(χ′
1n)| (3.83)
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これより，正面方向のアンテナ利得は，

G[1n]

∣∣∣∣
θ=0

= 4ππa
2

λ2 · 2
χ′2

1n − 1 (3.84)

下側符号について，電界の偏波は aη 方向であり，同様の式を求めることができる（導出
省略）．

3.5.2 TMモード

低次のモードについて開口径が十分大きい場合，Γ ' 0，β(mn) ' k より，

F̄(mn)(θ, φ) ' −jm−1A(mn)πaJ
′
m(χmn)

(
1 + cos θ

)
·

u
χmn

Jm(u)

1 −
(

u
χmn

)2
cos
sinmφ aθ (3.85)

m = 1のとき（TM1n モード），

F̄(1n)(θ, φ) = −A(1n)πaJ
′
1(χ1n)

(
1 + cos θ

) u
χ1n

J1(u)

1 −
(

u
χ′

1n

)2
cos
sin φ aθ (3.86)

ここで，

aθ = cosφaξ + sinφaη (3.87)
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3.6 多モード円形導波管開口からの放射

開口面での反射がなく（Γ = 0），開口面分布が円形導波管の伝搬モード（TEmn モード
および TMmn モード）の合成で与えられている場合を考える．いま，モード係数を c[mn]，
c(mn) とすると，横断面内電界 Et および磁界Ht は，

Et =
∑
m,n

c[mn]
√
Z[mn]e[mn] +

∑
m,n

c(mn)
√
Z(mn)e(mn) =

∑
i

ci
√
Ziei (3.88)

Ht =
∑
m,n

c[mn]
√
Y[mn]h[mn] +

∑
m,n

c(mn)
√
Y(mn)h(mn) =

∑
i

ci
√
Yihi (3.89)

ただし，モード係数 ci は次のように規格化されているとする．ˆ
S

(Et × H∗
t ) · azdS

≡
ˆ
S

{(∑
i

ci
√
Ziei

)
×
(∑

j

c∗
j

√
Yjhj

)}
· azdS

=
ˆ
S

{∑
i

∑
j

cic
∗
j

√
Zi
√
Yj
(
ei × hj

)
· az

}
dS

=
∑
i

∑
j

cic
∗
j

√
Zi
√
Yj

ˆ
S

ei · ejdS

=
∑
i

|ci|2 ≡ 1 (3.90)

つまり，
∑
m,n

∣∣∣c[mn]
∣∣∣2 +

∑
m,n

∣∣∣c(mn)
∣∣∣2 = 1 (3.91)

ここで，

F[mn](θ, φ) = jm−1A[mn]πaJm(χ′
mn)

√
Z[mn]

·
[{

1 +
β[mn]

k
cos θ + Γ

(
1 −

β[mn]

k
cos θ

)}

·m
u
Jm(u) cos

sinmφaθ

−
{

cos θ +
β[mn]

k
+ Γ

(
cos θ −

β[mn]

k

)}

· J ′
m(u)

1 −
(

u
χ′

mn

)2
sin

− cosmφ aφ

]
(3.92)
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また，

F(mn)(θ, φ) = −jm−1A(mn)πaJ
′
m(χmn)

u
χmn

1 −
(

u
χmn

)2Jm(u) cos
sinmφ

·
√
Z(mn)

{
1 + k

β(mn)
cos θ + Γ

(
1 − k

β(mn)
cos θ

)}
aθ (3.93)

放射電界 Ep は，

Ep =
∑
i

ciEp,i

=
∑
m,n

c[mn]Ep[mn] +
∑
m,n

c(mn)Ep(mn)

= j

λ

e−jkr

r

(∑
m,n

c[mn]F[mn] +
∑
m,n

c(mn)F(mn)

)
(3.94)

モードの放射電界は，

Ep,mn = j

λ

e−jkr

r
Fmn(θ, φ) (3.95)

アンテナ利得は，

G(θ, φ) = 4π
λ2

1
Zw

∣∣∣∣∣∑
m,n

c[mn]F[mn] +
∑
m,n

c(mn)F(mn)

∣∣∣∣∣
2

(3.96)

さらに，β[mn] ' k，β(mn) ' k のとき，

Ep ' j

λ

e−jkr

r

√
Zw

(∑
m,n

c[mn]F̄[mn] +
∑
m,n

c(mn)F̄(mn)

)
(3.97)

G(θ, φ) ' 4π
λ2

∣∣∣∣∣∑
m,n

c[mn]F̄[mn] +
∑
m,n

c(mn)F̄(mn)

∣∣∣∣∣
2

(3.98)

ここで，

F̄[mn](θ, φ) ' jm−1A[mn]πaJm(χ′
mn)

(
1 + cos θ

)
·
[
m

u
Jm(u) cos

sinmφ aθ − J ′
m(u)

1 −
(

u
χ′

mn

)2
sin

− cosmφ aφ

]
(3.99)

F̄(mn)(θ, φ) ' −jm−1A(mn)πaJ
′
m(χmn)

(
1 + cos θ

)
·

u
χmn

Jm(u)

1 −
(

u
χmn

)2
cos
sinmφ aθ (3.100)
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CHAPTER 4

開口面アンテナの設計・解析

　アンテナ工学における開口面アンテナの設計と解析について説明する．まず，多重
二次曲面鏡系の等価パラボラ表現を詳細に導出し，複数の反射鏡を持つアンテナの光
学特性を統一的に扱う方法を示す．さらに，位相誤差がある場合の平均放射パターン
の導出を通じて，鏡面の歪みがアンテナの利得に及ぼす影響を定量化し，カセグレン
アンテナの最適開口面分布や鏡面修整法についても幾何光学の原理に基づいた設計
アプローチを示していく．そして，高効率で低サイドローブのアンテナを実現するた
めの理論的基盤と設計手法を明らかにする．

4.1 多重 2次曲面鏡系の等価パラボラ表示

4.1.1 回転放物面鏡と開口面との関係

回転放物面鏡の焦点を頂点とする円すいに沿う光線は反射され平行光線となる．図のよう
に，回転軸に平行な円筒に沿う焦点を Fm，焦点距離を fm，回転軸に沿う単位ベクトルを
km，点 Fm を頂点とする円すいの中心軸に沿う単位ベクトルを vm，円すいの半頂角を θm

とする．

4.1.2 回転放物面鏡

焦点を原点として図に示すように，円すいの中心を Z 軸とする (X,Y, Z)座標系を考える
と，半頂角 θm の円すいの方程式は，

X2 + Y 2 = Z2 tan2 θm (4.1)

一方，回転放物面の回転軸を z 軸，焦点を原点とする (x, y, z)座標系を定義すると，焦点距
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図 4.1. 回転放物面鏡と開口面

 z
 α

 α

km

im

 x

 y=X

 Y

 Z

vm
aY

図 4.2. ２つの座標系 (X, Y, Z)，(x, y, z)

離 fm の回転放物面の方程式は，

x2 + y2 = 4fm(z + fm) (4.2)

ここで，オフセット角を αとして，図のような Z 軸と z 軸のなす角度を基に座標系の関係
を考える．まず，単位ベクトルでは，

vm = − cosαkm + sinαim (4.3)
aY = sinαkm + cosαim (4.4)

これより，任意の点の位置ベクトルAを直交する単位ベクトルを用いて表すと，

A = Y aY + Zvm = zkm + xim (4.5)
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両辺に単位ベクトルのスカラー積をとって，

A · aY = (Y aY + Zvm) · aY = Y

= (zkm + xim) · aY = z sinα + x cosα (4.6)
A · vm = (Y aY + Zvm) · vm = Z

= (zkm + xim) · vm = −z cosα + x sinα (4.7)

両座標系の関係をまとめると，

X = y (4.8)
Y = x cosα + z sinα (4.9)
Z = x sinα− z cosα (4.10)

上の関係式を，式 (4.1)に代入すると，

y2 +
(
x cosα + z sinα

)2
=
(
x sinα− z cosα

)2
tan2 θm (4.11)

これを整理して，

y2 +
(
1 − sin2 α sec2 θm

)
x2 +

(
1 − cos2 α sec2 θm

)
z2

+ 2xz sinα cosα sec2 θm = 0 (4.12)

上式と式 (4.2)より，y2 を消去すると，

−x2 + 4fm(z + fm) +
(
1 − sin2 α sec2 θm

)
x2

+
(
1 − cos2 α sec2 θm

)
z2 + 2xz sinα cosα sec2 θm = 0 (4.13)

これは，z に関して因数分解でき，{(
1 + cosα sec θm

)
z +

(
2fm − sinα sec θmx

)}
·
{(

1 − cosα sec θm
)
z +

(
2fm + sinα sec θmx

)}
= 0 (4.14)

よって，

z = −2fm ± sinα sec θmx
1 ± cosα sec θm

(4.15)

上式を式 (4.2)に代入すると，

x2 + y2 = 4fm
(

−2fm ± sinα sec θmx
1 ± cosα sec θm

+ fm

)
(4.16)

整理すると，次のように円の方程式が得られる．(
x∓ 2fm sinα

cos θm ± cosα

)2

+ y2 =
(

2fm sin θm
cos θm ± cosα

)2

(4.17)
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円の中心 (x0, y0) ならびに円の半径 ra は，

(x0, y0) =
(

± 2fm sinα
cos θm ± cosα, 0

)
(4.18)

ra = 2fm sin θm
cos θ0 ± cosα (4.19)

いま，θm = 0 のとき，

(x0, y0) =
(

±2fm sinα
1 ± cosα, 0

)
(4.20)

ra = 0 (4.21)

となり，上側符号は円すいの Z > 0 に対応し，下側符号は円すいの Z < 0 に対応すること
がわかる．したがって，通常，上側符号をとって，円の方程式は次のようになる．(

x− 2fm sinα
cos θm + cosα

)2

+ y2 =
(

2fm sin θ0

cos θm + cosα

)2

(4.22)

円すいの中心軸方向の単位ベクトルを vm とおくと，vm · km = − cosαより，円の半径 ra，
円の中心 (x0, y0) は，

ra = 2fm sin θm
cos θm + cosα = 2fm

sin θm
cos θm − (vm · km) (4.23)

(x0, y0) =
(

2fm sinα
cos θm + cosα, 0

)
(4.24)

いま，焦点を含む面を開口面にとり，その面上での円形開口面の中心の位置ベクトル P は，
vm · im = sinα より（im は x方向の単位ベクトル），

P = x0im

= 2fm sinα im
cos θm + cosα

= 2fm
(vm · im)im

cos θm − (vm · km) (4.25)

ここで，vm = (vm · im)im + (vm · km)km より，

P = x0im

= 2fm
vm − (vm · km)km
cos θm − (vm · km) (4.26)

逆に，回転軸に平行な円筒に沿って光線が入射したとき，反射光線は焦点を頂点とする円す
いに沿うことになる．なお，極形式では，焦点から回転放物面までの方向に沿う単位ベクト
ルを ar とおくと，距離 rは（導出省略），

r = 2fm
1 − ar · km

(4.27)
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4.1.3 だ円と双曲線の離心率

図に示すようにだ円および双曲線の長軸の長さ A’Aを 2a，中心 Cから焦点 Fまたは F’
までの距離を cとすると，離心率 eは,

e = c

a
(4.28)

離心率 eはだ円面のとき e < 1，双曲線のとき e > 1ゆえ，

p = sign
(
e2 − 1

)
=
{

1 (双曲線)
−1 (だ円) (4.29)

で区別できる．さらに，

δ =
{

1 (凹面)
−1 (凸面) (4.30)

4.1.4 だ円と双曲線

焦点 F1 から回転だ円面（凹面）までの距離を |R1|，の点からもう一方の焦点 F2 までの
距離を |R2|，焦点間の距離を L(= 2c)とすると，

Lk1 = |R1|a1 − |R2|a2 (4.31)

ただし，k1 は焦点 F1 から焦点 F2 に向かう単位ベクトル，a1，a2 は焦点 F1，F2 からだ円
上の点に向かう単位ベクトルを各々示す．

図 4.3. ２つの座標系 (X, Y, Z)，(x, y, z)

光線の進む方向に沿った単位ベクトル ā1，ā2 を考えると，ā1 = a1，ā2 = −a2 より，

Lk1 = |R1|ā1 − |R2|(−ā2)
≡ R̄1ā1 − R̄2ā2 (4.32)

ここで，R̄1，R̄2 は光線の進む方向に沿った単位ベクトルの振幅として新たに定義したも
ので，

R̄1 = |R1| (4.33)
R̄2 = −|R2| (4.34)
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これより，離心率 e，曲面定数 aは，

e = c

a
= 2c

2a
= L

|R2| + |R1|

= L

−R̄2 + R̄1
= − L

R̄2 − R̄1
(4.35)

a = −(R̄2 − R̄1) (4.36)

このとき，pδ は，

pδ = −1 · 1 = −1 (4.37)

4.1.5 楕円面，凸面のとき

また，だ円面の凸面を鏡面とする場合，ā1 = −a1，ā2 = a2 の関係となり，

Lk1 = |R1|(−ā1) − |R2|ā2

≡ R̄1ā1 − R̄2ā2 (4.38)

光線の進む方向に沿った単位ベクトルの振幅は，

図 4.4. だ円面（p = −1）の凸面（δ = −1）を鏡面とする場合

R̄1 = −|R1| (4.39)
R̄2 = |R2| (4.40)
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これより，離心率 e，曲面定数 aは，

e = 2c
2a

= L

|R2| + |R1|

= L

R̄2 − R̄1
(4.41)

a = R̄2 − R̄1 (4.42)

このとき，pδ は，

pδ = −1 · (−1) = 1 (4.43)

4.1.6 双曲面，凹面，発散系のとき

焦点 F1 から双曲面（凹面，発散系）までの距離を |R1|，その鏡面上の点からもう一方の
焦点 F2 までの距離を |R2|，焦点間の距離 L = 2cとすると，

Lk1 = |R1|a1 − |R2|a2 (4.44)

ただし，k1 は焦点 Fn から焦点 F2 に向かう単位ベクトル，a1，a2 は焦点 F1，F2 から双曲
面上の点に向かう単位ベクトルを各々示す．光線の進む方向に沿った単位ベクトル ā1，ā2

図 4.5. 双曲面（p = 1），凹面（δ = 1），発散系

を考えると，ā1 = a1，ā2 = a2 より，

Lk1 = |R1|ā1 − |R2|ā2

≡ R̄1ā1 − R̄2ā2 (4.45)

ここで，

R̄1 = |R1| (4.46)
R̄2 = |R2| (4.47)
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これより，離心率 e，曲面定数 aは，

e = 2c
2a

= L

|R2| − |R1|

= L

R̄2 − R̄1
(4.48)

a = R̄2 − R̄1 (4.49)

このとき，pδ は，

pδ = 1 · 1 = 1 (4.50)

4.1.7 双曲面，凹面，集束系のとき

光線の進む方向に沿った単位ベクトルは ā1 = −a1，ā2 = −a2 の関係となり，

Lk1 = |R1|(−ā1) − |R2|(−ā2)
≡ R̄1ā1 − R̄2ā2 (4.51)

ここで，光線の進む方向に沿った単位ベクトルの振幅は，

図 4.6. 双曲面（p = 1），凹面（δ = 1），集束系

R̄1 = −|R1| (4.52)
R̄2 = −|R2| (4.53)
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これより，離心率 e，曲面定数 aは，

e = 2c
2a

= L

|R1| − |R2|

= L

−R̄1 + R̄2

= L

R̄2 − R̄1
(4.54)

a = R̄2 − R̄1 (4.55)

このとき，pδ は，

pδ = 1 · 1 = 1 (4.56)

4.1.8 双曲面，凸面，発散系のとき

双曲面の凸面（発散系）を鏡面とする場合，光線の進む方向に沿った単位ベクトルは，
ā1 = a1，ā2 = a2．よって，

図 4.7. 双曲面（p = 1），凸面（δ = −1），発散系

Lk1 = |R1|ā1 − |R2|ā2

≡ R̄1ā1 − R̄2ā2 (4.57)

ここで，光線の進む方向に沿った単位ベクトルの振幅は，

R̄1 = |R1| (4.58)
R̄2 = |R2| (4.59)
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これより，離心率 e，曲面定数 aは，

e = 2c
2a

= L

|R1| − |R2|

= L

R̄1 − R̄2

= − L

R̄2 − R̄1
(4.60)

a = −(R̄2 − R̄1) (4.61)

このとき，pδ は，

pδ = 1 · (−1) = −1 (4.62)

4.1.9 双曲面，凸面，集束系のとき

双曲面の凸面（集束系）を鏡面とする場合，光線の進む方向に沿った単位ベクトルは，
ā1 = −a1，ā2 = −a2 の関係となり，

Lk1 = |R1|(−ā1) − |R2|(−ā2)
≡ R̄1ā1 − R̄2ā2 (4.63)

ここで，光線の進む方向に沿った単位ベクトルの振幅は，

図 4.8. 双曲面（p = 1），凸面（δ = −1），集束系

R̄1 = −|R1| (4.64)
R̄2 = −|R2| (4.65)
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これより，離心率 e，曲面定数 aは，

e = 2c
2a

= L

−|R1| + |R2|

= L

R̄1 − R̄2

= − L

R̄2 − R̄1
(4.66)

a = −(R̄2 − R̄1) (4.67)

このとき，pδ は，

pδ = 1 · (−1) = −1 (4.68)

4.1.10 離心率

種類の異なる鏡面系を統一的に計算するために，離心率 ēを次式で定義する．

ē ≡ L

R̄2 − R̄1
= pδe (4.69)

また，

a = pδ(R̄2 − R̄1) (4.70)

ここで，

p = sign
(
ē2 − 1

)
=
{

1 (回転双曲面)
−1 (回転だ円面) (4.71)

δ =
{

1 (凹面)
−1 (凸面) (4.72)

4.1.11 だ円および双曲線の関係式

焦点 Fn から鏡面上の点 Pまでの距離が |Rn|のとき，光線の進む方向に焦点がある場合
R̄n ≡ −|Rn|, 逆の場合 R̄n ≡ |Rn| として，

R̄n = pδa(ē2 − 1)
1 + ē cosϑ

= pδa(ē2 − 1)
1 + ē(ān · kn) (4.73)
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ただし，ān は点 Pに入射する光線の進む方向に沿う単位ベクトル，kn はこの焦点 Fn から
もう一方の焦点 Fn+1 への方向に沿う単位ベクトルを示す．ここで，

R̄n+1ān+1 = R̄nān − Lkn (4.74)

光線の進む方向に焦点 Fn+1 がある場合 qn+1 = −1, 逆の場合 qn+1 = 1として，

R̄n+1 = qn+1

√
R̄2
n − 2R̄nL(ān · kn) + L2 (4.75)

ān+1 = R̄nān − Lkn

R̄n+1
(4.76)

4.1.12 回転 2次曲面鏡系の入射光線と反射光線

符号を考慮した離心率 ēの式 (4.69)を変形して，

Rn+1 = Rn + L

ē
(4.77)

光線に沿う単位ベクトルを αn，αn+1 とおくと，

Lkn = Rnαn −Rn+1αn+1 (4.78)

上の 2式より Rn+1 を消去すると，

Rnαn = Rn+1αn+1 + Lkn

=
(
Rn + L

ē

)
αn+1 + Lkn

= Rnαn+1 + L

ē

(
αn+1 + ēkn

)
= Rnαn+1 + L

ē
x (4.79)

ここで，

x ≡ αn+1 + ēkn (4.80)

これより，

αn = αn+1 + L

Rnē
x

1 =
(

αn+1 + L

Rnē
x
)2

= 1 + 2 L

Rnē
(αn+1 · x) +

(
L

Rnē

)2
x2

∴ 0 = 2(αn+1 · x) + L

Rnē
x2
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よって，

Rn = − L

2ē · x2

(αn+1 · x)

= − L

2ē · (αn+1 + ēkn)2

αn+1 · (αn+1 + ēkn)

= − L

2ē · ē
2 + 1 + 2ē(kn · αn+1)

1 + ē(kn · αn+1) (4.81)

また，

Rn+1 = Rn + L

ē

= − L

2ē · ē
2 + 1 + 2ē(kn · αn+1)

1 + ē(kn · αn+1) + L

ē

= − L

2ē · ē
2 + 1 + 2ē(kn · αn+1) − 2 − 2ē(kn · αn+1)

1 + ē(kn · αn+1)

= − L

2ē · ē2 − 1
1 + ē(kn · αn+1) (4.82)

いま, 入射光線群（αn に沿う光線）によってできる円すいを考え，の中心軸に沿う単位ベ
クトルを vn とすると，

αn · vn = cos θn (一定) (4.83)

ただし，θn は円すいの半頂角を示す．一方，これら入射光線群が鏡面で反射した後，反射
光線群（αn+1 に沿う光線）によって円すいができ，その中心軸に沿う単位ベクトルを vn+1

とすると，

αn+1 · vn+1 = cos θn+1 (一定) (4.84)

まず，式 (4.79)の両辺に vn のスカラ積をとると，

Rn
{

cos θn − (αn+1 · vn)
}

= L

ē
(x · vn) (4.85)

上式に式 (4.81)を代入して Rn を消去し，さらに，式 (4.80)を代入して xも消去すると，

− L

2ē · ē
2 + 1 + 2ē(kn · αn+1)

1 + ē(kn · αn+1)
{

cos θn − (αn+1 · vn)
}

= L

ē
(αn+1 + ēkn) · vn (4.86)

両辺に −2ē
L {1 + ē(l · ar2)} を乗じて，{

ē2 + 1 + 2ē(kn · αn+1)
}{

cos θn − (αn+1 · vn)
}

= −2
{
1 + ē(kn · αn+1)

}
(αn+1 + ēkn) · vn (4.87)
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単位ベクトル ar2 に関して整理すると，{
(ē2 − 1)vn − 2ē2kn(kn · vn) − 2ēkn cos θn

}
· αn+1

= 2ē(kn · vn) + (ē2 + 1) cos θn (4.88)

上式の両辺に 1
ē2−1 を乗じて，{

vn − 2ē2

ē2 − 1kn(kn · vn) − 2ē
ē2 − 1kn cos θn

}
· αn+1

= 2ē
ē2 − 1(kn · vn) + ē2 + 1

ē2 − 1 cos θn (4.89)

ここで，

Kn+1 ≡ vn − 2ē2

ē2 − 1kn(kn · vn) − 2ē
ē2 − 1kn cos θn (4.90)

とおくと（Kn+1 は定ベクトル），

αn+1 · Kn+1 = 2ē
ē2 − 1(kn · vn) + ē2 + 1

ē2 − 1 cos θn (4.91)

ここでは，αn · vn = cos θn（一定）より，定ベクトル vn（単位ベクトル）とスカラ積をとっ
て一定値となるから，単位ベクトル αn は円すいに沿う入射光線群である．鏡面で反射した
光線群も円すいに沿う単位ベクトル αn+1 であり，これとスカラ積をとって一定値となる式
(4.91)より，Kn+1 は円すいの中心軸に沿う方向である．そこで，Kn+1 ≡ Cvn+1 とおく
と，円すいの中心軸方向の単位ベクトル vn+1 は，

vn+1 = Kn+1

C
= 1
C

{
vn − 2ē2

ē2 − 1kn(kn · vn) − 2ē
ē2 − 1kn cos θn

}
(4.92)

いま，θn = 0 として，中心軸のみで入射光線，反射光線を考えると，

vn+1 = Rn
Rn+1

vn − L

Rn+1
kn (4.93)

上式を式 (4.92)と比較すると次の関係が得られる．

sign(C) = sign
(
Rn
Rn+1

)
= p (4.94)

これより，

vn+1 = p

|C|

{(
¯̄I − 2ē2

ē2 − 1knkn

)
· vn +

( −2ē
ē2 − 1kn

)
cos θn

}
(4.95)
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ただし，¯̄I は恒等ダイディクスを示す．

¯̄I = ii + jj + kk (4.96)

ここで，

¯̄An ≡ p

(
¯̄I − 2ē2

ē2 − 1knkn

)
(4.97)

bn ≡ p
−2ē
ē2 − 1kn (4.98)

zn ≡ |C| (4.99)

とおくと，単位ベクトル vn+1 は，

vn+1 = 1
zn

( ¯̄An · vn + bn cos θn
)

(4.100)

式 (4.91)より，

αn+1 · vn+1 = cos θn+1

= αn+1 · Kn+1

C

= p

|C|

{( 2ē
ē2 − 1kn

)
· vn +

(
ē2 + 1
ē2 − 1

)
cos θn

}
(4.101)

ここで，

an ≡ p
2ē

ē2 − 1kn = −bn (4.102)

bn ≡ p
ē2 + 1
ē2 − 1 (4.103)

zn = |C| (4.104)

とおくと，cos θn+1 は，

cos θn+1 = 1
zn

(an · vn + bn cos θn) (4.105)

行列表示すると，(
vn+1

cos θn+1

)
= 1
zn

( ¯̄An· bn
an· bn

)(
vn

cos θn

)
(4.106)

このとき，次のような関係が成り立つ.

b2
n =

(
p
ē2 + 1
ē2 − 1

)2

= (ē2 + 1)2

(ē2 − 1)2 (4.107)
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これより，

b2
n = bn · bn

=
(
p

−2ē
ē2 − 1kn

)
·
(
p

−2ē
ē2 − 1kn

)
= 4ē4

(ē2 − 1)2

= (ē2 + 1)2 − (ē2 − 1)2

(ē2 − 1)2

= (ē2 + 1)2

(ē2 − 1)2 − 1

= b2
n − 1 (4.108)

また，
¯̄An = p¯̄I + ēbnkn

= p¯̄I − ēankn (4.109)

bn · ¯̄An = −an ·
(
p¯̄I − ēankn

)
= −pan + ēan · ankn

= p
(

−1 + ē
2ē

ē2 − 1

)
an

= p
ē2 + 1
ē2 − 1an

= bnan (4.110)

ここで， ¯̄An = ¯̄At
n より（

¯̄At
n は

¯̄An の転置），

bn · ¯̄An = ¯̄At
n · bn

= ¯̄An · bn

= bnan

= anbn (4.111)
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また，
¯̄At
n · ¯̄An = ¯̄An · ¯̄An

=
(
p¯̄I + ēbnkn

)
·
(
p¯̄I + ēbnkn

)
= ¯̄I + 2ēbnkn + ēbnkn · bnkn

= ¯̄I +
(

2 −2ē2

ē2 − 1 + (−2ē2)2

(ē2 − 1)2

)
knkn

= ¯̄I + (−2ē)2

(ē2 − 1)2 knkn

= ¯̄I + bnbn

= ¯̄I + anan (4.112)

まとめると，

¯̄At
n · ¯̄An = ¯̄I + anan = ¯̄I + bnbn (4.113)

¯̄An · bn = anbn (4.114)
b2
n = b2

n − 1 (4.115)

ただし， ¯̄At
n は

¯̄An の転置を示す．
入射および反射光線からなる円すいの半頂角 θn，θn+1 の関係をさらに考えていこう．

sin2 θn+1 = 1 − cos2 θn+1

= v2
n+1 − (vn+1 · αn+1)2 (4.116)

ここで，式を再記して，

vn+1 = 1
zn

( ¯̄An · vn + bn cos θn
)

(4.117)

cos θn+1 = vn+1 · αn+1

= 1
zn

(an · vn + bn cos θn) (4.118)

これより，

sin2 θn+1 = 1
z2
n

( ¯̄An · vn + bn cos θn
)2

− 1
z2
n

(an · vn + bn cos θn)2 (4.119)

101



整理して，

z2
n sin2 θn+1

=
(

¯̄An · vn

)
·
(

¯̄An · vn

)
+ 2

(
¯̄An · vn

)
· bn cos θn

+bn · bn cos2 θn − (an · vn)2 − 2 (an · vn) bn cos θn − b2
n cos2 θn

=
{

vn · ¯̄At
n · ¯̄An · vn − (an · vn)2

}
+2

{
bn · ¯̄An · vn − (an · vn) bn

}
cos θn

+
(
bn · bn − b2

n

)
cos2 θn (4.120)

ここで，

vn · ¯̄At
n · ¯̄An · vn = vn ·

(
¯̄I + bnbn

)
· vn

= 1 + (bn · vn)2

= 1 + (an · vn)2bn · ¯̄An · vn

= bnan · vn (4.121)

これより，

z2
n sin2 θn+1

=
{
1 + (bn · vn)2 − (bn · vn)2

}
+2 {(an · vn) bn − (an · vn) bn} cos θn
+
(
b2
n − 1 − b2

n

)
cos2 θn

= 1 − cos2 θn

= sin2 θn (4.122)

このとき，θn ≥ 0，θn+1 ≥ 0，zn = |C| > 0 より，sin θn+1 は，

sin θn+1 = 1
zn

sin θn (4.123)

θn = 0 のときの zn を z0 とおくと，

z0 = zn

∣∣∣∣
θn=0

=
∣∣∣∣Rn+1

Rn

∣∣∣∣ (4.124)

入射および反射光線の方向 αn，αn+1 の関係は，式 (4.92)，式 (4.105)において θn = 0 と
おき（cos θn = 1），vn = αn，vn+1 = αn+1 とすれば，

αn+1 = 1
z0

( ¯̄An · αn + bn) (4.125)

z0 = an · αn + bn (4.126)

102



ここで，

¯̄A1 = p
(

¯̄I − 2ē
ē2 − 1ll

)
(4.127)

¯̄I = ii + jj + kk (4.128)

b1 = p
−2ē
ē2 − 1l (4.129)

a1 = p
2ē

ē2 − 1l (4.130)

b1 = p
ē2 + 1
ē2 − 1 (4.131)

4.1.13 多重反射鏡の表示式

鏡面が多数ある場合，m− 1枚目の鏡面による反射波について*1，(
vm

cos θm

)

= 1
zm−1

( ¯̄Am−1· bm−1
am−1· bm−1

)(
vm−1

cos θm−1

)

= 1
zm−1

( ¯̄Am−1· bm−1
am−1· bm−1

)
1

zm−2

( ¯̄Am−2· bm−2
am−2· bm−2

)(
vm−2

cos θm−2

)

= 1
zm−1

· · · 1
z1

( ¯̄Am−1· bm−1
am−1· bm−1

)
· · ·

( ¯̄A1· b1
a1· b1

)(
v1

cos θ1

)

ここで，( ¯̄A· b
a· b

)
≡
( ¯̄Am−1· bm−1

am−1· bm−1

)
· · ·

( ¯̄A1· b1
a1· b1

)
(4.132)

z ≡ zm−1zm−2 · · · z1 (4.133)

これより，(
vm

cos θm

)
= 1
z

( ¯̄A· b
a· b

)(
v1

cos θ1

)
(4.134)

よって，最終段（m番目）の鏡面が回転放物面のとき，この鏡面に入射する光線の沿う円す
いを示す vm，θm と，最初の円すいホーンの中心軸に沿う単位ベクトル v1，θ1 の間には次

*1 水沢丕雄，片木孝至，” 多重反射鏡形アンテナの等価パラボラ表示とその応用,” 三菱電機技報，vol.49,
no.11, pp.729-732 (1975).
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図 4.9. 多重反射鏡

のような関係が得られる．

vm = 1
z

( ¯̄A · v1 + b cos θ1
)

(4.135)

cos θm = 1
z

(a · v1 + b cos θ1) (4.136)

sin θm = 1
z

sin θ1 (4.137)

ここで，式を再記して，( ¯̄A· b
a· b

)
≡
( ¯̄Am−1· bm−1

am−1· bm−1

)
· · ·

( ¯̄A1· b1
a1· b1

)
(4.138)

z ≡ zm−1zm−2 · · · z1 (4.139)

最終段のパラボラ開口面（円形）の半径 ra，中心 P は，

ra = 2fm
sin θm

cos θm − (vm · km) (4.140)

P = 2fm
vm − (vm · km)km
cos θm − (vm · km) (4.141)
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上式に式 (4.135)，式 (4.136)，式 (4.137)を代入すると vm，cos θm，sin θm を消去でき，初
段の 2次曲面鏡の v1，cos θ1，sin θ1 を用いて，

ra = 2fm
sin θ1

(a · v1 + b cos θ1) −
( ¯̄A · v1 + b cos θ1

)
· km

= 2fm
sin θ1

(b− b · km) cos θ1 −
{

km ·
(

¯̄A · v1

)
− a · v1

}
= 2 fm

b− b · km
· sin θ1

cos θ1 − c · v1
(4.142)

ここで，

c = km · ¯̄A − a

b− (b · km) (4.143)

さらに，最終段の回転放物面鏡の焦点距離 f の代わりに，等価パラボラの焦点距離 fm を求
めることができる．

f = fm
b− (b · km) (4.144)

等価パラボラを見込む円すいの中心軸の方向を v とすると，

ra = 2fm
sin θ1

cos θ1 − c · v1

≡ 2fm
sin θ1

cos θ1 − v · km
(4.145)

いま，v = ¯̄Lc · v1 より，ダイアディクス ¯̄Lc = kmc を導入すると，

v · km =
(

¯̄Lc · v1

)
· km

= km · ¯̄Lc · v1

= km · (kmc) · v1

= c · v1 (4.146)

半頂角 θ1 は不変であるが，等価バラボラの焦点位置 fm と円すいの中心軸の方向 v が得ら
れる．さらに，等価バラボラの開口の中心の位置ベクトル p は，次のようになる．

p = 2f
{

v − (v · km)km
cos θ1 − (v · km) + d

}
(4.147)

等価バラボラの焦点位置は最終段のパラボラとは異なり，d は，

d = b − (d · km)km (4.148)
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また，v は円すいの中心軸方向に沿う単位ベクトルを示し，

v = ¯̄L · v1 (4.149)

ここで， ¯̄L はダイアディクスであり，

¯̄L =
(

¯̄I − kmkm

)
·
(

¯̄A + bc
)

+ kmc (4.150)

このとき，

km · ¯̄L = km ·
{(

¯̄I − kmkm

)
·
(

¯̄A + bc
)

+ kmc
}

= (km − km) ·
(

¯̄A + bc
)

+ c

= c = km · ¯̄Lc (4.151)

このとき，次式が成り立つ．

¯̄Lt · ¯̄L = ¯̄I (4.152)

上式より， ¯̄L は直交変換を示すダイアディクスであるから，単位ベクトル v1 を直交変換し
た v も単位ベクトルである．
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4.2 平均放射パターン

4.2.1 位相誤差のある開口面分布による指向性関数

位相が一様の開口面分布 Eaに位相誤差 δ があるとき，円形開口の指向性関数 g(Θ,Φ)は，

g(Θ,Φ) =
¨
A

Eae
jδejk·ρdA (4.153)

開口面を円形とすると，開口面分布に位相誤差の項 ejδ を乗じて次のようになる．

g(Θ,Φ) =
(
D

2

)2 ˆ 2π

0

ˆ 1

0
Eae

jδejuρ
′ cos(Φ−φ)ρ′dρ′dφ (4.154)

いま，この開口面を半径方向に N 分割，周方向に Kn 分割して微小なゾーンを定義し，位
相誤差がこれらゾーン毎に独立に正規分布（平均値を 0，rms値（標準偏差）を σ）に従う
ものとすると †，

g(Θ,Φ) =
(
D

2

)2 N∑
n=1

Kn∑
j=1

ˆ an

an−1

ˆ φn,j

φn,j−1

Eae
jδejuρ

′ cos(Φ−φ)ρ′dρ′dφ (4.155)

ただし，ゾーン内では位相誤差は一定とする．第 (n, j)番目のゾーンの位相誤差を δn,j とお
けば，

g(Θ,Φ) =
(
D

2

)2 N∑
n=1

Kn∑
j=1

ejδn,jEn,j (4.156)

ここで，

En,j ≡
ˆ an

an−1

ˆ φn,j

φn,j−1

Eae
juρ′ cos(Φ−φ)ρ′dρ′dφ (4.157)

放射電力については，|g|2 を求めればよく，

|g|2 = gg∗ =
(
D

2

)4
 N∑
n=1

Kn∑
j=1

ejδn,jEn,j

 M∑
m=1

Km∑
l=1

e−jδm,lE∗
m,l


=
(
D

2

)4 N∑
n=1

M∑
m=1

Kn∑
j=1

Km∑
l=1

En,jE
∗
m,l e

j(δn,j−δm,l) (4.158)

4.2.2 平均的な放射電力

　放射電力として最も起こり得る値は，平均的な放射電力であるので，|g|2 の平均値 |g|2

を求めると次のようになる．

|g|2 =
(
D

2

)4 N∑
n=1

M∑
m=1

Kn∑
j=1

Km∑
l=1

En,jE
∗
m,l e

j(δn,j−δm,l) (4.159)
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ここで，δ の確立密度関数 f(δ)は，正規分布ゆえ，

f(δ) = 1√
2πσ

e− 1
2 ( δ

σ
)2 (4.160)

で与えられるから，ゾーン (n, j)と (m, l)が異なる場合，

ej(δn,j−δm,l) =
ˆ ∞

−∞

ˆ ∞

−∞
ej(δn,j−δm,l)f(δn,j)f(δm,l)dδn,jdδm,l

=
ˆ ∞

−∞
ejδn,jf(δn,j)dδn,j

ˆ ∞

−∞
e−jδm,lf(δm,l)dδm,l

= ejδn,j · e−jδm,l (4.161)

ここで，

ejδn,j =
ˆ ∞

−∞
ejδn,jf(δn,j)dδn,j (4.162)

e−jδm,l =
ˆ ∞

−∞
e−jδm,lf(δm,l)dδm,l (4.163)

これらの積分は，

e±jδ =
ˆ ∞

−∞
e±jδf(δ)dδ

=
ˆ ∞

−∞
cos δf(δ)dδ ± j

ˆ ∞

−∞
sin δf(δ)dδ

= 2
ˆ ∞

0
cos δf(δ)dδ

= 2
ˆ ∞

0
cos δ

(
1√
2πσ

e− 1
2 ( δ

σ
)2
)
dδ

= 2√
2πσ

ˆ ∞

0
e− δ2

2σ2 cos δdδ (4.164)

上式の積分は，次の Laplaceの積分を用いている．
ˆ ∞

0
e−bx2 cos(2ax)dx = 1

2

√
π

b
e− a2

b (4.165)

これより，b → 1
2σ2，2a → 1，δ → xとおけば，

ˆ ∞

0
e− δ2

2σ2 cos δdδ =
√
π

2σe
− σ2

2 (4.166)

両辺に 2√
2πσ

を乗じて，

e±jδ = 2√
2πσ

ˆ ∞

0
e− δ2

2σ2 cos δdδ = e−0.5σ2 (4.167)
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したがって，

ej(δn,j−δm,l) = ejδn,j · e−jδm,l

= e−0.5σ2 · e−0.5σ2

= e−σ2 (4.168)

一方，ゾーン (n, j)と (m, l)が同じ場合（n = m，j = l），δn,j = δm,l ゆえ，

ej(δn,j−δm,l) = e0 = 1 (4.169)

これらの結果より，|g|2 は次のようになる．

|g|2 =
(
D

2

)4
 N∑
n=1

M∑
m=1

Kn∑
j=1

Km∑
l=1 (n 6=m,j 6=l)

En,jE
∗
m,l · e−σ2

+
N∑
n=1

Kn∑
j=1

En,jE
∗
n,j


=
(
D

2

)4
 N∑
n=1

M∑
m=1

Kn∑
j=1

Km∑
l=1

En,jE
∗
m,l · e−σ2

+(1 − e−σ2)
N∑
n=1

Kn∑
j=1

En,jE
∗
n,j


=
(
D

2

)4
e−σ2

N∑
n=1

Kn∑
j=1

En,j
M∑
m=1

Km∑
l=1

E∗
m,l

+(1 − e−σ2)
N∑
n=1

Kn∑
j=1

En,jE
∗
n,j

 (4.170)

ここで，位相誤差のないときの指向性関数を g0 とおくと，

|g|2 = e−σ2 · g0 · g∗
0 + (1 − e−σ2)

(
D

2

)4 N∑
n=1

Kn∑
j=1

En,jE
∗
n,j (4.171)

4.2.3 鏡面ひずみによる利得低下量

位相誤差が大きくない場合を考えると，正面方向 u = 0では，上式の第１項は第２項に比
べて十分大きくなり，近似して，

|g(0)|2 ' e−σ2|g0(0)|2 (4.172)
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平均的な利得低下量 ∆G [dB]を求めると，

∆G = 10 log10

(
|g(0)|2
|g0(0)|2

)
= 10 log10

(
e−σ2)

= −σ2 (10 log10 e)
= −4.343σ2 (4.173)

反射鏡の鏡面誤差（鏡面ひずみ，凹凸）の rms値を εとすると，位相誤差の rms値 σ は，

σ ' k · 2ε =
(2π
λ

)
2ε = 4πε

λ
(4.174)

このとき，利得低下量 ∆G [dB]は，次のようになる．

∆G = −
(4πε
λ

)2
(10 log10 e)

= −
(
160π2 log10 e

) ( ε
λ

)2

' −686
(
ε

λ

)2
(4.175)
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4.3 軸対称複反射鏡アンテナの最適開口面分布

カセグレンアンテナは，副反射鏡によって開口面の中心部分の電波が遮へいされ，サイド
ローブレベルが高くなってしまう．そこで，与えられたサイドローブレベルで開口能率を最
大にする開口面分布が 2次計画法によって求められている*2．
副反射鏡による遮へい領域を開口面（直径D）と同心円（副反射鏡に対応）とし，その半
径を αD/2（0 < α < 1）とする．いま，半径方向座標成分 ρ を開口半径D/2 で規格化した
ρ̄ = 2ρ/D を定義し，開口面分布 Ea を ρ̄ の関数（位相一様，つまり実数）として，次のよ
うに表すことにする．

Ea(ρ̄) =
M∑
j=1

xjJ0(bj ρ̄) (4.176)

ただし，J0 は 0次の第 1種ベッセル関数，bj（0 = b1 < b2 < · · ·）は 1次の第 1種ベッセ
ル関数の零点（J1(bj) = 0）を示す．開口面法より，ユニバーサル放射パターン Ep(u)は，

Ep(u) = 2
ˆ 1

α

Ea(ρ̄)J0(ρ̄u)ρ̄dρ̄ (4.177)

ここで，

u = πD

λ
sin θ (4.178)

上式に，Ea(ρ̄)を代入して積分すると，

Ep(u) =
M∑
j=1

xjfj(u) (4.179)

fj(u) = 2uJ1(u)J0(bj) − αuJ1(αu)J0(αbj) + αbjJ1(αbj)J0(αu)
u2 − b2

j

(4.180)

このとき，ピーク方向 u = 0 の利得 g(0) は，

g(0) = 4π|KEp(0)|2
Pt

(4.181)

ただし，K は定数，Pt はトータル電力を示す．また，Ea(p)，Ep(u)ともに係数 xj による
線型結合の式で表されている．　いま，Ep(0) ≡ 1とすると，利得を最大にするには，Pt を
最小にすればよい．このとき，トータル電力 Pt は開口面分布関数 Ea から求められ，E2

a の

*2 後藤尚久，渡辺文夫，” 与えられたサイドローブを持つカセグレンアンテナの最大開口能率,” 信学論，
vol.J61-B，pp.321-326 (1978).
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積分は次のようになる．

F =
ˆ 1

α

E2
a ρ̄dρ̄

=
ˆ 1

α

 N∑
n=1

xnJ0(bnρ̄)
 N∑

m=1
xmJ0(bmρ̄)

 ρ̄dρ̄
=

N∑
n=1

N∑
m=1

xnxm

ˆ 1

α

J0(bnρ̄)J0(bmρ̄)ρ̄dρ̄ (4.182)

ベッセル関数の不定積分公式より，α 6= β のとき，
ˆ
Jν(αz)Jν(βz)zdz = z

α2 − β2

{
βJν(αz)J ′

ν(βz) − αJ ′
ν(αz)Jν(βz)

}
(4.183)

よって，bn 6= bm のとき，
ˆ 1

α

J0(bnρ̄)J0(bmρ̄)ρ̄dρ̄

=
[

ρ̄

b2
n − b2

m

{
bmJ0(bnρ̄)J ′

0(bmρ̄) − bnJ
′
0(bnρ̄)J0(bmρ̄)

}]1

α

(4.184)

ここで，J ′
0(z) = −J1(z)より，

ˆ 1

α

J0(bnρ̄)J0(bmρ̄)ρ̄dρ̄

= 1
b2
n − b2

m

[{
− bmJ0(bn)J1(bm) + bnJ1(bn)J0(bm)

}
− α

{
− bmJ0(bnα)J1(bmα) + bnJ1(bnα)J0(bmα)

}]
(4.185)

さらに，J1(bn) = 0，J1(bm) = 0 より，
ˆ 1

α

J0(bnρ̄)J0(bmρ̄)ρ̄dρ̄

= α

b2
n − b2

m

{
bmJ0(bnα)J1(bmα) − bnJ1(bnα)J0(bmα)

}
≡ Hnm

2 (n 6= m) (4.186)

また，ベッセル関数の不定積分公式より，
ˆ
J2
ν (αz)zdz = 1

2

{
z2J ′2

ν (αz) +
(
z2 − ν2

α2

)
J2
ν (αz)

}
(4.187)

よって，bn = bm のとき，
ˆ 1

α

J2
0 (bnρ̄)ρ̄dρ̄ =

[
ρ̄2

2

{
J ′2

0 (bnρ̄) + J2
0 (bnρ̄)

}]1

α

(4.188)
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ここで，J ′
0(z) = −J1(z)より，

ˆ 1

α

J2
0 (bnρ̄)ρ̄dρ̄

=
[
ρ̄2

2

{
J2

1 (bnρ̄) + J2
0 (bnρ̄)

}]1

α

= 1
2

[{
J2

1 (bn) + J2
0 (bn)

}
− α2

{
J2

1 (bnα) + J2
0 (bnα)

}]
(4.189)

さらに，J1(bn) = 0より，
ˆ 1

α

J2
0 (bnρ̄)ρ̄dρ̄ = 1

2

[
J2

0 (bn) − α2
{
J2

1 (bnα) + J2
0 (bnα)

}]
≡ Hnn

2 (4.190)

これより，

F (x) =
ˆ 1

α

E2
a pdp

=
N∑
n=1

N∑
m=1

xnxm
Hnm

2

= 1
2xt

[
H
]
x (4.191)

ここで，

x =
(
x0 x1 · · · xn · · ·

)t
(4.192)

したがって，与えられたサイドローブレベルなどの制約条件のもとで開口能率が最大となる
ように最適化問題を解くことによって，xn を求めることにする．そこで，xn を要素とする
列ベクトル xを最適化変数とし，評価関数が次のように 2次式となる．

min
(x)

(1
2 xt

[
H
]
x
)

(4.193)

このとき，制約条件は，

• 等式制約条件：Ep(0) = 1
• 不等式制約条件：−R ≤ Ep(u) ≤ R（u0 ≤ u ≤ ue）

これらは 1次式で表されため，2次計画問題として解けばよい．ただし，Rはサイドローブ
レベル，u0 は主ビームより広角で，かつ第１サイドローブレベルまでの方向とし，ue はあ
る程度のサイドローブ数を含む角度までとるようにする．このとき，2次形式の評価関数に
おける

[
H
]
は，M ×M の行列で要素は Hnm である．また，c はゼロである．一方，等式
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制約条件[
Aeq

]t
x = beq (4.194)

における
[
Aeq

]t
および beq（実際には要素は 1つしかないのでスカラー）は，

[
Aeq

]t
=
(
f1(0) f2(0) · · ·

)
(4.195)

beq = 1 (4.196)

また，不等式制約条件を ui (i = 1, 2, · · · , Nineq)について定義すると，[
Aineq

]t
x ≤ bineq (4.197)

における
[
Aineq

]t
および bineq は，

[
Aineq

]t
=
(

[As]t
−[As]t

)
(4.198)

bineq =
(

R
R

)
(4.199)

ここで，行列 [As]t および列ベクトル R は，

[As]t =


f1(u1) f2(u1) · · ·
f1(u2) f2(u2) · · ·

... ...

 (4.200)

R =
(
R R · · ·

)t
(4.201)
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4.4 軸対称カセグレンアンテナの鏡面修整法

２枚鏡形式の反射鏡アンテナでは，主反射鏡の開口面分布の主偏波成分を所望の振幅分布
でかつ一様な位相分布となるよう主・副反射鏡を修整することによって，高能率・低サイド
ローブ化が可能となる．ここでは，図に示すような軸対称カセグレンアンテナを取り上げ，
幾何光学を基にした鏡面修整法について説明する．なお，軸対称であるので，円柱座標系
(ρ, φ, z)において，(ρ, z)を考え，図に示している．

図 4.10. 軸対称カセグレンアンテナ

4.4.1 軸対称２枚修整鏡面系における光路長一定の条件

一次放射器の位相中心を z = a，位相中心から副反射鏡までの距離を r，角度を θ とする
と，副反射鏡上の点 (ρs, zs)は，

ρs = r sin θ (4.202)
zs = a− r cos θ (4.203)

また，主反射鏡上の点 (ρ, z)は，

tanψ = ρ− ρs
z − zs

= ρ− r sin θ
z − (a− r cos θ) (4.204)
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副反射鏡から主反射鏡までの距離 lsm は，

lsm = z − zs
cosψ

= z − (a− r cos θ)
cosψ (4.205)

開口面位相分布を一様にするための条件は，一次放射器の位相中心から主反射鏡の開口面
（z = 0）までの光路長 l0 を一定とすることで，

l0 = r + lsm + z

= r + z − a+ r cos θ
cosψ + z （一定） (4.206)

4.4.2 反射の法則

位相中心に原点をとり，−z 方向を極軸方向にとった球座標系 (r, θ, φ′) を考え，副反射鏡
の座標を rs = rar とすると，

∂rs
∂θ

× ∂rs
∂φ′ =

(
∂r

∂θ
ar + raθ

)
× r sin θaφ′

=
(

−∂r

∂θ
aθ + rar

)
r sin θ (4.207)

より，副反射鏡の法線ベクトル ns は（aθ は θ方向に沿う単位ベクトル），

ns =

∂rs
∂θ

× ∂rs
∂φ′∣∣∣∣∣∂rs

∂θ
× ∂rs
∂φ′

∣∣∣∣∣
=

−∂r

∂θ
aθ + rar√√√√(∂r
∂θ

)2

+ r2

(4.208)

反射光線に沿う単位ベクトル s は，反射の法則より，

s = ar − 2
(
ar · ns

)
ns (4.209)

両辺に ns のスカラ積をとり，先に求めた法線ベクトル ns を代入して，

s · ns = −ar · ns (4.210)

s ·
(

−∂r

∂θ
aθ + rar

)
= −r (4.211)
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ここで，

s · aθ = sin(θ + ψ) (4.212)
s · ar = − cos(θ + ψ) (4.213)

より，

−∂r

∂θ
sin(θ + ψ) + r

(
− cos(θ + ψ)

)
= −r (4.214)

よって，

dr

dθ
= r

1 − cos(θ + ψ)
sin(θ + ψ)

= r
2 sin2

(
θ+ψ

2

)
2 sin

(
θ+ψ

2

)
cos

(
θ+ψ

2

)
= r tan

(
θ + ψ

2

)
(4.215)

一方，主反射鏡上の点 (ρ, φ, z)の位置ベクトル rm(ρ, φ)は，

rm = ρaρ(φ) + z(ρ)az (4.216)

これより，主反射鏡の法線ベクトル nm は，

nm =

∂rm
∂ρ

× ∂rm
∂φ∣∣∣∣∣∂rm

∂ρ
× ∂rm

∂φ

∣∣∣∣∣
(4.217)

ここで，

∂rm
∂ρ

× ∂rm
∂φ

=
(

aρ + ∂z

∂ρ
az

)
× ρaφ

=
(

az − ∂z

∂ρ
aρ

)
ρ (4.218)

主反射鏡による反射光線の方向は −az 方向ゆえ，反射の法則より，

−az · nm = −s · nm (4.219)

先に求めた法線ベクトル nm を代入して，

−az ·
(

az − ∂z

∂ρ
aρ

)
= −s ·

(
az − ∂z

∂ρ
aρ

)
(4.220)
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−1 = −s · az + ∂z

∂ρ
(s · aρ)

= − cosψ + ∂z

∂ρ
sinψ (4.221)

よって，
∂z

∂ρ
= ∂z

∂θ

∂θ

∂ρ

= −1 − cosψ
sinψ

= − tan ψ2 (4.222)

よって，

dz

dθ
= −dρ

dθ
tan ψ2 (4.223)

したがって，各鏡面の座標は，式 (4.215)，(4.223)の連立常微分方程式を光路長一定の条件
のもとで解けば求められる．

4.4.3 幾何光学におけるエネルギー保存の法則

開口面振幅分布（位相一様の条件はすでに考慮されている）と 1次パターンを与えて設計
するので，ここでは，dρ/dθ を両者のエネルギー保存の法則より求めていく．まず，1次パ
ターンを Ep(θ)，開口面振幅分布を Ed(ρ)とすると，幾何光学におけるエネルギー保存の法
則より，

|Ep(θ)|2 sin θdθ = |Ed(ρ)|2ρdρ (4.224)

いま，Ap，Aq を定数として，

Ep(θ) ≡ Apep(θ) (θ0 ≤ θ ≤ θs) (4.225)
Ed(ρ) ≡ Aded(ρ) (Ds/2 ≤ ρ ≤ Dm/2) (4.226)

とおくと，全電力は等しいので，
ˆ Dm/2

Ds/2
|Ed(ρ)|2ρdρ =

ˆ θs

θ0

|Ep(θ)|2 sin θdθ (4.227)

が成り立つ．これより，定数を消去して，

|ep(θ)|2ˆ θs

θ0

|Ep(θ)|2 sin θdθ
sin θdθ = |ed(ρ)|2ˆ Dm/2

Ds/2
|Ed(ρ)|2ρdρ

ρdρ (4.228)
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したがって，相対的な分布 ep(θ)，ed(ρ)を用いて，dρ/dθは次のように表される．

dρ

dθ
= |ep(θ)|2 sin θ

|ed(ρ)|2ρ

ˆ Dm/2

Ds/2
|ed(ρ)|2ρdρ

ˆ θs

θ0

|ep(θ)|2 sin θdθ
(4.229)

このとき，副反射鏡の座標の角度成分 θ を与えて，主反射鏡を表わす座標成分 ρ = ρ(θ)を
求める必要がある．そこで，任意の 1次パターン ep(θ)が与えられた場合，

f(ρ, θ) ≡

ˆ ρ

Ds/2
e2
d(ρ)ρdρ

ˆ Dm/2

Ds/2
e2
d(ρ)ρdρ

− I(θ)
I(θs)

(4.230)

I(θ) =
ˆ θ

0
e2
p(θ) sin θdθ (4.231)

を定義し，θ を与えたときに f(ρ, θ) = 0を満たす解 ρを数値的に求めることにする．これ
より，ρ = ρ(θ)が決まれば，dρ/dθ は得られた式を用いて求められ，主反射鏡および副反
射鏡の設計が行えることになる．
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CHAPTER 5

指向性合成と波源分布の最適化

　アンテナの指向性（電波の放射パターン）を設計・制御するための複数の数学的手
法について解説する．特に，特定の形状のビーム（成形ビーム）を形成すること，そ
してサイドローブ（主ビーム以外の不要な放射）のレベルを抑制する効果的な方法を
取り上げ説明していく．まず，簡単な方法として，複数の基本的なビームを重ね合わ
せることで所望の指向性を合成するウッドワード・ローソン法について解説する．ま
た，フーリエ級数展開を用いた開口面における波源分布と電界指向性の関係を示し，
より高度な制御を可能にするレメッツのアルゴリズムと二次計画法の応用について
紹介する．これらの方法を用いれば，主ビームの形状やサイドローブレベルを詳細に
制御し，アンテナの効率（開口能率）を最適化できることを示している．

5.1 ウッドワード・ローソン法

成形ビームなどの主ビームの指向性合成として，一つの開口において複数の波源分布を異
なる方向に共相励振して所定の指向性を合成するウッドワード・ローソン法 (Woodward-
Lawson method）がある．これはビーム方向を変化させた複数の指向性関数の重ね合わせ
によってビームを成形しようというもので，共相励振の方向は他の指向性のヌル点と一致さ
せ，かつ各々の指向性のヌル点も一致させる．簡単のため振幅は全て一様とすると，指向性
関数は sinc関数で表されるから，θm 方向の指向性のヌル点は，

πD

λ
(sin θ − sin θm) = mπ (5.1)

を満たす方向 θである．なお，ビームの方向は対称に配置するものとする．よって，ビーム
の数が奇数（2M + 1），および偶数（2M）のとき，各々，共相励振の方向 θm は次のような
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関係になる．

sin θm =


m
λ

D
(m = 0,±1,±2, · · · ,M(2M + 1 : odd))

2m∓ 1
2

λ

D
(m = ±1,±2, · · · ,M(2M : even))

(5.2)

ビームの数が奇数（2M + 1）のとき，指向性関数 g(u) は，

g(u) =
M∑

m=−M
cm

sin vm
vm

=
M∑

m′=1
c−m′

sin v−m′

v−m′
+ c0

sin v0

v0
+

M∑
m=1

cm
sin vm
vm

= c0
sin v0

v0
+

M∑
m=1

cm

(
sin v−m

v−m
+ sin vm

vm

)
(5.3)

ここで，θ−m = −θm より，

v±m = πD

λ
(sin θ + sin θ−m)

= πD

λ
(sin θ ± sin θm)

= u± πD

λ
sin θm (5.4)

このとき，波源分布 e(x̄) は，Am(x̄) = 1 として，

e(x̄) =
M∑

m=−M
cm
{
Am(x̄)ejψm(x̄)

}

=
M∑

m=−M
cme

− πD
λ

sin θm·x̄

= c0 +
M∑
m=1

2cm cos
(
πD

λ
sin θm · x̄

)
(5.5)

ビームの数が偶数（2M）のとき，指向性関数 g(u) および波源分布 e(x̄) は，上式において
c0 = 0 とする．さらに，係数を全て等しく cm = 1 おけば，ウッドワード・ローソン法に
よる成形ビームが得られる．ビーム数M = 5, 6の計算例を，図 5.1，図 5.2に示す．同図
において，左上の図では，合成する全てのビームのアレーファクタを点線，合成したビーム
のアレーファクタを実線で示し（下の図は dB値の放射パターン），このような指向性から
求めた波源分布を右上の図に示している．簡単な方法であるが，主ビームのリプルやサイド
ローブレベル（左上の図では赤，下の図では緑のプロットの点のピーク値）などの制御はで
きない．
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図 5.1. ウッドワード・ローソン法による成形ビーム（D = 10λ，M = 5）
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図 5.2. ウッドワード・ローソン法による成形ビーム（D = 10λ，M = 6）
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5.2 波源分布のフーリエ級数展開

5.2.1 開口面分布と電界指向性との関係

直角座標系 (x1, x2, x3)において，x3 = 0 における開口面 Aの電界分布のスカラー成分
Ea(x1, x2) を逆フーリエ変換すると，フラウンホーファ領域電界指向性のスカラー成分（ユ
ニバーサル電界パターン）g(k1, k2)が求められ，次のようになる．

g(k1, k2) =
¨
A

Ea(x1, x2)ej(k1x1+k2x2)dx1dx2 (5.6)

ただし，k1，k2 は波数ベクトルの x1，x2 成分を示す．開口面Aの外側をゼロとして e(x1, x2)
を定義すれば積分範囲を拡張でき，逆変換が行える．したがって，開口面分布 e(x1, x2) と
電界指向性 g(k1, k2) は，次のようにフーリエ変換対で表される．

g(k1, k2) =
¨ ∞

−∞
e(x1, x2)ej(k1x1+k2x2)dx1dx2 (5.7)

e(x1, x2) = 1
(2π)2

¨ ∞

−∞
g(k1, k2)e−j(k1x1+k2x2)dk1dk2 (5.8)

ここで，

k1 = k sin θ cosφ (5.9)
k2 = k sin θ sinφ (5.10)

なお，2次元フーリエ変換対の係数の積は 1/(2π)2 である．

5.2.2 変数分離された開口面分布

開口面分布が変数分離形 e(x1, x2) = e1(x1)e2(x2) のとき，

g(k1, k2) =
¨ ∞

−∞
e1(x1)e2(x2)ejk1x1ejk2x2dx1dx2

=
(ˆ ∞

−∞
e1(x1)ejk1x1dx1

)(ˆ ∞

−∞
E2(x2)ejk2x2dx2

)
≡ g1(k1)g2(k2) (5.11)

ここで，D1 ×D2 の方形開口の場合，

g1(k1) =
ˆ ∞

−∞
e1(x1)ejk1x1dx1 =

ˆ D1
2

− D1
2

e1(x1)ejk1x1dx1 (5.12)

g2(k2) =
ˆ ∞

−∞
e2(x2)ejk2x2dx2 =

ˆ D2
2

− D2
2

e2(x2)ejk2x2dx2 (5.13)
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逆に，

e(x1, x2) = 1
(2π)2

¨ ∞

−∞
g1(k1)g2(k2)e−j(k1x1+k2x2)dk1dk2

=
(

1
2π

ˆ ∞

−∞
g1(k1)e−jk1x1dk1

)(
1

2π

ˆ ∞

−∞
g2(k2)e−jk2x2dk2

)
≡ e1(x1)e2(x2) (5.14)

ここで，

e1(x1) = 1
2π

ˆ ∞

−∞
g1(k1)e−jk1x1dk1 (5.15)

e2(x2) = 1
2π

ˆ ∞

−∞
g2(k2)e−jk2x2dk2 (5.16)

5.2.3 座標系の正規化

正規化した直角座標 (x̄1, x̄2)を考え，

x1 ≡ D1

2 x̄1 (5.17)

x2 ≡ D2

2 x̄2 (5.18)

いま，φ = 0 とおけば，x1x3 面の波源分布 e1(x1) と電界指向性 g1(x1) の関係は，

k1 = k sin θ cos 0 = k sin θ (5.19)

u1 ≡ k
D1

2 sin θ = πD1

λ
sin θ (5.20)

より，

g1(k1) =
ˆ D1

2

− D1
2

e1(x1)ejk1x1dx1

= D1

2

ˆ 1

−1
e1(x̄)eju1x̄1dx̄1 = g1(u1) (5.21)

e1(x1) = 1
2π

ˆ ∞

−∞
g1(k1)e−jk1x1dk1

= 1
2π

2
D1

ˆ ∞

−∞
g1(u1)e−ju1x̄1du1 (5.22)

また，φ = π/2 とおけば，x2x3 面の波源分布 e2(x2) と電界指向性 g2(x2) の関係は，

k2 = k sin θ sin π2 = k sin θ (5.23)

u2 ≡ k
D2

2 sin θ = πD2

λ
sin θ (5.24)
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より，

g2(k2) =
ˆ D2

2

− D2
2

e2(x2)ejk2x2dx2

= D2

2

ˆ 1

−1
e2(x̄2)eju2x̄2dx̄2 = g2(u2) (5.25)

e2(x2) = 1
2π

ˆ ∞

−∞
g2(k2)e−jk2x2dk2

= 1
2π

2
D2

ˆ ∞

−∞
g2(u2)e−ju2x̄2du2 (5.26)

5.2.4 1次元フーリエ変換対

x1x3 面と x2x3 面の関係を一つにまとめ，xix3 面（i = 1, 2）に対する関係を，

xi = Di

2 x̄i, ui = πDi

λ
sin θ (5.27)

として，

gi(ui) =
ˆ Di

2

− Di
2

ei(xi)ejui
2

Di
xidxi

= Di

2

ˆ 1

−1
ei(x̄i)ejuix̄idx̄i (5.28)

ei(x̄i) = 1
2π · 2

Di

ˆ ∞

−∞
gi(ui)e−juix̄idui (5.29)

添字 i を省略して簡略化して

x = D

2 x̄, u = πD

λ
sin θ (5.30)

とすると，

g(u) =
ˆ D

2

− D
2

e(x)eju
2
D
xdx

= D

2

ˆ 1

−1
e(x̄)ejux̄dx̄ (5.31)

e(x̄) = 1
2π · 2

D

ˆ ∞

−∞
g(u)e−jux̄du (5.32)

126



5.2.5 波源分布のフーリエ級数展開

1次元波源分布 e(x̄) (−1 ≤ x̄ ≤ 1)を，複素フーリエ級数で展開すると，

e(x̄) =
N∑

n=−N
ane

−jnπx̄ (5.33)

いま，e(x̄) (−1 ≤ x̄ ≤ 1)が与えられれば（周期 T = 2），

1
T

ˆ 1

−1
e(x̄)ejmπx̄dx̄ = 1

2

ˆ 1

−1

 N∑
n=−N

ane
−jnπx̄

 ejmπx̄dx̄
=

N∑
n=−N

an
2

ˆ 1

−1
ej(m−n)πx̄dx̄

=
N∑

n=−N

an
2

[
ej(m−n)πx̄

j(m− n)π

]1

−1

=
N∑

n=−N

an
2 · e

j(m−n)π − e−j(m−n)π

j(m− n)π

=
N∑

n=−N

an
2 · j2 sin(m− n)π

j(m− n)π

=
N∑

n=−N
an · sin(m− n)π

(m− n)π (5.34)

ここで，

sin(m− n)π
(m− n)π =

{
1 (m = n)
0 (m 6= n) = δm,n (5.35)

より，

1
2

ˆ 1

−1
e(x)ejmπx̄dx̄ =

N∑
n=−N

anδm,n = am

∴ an = 1
2

ˆ 1

−1
e(x)ejnπx̄dx̄ (5.36)

5.2.6 実数係数で展開された開口面分布

複素波源分布 e(x̄) の複素共役 e∗(x̄) は，

e∗(x̄) =
 N∑
n=−N

ane
−jnπx̄

∗

=
N∑

n=−N
a∗
ne
jnπx̄ (5.37)
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また，

e(−x̄) =
N∑

n=−N
ane

−jnπ(−x̄) =
N∑

n=−N
ane

jnπx̄ (5.38)

展開係数 an が実数のとき，an = a∗
n より，次式が成り立つ．

e∗(x̄) =
N∑

n=−N
ane

jnπx̄ = e(−x̄) (5.39)

いま，複素波源分布 e(x̄) ≡ E(x̄)ejϕ(x̄)（E，ϕは実数）とおくと，

e∗(x̄) =
(
E(x̄)ejϕ(x̄)

)∗

= E(x̄)ej{−ϕ(x̄)}

= e(−x̄)
= E(−x̄)ejϕ(−x̄) (5.40)

これより，

E(x̄) = E(−x̄) (5.41)
−ϕ(x̄) = ϕ(−x̄) (5.42)

つまり，展開係数 an が実数のとき，複素波源分布 e(x̄) の振幅は偶関数，位相は奇関数と
なる．

5.2.7 対称な波源分布

波源分布 e(x̄) が原点に対して対称な場合，e(−x̄) = e(x̄) より（n′ = −n），

e(−x̄) =
N∑

n=−N
ane

−jnπ(−x̄)

=
N∑

n=−N
ane

−j(−n)πx̄

=
N∑

n′=−N
a−n′e−jn′πx̄ (5.43)

よって，

a−n = an (5.44)
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これより，対称な開口面分布 e(x̄)は，

e(x̄) =
N∑
n′=1

a−n′e−j(−n′)πx̄ + a0 +
N∑
n=1

ane
−jnπx̄

= a0 +
N∑
n=1

an
(
ejnπx̄ + e−jnπx̄

)

= a0 + 2
N∑
n=1

an cos(nπx̄) (5.45)

5.2.8 波源分布の逆フーリエ変換

1次元波源（電界）分布 e(x̄) (−1 ≤ x̄ ≤ 1) を（x = D
2 x̄），

e(x̄) = 1
2 · 2

D

N∑
n=−N

ane
−jnπx̄

= 1
D

N∑
n=−N

ane
−jnπx̄ (5.46)

とおき，逆フーリエ変換すると電界指向性 g(u) は（u = πD
λ sin θ），

g(u) = D

2

ˆ 1

−1
e(x̄)ejux̄dx̄

= D

2

ˆ 1

−1

 1
D

N∑
n=−N

ane
−jnπx̄

 ejux̄dx̄
= 1

2

N∑
n=−N

an

ˆ 1

−1
ej(u−nπ)x̄dx̄

= 1
2

N∑
n=−N

an

[
ej(u−nπ)x̄

j(u− nπ)

]1

−1

= 1
2

N∑
n=−N

an

{
ej(u−nπ) − e−j(u−nπ)

j(u− nπ)

}

=
N∑

n=−N
an

sin(u− nπ)
u− nπ

(5.47)

ここで，

u = πD

λ
sin θ (5.48)

より，可視領域は，−π
2 ≤ θ ≤ π

2 の範囲で −πD
λ ≤ u ≤ πD

λ となる．不可視領域まで指向
性合成を拡大する場合，この u の範囲より十分広くして考えればよい．電界指向性 g(u)を
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sinc関数を用いて表すと次のようになる．

g(u) =
N∑

n=−N
an

sin(u− nπ)
u− nπ

=
N∑

n=−N
an sinc

(
u

π
− n

)
(5.49)

あるいは，

sin(u− nπ) = sin u cos(nπ) − cosu sin(nπ)
= sin u(−1)n (5.50)

より，

sin(u− nπ)
u− nπ

= (−1)n sin u
u− nπ

= (−1)n
1 − nπ

u

sin u
u

(5.51)

よって，

g(u) =
N∑

n=−N
an

sin(u− nπ)
u− nπ

=
N∑

n=−N
an

(−1)n
1 − nπ

u

sin u
u

=
N∑

n=−N
an

(−1)n
1 − nπ

u

· sinc
(
u

π

)
(5.52)

上式において各項は実数であるが，展開係数 an は実数の場合と複素数の場合があろう．an
が実数の場合，g(u) も実数である．ここで，u = 0 とおくと，

g(0) =
N∑

n=−N
an

sin(0 − nπ)
0 − nπ

= a0 (5.53)

これより，g(0) = 1 とおくと，a0 = 1 となる．このとき，

e(x̄) = 1
D

1 + 2
N∑
n=1

an cos(nπx̄)

 (5.54)
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また，電界指向性 g(u) も a−n = an の関係を用いると，

g(u) =
N∑

n=−N
an

sin(u− nπ)
u− nπ

=
−1∑

n=−N
an

sin(u− nπ)
u− nπ

+ a0
sin(u)
u

+
N∑
n=1

an
sin(u− nπ)
u− nπ

=
N∑
n′=1

a−n′
sin(u+ n′π)
u+ n′π

+ a0
sin(u)
u

+
N∑
n=1

an
sin(u− nπ)
u− nπ

= a0
sin u
u

+
N∑
n=1

an

{
sin(u+ nπ)
u+ nπ

+ sin(u− nπ)
u− nπ

}

= sin u
u

a0 +
N∑
n=1

an
2(−1)nu2

u2 − (nπ)2

 (5.55)

ここで，

φ0(u) ≡ sin u
u

(5.56)

φn(u) ≡ sin(u− nπ)
u− nπ

+ sin(u+ nπ)
u+ nπ

= sin u
u

· 2(−1)nu2

u2 − (nπ)2 (n = 1, 2, · · · , N) (5.57)

とおくと，電界指向性 g(u) は，

g(u) = a0φ0(u) +
N∑
n=1

anφn(u) (5.58)

さらに，a0 = 1 のとき，

g(u) = φ0(u) +
N∑
n=1

anφn(u) (5.59)

なお，MATLABの関数 sincは，

sinc t =


sin(πt)
πt

(t 6= 0)
1 (t = 0)

(5.60)
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5.2.9 開口能率

開口能率（aperture efficiency）あるいは利得係数は，一様開口面分布の利得 Gu0 に対す
る利得低下量を表し（S は開口面積），

ηa = G0

Gu0
= G0

4πS
λ2

= λ2

4πS · 4π
λ2

∣∣∣g(0, 0)
∣∣∣2¨

A

|Ea|2dS

=

∣∣∣∣∣
¨
A

EadS

∣∣∣∣∣
2

S

¨
A

|Ea|2dS
(5.61)

方形開口（D1 × D2）面上の電界分布が変数分離形 Ea(x1, x2) = e1(x1)e2(x2) のとき，
S = D1D2，dS = dx1dx2 より，

ηa =

∣∣∣∣∣
ˆ
D1

e1(x1)dx1

∣∣∣∣∣
2

D1

ˆ
D1

|e1(x1)|2dx1

·

∣∣∣∣∣
ˆ
D2

e2(x2)dx2

∣∣∣∣∣
2

D2

ˆ
D2

|e2(x2)|2dx2

≡ η1η2 (5.62)

変数分離された開口能率 ηi は，xi = Di

2 x̄i，dxi = Di

2 dx̄i (i = 1, 2)より，

ηi =

∣∣∣∣∣∣
ˆ Di

2

− Di
2

ei(xi)dxi

∣∣∣∣∣∣
2

Di

ˆ Di
2

− Di
2

|ei(xi)|2dxi

=

∣∣∣gi(0)
∣∣∣2

D2
i

2

ˆ 1

−1
|ei(x̄i)|2dx̄i

(5.63)

ただし，gi(0) (i = 1, 2)は正面方向の電界指向性 g(0, 0) (= g1g2)を変数分離したもので，

gi(0) =
ˆ Di

2

− Di
2

ei(xi)dxi

= Di

2

ˆ 1

−1
ei(x̄)idx̄i (5.64)

後述する 1次元の解析においても添字 i を省略して簡略化していく．
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5.2.10 1次元波源分布に対する開口能率

1次元波源分布 e(x̄) より，直交性を用いれば，
ˆ 1

−1
|e(x̄)|2dx̄ =

ˆ 1

−1

 1
D

1 + 2
N∑
n=1

an cos(nπx̄)


2

dx̄

= 1
D2


ˆ 1

−1
dx̄+ 4

N∑
n=1

a2
n

ˆ 1

−1
cos2(nπx̄)dx̄


= 1
D2

2 + 4
N∑
n=1

2a2
n

ˆ 1

0

1
2 {1 + cos(2nπx̄)} dx̄


= 2
D2

1 + 2
N∑
n=1

a2
n

[
x+ sin(2nπx)

2nπ

]1

0


= 2
D2

1 + 2
N∑
n=1

a2
n

 (5.65)

よって，1次元波源分布に対する（1次元）開口能率 η は，g(0) = 1 より，

η = |g(0)|2

D2

2

ˆ 1

−1
|e(x̄)|2dx̄

= 1

1 + 2
N∑
n=1

a2
n

(5.66)

上式において，展開係数 an の項は 2次式であり，

N∑
n=1

a2
n =

(
a1 a2 · · ·

)
1 0 · · ·
0 1 · · ·
... ...



a1
a2
...

 = 1
2at2[U ]a (5.67)

ただし，[U ]は N ×N 単位行列，at は列ベクトル aの転置を示す．
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5.3 レメッツのアルゴリズムによる指向性合成

レメッツのアルゴリズム*1を用いて，サイドローブレベルの最大値が所定の値以下となる
1次元開口面分布を求める指向性合成*2の方法は次のとおりである．

1. 抑圧するサイドローブレベルの最大値 ε と第 1サイドローブから順に抑圧するサイ
ドローブ数 N を与える．

2. 初期値として電界指向性 g0(u) を与える．例えば，一様開口面分布による電界指向性
（sinc関数）などが考えられる．

3. サイドローブレベルのピーク方向 un(n = 1, 2, · · · , N) を，第 1サイドローブから順
に N 個求める．

4. サイドローブ領域の電界指向性を −ε ≤ g(u) ≤ ε とするため，ユニバーサルパラ
メータ u = un での電界指向性のピーク値が ±ε となるように，次式により係数
an (n = 1, 2, · · · , N) を決定する（g(u) = a0 = 1）．

g(um) = φ0(um) +
N∑
n=1

anφn(um) = (−1)mε (m = 1, 2, · · · , N) (5.68)

これらの式を行列表示すると，
φ1(u1) φ2(u1) · · · φN (u1)
φ1(u2) φ2(u2) · · · φN (u2)

... ... ...
φ1(uN ) φ2(uN ) · · · φN (uN )



a1
a2
...
aN

 =


−φ0(u1) + (−1)1ε
−φ0(u2) + (−1)2ε

...
−φ0(uN ) + (−1)Nε

 (5.69)

よって，未知係数 an は，
a1
a2
...
aN

 =


φ1(u1) φ2(u1) · · · φN (u1)
φ1(u2) φ2(u2) · · · φN (u2)

... ... ...
φ1(uN ) φ2(uN ) · · · φN (uN )


−1

−φ0(u1) + (−1)1ε
−φ0(u2) + (−1)2ε

...
−φ0(uN ) + (−1)Nε

 (5.70)

これより，指向性を求め，3，4の計算を繰り返し an を更新していく．N 個のサイドロー
ブレベルのピーク値が所定の値となれば反復を終了する．なお，3では，

• g′(un) = 0 を満足する un を N 個計算する．
• g(u) を細かく計算し，ピーク値を抽出して un を決定する．

図 5.3 は一様分布による放射パターン，つまり sinc 関数を示したもので，簡単のため，
これを初期値として用いて計算していく．サイドローブレベルの値は，第 1 から順に，

*1 ” アンテナ工学ハンドブック（第 2 版）,” pp.827-828，オーム社 (2008).
*2 後藤 尚久，” アンテナ工学入門講座,” pp.108-109, 電波新聞社 (2008).
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(a) sinc関数 (b) 放射パターン
図 5.3. 初期値（一様分布）

−32.0,−32.0,−32.0,−34.0,−36.0,−38.0,−40.0,−42.0,−42.0 [dB] として与え，レメッツ
のアルゴリズムに基づき繰り返し計算したときの途中過程を図 5.4に示す．表 5.1はこのと
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(a) 繰り返し計算（m = 0, 1, 2, 3, 4） (b) m = 4
図 5.4. レメッツのアルゴリズムに基づく計算過程．与えたサイドローブレベルの値は，第 1 から
順に，−32.0, −32.0, −32.0, −34.0, −36.0, −38.0, −40.0, −42.0, −42.0 [dB]

きのピークサイドローブレベルの値を示したもので，m = 0は初期値の放射パターンにお
ける値であり，繰り返し回数がm = 4のとき早くも与えた値に収束していることがわかる．

表 5.1 サイドローブレベルが収束するまでの計算過程（サイドローブ数 N = 9）

i-th 第 1 第 2 第 3 第 4 第 5 第 6 第 7 第 8 第 9
m [dB] [dB] [dB] [dB] [dB] [dB] [dB] [dB] [dB]
0 -13.262 -17.831 -20.788 -22.985 -24.736 -26.191 -27.437 -28.525 -29.493
1 -22.492 -29.329 -31.099 -33.319 -35.4 -37.403 -39.515 -41.81 -41.979
2 -30.905 -31.814 -31.881 -33.937 -35.964 -37.979 -39.973 -41.977 -41.996
3 -31.987 -32. -32. -34. -36. -37.999 -40. -42. -42.
4 -32. -32. -32. -34. -36. -38. -40. -42. -42.
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図 5.5は，収束した繰り返し回数 m = 4のときの放射パターンおよび開口面分布を示した
もので，開口能率は 83 %である．開口面分布は単純なテーパ分布に近い．開口能率を高く
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図 5.5. レメッツのアルゴリズムに基づく計算結果（開口能率は 83 %）．与えたサイドローブレベル
の値は，第 1 から順に，−32.0, −32.0, −32.0, −34.0, −36.0, −38.0, −40.0, −42.0, −42.0 [dB]

するためには，サイドローブレベルを高くする必要があり，サイドローブレベルの設定を変
えた指向性合成も容易に行える．例えば，サイドローブレベルのピーク値を，第 1 から順
に，−32.0,−32.0,−32.0,−34.0,−36.0,−38.0,−40.0,−42.0,−42.0 [dB]以下にすると，図
5.6に示すようになる．サイドローブレベルを不規則に制御しようとすると，開口面分布も
単純なテーパ分布にはならない．
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図 5.6. レメッツのアルゴリズムに基づく計算結果（開口能率は 90 %）．与えたサイドローブレベル
の値は，第 1 から順に，−25.0, −25.0, −25.0, −30.0, −30.0, −30.0, −40.0, −40.0, −40.0 [dB]
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5.4 電界指向性のフーリエ級数展開

指向性関数 g(u) を複素フーリエ級数展開するため，

u = πD

λ
sin θ = πD

λ
w (5.71)

w = sin θ (5.72)

とおき，周期を T = 2 として，

g(w) =
Nb∑

n=−Nb

bne
jnπw (5.73)

いま，g(w) (−1 ≤ sin θ ≤ 1) が与えられれば，

1
T

ˆ 1

−1
g(w)e−jmπwdw =

Nb∑
n=−Nb

bn
sin(n−m)π

(n−m)π = bm

∴ bn = 1
2

ˆ 1

−1
g(w)e−jnπwdw (5.74)

5.4.1 有限範囲で一様な電界指向性

電界指向性 g(w) が対称な場合，b−n = bn より，

g(u) =
Nb∑

n=−Nb

bne
jnπw

=
−1∑

n=−Nb

bne
jnπw + b0 +

Nb∑
n=1

bne
jnπw

=
Nb∑
n′=1

b−n′ej(−n
′)πw + b0 +

Nb∑
n=1

bne
jnπw

= b0 +
Nb∑
n=1

2bn cos(nπw) (5.75)

電界指向性が (−1 <) − α ≤ w ≤ α(< 1) の範囲で g = 1（一定）のとき，展開係数 bn は，

bn = 1
2

ˆ 1

−1
g(w)e−jnπwdw

= 1
2

ˆ α

−α
e−jnπwdw

= α
sin(nπα)
nπα

(5.76)

b0 = α
sin(0 · πα)

0 · πα
= α (5.77)
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5.4.2 電界指向性のフーリエ変換

電界指向性 g(u) をフーリエ変換すると波源分布 e(x) が得られ，

e(x) = 1
πD

ˆ ∞

−∞
g(u)e−jux̄du

= 1
πD

πD

λ

ˆ 1

−1
g(w)e−j πD

λ
wx̄dw

= 1
λ

ˆ 1

−1

 Nb∑
n=−Nb

bne
jnπw

 e−j πD
λ
wx̄dw

= 1
λ

Nb∑
n=−Nb

bn

ˆ 1

−1
ej(nπ− πD

λ
x̄)wdw

= 2
λ

Nb∑
n=−Nb

bn
sin(n− D

λ x̄)π
(n− D

λ x̄)π

= 2
λ

Nb∑
n=−Nb

bn
sin(Dλ x̄− n)π

(Dλ x̄− n)π
(5.78)

さらに，b−n = bn のとき，

e(x) = 2
λ

b0Φ0(x̄) +
Nb∑
n=1

bnΦn(x̄)
 (5.79)

ここで，

Φ0(x̄) =
sin

(
πD
λ x̄

)
πD
λ x̄

(5.80)

Φn(x̄) =
sin(Dλ x̄− n)π

(Dλ x̄− n)π
+

sin(Dλ x̄+ n)π
(Dλ x̄+ n)π

(5.81)

5.4.3 1次元波源の共相励振

1次元波源分布 e(x̄) の振幅を A(x̄)，位相を ψ(x̄) とおくと，電界指向性 g(u) は，

g(u) = D

2

ˆ 1

−1
A(x̄)ejψ(x̄)ejux̄dx̄ (5.82)

ここで，

u = πD

λ
sin θ, x̄ = 2

D
x (5.83)
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より，θ = θm の方向に共相励振するための位相項の条件は，

ψ(x̄) + πD

λ
sin θm · x̄ = 0

∴ ψ(x̄) = −πD

λ
sin θm · x̄ (5.84)

これより，電界指向性 g(u)は，

g(u) = D

2

ˆ 1

−1
A(x̄)e−j πD

λ
sin θm·x̄ejux̄dx̄ (5.85)

ここで，

vm ≡ πD

λ
(sin θ − sin θm)

= u− πD

λ
sin θm (5.86)

とおくと，

g(u) = D

2

ˆ 1

−1
A(x̄)ejvmx̄dx̄ (5.87)

振幅が一定のとき，A(x̄) = A0 とおけば，

g(u) = D

2 A0

ˆ 1

−1
ejvmx̄dx̄

= D

2 A0
2 sin vm
vm

= DA0
sin vm
vm

(5.88)

いま，g(0) = 1 とすると，

g(0) = DA0 = 1 (5.89)

よって，

g(u) = sin vm
vm

=
sin

(
u− πD

λ sin θm
)

u− πD
λ sin θm

(5.90)
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5.5 レメッツのアルゴリズムによるビーム成形

主ビームの制約条件を加えると，レメッツのアルゴリズムによる成形ビームの指向性合成
が行え，サイドローブレベルの制御も同時に可能である．計算方法は次のとおりである．

• 主ビームのリプルの範囲 (1 ± ε̂)とリプルの数 Ni，抑圧するサイドローブレベルの最
大値 ε，第 1サイドローブから順に抑圧するサイドローブ数 Ns を与える．

• 電界指向性の初期値を設定する．
• 主ビームのリプルの最大，最小の方向 ûi(n = 1, 2, · · · , Ni)，サイドローブレベルの
ピーク方向 un(n = 1, 2, · · · , Ns) を求める．

• 主ビーム領域の電界指向性を 1 − ε̂ ≤ g(u) ≤ 1 + ε̂ とするため，

g(ûi) = 1 + (−1)Ni−iε̂ (i = 1, 2, · · · , Ni) (5.91)

サイドローブ領域の電界指向性を −ε ≤ g(u) ≤ ε とするため，

g(um) = (−1)mε (m = 1, 2, · · · , Ns) (5.92)

上式を連立して an (n = 1, 2, · · · , N(= Ni +Ns)) を決定する．

よって，an (n = 1, 2, · · · , N(= Ni +Ns))は，次式を解けばよい．


φ1(û1) φ2(û1) · · · φN (û1)
φ1(û2) φ2(û2) · · · φN (û2)

... ... ...
φ1(ûNi) φ2(ûNi) · · · φN (ûNi)
φ1(u1) φ2(u1) · · · φN (u1)
φ1(u2) φ2(u2) · · · φN (u2)

... ... ...
φ1(uNs) φ2(uNs) · · · φN (uNs)





a1
a2
...
aNi

aNi+1
aNi+2

...
aN


=



−φ̂0(û1) + 1 + (−1)Ni−1ε̂

−φ̂0(û2) + 1 + (−1)Ni−2ε̂
...

−φ̂0(ûNi) + 1 + (−1)0ε̂

−φ̂0(u1) + (−1)1ε

−φ̂0(u2) + (−1)2ε
...

−φ̂0(uNs) + (−1)Nsε


(5.93)

ただし，

g(0) = a0 = 1 + (−1)Ni ε̂ (5.94)

φ̂0(u) = a0φ0(u) =
{
1 + (−1)Ni ε̂

}
φ0(u) (5.95)

このように指向性を求め，3，4の計算を繰り返し an を更新する．主ビームのリプル，サイ
ドローブのピーク値が所定の値となれば反復を終了する．電界指向性の初期値は，例えば，

• 有限範囲で一様な電界指向性をフーリエ級数展開したもの
• ウッドワード・ローソン法による指向性合成
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などが考えられる．
図 5.7は方形関数（正面から 35◦ まで一様）をフーリエ級数展開（展開項数は Nb = 14）
したときの電界指向性および（電力）放射パターンを示したもので，サイドローブレ
ベルは比較的高く，主ビームのリプルは広角になるほど大きくなってしまう．そこで，
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(a) 電界指向性 (b) 放射パターン
図 5.7. 初期値（方形関数のフーリエ級数展開）

主ビームのリプルは全て 0.1 dB，サイドローブレベルのピーク値は，第 1 から順に，
−30,−33.75,−37.5,−41.25,−45 [dB]となるようにレメッツのアルゴリズムに基づき繰り
返し計算を行うと，図 5.8に示すようになる．表 5.2はこのときのピークサイドローブレベ
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図 5.8. レメッツのアルゴリズムに基づく計算過程．主ビームのリプルは 0.1 dB，与えたサイドロー
ブレベルの値は，第 1 から順に，−30, −33.75, −37.5, −41.25, −45 [dB]

ルの値を示したもので，m = 0は初期値の放射パターンにおける値であり，繰り返し回数
が m = 6のとき収束していることがわかる．図 5.9は，ビーム成形の放射パターンおよび
開口面分布を示したもので，開口面分布は sinc関数に近い分布である．また，与えたサイ
ドローブレベルの値を全て −40 – dBとする成形ビームの指向性合成も可能で，図 5.10に
その結果を示す．
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表 5.2 所定の値に収束するまでの計算過程（主ビームのリプル数 Ni = 4，サイドローブ数 Ns = 5）

i-th 第 1 第 2 第 3 第 4 第 5 第 6 第 7 第 8 第 9
m [dB] [dB] [dB] [dB] [dB] [dB] [dB] [dB] [dB]
0 0.103 -0.142 0.206 -0.349 -20.073 -24.636 -27.22 -28.862 -29.951
1 -0.104 0.115 -0.156 0.221 -27.035 -29.726 -29.422 -24.912 -2.444
2 -0.102 0.106 -0.109 0.101 -26.878 -29.16 -28.472 -19.204 -25.972
3 -0.102 0.101 -0.104 0.114 -26.758 -29.08 -28.61 -32.637 -42.66
4 -0.101 0.101 -0.103 0.103 -27.876 -31.763 -36.312 -41.188 -44.854
5 -0.101 0.1 -0.101 0.1 -29.825 -33.741 -37.493 -41.239 -44.997
6 -0.101 0.1 -0.101 0.1 -30. -33.75 -37.5 -41.25 -45.
7 -0.101 0.1 -0.101 0.1 -30. -33.75 -37.5 -41.25 -45.
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図 5.9. レメッツのアルゴリズムに基づくビーム成形．主ビームのリプルは 0.1 dB，与えたサイド
ローブレベルの値は，第 1 から順に，−30, −33.75, −37.5, −41.25, −45 [dB]．
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図 5.10. レメッツのアルゴリズムに基づくビーム成形．主ビームのリプルは 0.1 dB，与えたサイド
ローブレベルの値は，全て −40 – dB．
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5.6 2次計画法による指向性合成

5.6.1 2次計画法のための定式化

1次元波源分布をフーリエ級数などの多項式で展開したとき，電界指向性は各項のフーリ
エ逆変換とその展開係数の線型結合で求められる．また，開口能率は展開係数に関する 2次
式の逆数に比例するので，開口能率を最大にするためには，展開係数に関する 2次式を最小
化すればよい．このとき，指向性は展開係数に関する 1次式で表される．このような関係ゆ
え，2次計画法（quadratic programming, QP）*3を用いれば，1次式で表される指向性（例
えば，サイドローブレベル，交差偏波成分など）を制約条件とし，2次式で表される評価関
数を最小にするように展開係数を最適化することができる
ここでは，まずサイドローブレベルのみを制約条件とし，開口能率が最大となる展開係数

an を求める方法について説明する．最小化する評価関数（目的関数，objective function）
は an の関数として，

F (a1, a2, · · · , aN ) =
N∑
n=1

a2
n (5.96)

最適化変数 an を要素とする列ベクトルを a とすると，次のような 2次形式で表される（肩
文字 t は転置を示す）．

min
(a)

F (a) = 1
2 at

[
H
]
a + cta (5.97)

ただし，

• a：変数 an（n = 1, 2, · · · , N）を要素とする N 次元列ベクトル
• at：列ベクトル a の転置
•
[
H
]
：2次の項（second-order term）の係数からなる N ×N 対称行列

• c：1次の項（first-order term）の係数からなる N 次元列ベクトル
• ct：列ベクトル c の転置

*3 2 次計画法の参考文献は次のとおり．
• IMSL Fortran ライブラリ ユーザーガイド Math v7.0, p.8-126. IMSL ルーチン QPROG/DQPROG
は，一般線形統合／不等号拘束式に従う凸型 2 次計画 (QP) 問題に対する Goldfarb と Idnani（1983 年）
の双対 QP アルゴリズムの M. J. D. Powell の手法．

• 茨木 俊秀，福島 雅夫，”FORTRAN77 最適化プログラミング,” 第 4 章，岩波書店（1991）．
• MATLAB（optimization toolkit）の関数 quadprog
• Python の SciPy の関数 scipy.optimize.minimize
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1次元波源分布がフーリエ級数展開されている場合，

[H] = 2[U ] (5.98)
c = (0) (5.99)

ただし，[U ]はN 行N 列の単位行列，(0)は要素が全てゼロのN 次元の列ベクトルを示す．
一方，制約条件は，

• 等式制約条件：g(0) = 1，正規化条件を用いた場合，a0 = 1．
• 不等式制約条件：−ε ≤ g(u) ≤ ε（us ≤ u ≤ um）

ただし，ε(> 0) はサイドローブレベル，us は主ビームより広角で，かつ第１サイドローブ
レベルまでの方向とし，um はある程度のサイドローブ数を含む角度までとるようにする．
また，対称な波源分布を考え，指向性関数 g(u) は，

g(u) = φ0(u) +
N∑
n=1

anφn(u) (5.100)

ここで，

φ0(u) = sin u
u

= sinc
(
u

π

)
= sinc

(
D

λ
sin θ

)
(5.101)

φn(u) = sin(u− nπ)
u− nπ

+ sin(u+ nπ)
u+ nπ

= sinc
(
u

π
− n

)
+ sinc

(
u

π
+ n

)
= sin u

u
· 2(−1)nu2

u2 − (nπ)2

= sinc
(
u

π

)
· 2(−1)nu2

u2 − (nπ)2 (n = 1, 2, · · · , N) (5.102)

これより，不等式制約条件（inequality constraints）は（例えば，MATLAB（optimization
toolkit）の関数 quadprog），[

Aineq
]
a ≤ bineq (5.103)

ここで，

[
Aineq

]
=
(

[A′
s]

−[A′
s]

)
, bineq =

(
−φ
φ

)
+ ε

(
I ′
s

I ′
s

)
(5.104)
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いま，us ≤ u
(s)
i < um の範囲のサンプル点を u

(s)
i (i = 1, 2, · · · , Ns)とすると，列ベクトル

φは，

φ =
(
φ0(u(s)

1 ) φ0(u(s)
2 ) · · · φ0(u(s)

Ns
)
)t

(5.105)

また，I ′
s は Ns 列の要素が全て 1とする列ベクトルを示し，

I ′
s =

(
1 1 · · · 1

)t
(5.106)

行列 [A′
s]はサンプル点 u

(s)
i (i = 1, 2, · · · , Ns)における計算より，Ns 行 N 列で表され次の

ようになる（右辺の肩文字 t は転置を示す）．

[A′
s] =


φ1(u(s)

1 ) φ1(u(s)
2 ) · · · φ1(u(s)

Ns
)

φ2(u(s)
1 ) φ2(u(s)

2 ) · · · φ2(u(s)
Ns

)
... ... ...

φN (u(s)
1 ) φN (u(s)

2 ) · · · φN (u(s)
Ns

)



t

(5.107)

5.6.2 所定のサイドローブレベル以下で利得最大の指向性合成

図 5.11はサイドローブレベル −35 dBの制約条件のもとで利得が最大となるように 2次
計画法によって最適化した結果を示したもので，同図 (a)の電界指向性より，サイドローブ
レベルの大きさは制約条件を満たしていることが確認できる．同図 (b)に励振係数 an を示
し，高次の係数が小さいことがわかる．また，図 5.12は最適化された放射パターンおよび
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(a) 制約条件を満たす指向性 (b) 最適化された係数
図 5.11. サイドローブレベル −35 dB の制約条件（N = 9）

波源分布を示したもので，開口能率は 83 %である．
展開項数 N を変えた場合の係数 an (n = 1, 2, · · · , N)（ただし，a0 = 1）を表に示す（サ
イドローブレベル −35 dB）．展開項数 N を増やせば開口能率はわずかに高くなっていく．
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(a) 放射パターン (b) 波源分布
図 5.12. 2 次計画法による指向性合成（N = 9）

表 5.3 2 次計画法によって最適化した展開係数（a0 = 1）

N 1 2 3 5 9
a1 0.3694 0.3471 0.3381 0.3346 0.3250
a2 - −0.0163 −0.0148 −0.0143 −0.0131
a3 - - 0.0032 0.0022 −0.0001
a4 - - - 0.0019 0.0049
a5 - - - −0.0025 −0.0067
a6 - - - - 0.0072
a7 - - - - −0.0070
a8 - - - - 0.0060
a9 - - - - −0.0042

開口能率 ηi [%] 78.6 80.6 81.4 81.7 82.5
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5.7 2次計画法によるビーム成形

5.7.1 2次計画法のための定式化

成形ビームの場合，制約条件は，

• 等式制約条件：g(ue) = 1
• 不等式制約条件：1 ≤ g(u) ≤ 1 + ε̂（0 ≤ u ≤ ue）

ここで，

ue = πD

λ
sin θe (5.108)

ただし，カバレッジは 0 ≤ u ≤ ue，θe は利得を高くしたいカバレッジ端（edge of coverage,
EOC）方向を示す．また，指向性関数 g(u) は正規化していないため，a0 も最適化変数とし
て扱う．対称な波源分布よる電界指向性 g(u) は，

g(u) = a0φ0(u) +
N∑
n=1

anφn(u)

=
N∑
n=0

anφn(u) (5.109)

これより，まず等式制約条件（equality constraints）[
Aeq

]
a = beq (5.110)

における行列
[
Aeq

]
および列ベクトル beq は，[

Aeq
]

=
(
φ0(ue) φ1(ue) · · · φN (ue)

)
(5.111)

beq =
(
1
)

(5.112)

最適化変数は（要素数は N + 1），

a =
(
a0 a1 · · · aN

)t
(5.113)

また，不等式制約条件（inequality constraints）[
Aineq

]
a ≤ bineq (5.114)

は，主ビームの条件より，

[
Aineq

]
=
(

[Ac]
−[Ac]

)
, bineq =

(
(1 + ε̂)Ic

−Ic

)
(5.115)
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ただし，Ic は Nc 列の要素が全て 1となる列ベクトルを示す．

Ic =
(
1 1 · · ·

)t
(5.116)

行列 [Ac]は，0 ≤ u
(c)
i < ue の範囲の点を u

(c)
i (i = 1, 2, · · · , Nc)とすると，

[Ac] =


φ0(u(c)

1 ) φ0(u(c)
2 ) · · · φ0(u(c)

Nc
)

φ1(u(c)
1 ) φ1(u(c)

2 ) · · · φ1(u(c)
Nc

)
... ... ...

φN (u(c)
1 ) φN (u(c)

2 ) · · · φN (u(c)
Nc

)



t

(5.117)

この場合も所定のサイロドーブレベル ε 以下にすることが可能で，

• 不等式制約条件：−ε ≤ g(u) ≤ ε（us ≤ u ≤ um）

ただし，ε(> 0)はサイドローブレベル，us は主ビームより広角で，かつ第１サイドローブ
レベルまでの方向とする．よって，

[
Aineq

]
=


[Ac]

−[Ac]
[As]

−[As]

 , bineq =


(1 + ε̂)Ic

−Ic
εIs
εIs

 (5.118)

行列 [As] はサンプル点 u
(s)
i (i = 0, 1, 2, · · · , Ns)における計算より，Ns 行 (N + 1)列で表

され次のようになる．

[As] =


φ0(u(s)

1 ) φ0(u(s)
2 ) · · · φ0(u(s)

Ns
)

φ1(u(s)
1 ) φ1(u(s)

2 ) · · · φ1(u(s)
Ns

)
... ... ...

φN (u(s)
1 ) φN (u(s)

2 ) · · · φN (u(s)
Ns

)



t

(5.119)

また，Is は Ns 列の要素が全て 1となる列ベクトルを示す．

Is =
(
1 1 · · ·

)t
(5.120)

5.7.2 所定のサイドローブレベル以下を実現する成形ビームの指向性合成

図 5.13は主ビーム範囲 15◦ までを 0 dB以上でリプルを 0.2 dB，カバレッジのエッジ方
向の利得（略して EOC利得という）に対してサイドローブレベル −35 dBとなる制約条件
のもとで，EOC利得利得が最大となるように 2次計画法によって最適化した結果を示した
もので，同図 (a)の電界指向性より，主ビームならびにサイドローブレベルの大きさは制約
条件を満たしていることが確認できる．同図 (b)に励振係数 an を示し，主ビームを制御す
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(a) 制約条件を満たす指向性 (b) 最適化された係数
図 5.13. サイドローブレベル −35 dB の制約条件（N = 14）

る場合，高次の係数も大きくなることがわかる．また，この場合，サイドローブレベルのみ
の指向性合成に比べてより高次の係数が必要となる．また，図 5.14は EOC利得に対する相
対的な放射パターンおよび波源分布を示したもので，主ビームのリプルの最大値は 0.2 dB，
サイドローブピーク値は −35 dBであることが確認できる．同図 (b)より sinc関数のよう
な波源分布になることもわかる．
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図 5.14. 2 次計画法による指向性合成（N = 14）
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CHAPTER A

付録

A.1 ソニンの第 1積分

ソニン（ニコライ・ヤコヴレヴィチ・ソニン（ロシアの数学者））の第 1積分（Sonine’s
first finite integral）*1は

Jµ+ν+1(z) = zν+1

2νΓ(ν + 1)

ˆ π
2

0
Jµ(z sin θ) sinµ+1 θ cos2ν+1 θdθ (A.1)

上式において，

z → x, sin θ → t, µ → n, ν → m− n− 1 (A.2)

とすると，cos θdθ = dtより，ソニンの積分（Sonine’s integral）は，

Jm(x) = xm−n

2m−n−1Γ(m− n)

ˆ 1

0
Jn(xt)tn+1(1 − t2)m−n−1dt

= 2xm−n

2m−nΓ(m− n)

ˆ 1

0
Jn(xt)tn+1(1 − t2)m−n−1dt (A.3)

n = 0 のとき，

Jm(x) = xm

2m−1Γ(m)

ˆ 1

0
J0(xt)t(1 − t2)m−1dt (A.4)

m → m+ 1とすると，

Jm+1(x) = xm+1

2mΓ(m+ 1)

ˆ 1

0
J0(xt)t(1 − t2)mdt (A.5)

*1 G. N. Watson, ”Theory of Bessel Functions,” 2d ed., p.373, Macmillan, New York (1945).
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よって，次式が得られる．
ˆ 1

0
(1 − t2)mJ0(xt)tdt = 2mΓ(m+ 1)Jm+1(x)

xm+1 (A.6)

ただし，Γ(m+ 1) はガンマ関数を示し，mが正整数のとき，

Γ(m+ 1) = m! (A.7)
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A.2 Laplaceの積分

積分 I(a)

I(a) =
ˆ ∞

0
e−bx2 cos(2ax)dx (A.8)

を aについて微分すると，次のようになる．

dI

da
= d

da

(ˆ ∞

0
e−bx2 cos(2ax)dx

)

=
ˆ ∞

0

(
−2xe−bx2) sin(2ax)dx (A.9)

部分積分より，

dI

da
=
[
e−bx2

b
· sin(2ax)

]∞

0
−
ˆ ∞

0

e−bx2

b
· 2a cos(2ax)dx

= −2a
b

ˆ ∞

0
e−bx2 cos(2ax)dx

= −2a
b
I (A.10)

したがって，次の微分方程式を aについて解けばよいことになる．

dI(a)
da

= −2a
b
I(a) (A.11)

これより，
ˆ
dI

I
= −2

b

ˆ
ada (A.12)

この不定積分を実行すると，

loge I = −2
b

a2

2 + C ′ = −a2

b
+ C ′ (A.13)

よって，I(a)は次のようになる（C ′ および C は積分定数）．

I(a) = Ce− a2
b (A.14)

いま，a = 0とおくと，

I(0) = C (A.15)

ゆえ，I(0)より C が決まる．

I(0) =
ˆ ∞

0
e−bx2

dx =
ˆ ∞

0
e−by2

dy (A.16)
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これより，I2(0)を求めると次のようになる．

I2(0) =
(ˆ ∞

0
e−bx2

dx

)(ˆ ∞

0
e−by2

dy

)

=
ˆ ∞

0

ˆ ∞

0
e−b(x2+y2)dxdy (A.17)

ただし，0 ≤ x ≤ ∞，0 ≤ y ≤ ∞．また，

x ≡ r cos θ (A.18)
y ≡ r sin θ (A.19)

とおいて変数変換すると，

x2 + y2 = r2 (A.20)
dxdy = rdrdθ (A.21)

より，

I2(0) =
ˆ π/2

0

ˆ ∞

0
e−br2

rdrdθ

=
ˆ π/2

0
dθ

ˆ ∞

0
e−br2

rdr

= π

2

ˆ ∞

0
e−br2

rdr (A.22)

さらに，r2 ≡ tとおいて，

2rdr = dt (A.23)

より，変数変換すると，

I2(0) = π

2

ˆ ∞

0
e−bt1

2dt = π

4

[
−1
b
e−bt

]∞

0

= π

4b(− 1
e∞ + e0)

= π

4b (A.24)

よって，

C = I(0) =
ˆ ∞

0
e−bx2

dx = 1
2

√
π

b
(A.25)

これより，I(a)は次のようになる．

I(a) =
ˆ ∞

0
e−bx2 cos(2ax)dx = 1

2

√
π

b
e− a2

b (A.26)

これを，Laplaceの積分という．
154



A.3 三角関数の公式

A.3.1 三角関数の積和公式

三角関数の積和公式（積→和・差）を求めるため，

ej(α+β) + ej(α−β)

= ejα(ejβ + e−jβ)
= (cosα + j sinα)2 cos β
= 2 cosα cos β + j2 sinα cos β
=
{

cos(α + β) + cos(α− β)
}

+ j
{

sin(α + β) + sin(α− β)
}

(A.27)

同様にして，

ej(α+β) − ej(α−β)

= ejα(ejβ − e−jβ)
= (cosα + j sinα)j2 sin β
= j2 cosα sin β − 2 sinα sin β
=
{

cos(α + β) − cos(α− β)
}

+ j
{

sin(α + β) − sin(α− β)
}

(A.28)

これより，

2 cosα cos β = cos(α + β) + cos(α− β) (A.29)
2 sinα cos β = sin(α + β) + sin(α− β) (A.30)
2 cosα sin β = sin(α + β) − sin(α− β) (A.31)
− 2 sinα sin β = cos(α + β) − cos(α− β) (A.32)
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A.3.2 三角関数の和積公式

三角関数の和積公式（和・差→積）は，

A = α + β (A.33)
B = α− β (A.34)

とおいて，

α = A+B

2 (A.35)

β = A−B

2 (A.36)

より，

ejA + ejB = ej
(

A+B
2 + A−B

2

)
+ ej

(
A+B

2 − A−B
2

)
= ej

A+B
2
(
ej

A+B
2 + ej

A−B
2
)

=
{

cos
(
A+B

2

)
+ j sin

(
A+B

2

)}
2 cos

(
A−B

2

)
= cosA+ cosB + j(sinA+ sinB) (A.37)

ejA − ejB = ej
(

A+B
2 + A−B

2

)
− ej

(
A+B

2 − A−B
2

)
= ej

A+B
2
(
ej

A+B
2 − ej

A−B
2
)

=
{

cos
(
A+B

2

)
+ j sin

(
A+B

2

)}
j2 sin

(
A−B

2

)
= cosA− cosB + j(sinA− sinB) (A.38)

これより，

cosA+ cosB = 2 cos
(
A+B

2

)
cos

(
A−B

2

)
(A.39)

sinA+ sinB = 2 sin
(
A+B

2

)
cos

(
A−B

2

)
(A.40)

cosA− cosB = −2 sin
(
A+B

2

)
sin

(
A−B

2

)
(A.41)

sinA− sinB = 2 cos
(
A+B

2

)
sin

(
A−B

2

)
(A.42)
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A.4 離散フーリエ変換

�離散フーリエ変換対 時間 t領域と周波数 f 領域とのフーリエ変換対は，

H(f) =
ˆ ∞

−∞
h(t)e−j2πftdt (A.43)

h(t) =
ˆ ∞

−∞
H(f)ej2πftdf (A.44)

時間領域のサンプル間隔を ∆t ≡ T，周波数領域のサンプル間隔を ∆f ≡ 1
NT とおくと，

離散フーリエ変換対は次のようになる．

G(n∆f) =
N−1∑
m=0

g(m∆t)e−j2πnm/N (n = 0, 1, · · · , N − 1) (A.45)

g(m∆t) = 1
N

N−1∑
n′=0

G(n∆f)ej2πnm/N (m = 0, 1, · · · , N − 1) (A.46)

ただし，

∆f = 1
N∆t (A.47)

�単一のインパルスのフーリエ変換 ここでは，フーリエ変換対の離散化の詳細について説
明する．時間 t領域と周波数 f 領域とのフーリエ変換対を再記して，

H(f) =
ˆ ∞

−∞
h(t)e−j2πftdt, h(t) =

ˆ ∞

−∞
H(f)ej2πftdf (A.48)

関数 h(t)として，時間領域における単一のインパルスを考えると，

h(t) = δ(t− t′) (A.49)

ただし，δ(t)はデルタ関数であり，次式を満足する．
ˆ ∞

−∞
δ(t− t0)f(t)dt = f(t0) (A.50)

これをフーリエ変換した H(f)は，

H(f) =
ˆ ∞

−∞
h(t)e−j2πftdt =

ˆ ∞

−∞
δ(t− t′)e−j2πftdt = e−j2πft′ (A.51)

逆フーリエ変換した h(t)は，

h(t) =
ˆ ∞

−∞
H(f)ej2πftdf =

ˆ ∞

−∞
e−j2πft′ej2πftdf =

ˆ ∞

−∞
ej2πf(t−t′)df = δ(t− t′)

(A.52)

157



同様に関数 H(f)として，周波数領域における単一のインパルスを考えると，

H(f) = δ(f − f ′) (A.53)

これを逆フーリエ変換した h(t)は，

h(t) =
ˆ ∞

−∞
H(f)ej2πftdf =

ˆ ∞

−∞
δ(f − f ′)ej2πftdf = ej2πf

′t (A.54)

フーリエ変換した H(f)は，

H(f) =
ˆ ∞

−∞
h(t)e−j2πftdt =

ˆ ∞

−∞
e−j2πf(f−f ′)dt = δ(f − f ′) (A.55)

� インパルス列のフーリエ変換 関数 h(t) として，時間領域におけるインパルス列（周期
T）を考えると，

h(t) =
∞∑

n=−∞
δ(t− nT ) (A.56)

このような周期関数は，フーリエ級数で表すことができ，

h(t) =
∞∑

k=−∞
cke

j2π k
T
t (A.57)

ここで，ck はフーリエ係数を示し，h(t)の任意の一周期より求めると，

ck = 1
T

ˆ (n+1)T−∆T

nT−∆T
h(t)e−j2π k

T
tdt = 1

T

ˆ ∞

−∞
δ(t− nT )e−j2π k

T
tdt (A.58)

これより，h(t)は，

h(t) =
∞∑

k=−∞

{
1
T

ˆ ∞

−∞
δ(t′ − nT )e−j2π k

T
t′dt′

}
ej2π

k
T
t (A.59)

これをフーリエ変換した H(f)は，

H(f) =
ˆ ∞

−∞

 ∞∑
k=−∞

{
1
T

ˆ ∞

−∞
δ(t′ − nT )e−j2π k

T
t′dt′

}
ej2π

k
T
t

 e−j2πftdt (A.60)

いま，

t̄ ≡ t′ − nT − t (A.61)
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とおき，t′ を t̄に変数変換すると，

H(f) =
ˆ ∞

−∞

∞∑
k=−∞

1
T

ˆ ∞

−∞
δ(t̄+ t)e−j2π k

T
(t̄+nT )dt̄ e−j2πftdt

= 1
T

∞∑
k=−∞

ˆ ∞

−∞

(ˆ ∞

−∞
δ(t̄+ t)e−j2πftdt

)
e−j2π k

T
(t̄+nT )dt̄

= 1
T

∞∑
k=−∞

ˆ ∞

−∞
ej2πft̄e−j2π k

T
t̄dt̄ = 1

T

∞∑
k=−∞

ˆ ∞

−∞
ej2π

(
f− k

T

)
t̄dt̄

= 1
T

∞∑
k=−∞

δ

(
f − k

T

)
(A.62)

�時間領域における標本化 時間領域の関数 h(t)の標本化（サンプリング）を，次の周期 T

のインパルス列 ∆0(t)

∆0(t) =
∞∑

l=−∞
δ(t−mT ) (A.63)

より行う（図 A.1(b)左参照）．標本化の結果（図 A.1(c)左参照），

h(t)∆0(t) = h(t)
∞∑

m=−∞
δ(t−mT ) =

∞∑
m=−∞

h(mT )δ(t−mT ) (A.64)

このとき，インパルス列 ∆0(t)のフーリエ変換 ∆̃0(f)は（図 A.1(b)右参照），

∆̃0(f) = 1
T

∞∑
k=−∞

δ

(
f − k

T

)
(A.65)

よって，h(t)∆0(t)のフーリエ変換は，H(f)と ∆̃0(f)の畳み込み積分で求められ，次のよ
うになる（図 A.1(c)右参照）．

H(f) ∗ ∆̃0(f) =
ˆ ∞

−∞
H(f ′)∆̃0(f − f ′)df ′ =

ˆ ∞

−∞
H(f ′) 1

T

∞∑
k=−∞

δ

(
f − f ′ − k

T

)
df ′

= 1
T

∞∑
k=−∞

ˆ ∞

−∞
H(f ′)δ

(
f − f ′ − k

T

)
df ′ = 1

T

∞∑
k=−∞

H

(
f − k

T

)
(A.66)

�時間領域における打ち切り 次に，時間領域の幅 T0 の方形関数 x(t)

x(t) =


1

(
−T

2 < t < T0 − T

2

)
0

(
それ以外

) (A.67)

159



(a) 連続フーリエ変換対

(b) インパルス列のフーリエ変換対

(c) インパルス列による時間領域の標本化

図 A.1. 離散フーリエ変換対を求める過程（時間領域における標本化）

より（図 A.2(a)左参照），時間領域における打ち切りを行うと（図 A.2(b)左参照），

h(t)∆0(t)x(t) =
{ ∞∑
m=−∞

h(mT )δ(t−mT )
}
x(t)

=
N−1∑
m=0

h(mT )δ(t−mT ) ≡ h0(t) (A.68)

ただし，N(= T0/T )はサンプル点数を示す．このとき，方形関数 x(t)のフーリエ変換X(f)
は（図 A.2(a)右参照），

X(f) =
ˆ ∞

−∞
x(t)e−j2πftdt =

ˆ T0− T
2

− T
2

e−j2πftdt =
[
e−j2πft

−j2πf

]T0− T
2

− T
2

= e−j2πf
(
T0− T

2

)
− ej2πf

T
2

−j2πf = e−jπf
(
T0− T

2

) e−jπf
(
T0− T

2

)
− ejπf

(
T0− T

2

)
−j2πf

=
(
T0 − T

2

)
e−jπf

(
T0− T

2

) sin
(
πf

(
T0 − T

2

))
πf

(
T0 − T

2

) (A.69)
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また，h0(t)のフーリエ変換 H0(f)は（図 A.2(b)右参照）．

H0(f) =
ˆ ∞

−∞
h0(t)e−j2πftdt =

ˆ ∞

−∞

N−1∑
m=0

h(mT )δ(t−mT )e−j2πftdt

=
N−1∑
m=0

h(mT )
ˆ ∞

−∞
δ(t−mT )e−j2πftdt =

N−1∑
m=0

h(mT )e−j2πfmT (A.70)

(a) 時間領域の方形関数とそのフーリエ変換

(b) 時間領域での打ち切りとそのフーリエ変換

図 A.2. 離散フーリエ変換対を求める過程（時間領域における打ち切り）

�周波数領域における標本化 周波数領域における標本化を行えば，離散フーリエ変換対が
得られる．このとき，先に示したように周波数領域におけるインパルス列の逆フーリエ変換
もまた，インパルス列 ∆1(t)となり（図 A.3(a)左参照）

∆1(t) = T0

∞∑
r=−∞

δ(t− rT0) (A.71)

で表すと，時間領域では次のように h0(t)と ∆1(t)の畳込み積分となる．

h0(t) ∗ ∆1(t) =
ˆ ∞

−∞
h0(τ)∆1(t− τ)dτ =

ˆ ∞

−∞
h0(τ)

(
T0

∞∑
s=−∞

δ(t− sT0 − τ)
)
dτ

= T0

∞∑
s=−∞

ˆ ∞

−∞
h0(τ)δ(t− sT0 − τ)dτ = T0

∞∑
s=−∞

h0(t− sT0)

= T0

∞∑
s=−∞

N−1∑
m=0

h(mT )δ(t− sT0 −mT )
 ≡ h∼(t) (A.72)
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さらに，これをフーリエ変換すると，次のようになる．

H∼(f) =
ˆ ∞

−∞
h∼(t)e−j2πftdt

=
ˆ ∞

−∞
T0

∞∑
s=−∞

N−1∑
m=0

h(mT )δ(t− sT0 −mT )
 e−j2πftdt

= T0

N−1∑
m=0

h(mT )
ˆ ∞

−∞

{ ∞∑
s=−∞

δ(t− sT0 −mT )
}
e−j2πftdt (A.73)

変数変換 t′ ≡ t−mT より，

H∼(f) = T0

N−1∑
m=0

h(mT )e−j2πfmT
ˆ ∞

−∞

{ ∞∑
s=−∞

δ(t′ − sT0)
}
e−j2πft′dt′

= T0

N−1∑
m=0

h(mT )e−j2πfmT 1
T0

∞∑
n=−∞

δ
(
f − n

T0

)
(A.74)

ここで，T0 = NT より，

(a) インパルス列のフーリエ変換対

(b) インパルス列による周波数領域の標本化

図 A.3. 離散フーリエ変換対を求める過程（周波数領域における標本化）

H∼(f) =
N−1∑
m=0

h(mT )e−j2πfmT
∞∑

n=−∞
δ
(
f − n

NT

)

=
∞∑

n=−∞

N−1∑
m=0

h(mT )e−j2π n
NT

mT δ
(
f − n

NT

)

=
∞∑

n=−∞

N−1∑
m=0

h(mT )e−j2πnm/Nδ
(
f − n

NT

) (A.75)

いま，

f = n′

NT
(n′ = −∞, · · · ,−1, 0, 1, · · · ,∞) (A.76)
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のとき，

H∼

(
n′

NT

)
=

N−1∑
m=0

h(mT )e−j2πn′m/N (n′ = −∞, · · · ,−1, 0, 1, · · · ,∞) (A.77)

� 離散フーリエ変換対 いま， n′ ≡ n′′ + lN (n′′ = 0, 1, · · · , N − 1)， (l =
−∞, · · · ,−1, 0, 1, · · · ,∞)とおくと，

H∼

(
n′′ + lN

NT

)
=

N−1∑
m=0

h(mT )e−j2π(n′′+lN)m/N

=
N−1∑
m=0

h(mT )e−j2πn′′m/Ne−j2πlm

=
N−1∑
m=0

h(mT )e−j2πn′′m/N = H∼

(
n′′

NT

)
(A.78)

これが，離散フーリエ変換である．同様に離散フーリエ逆変換は（導出省略），

h∼(mT ) = 1
N

N−1∑
n=0

H
(
n

NT

)
ej2πnm/N (m = 0, 1, · · · , N − 1) (A.79)

これより，時間領域のサンプル間隔を ∆t ≡ T，周波数領域のサンプル間隔を ∆f ≡ 1
NT と

おくと，離散フーリエ変換対は次のようになる．

G(n∆f) =
N−1∑
m=0

g(m∆t)e−j2πnm/N (n = 0, 1, · · · , N − 1) (A.80)

g(m∆t) = 1
N

N−1∑
n′=0

G(n∆f)ej2πnm/N (m = 0, 1, · · · , N − 1) (A.81)

ただし，

∆f = 1
N∆t (A.82)

�MATLAB MATLABの 1次元高速フーリエ変換（FFT）の場合，n̄ ≡ n+ 1，m̄ ≡ m+ 1
のときの離散データを gm̄，Gn̄ で表わすと，

Gn̄ = ∆t
N∑
m̄=1

gm̄ω
(n̄−1)(m̄−1)
N , gm̄ = ∆f

N∑
n̄=1

Gn̄ω
−(n̄−1)(m̄−1)
N (A.83)

ただし（Nはサンプル点数），

ωN = e−j 2π
N (A.84)

• フーリエ変換：　 G = fft(g)，G = fft(g,N)
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• 逆フーリエ変換：　 g = ifft(G)，g = ifft(G,N)

MATLABの 2次元高速フーリエ変換（FFT）の場合，

• 2次元フーリエ変換：　 G = fft2(g)，G = fft2(g,N)

• 2次元逆フーリエ変換：　 g = ifft2(G)，g = ifft2(G,N)

ただし，Nはサンプル点数を示す．
関連するMATLAB関数は，

• DC 成分をスペクトルの中心に移動：　 Y = fftshift(X)

• 上の逆のシフト：　 Y = ifftshift(X)

• 指定した値m以上の最小の 2のべき乗値 n：　 n = nextpow2(m)

MATLAB 関数 fftshift(X) より，ベクトル X（1 次元）の右半分と左半分を入れ替え，
あるいは行列 X（2次元）の第 1象限と第 3象限を，第 2象限と第 4象限を入れ替えるこ
とができる．

�例題 方形関数（1次元）h(t)を高速フーリエ変換せよ．また，方形関数の連続フーリエ
変換 H(f)も計算し，比較せよ．
（略解）時間領域の方形関数 h(t)として，−Tr ≤ t ≤ Tr で大きさ A（定数）の方形関数
を考え，フーリエ変換すると，

H(f) =
ˆ ∞

−∞
h(t)e−j2πftdt =

ˆ Tr

−Tr

Ae−j2πftdt = A

[
e−j2πft

−j2πf

]Tr

−Tr

= A
e−j2πfTr − ej2πfTr

−j2πf = A
−j2 sin (2πfTr)

−j2πf = 2ATr
sin (2πfTr)

2πfTr
(A.85)

�フーリエ変換対の別の形 角周波数 ω(= 2πf)を用いて連続フーリエ変換対を表わすと，
dω = 2πdf より，

H(ω) =
ˆ ∞

−∞
h(t)e−jωtdt (A.86)

h(t) =
ˆ ∞

−∞
H(ω)ejωtdf = 1

2π

ˆ ∞

−∞
H(ω)ejωtdω (A.87)
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図 A.4. 高速フーリエ変換および連続フーリエ変換による計算結果

あるいは，次のようなフーリエ変換対も考えられる．

H(ω) = a1

ˆ ∞

−∞
h(t)e−jωtdt (A.88)

h(t) = a2

ˆ ∞

−∞
H(ω)ejωtdω (A.89)

ただし，a1，a2 は任意ではない．
a1a2 を求めるため，フーリエ変換対の第 1式の H(ω)を第 2式に代入すると，

h(τ) = a2

ˆ ∞

−∞
H(ω)ejωτdω = a2

ˆ ∞

−∞

(
a1

ˆ ∞

−∞
h(t)e−jωtdt

)
ejωτdω

= a1a2

ˆ ∞

−∞
h(t)

(ˆ ∞

−∞
ejω(τ−t)dω

)
dt (A.90)

ここで，デルタ関数の公式を ω = 2πf で変数変換すると，dω = 2πdf より，

δ(τ − t) =
ˆ ∞

−∞
ej2πf(τ−t)df =

ˆ ∞

−∞
ejω(τ−t)dω

2π (A.91)

よって，
ˆ ∞

−∞
ejω(τ−t)dω = 2πδ(τ − t) (A.92)

165



これより，

h(τ) = a1a2

ˆ ∞

−∞
h(t)2πδ(τ − t)dt = a1a2h(τ)2π (A.93)

したがって，

a1a2 = 1
2π (A.94)

このとき，離散フーリエ変換対は次のようになる．

G(n∆ω) = a1

N−1∑
m=0

g(m∆t)e−jnm/N (n = 0, 1, · · · , N − 1) (A.95)

g(m∆t) = a2

N

N−1∑
n=0

G(n∆ω)ejnm/N (m = 0, 1, · · · , N − 1) (A.96)

ただし，

∆ω = 2π
N∆t (A.97)
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A.5 直交曲線座標系

A.5.1 はじめに

電磁気学等において，問題に応じて座標系（円筒・球座標など）を使い分けることは不可
欠です．しかしながら，直角座標系以外では場所によって単位ベクトルの向きが変わる」た
め，計算が複雑になります．ここでは，直交曲線座標系によって統一的に扱う方法を説明し
ます．これにより，あらゆる座標系の演算（grad, div, rot）を体系的に導出できるようにな
ります．

A.5.2 直交曲線座標の定義

任意の直交曲線座標系を記述するため，位置ベクトル，基底ベクトル，単位ベクトルを定
義し，それらの大きさを特徴づけるスケールファクター（計量係数）を導入します．

�位置ベクトルと変位ベクトル 3次元空間内の一点を，一般的な直交曲線座標 (u1, u2, u3)
で指定する．まず，原点からこの点への位置ベクトルを r(u1, u2, u3) とする．この点から座
標が微小量 (du1, du2, du3) だけ変化した近傍の点 (u1 + du1, u2 + du2, u3 + du3)の位置ベ
クトル点 r + dr を考える．この二点間の変位ベクトル dr は，r の全微分として次のよう
に表される。

dr = ∂r

∂u1
du1 + ∂r

∂u2
du2 + ∂r

∂u3
du3 (A.98)

ここで，各座標軸 ui に沿った基底ベクトル ai を次のように定義する．

ai ≡ ∂r

∂ui
(i = 1, 2, 3) (A.99)

これにより，変位ベクトル dr は基底ベクトルを用いて次のように表現できる．

dr =
3∑
i=1

aidui (A.100)

�スケールファクターと単位ベクトル 基底ベクトル ai は，座標成分 ui に沿うベクトルで
あり，直交性

ai · aj = 0 (i 6= j)

が成り立つものとして直交曲線座標系を考えていく．まず，大きさを１として単位ベクトル
ii を

ii = ai
|ai|

= ai√
ai · ai

(A.101)
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で定義する．これらの単位ベクトルは互いに直交し，正規直交基底を形成する．この正規直
交性は，クロネッカーのデルタ δij を用いて次のように表される。

ii · ij = δij (δij = 1 if i = j, δij = 0 if i 6= j) (A.102)

また，基底ベクトル ai の大きさ hi を「スケールファクター（scale factor）」または「計量
係数」と呼び，次のように定義する (i = 1, 2, 3)．

hi = |ai| = √
ai · ai =

√
∂r

∂ui
· ∂r

∂ui
(A.103)

これより，ai = hiii．

�ベクトル積 直交単位ベクトル ii (i = 1, 2, 3)に関するベクトル積は明らかに，

i1 × i2 = i3 (A.104)
i2 × i3 = i1 (A.105)
i3 × i1 = i2 (A.106)

これより，ai (i = 1, 2, 3)に関するベクトル積は，

a1 × a2 = h1i1 × h2i2 = h1h2i3 (A.107)
a2 × a3 = h2i2 × h3i3 = h2h3i1 (A.108)
a3 × a1 = h3i3 × h1i1 = h3h1i2 (A.109)

A.5.3 積分の積素

スケールファクターと単位ベクトルを用いて，直交曲線座標系における微小な長さ（線
素），面積（面素），体積（体積素）を計算するための要素を導出する．これらは，ベクトル
解析における線積分，面積分，体積積分で用いる要素となる．

�線要素 変位ベクトル dr は，ai = hiii の関係を用いると次のようになる．

dr = h1i1du1 + h2i2du2 + h3i3du3 =
3∑
i=1

hiiidui

=
3∑
i=1

dsi (A.110)

上式の dsiはベクトル線要素 dsiを示し，その大きさであるスカラー線要素 dsi (i = 1, 2, 3)
は

dsi = |dsi| = hidui (A.111)
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これより，

dsi = hiiidui ≡ iidsi (i = 1, 2, 3) (A.112)

また，

ds1 = h1du1, ds2 = h2du2, ds3 = h3du3 (A.113)

微小変位ベクトルの大きさ（線素）の 2乗 ds2 は，dr · dr を計算することで得られ，各ス
カラー線要素の 2乗和となる．

ds2 = dr · dr = (h1du1)2 + (h2du2)2 + (h3du3)2

= ds2
1 + ds2

2 + ds2
3 =

3∑
i=1

ds2
i (A.114)

�面要素 微小な面要素は，2つのベクトル線要素のベクトル積として定義される．例えば，
u1 座標が一定の面に直交する（すなわち i1 方向を向く）ベクトル面要素 da1 は，ベクト
ル線要素 ds2 と ds3 のベクトル積で与えられる．

da1 = ds2 × ds3 = h2i2du2 × h3i3du3

= h2h3i1du2du3 ≡ da1i1 (A.115)

同様にして，ベクトル面要素 da2，da3 は，

da2 = ds3 × ds1 = h3i3du3 × h1i1du1

= h3h1i2du3du1 ≡ da2i2 (A.116)
da3 = ds1 × ds2 = h1i1du1 × h2i2du2

= h1h2i3du1du2 ≡ da3i3 (A.117)

よって，各ベクトル面要素の大きさであるスカラー面要素 dai (i = 1, 2, 3) は，次のように
なる．

da1 = h2h3du2du3 (A.118)
da2 = h3h1du3du1 (A.119)
da3 = h1h2du1du2 (A.120)

u3-

u2-

u1-

ds3 

ds2 

図 A.5. ベクトル線要素

169



�体積要素 微小体積要素 dv は，3つのベクトル線要素 ds1, ds2, ds3 が張る微小な平行六
面体の体積に等しい．これは，これらのベクトルのスカラー三重積によって次のように計算
できる．

dv = ds1 · (ds2 × ds3) = h1i1du1 · h2h3i1du2du3

= h1h2h3du1du2du3 (A.121)

A.5.4 ベクトル演算子

いま，直交曲線座標系 (u1, u2, u3)の各成分が，直角座標系 (x, y, z)の各成分の関数とし
て次のように与えられている場合を考える．

u1 = f1(x, y, z) (A.122)
u2 = f2(x, y, z) (A.123)
u3 = f3(x, y, z) (A.124)

(x, y, z)の代わりに (x1, x2, x3)とすると，

u1 = f1(x1, x2, x3) (A.125)
u2 = f2(x1, x2, x3) (A.126)
u3 = f3(x1, x2, x3) (A.127)

逆の関係が次のように一価関数として

x1 = x1(u1, u2, u3) (A.128)
x2 = x2(u1, u2, u3) (A.129)
x3 = x3(u1, u2, u3) (A.130)

で与えられているとき，位置ベクトル r は，

r = x1(u1, u2, u3)i + x2(u1, u2, u3)j + x3(u1, u2, u3)k

ただし，i，j，k は，x1，x2，x3 方向の単位ベクトル（定ベクトル）を各々示す．これよ
り，ui (i = 1, 2, 3)で微分すると，

∂r

∂ui
= ∂x1

∂ui
i + ∂x2

∂ui
j + ∂x3

∂ui
k (i = 1, 2, 3) (A.131)

したがって，hi (i = 1, 2, 3)は，

hi =
√
∂r

∂ui
· ∂r

∂ui
=

√√√√√ 3∑
j=1

(
∂xj
∂ui

)2

(A.132)
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�勾配 (gradient) 勾配は，スカラ場の変化の割合をベクトルで表したもので，スカラ関数
を Φとすると，∇Φ あるいは grad Φ と書く．この ∇Φ の方向は，スカラ関数の変化の割
合が最大となる向きを示し，これはスカラ関数を等高線表示したとき，その等高線に垂直に
とった方向のことである．また，大きさは，その変化の割合の最大値を意味している．
直交曲線座標 (u1, u2, u3) の関数としてスカラー Φ = Φ(u1, u2, u3) が与えられていると
き，dr だけ微小変位したときの Φの微小変化 dΦは，

dΦ = ∂Φ
∂u1

du1 + ∂Φ
∂u2

du2 + ∂Φ
∂u3

du3 =
3∑
i=1

∂Φ
∂ui

dui (A.133)

一方，勾配 (gradient)の定義より，dΦ = ∇Φ · dr．よって，

∇Φ · dr =
3∑
i=1

∂Φ
∂ui

dui (A.134)

ところで，dr は，式 (A.110)より，

dr =
3∑
i=1

hiiidui (A.135)

両辺に ij のスカラー積をとると，

ij · dr = ij ·
3∑
i=1

hiiidui = hjduj (A.136)

これより，dui は，

dui = ii · dr
hi

(A.137)

したがって，

∇Φ · dr =
3∑
i=1

∂Φ
∂ui

ii · dr
hi

(A.138)

∴

(
∇Φ −

3∑
i=1

ii
hi

∂Φ
∂ui

)
· dr = 0 (A.139)

上式が任意の dr に対して成り立つためには，

∇Φ −
3∑
i=1

ii
hi

∂Φ
∂ui

= 0 (A.140)

したがって，スカラー関数 Φの勾配 ∇Φは，

∇Φ =
3∑
i=1

1
hi

∂Φ
∂ui

ii (A.141)
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�発散 (divergence) 発散は，ベクトル場の源 (source)がどのように分布しているかを表
す目安で，ベクトル関数を F とすると，∇ · F あるいは div F と書く．発散の定義式は，

∇ · F = lim
S→0

1
V

‹
S

F · ndS (A.142)

で与えられ，単位体積当たり閉曲面の表面を通り抜ける正味の fluxの量（流束）を求めるも
のである．ただし，nは曲面の法線ベクトル，積分記号

‹
は面積分を閉曲面 S にわたっ

て行うことを表している．
いま，次のようなベクトル F が与えられているとする．

F = F1i1 + F2i2 + F3i3 =
3∑
i=1

Fiii (A.143)

ここで，ii (i = 1, 2, 3)は直交曲線座標系の単位ベクトルを示し，u1-曲面（u1 一定），u2-曲
面（u2 一定），u3-曲面（u3 一定）で囲まれる微小体積から出る F の流束を考える．
u2 曲面上の面要素から出るベクトル F の流束は，

F · (ds3 × ds1)
∣∣∣∣
u2+du2

+ F · (−ds3 × ds1)
∣∣∣∣
u2

' F · (ds3 × ds1)
∣∣∣∣
u2

+ ∂

∂u2
{F · (ds3 × ds1)}du2 − F · (ds3 × ds1)

∣∣∣∣
u2

= ∂

∂u2
{F · (ds3 × ds1)}du2 (A.144)

ただし，du2 は座標の増分を意味する（直接，線要素になるわけではない）．ここで，

F · (ds3 × ds1) =
{ 3∑
i=1

Fiii

}
· (h3h1i2du3du1)

= F2h3h1du3du1 (A.145)

これより，

∂

∂u2
{F · (ds3 × ds1)}du2 = ∂

∂u2
{F2h3h1} du1du2du3 (A.146)

u
2-

u 1
-

u
3
-

ds3

ds1

(u1, u2, u3)

(u1+du1, u2+du2, u3+du3)

図 A.6. 体積要素
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同様にして，u3 曲面上の面要素から出るベクトル F の流束は，

∂

∂u3
{F3h1h2} du1du2du3

u1 曲面上の面要素から出るベクトル F の流束は，

∂

∂u1
{F1h2h3} du1du2du3

よって，u1-曲面，u2-曲面，u3-曲面で囲まれる微小体積から出るベクトル F の流束は，こ
れらの総和をとって，[

∂

∂u1
{h2h3F1} + ∂

∂u2
{h3h1F2} + ∂

∂u3
{h1h2F3}

]
· du1du2du3

= 1
h1h2h3

[
∂

∂u1
{h2h3F1} + ∂

∂u2
{h3h1F2} + ∂

∂u3
{h1h2F3}

]
dv (A.147)

したがって，

lim
S→0

1
V

‹
S

F · ndS = 1
dv

· 1
h1h2h3

[
∂

∂u1
{h2h3F1}

+ ∂

∂u2
{h3h1F2} + ∂

∂u3
{h1h2F3}

]
dv (A.148)

発散の定義より，

∇ · F = 1
h1h2h3

[
∂

∂u1
{h2h3F1} + ∂

∂u2
{h3h1F2} + ∂

∂u3
{h1h2F3}

]
(A.149)

�ラプラシアン ∇ · ∇Φ = ∇2Φの ∇2（ラプラシアン）を考える．いま，∇Φをベクトル
F ′ とみなすと，

∇Φ =
3∑
i=1

1
hi

∂Φ
∂ui

ii ≡
3∑
i=1

F ′
i ii ≡ F ′ (A.150)

ベクトル F ′ の成分 F ′
i は，

F ′
i = 1

hi

∂Φ
∂ui

(i = 1, 2, 3) (A.151)

このとき，ベクトル F ′ の発散を求めれば，

∇ · F ′ = 1
h1h2h3

[
∂

∂u1
{h2h3F

′
1} + ∂

∂u2
{h3h1F

′
2} + ∂

∂u3
{h1h2F

′
3}
]

(A.152)

したがって，

∇ · F ′ = ∇ · ∇Φ

= ∇2Φ = 1
h1h2h3

{
∂

∂u1

(
h2h3

h1

∂Φ
∂u1

)
+ ∂

∂u2

(
h3h1

h2

∂Φ
∂u2

)
+ ∂

∂u3

(
h1h2

h3

∂Φ
∂u3

)}
(A.153)
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�回転 (rotation) 回転は，ベクトル関数を F とすると，∇ × F，rot F あるいは curl F

と書き，単位面積当たりの最大の回転量（渦）を与える面に垂直な方向をもち，回転量の最
大値を大きさとするベクトルである．周回積分路 C でできる面の法線単位ベクトルを nと
おくと，

(∇ × F ) · n = lim
∆C→0

1
S

˛
C

F · ds (A.154)

で与えられる．ここで，∇ × F を次のようにおく．

∇ × F =
3∑
i=1

{(∇ × F ) · ii}ii (A.155)

∇ × F の各成分は，次のように ii に直交する微小面 Si の周回積分路 Ci に沿った計算を行
えば得られる．

(∇ × F ) · ii = lim
∆Ci→0

1
Si

˛
Ci

F · ds (i = 1, 2, 3) (A.156)

u
2-

u 1
-

u
3
-

(u1, u2+du2, u3+du3)

(u1, u2+du2, u3)
(u1, u2, u3)

(1)
(2)

(3)

(4)

図 A.7. 面要素周りの微小周回積分路

そこで，まず，(∇ × F ) · i1 について求めることにする．このとき，周回積分路 C1 のう
ち，同図の (1)の (u1, u2 + du2, u3)から (u1, u2 + du2, u3 + du3)までの線積分（u3-曲線上）
は，線要素 ds3 = h3du3 より，

F3ds3

∣∣∣∣
u2+du2

' F3h3du3 + ∂

∂u2
(F3h3du3)du2

また，同図の (2)の (u1, u2, u3 + du3)から (u1, u2, u3)までの線積分（u3-曲線上）は，

−F3ds3

∣∣∣∣
u2

= −F3h3du3

同図の (3)の (u1, u2 + du2, u3 + du3)から (u1, u2, u3 + du3)までの線積分（u2-曲線上）
は，線要素 ds2 = h2du2 より，

−F2ds2

∣∣∣∣
u3+du3

' −F2h2du2 − ∂

∂u3
(F2h2du2)du3
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そして，同図の (4)の (u1, u2, u3)から (u1, u2 + du2, u3)までの線積分（u2-曲線上）は，

F2ds2

∣∣∣∣
u3

= F2h2du2

これらの総和をとれば，C1 の周回積分は，{
∂(h3F3)
∂u2

− ∂(h2F2)
∂u3

}
du2du3 (A.157)

また，C1 に囲まれた面積は，面要素 da1 に対応し，再記すると，da1 = h2h3du2du3．した
がって，

(∇ × F ) · i1 =

{
∂(h3F3)
∂u2

− ∂(h2F2)
∂u3

}
du2du3

h2h3du2du3
= 1
h2h3

{
∂(h3F3)
∂u2

− ∂(h2F2)
∂u3

}
(A.158)

同様にして，

(∇ × F ) · i2 = 1
h3h1

{
∂(h1F1)
∂u3

− ∂(h3F3)
∂u1

}
(A.159)

(∇ × F ) · i3 = 1
h1h2

{
∂(h2F2)
∂u1

− ∂(h1F1)
∂u2

}
(A.160)

よって，∇ × F は次のようになる．

∇ × F = 1
h2h3

{
∂(h3F3)
∂u2

− ∂(h2F2)
∂u3

}
i1

+ 1
h3h1

{
∂(h1F1)
∂u3

− ∂(h3F3)
∂u1

}
i2

+ 1
h1h2

{
∂(h2F2)
∂u1

− ∂(h1F1)
∂u2

}
i3 (A.161)

あるいは，

∇ × F = 1
h1h2h3

∣∣∣∣∣∣∣∣∣∣∣

h1i1 h2i2 h3i3
∂

∂u1

∂

∂u2

∂

∂u3
h1F1 h2F2 h3F3

∣∣∣∣∣∣∣∣∣∣∣
(A.162)

A.5.5 具体的な座標系への応用

�球座標系 球座標系 (r, θ, ϕ) では，

u1 = r, u2 = θ, u3 = ϕ (A.163)
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とおくと，位置ベクトル r

r = r {sin θ(cosϕ i + sinϕ j) + cos θ k} (A.164)

および各導関数は，

∂r

∂u1
= ∂r

∂r
= sin θ(cosϕ i + sinϕ j) + cos θ k (A.165)

∂r

∂u2
= ∂r

∂θ
= r {cos θ(cosϕ i + sinϕ j) − sin θ k} (A.166)

∂r

∂u3
= ∂r

∂ϕ
= r sin θ(− sinϕ i + cosϕ j) (A.167)

よって，h1，h2，h3 は，

h1 =
√
∂r

∂u1
· ∂r

∂u1
=
√
∂r

∂r
· ∂r

∂r
= 1 (A.168)

h2 =
√
∂r

∂u2
· ∂r

∂u2
=
√
∂r

∂θ
· ∂r

∂θ
= r (A.169)

h3 =
√
∂r

∂u3
· ∂r

∂u3
=
√
∂r

∂ϕ
· ∂r

∂ϕ
= r sin θ (A.170)

r，θに沿う単位ベクトル ur，uθ，uϕ を求めると，

ur = i1 = 1
h1

∂r

∂u1
= ∂r

∂r
= sin θ(cosϕ i + sinϕ j) + cos θ k (A.171)

uθ = i2 = 1
h2

∂r

∂u2
= 1
r

∂r

∂θ
= cos θ(cosϕ i + sinϕ j) − sin θ k (A.172)

uϕ = i3 = 1
h3

∂r

∂u3
= 1
r sin θ

∂r

∂ϕ
= − sinϕ i + cosϕ j (A.173)

そして，任意のスカラ関数 Φについて次式が成立つ．

∇Φ = ∂Φ
∂r

ur + 1
r

∂Φ
∂θ

uθ + 1
r sin θ

∂Φ
∂ϕ

uϕ (A.174)

∇2Φ = 1
r2

∂

∂r

(
r2∂Φ
∂r

)
+ 1
r2 sin θ

∂

∂θ

(
sin θ∂Φ

∂θ

)
+ 1
r2 sin2 θ

∂2Φ
∂ϕ2 (A.175)

また，ベクトル関数 F を，

F = Frur + Fθuθ + Fϕuϕ (A.176)

とおくと，F の発散は，

∇ · F = 1
r2

∂

∂r

(
r2Fr

)
+ 1
r sin θ

∂

∂θ
(sin θ · Fθ) + 1

r sin θ
∂Fϕ
∂ϕ

(A.177)
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また，F の回転は，

∇ × F = 1
r2 sin θ

∣∣∣∣∣∣∣∣∣∣∣

ur ruθ r sin θuϕ

∂

∂r

∂

∂θ

∂

∂ϕ

Fr rFθ r sin θFϕ

∣∣∣∣∣∣∣∣∣∣∣
= 1
r sin θ

{
∂

∂θ
(sin θFϕ) − ∂Fθ

∂ϕ

}
ur

+
{

1
r sin θ

∂Fr
∂ϕ

− 1
r

∂

∂r
(rFϕ)

}
uθ + 1

r

{
∂

∂r
(rFθ) − ∂Fr

∂θ

}
uϕ (A.178)

�円筒座標系 円筒座標系 (ρ, φ, z) では，

u1 = ρ, u2 = φ, u3 = z (A.179)

とおくと，位置ベクトル r，および各導関数，

r = ρ(cosφ i + sinφ j) + z k (A.180)
∂r

∂u1
= ∂r

∂ρ
= cosφ i + sinφ j (A.181)

∂r

∂u2
= ∂r

∂φ
= ρ(− sinφ i + cosφ j) (A.182)

∂r

∂u3
= ∂r

∂z
= k (A.183)

よって，h1，h2，h3 は，

h1 =
√
∂r

∂u1
· ∂r

∂u1
=
√
∂r

∂ρ
· ∂r

∂ρ
= 1 (A.184)

h2 =
√
∂r

∂u2
· ∂r

∂u2
=
√
∂r

∂φ
· ∂r

∂φ
= ρ (A.185)

h3 =
√
∂r

∂u3
· ∂r

∂u3
=
√
∂r

∂z
· ∂r

∂z
= 1 (A.186)

また，ρ, φ, z に沿う単位ベクトルを各々 uρ，uφ，uz とおき，上の結果を基にして各単位ベ
クトル求めると，

uρ = i1 = 1
h1

∂r

∂u1
= ∂r

∂ρ
= cosφ i + sinφ j (A.187)

uφ = i2 = 1
h2

∂r

∂u2
= 1
ρ

∂r

∂φ
= − sinφ i + cosφ j (A.188)

uz = i3 = 1
h3

∂r

∂u3
= ∂r

∂z
= k (A.189)
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そして，任意のスカラ関数 Φについて次式が成立つ．

∇Φ = ∂Φ
∂ρ

uρ + 1
ρ

∂Φ
∂φ

uφ + ∂Φ
∂z

uz (A.190)

∇2Φ = 1
ρ

∂

∂ρ

(
ρ
∂Φ
∂ρ

)
+ 1
ρ2

∂2Φ
∂φ2 + ∂2Φ

∂z2 (A.191)

また，ベクトル関数 F を，

F = Fρuρ + Fφuφ + Fzuz (A.192)

とおくと，F の発散および回転は，

∇ · F = 1
ρ

∂

∂ρ
(ρFρ) + 1

ρ

∂Fφ
∂φ

+ ∂Fz
∂z

(A.193)

∇ × F = 1
ρ

∣∣∣∣∣∣∣∣∣∣∣

uρ ρuφ uz

∂

∂ρ

∂

∂φ

∂

∂z

Fρ ρFφ Fz

∣∣∣∣∣∣∣∣∣∣∣
=
(

1
ρ

∂Fz
∂φ

− ∂Fφ
∂z

)
uρ +

(
∂Fρ
∂z

− ∂Fz
∂ρ

)
uφ + 1

ρ

{
∂

∂ρ
(ρFφ) − ∂Fρ

∂φ

}
uz

(A.194)

�直角座標系 直角座標系 (x, y, z) では，

u1 = x, u2 = y, u3 = z (A.195)
h1 = 1, h2 = 1, h3 = 1 (A.196)

より，任意のスカラ関数 Φについて次のようになる．

∇Φ = ∂Φ
∂x

ux + ∂Φ
∂y

uy + ∂Φ
∂z

uz (A.197)

∇2Φ = ∂2ax
∂x2 + ∂2ay

∂y2 + ∂2az
∂z2 (A.198)

また，F = Fxux + Fyuy + Fzuz に対して，F の発散および回転は，

∇ · F = ∂Fx
∂x

+ ∂Fy
∂y

+ ∂Fz
∂z

(A.199)

∇ × F =

∣∣∣∣∣∣∣∣∣∣∣

ux uy uz

∂

∂x

∂

∂y

∂

∂z

Fx Fy Fz

∣∣∣∣∣∣∣∣∣∣∣
=
(
∂Fz
∂y

− ∂Fy
∂z

)
ux +

(
∂Fx
∂z

− ∂Fz
∂x

)
uy +

(
∂Fy
∂x

− ∂Fx
∂y

)
uz (A.200)
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