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CHAPTER 1

伝送回路の基礎

　伝送回路の基礎について広範囲にわたって解説する．まず，アドミタンス行列やイ
ンピーダンス行列といった回路網を表現する重要な行列の概念とその導出，物理的意
味を説明する．また，基本行列を用いた電圧・電流の関係や、影像パラメータ（影像
インピーダンス、影像伝送量）による回路特性の分析についても紹介する．さらに，
格子形回路や対称格子形回路の基本行列の求め方，信号源および終端抵抗のある回路
における電力伝送係数（動作伝送係数、挿入伝送係数）の計算，そして理想変成器の
原理とインピーダンス整合への応用についても詳細に論じている．最終的に，軸対称
回路におけるインピーダンス行列要素の導出に加えて，さまざまな伝送回路パラメー
タ間の関係を包括的に概観する．

1.1 アドミタンス行列

1.1.1 定電圧源を接続した線型受動回路

線形受動回路において，ループ i のループ電流を Ii，定電圧源を Vi とすると（i =
1, 2, · · · , N），キルヒホッフの電流則より，

Z11I1 + Z12I2 + · · · + Z1NIN = V1

Z21I1 + Z22I2 + · · · + Z2NIN = V2

· · · · · · · · · · · · · · ·
ZN1I1 + ZN2I2 + · · · + ZNNIN = VN (1.1)

ここで，Zii はループ iのインピーダンス（self-impedance），Zij はループ iと j の共通の
インピーダンスである．クラメルの公式（Cramer’s rule）より電流について解き，分子の

1



行列式 ∆i を第 i列（i = 1, 2, · · ·）で展開すると，

I1 = ∆1

∆ = 1
∆

(
∆11V1 + ∆21V2 + · · · + ∆N1VN

)
(1.2)

I2 = ∆2

∆ = 1
∆

(
∆12V1 + ∆22V2 + · · · + ∆N2VN

)
(1.3)

· · · · · · · · · · · · · · ·

ここで，

∆ =

∣∣∣∣∣∣∣∣∣
Z11 Z12 · · · Z1N

Z21 Z22 · · · Z2N

· · · · · · · · · · · ·
ZN1 ZN2 · · · ZNN

∣∣∣∣∣∣∣∣∣ (1.4)

また，

∆1 =

∣∣∣∣∣∣∣∣∣
V1 Z12 · · · Z1N

V2 Z22 · · · Z2N

· · · · · · · · · · · ·
VN ZN2 · · · ZNN

∣∣∣∣∣∣∣∣∣ , ∆2 =

∣∣∣∣∣∣∣∣∣
Z11 V1 · · · Z1N

Z21 V2 · · · Z2N

· · · · · · · · · · · ·
ZN1 VN · · · ZNN

∣∣∣∣∣∣∣∣∣ (1.5)

ただし，∆ji は行列式 ∆における Zji の余因子を示す．いま，次の左図のようにループ 1
にのみ定電圧源を接続（V2 = V3 = · · · = VN = 0）すると電流 I ′

1，I ′
2 は，

I ′
1 = ∆11

∆ V1, I ′
2 = ∆12

∆ V1 (1.6)

また，右図のようにループ 2にのみ定電圧源を接続（V1 = V3 = · · · = VN = 0）すると I ′′
1，

I ′′
2 は，

I ′′
1 = ∆21

∆ V2, I ′′
2 = ∆22

∆ V2 (1.7)

I1'

V1

1

1'

I2'2

2'

線形受動回路

I1" 1

1'

I2"2

2'

線形受動回路 V2+

図 1.1. 定電圧源を接続した回路

これより，上の二つを重ね合わせると，

I1 = I ′
1 + I ′′

1 = ∆11

∆ V1 + ∆21

∆ V2 ≡ Y11V1 + Y12V2 (1.8)

I2 = I ′
2 + I ′′

2 = ∆12

∆ V1 + ∆22

∆ V2 ≡ Y21V1 + Y22V2 (1.9)

2



I1

V1

1

1'

I22

2'

線形受動回路 V2

図 1.2. 重ね合わせた回路

行列表示すると，(
I1
I2

)
=
(
Y11 Y12
Y21 Y22

)(
V1
V2

)
(1.10)

あるいは，もっと簡略に

I = [Y ]V (1.11)

ここで，

I =
(
I1
I2

)
, [Y ] =

(
Y11 Y12
Y21 Y22

)
, V =

(
V1
V2

)
(1.12)

上式の [Y ]をアドミタンス行列（admittance matrix），または Y行列（Y-matrix）という．

1.1.2 短絡駆動点アドミタンス

アドミタンス行列要素の物理的意味について考えよう．まず，

I1

V1

∣∣∣∣
V2=0

= Y11V1 + Y12V2

V1

∣∣∣∣
V2=0

= Y11 (1.13)

I2

V2

∣∣∣∣
V1=0

= Y21V1 + Y22V2

V2

∣∣∣∣
V1=0

= Y22 (1.14)

ここで，Y11，Y22 を短絡駆動点アドミタンス（short-circuit driving point admittance）と
いう．駆動点アドミタンス（driving point admittance）は単にアドミタンスと言ってもよ
く，一つのポートにおける Y = V/I によって定義される．

1.1.3 短絡伝達アドミタンス

また，

I1

V2

∣∣∣∣
V1=0

= Y11V1 + Y12V2

V2

∣∣∣∣
V1=0

= Y12 (1.15)

I2

V1

∣∣∣∣
V2=0

= Y21V1 + Y22V2

V1

∣∣∣∣
V2=0

= Y21 (1.16)
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ここで，Y12，Y21 を短絡伝達アドミタンス（short-circuit transfer admittance）という．四
端子回路網におけるこのような異なる 2 つのポート間の電圧，電流の関係を表す係数の総
称が伝達関数（transfer function）である．

1.1.4 アドミタンス行列の対称性

線形受動回路（passive linear network）では，相反定理（reciprocity theorem）（可逆定
理）が成立するから，

Y12 = Y21 (1.17)

すなわち [Y ]は対称行列で，転置行列（transposed matrix）を [Y ]T とすると，

[Y ] = [Y ]T (1.18)

1.1.5 2端子対回路

次の図のような 2 端子対回路（two-terminal pair network, two-port network）を考え，
各端子対の電圧，電流を与えたときにも同様にアドミタンス行列を用いて表すことができる
（V1，V2 は各端子対の電圧）．(

I1
I2

)
=
(
Y11 Y12
Y12 Y22

)(
V1
V2

)
(1.19)

I1

V1

1

1'

I2

V2

2

2'

２端⼦対回路

図 1.3. 2 端子対回路

1.1.6 多端子対回路

多端子対回路に拡張すると，
I1
I2
...
IN

 =


Y11 Y12 · · · Y1N

Y21 Y22 · · · Y2N
... ...

YN1 YN2 · · · YNN



V1
V2
...
VN

 (1.20)
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これより，

i = [Y ]v (1.21)

ここで，

[Y ] =


Y11 Y12 · · · Y1N

Y21 Y22 · · · Y2N
... ...

YN1 YN2 · · · YNN



1.2 インピーダンス行列

1.2.1 定電圧源を接続した線型受動回路

定電流源を接続した回路を考える．

1

1'

2

2'

線形受動回路

1

1'

2

2'

線形受動回路+I1 V1' V2' I2V1" V2"

図 1.4. 定電流源を接続した回路

上の左図より V ′
1，V ′

2 を求め，右図より V ′′
1 ，V ′′

2 を求め，重ねの理より次の回路が得ら
れる．

I1

1

1'

I2

2

2'

線形受動回路V1 V2

図 1.5. 重ね合わせた回路

これより，次式が得られる．

V1 = V ′
1 + V ′′

1 ≡ Z11I1 + Z12I2 (1.22)
V2 = V ′

2 + V ′′
2 ≡ Z21I1 + Z22I2 (1.23)
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行列表示では，(
V1
V2

)
=
(
Z11 Z12
Z21 Z22

)(
I1
I2

)
(1.24)

あるいは，もっと簡略に

V = [Z]I (1.25)

ここで，

[Z] =
(
Z11 Z12
Z21 Z22

)
(1.26)

上式の [Z]をインピーダンス行列（impedance matrix），または Z行列（Z-matrix）という．

1.2.2 開放駆動点インピーダンス

インピーダンス行列の要素の物理的意味は，

V1

I1

∣∣∣∣
I2=0

= Z11I1 + Z12I2

I1

∣∣∣∣
I2=0

= Z11 (1.27)

V2

I2

∣∣∣∣
I1=0

= Z21I1 + Z22I2

I2

∣∣∣∣
I1=0

= Z22 (1.28)

ここで，Z11，Z22を開放駆動点インピーダンス（open-circuit driving point impedance）と
いう．駆動点インピーダンス（driving point impedance）は単にインピーダンスと言っても
よく，一つのポートにおける Z = I/V によって定義される．

1.2.3 開放伝達インピーダンス

また，

V1

I2

∣∣∣∣
I1=0

= Z11I1 + Z12I2

I2

∣∣∣∣
I1=0

= Z12 (1.29)

V2

I1

∣∣∣∣
I2=0

= Z21I1 + Z22I2

I1

∣∣∣∣
I2=0

= Z21 (1.30)

ここで，Z12，Z21 を開放伝達インピーダンス（open-circuit transfer impedance）という．

1.2.4 インピーダンス行列の対称性

相反定理（reciprocity theorem）（可逆定理）が成立する場合，

Z12 = Z21 (1.31)
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行列 [Z]の転置行列（transposed matrix）を [Z]T とすると，

[Z] = [Z]T (1.32)

1.2.5 多端子対回路のインピーダンス行列

同様にして，多端子対回路に拡張すると，
V1
V2
...
VN

 =


Z11 Z12 · · · Z1N

Z21 Z22 · · · Z2N
... ...

ZN1 ZN2 · · · ZNN



I1
I2
...
IN

 (1.33)

これより，

v = [Z]i (1.34)

ここで，

[Z] =


Z11 Z12 · · · Z1N

Z21 Z22 · · · Z2N
... ...

ZN1 ZN2 · · · ZNN

 (1.35)

1.2.6 Y行列と Z行列の関係

また，

V = [Y ]−1I = [Z]I (1.36)

これより，

[Z] = [Y ]−1 (1.37)

インピーダンス行列はアドミタンス行列の逆行列であるから，インピーダンス行列要素はア
ドミタンス行列要素から次のようにして求めることができる．(

Z11 Z12
Z21 Z22

)
=
(
Y11 Y12
Y21 Y22

)−1

= 1
detY

(
Y22 −Y12

−Y21 Y11

)
(1.38)

あるいは，

Z11 = Y22

detY , Z12 = −Y12

detY , Z21 = −Y21

detY , Z22 = Y11

detY (1.39)
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ここで，

detY =
∣∣∣∣∣Y11 Y12
Y21 Y22

∣∣∣∣∣ = Y22

Z11
= Y11

Z22
(1.40)

これより，

Y11

Y22
= Z22

Z11
(1.41)

逆に，(
Y11 Y12
Y21 Y22

)
=
(
Z11 Z12
Z21 Z22

)−1

= 1
detZ

(
Z22 −Z12

−Z21 Z11

)
(1.42)

より，

Y11 = Z22

detZ , Y12 = −Z12

detZ , Y21 = −Z21

detZ , Y22 = Z11

detZ (1.43)

これより，

detZ =
∣∣∣∣∣Z11 Z12
Z21 Z22

∣∣∣∣∣ = 1
detY (1.44)

1.2.7 基本行列（伝送行列，縦続行列）

2端子対回路では，端子対に関する量を各々一組として，次のように表すと便利なことが
多い（電流 −I2 はインピーダンス・アドミタンス行列とは逆向きに定義）．(

V1
I1

)
=
(
A B
C D

)(
V2

−I2

)
(1.45)

I1

V1

1

1'

I2

V2

2

2'

２端⼦対回路

図 1.6. 2 端子対回路

すなわち，

V1 = AV2 −BI2 (1.46)
I1 = CV2 −DI2 (1.47)
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ここで，

[F ] =
(
A B
C D

)
(1.48)

を四端子行列（four terminal matrix），F 行列，ABCD 行列，基本行列（fundamental
matrix），縦続行列（chain matrix），電圧・電流の伝送行列（voltage-current transmission
matrix）という．また，A，B，C，Dを四端子網の四定数，あるいは四端子定数という．

1.2.8 四端子定数

いま，基本行列を

[F ] =
(
A1 B
C A2

)
(1.49)

として，四定数の物理的意味を考えよう．

V1

V2

∣∣∣∣
I2=0

= A1V2 −BI2

V1

∣∣∣∣
I2=0

= A [開放電圧比] (1.50)

V1

−I2

∣∣∣∣
V2=0

= A1V2 −BI2

−I2

∣∣∣∣
V2=0

= B [短絡インピーダンス] (1.51)

I1

V2

∣∣∣∣
I2=0

= CV2 − A2I2

V2

∣∣∣∣
I2=0

= C [開放アドミタンス] (1.52)

I1

−I2

∣∣∣∣
V2=0

= CV2 − A2I2

−I2

∣∣∣∣
V2=0

= D [短絡電流比] (1.53)

1.2.9 短絡，開放した入力インピーダンス

端子 2-2’ を短絡したとき（V2 = 0）の入力インピーダンス Z1s，および開放したとき
（I2 = 0）の入力インピーダンス Z1f は，

Z1s = V1

I1

∣∣∣∣
V2=0

= A1V2 −BI2

CV2 − A2I2

∣∣∣∣
V2=0

= B

A2
(1.54)

Z1f = V1

I1

∣∣∣∣
I2=0

= A1V2 −BI2

CV2 − A2I2

∣∣∣∣
I2=0

= A1

C
(1.55)

基本行列の逆行列について，(
V2

−I2

)
= [F ]−1

(
V1
I1

)
(1.56)

ここで，

[F ]−1 =
(
A1 B
C A2

)−1

= 1
detF

(
A2 −B
−C A1

)
(1.57)
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符号を −I2 から，−I1 となるように変形すると，(
V2
I2

)
= 1

detF

(
A2 B
C A1

)(
V1

−I1

)
(1.58)

これは，四端子回路を送受反転したときの基本行列であり，可逆回路では detF = 1である
から，(

V2
I2

)
=
(
A2 B
C A1

)(
V1

−I1

)
(1.59)

これより，端子 1-1’を短絡したとき（V1 = 0）の入力インピーダンス Z2s，および開放した
とき（I1 = 0）の入力インピーダンス Z2f は，

Z2s = V2

I2

∣∣∣∣
V1=0

= A2V1 −BI1

CV1 − A1I1

∣∣∣∣
V1=0

= B

A1
(1.60)

Z2f = V2

I2

∣∣∣∣
I1=0

= A2V1 −BI1

CV1 − A1I1

∣∣∣∣
I1=0

= A2

C
(1.61)

となって，単に A1 を A2 に交換した形となる．これらの結果より，
Z1s

Z1f
= Z2s

Z2f
= BC

A1A2
= A1A2 − 1

A1A2
= 1 − 1

A1A2
(1.62)

よって，

A1A2 = Z1f

Z1f − Z1s
= Z2f

Z2f − Z2s
(1.63)

BC = Z1s

Z1f − Z1s
= Z2s

Z2f − Z2s
(1.64)

1.2.10 Y行列，Z行列と基本行列の関係

Y行列の式を変形して，

V1 = −Y22

Y21
V2 + 1

Y21
I2 (1.65)

I1 =
(
Y12 − Y11Y22

Y21

)
V2 + Y11

Y21
I2 (1.66)

同様に Z行列の式も変形して基本行列と比較すると，

A = −Y22

Y21
= Z11

Z21
(1.67)

B = − 1
Y21

= detZ
Z21

(1.68)

C = −detY
Y21

= 1
Z21

(1.69)

D = −Y11

Y21
= Z22

Z21
(1.70)
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行列でまとめると，

[F ] = 1
−Y21

(
Y22 1

detY Y11

)
= 1
Z21

(
Z11 detZ
1 Z22

)
(1.71)

ここで，次式が成り立つ．

detF = AD −BC = Z12

Z21
= Y12

Y21
(1.72)

可逆回路では，detF = AD −BC = 1ゆえ，独立な変数は 3個となる．回路が対称なら，

Y11 = Y22 (1.73)
Z11 = Z22 (1.74)
A = D (1.75)

となり，独立な変数は 2個となる．逆に，インピーダンス行列を基本行列で表すと，

[Z] =
(
Z11 Z12
Z21 Z22

)
= 1
C

(
A detF
1 D

)
(1.76)

これより，

detZ = Z11Z22 − Z12Z21 = B

C
(1.77)

さらに，アドミタンス行列を基本行列で表すと，

[Y ] = 1
detZ

(
Z22 −Z12

−Z21 Z11

)
= 1
B

(
D − detF
−1 A

)
(1.78)

1.3 影像パラメータ

1.3.1 負荷と入力インピーダンスの関係について

基本行列で与えられている伝送回路(
V1
I1

)
=
(
A B
C D

)(
V2

−I2

)
(1.79)

を考え，入出力端子に負荷 Z1，Z2 を接続する．まず，入力端子から伝送回路を見た入力イ
ンピーダンス Zin,1 は，V2 = Z2(−I2)より，

Zin,1 = V1

I1
= AV2 +B(−I2)
CV2 +D(−I2) = AZ2 +B

CZ2 +D
(1.80)
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一方，出力端子から伝送回路を見た入力インピーダンス Zin,2 を求めるため，(
V2

−I2

)
=
(
D −B

−C A

)(
V1
I1

)
(1.81)

と変形し，V1 = Z1(−I1)より，

Zin,2 = V2

I2
= DV1 −BI1

CV1 − AI1
= DZ1 +B

CZ1 + A
(1.82)

このような伝送回路に整合負荷 Z1，Z2 を接続する．整合条件

Z1 = Zin,1 (1.83)
Z2 = Zin,2 (1.84)

より，

(CZ2 +D)Z1 = AZ2 +B (1.85)
(CZ1 + A)Z2 = DZ1 +B (1.86)

辺々，差をとれば，DZ1 = AZ2．これを解くと，Z1，Z2 は，

Z1 =
√
AB

CD
(1.87)

Z2 =
√
BD

AC
(1.88)

回路が対称なら，A = D ゆえ，

Z1 = Z2 =
√
B

C
(1.89)

1.3.2 影像パラメータの定義

出力端子に負荷 Z02 を接続したとき，入力端子から右に見た入力インピーダンスが Z01，
入力端子に負荷 Z01 を接続したとき，出力から左に見た入力インピーダンスが Z02 となる
ようにできたとすれば，各々の端子においてはちょうど鏡の影像のような関係になるので，
Z01，Z02 を影像インピーダンス（image impedance）と呼ぶ．このときの Z01，Z02 は，す
でに式 (1.88)で求めたとおりで，再記すると，

Z01 =
√
AB

CD
(1.90)

Z02 =
√
BD

AC
(1.91)
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また，入出力のルート電力比より，

eθγ ≡
√

V1I1

V2(−I2) (1.92)

とおいて定義される θγ（複素数）を影像伝送量（image propagation constant）という．そ
して，

V1 = Z01I1 (1.93)
V2 = Z02(−I2)d (1.94)

より，

θγ = 1
2 loge

(
V1I1

V2(−I2)

)
= 1

2 loge

(
I2

1Z01

(−I2)2Z02

)
= loge

(
I1

−I2

√
Z01

Z02

)

= 1
2 loge

(
V 2

1 Z02

V 2
2 Z01

)
= loge

(
V1

V2

√
Z02

Z01

)
(1.95)

電圧，電流の比として表せば，

V2

V1
=
√
Z02

Z01
e−θγ (1.96)

I2

I1
=
√
Z01

Z02
e−θγ (1.97)

ここで，θγ = ᾱ+ jφ̄とすると，ᾱ [neper]は減衰を表し影像減衰量といい，φ̄ [rad]は位相を
表し影像位相量という．また，Z01，Z02，θγ をまとめて影像パラメータ（image parameter）
という．

1.3.3 影像パラメータを用いた基本行列表示

基本行列を用いて電圧，電流の比を求めると，

V2 = Z02(−I2) (1.98)

より，

V1

V2
=
AV2 +B V2

Z02

V2
= A+ B

Z02
= A+B

√
AC

BD
=
√
A

D

(√
AD +

√
BC

)
(1.99)

I1

−I2
= CZ02(−I2) +D(−I2)

−I2
= CZ02 +D = C

√
BD

AC
+D =

√
D

A

(√
BC +

√
AD

)
(1.100)

13



これより，

eθγ =
√
V1

V2

√
I1

−I2
=

√
AD +

√
BC (1.101)

これを逆数で表すと，

e−θγ = 1√
AD +

√
BC

=
√
AD −

√
BC

AD −BC
=

√
AD −

√
BC (1.102)

さらに，

cosh θγ = eθγ + e−θγ

2 =
√
AD (1.103)

sinh θγ = eθγ − e−θγ

2 =
√
BC (1.104)

また， √
Z01

Z02
=
√
A

D
(1.105)

√
Z01Z02 =

√
B

C
(1.106)

より，基本行列要素は，影像パラメータを用いて次のように表される．

A =
√
Z01

Z02
cosh θγ (1.107)

B =
√
Z01Z02 sinh θγ

C =
√

1
Z01Z02

sinh θγ (1.108)

D =
√
Z02

Z01
cosh θγ (1.109)

つまり，(
V1
I1

)
= [F ]

(
V2

−I2

)
(1.110)

ここで，

[F ] =


√
Z01

Z02
cosh θγ

√
Z01Z02 sinh θγ√

1
Z01Z02

sinh θγ

√
Z02

Z01
cosh θγ

 (1.111)
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対称回路 Z01 = Z02 ≡ Z0 ならば，

[F ] =

 cosh θγ Z0 sinh θγ
1
Z0

sinh θγ cosh θγ

 (1.112)

これは，特性インピーダンス Z0，伝搬定数 γ，線路長 lの伝送線路で θγ = γlとおいたとき
と等価である．

1.3.4 整合回路の縦続接続

いま，回路が全て整合され，縦続接続すると，

VN+1

V1
= V2

V1

V3

V2
· · · VN+1

VN

=
√
Z02

Z01
e−θγ1

√
Z03

Z02
e−θγ2 · · ·

√√√√Z0,N+1

Z0,N
e−θγN =

√
Z0,N+1

Z01
e−Θγ (1.113)

ここで，

Θγ ≡ θγ1 + θγ2 + · · · + θγN
=

N∑
n=1

θγn (1.114)

同様にして，

−IN+1

I1
=

√√√√ Z01

Z0,N+1
e−Θγ (1.115)

つまり，複数の回路を縦続接続した場合，接続端子での左右の影像インピーダンスが等しけ
れば，入出力端子での影像インピーダンス Z01，Z0,N+1 は不変であるといえる．また，影
像伝送量は単純な和をとるだけで求められる．なお，縦続接続した回路の入出力のルート電
力比は，√

VN+1(−IN+1)
V1I1

=
√
VN+1

V1

√
−IN+1

I1
= e−Θγ (1.116)

1.3.5 軸対称回路

構造が対称な回路を考え，影像インピーダンスを Z0，影像伝送量を θγ とし，これを 2等
分する．このとき，中心の接続端子側の影像インピーダンスを Z ′

0 とする．先に示したよう
に，このように分割された回路の入出力側の影像インピーダンスは Z0 で不変，影像伝送量
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は半分の θγ/2となる．これより，左側の回路について基本行列を示すと次のようになる．

[F 1
2
] =


√
Z0

Z ′
0

cosh θγ

2
√
Z0Z ′

0 sinh θγ

2√
1

Z0Z ′
0

sinh θγ

2

√
Z ′

0
Z0

cosh θγ

2

 (1.117)

この回路の終端を短絡，あるいは開放したときの入力インピーダンス Zsc, 1
2
，Zoc, 1

2
を求め

ると，

Zsc, 1
2

=

√
Z0Z ′

0 sinh θγ

2√
Z ′

0
Z0

cosh θγ

2

= Z0 tanh θγ

2 (1.118)

Zoc, 1
2

=

√
Z0

Z ′
0

cosh θγ

2√
1

Z0Z ′
0

sinh θγ

2

= Z0 coth θγ

2 (1.119)

辺々，乗じると，

Zsc, 1
2
Zoc, 1

2
= Z2

0 (1.120)

よって，

Z0 =
√
Zsc, 1

2
Zoc, 1

2
(1.121)

無損失の場合，θγ = jφ̄とおいて，

tanh jφ̄2 = j tan φ̄2 =
Zsc, 1

2

Z0
=
√√√√Zsc, 1

2

Zoc, 1
2

(1.122)

よって，

tan φ̄2 =
√√√√−

Zsc, 1
2

Zoc, 1
2

(1.123)
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1.3.6 影像パラメータを表す別の公式

基本行列が与えられた回路において，終端を短絡，あるいは開放したとき，各々の入力イ
ンピーダンスは，

Z1,sc = B

D
(1.124)

Z1,oc = A

C
(1.125)

Z2,sc = B

A
(1.126)

Z2,oc = D

C
(1.127)

で求めることができ，これを用いれば，

Z01 =
√
A

C
· B
D

=
√
Z1,scZ1,oc (1.128)

Z02 =
√
B

A
· D
C

=
√
Z2,scZ2,oc (1.129)

また，AD −BC = 1（可逆回路）を用いて，

Z1,oc − Z1,sc = A

C
− B

D
= AD −BC

DC
= 1
DC

Z1,oc

Z1,oc − Z1,sc
= A

C
·DC = AD (1.130)

Z1,sc

Z1,oc − Z1,sc
= B

D
·DC = BC (1.131)

より，

eθ =
√
AD +

√
BC =

√
Z1,oc +

√
Z1,sc√

Z1,oc − Z1,sc

(1.132)

問題

インピーダンス行列要素 Z11，Z12(= Z21)，Z22を用いて影像インピーダンス Z01，Z02，
および影像伝送量 θを表せ．
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解答

Z01 =
√
Z11

Z22
Z00 (1.133)

Z02 =
√
Z22

Z11
Z00 (1.134)

tanh θ = Z00√
Z11Z22

(1.135)

なお，

Z00 =
√
Z01Z02

=
√
Z11Z22 − Z2

12 (1.136)

ただし，Z00 は平均影像インピーダンスと呼ばれる．

1.4 格子形回路

次のような格子形回路の基本行列を求めよう．I2 = 0となるよう右側の終端を開放する
と，Za と Zc が直列接続され，Zb と Zd が直列接続され，さらに両者を並列接続した回路
となるので，

Za

Zd

Zb Zc

図 1.7. 格子形回路

V1

∣∣∣∣
I2=0

= I1
1

Za+Zc
+ 1

Zb+Zd

= (Za + Zc)(Zb + Zd)
Za + Zb + Zc + Zd

I1 (1.137)
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分流の法則より，Za と Zc が直列接続されたブランチに流れる電流 I ′
1，および Zb と Zd が

直列接続されたブランチに流れる電流 I ′′
1 は，

I ′
1 = Zb + Zd

(Za + Zc) + (Zb + Zd)I1 (1.138)

I ′′
1 = Za + Zc

(Za + Zc) + (Zb + Zd)I1 (1.139)

これより，V2 は，

V2 = ZaI
′
1 − ZbI

′′
1 = Za(Zb + Zd) − Zb(Za + Zc)

Za + Zb + Zc + Zd
I1 = ZaZd − ZbZc

Za + Zb + Zc + Zd
I1 (1.140)

よって，四端子定数の C は，

C = I1

V2

∣∣∣∣
I2=0

= Za + Zb + Zc + Zd

ZaZd − ZbZc
(1.141)

また，

V2 = ZaZd − ZbZc

Za + Zb + Zc + Zd
· Za + Zb + Zc + Zd

(Za + Zc)(Zb + Zd)V1 = ZaZd − ZbZc

(Za + Zc)(Zb + Zd)V1 (1.142)

よって，四端子定数の A1 は，

A1 = V1

V2

∣∣∣∣
I2=0

= (Za + Zc)(Zb + Zd)
ZaZd − ZbZc

(1.143)

次に，V2 = 0となるよう右側の終端を短絡すると，Za と Zc が直列接続され，Zb と Zc

が直列接続され，さらに両者を並列接続して中心線を短絡した回路となる．よって，

V1 =
 1

1
Za

+ 1
Zb

+ 1
1

Zc
+ 1

Zd

 I1 =
1

Za
+ 1

Zb
+ 1

Zc
+ 1

Zd(
1

Za
+ 1

Zb

) (
1

Zc
+ 1

Zd

)I1

=
( 1
Za

+ 1
Zb

+ 1
Zc

+ 1
Zd

)
ZaZbZcZd

(Za + Zb)(Zc + Zd)I1 (1.144)

ここで，

I2 = − Zb

Za + Zb
I1 + Zd

Zc + Zd
I1 = Zb(Zc + Zd) + Zd(Za + Zb)

(Za + Zb)(Zc + Zd) I1

= −ZbZc + ZzZd

(Za + Zb)(Zc + Zd)I1 (1.145)

よって，

I1 = (Za + Zb)(Zc + Zd)
−ZbZc + ZzZd

I2 (1.146)
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したがって，

A2 = I1

−I2

∣∣∣∣
V2=0

= (Za + Zb)(Zc + Zd)
ZbZc − ZzZd

(1.147)

さらに，

V1 =
( 1
Za

+ 1
Zb

+ 1
Zc

+ 1
Zd

)
ZaZbZcZd

(Za + Zb)(Zc + Zd) · (Za + Zb)(Zc + Zd)
−ZbZc + ZzZd

I2

=
( 1
Za

+ 1
Zb

+ 1
Zc

+ 1
Zd

)
ZaZbZcZd

−ZbZc + ZzZd
I2 (1.148)

したがって，

B = V1

−I2

∣∣∣∣
V2=0

=
( 1
Za

+ 1
Zb

+ 1
Zc

+ 1
Zd

)
ZaZbZcZd

ZbZc − ZzZd
(1.149)

1.5 対称格子形回路

1.5.1 ブリッジ回路

対称格子形 2端子対回路（symmetrical lattice two-port network）は次のような 2端子
対回路である．

図 1.8. 対称格子形回路

上の回路は，次のようなブリッジ回路で表すことができる．
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図 1.9. ブリッジ回路

1.5.2 対称格子形回路の基本行列

まず，I2 = 0となるように終端を開放すると Z1 と Z2 の直列接続のブランチが二つ並列
接続された回路となり，

V1

∣∣∣∣
I2=0

= I1
1

Z1+Z2
+ 1

Z2+Z1

= Z1 + Z2

2 I1 (1.150)

この並列接続された両ブランチに流れる電流は互いに等しく I1/2ゆえ，

V2 = I1

2 Z2 − I1

2 Z1 = I1

2 (Z2 − Z1) = V1

Z1 + Z2
(Z2 − Z1) (1.151)

これより，四端子定数の開放アドミタンス C，開放電圧比 Aは，

C = I1

V2

∣∣∣∣
I2=0

= 2
Z2 − Z1

(1.152)

A = V1

V2

∣∣∣∣
I2=0

= Z2 + Z1

Z2 − Z1
(1.153)

次に，V2 = 0となるように終端を短絡すると

V1

∣∣∣∣
V2=0

= 2I1
1

Z1
+ 1

Z2

= 2Z1Z2

Z1 + Z2
I1 (1.154)

I2

∣∣∣∣
V2=0

= Z1

Z1 + Z2
I1 − Z2

Z1 + Z2
I1 = Z1 − Z2

Z1 + Z2
I1 (1.155)

これより，四端子定数の短絡電流比 D，短絡インピーダンス B は，

D = I1

−I2

∣∣∣∣
V2=0

= Z2 + Z1

Z2 − Z1
(1.156)

B = V1

−I2

∣∣∣∣
V2=0

= V1

I1
· I1

−I2

∣∣∣∣
V2=0

= 2Z1Z2

Z1 + Z2
· Z2 + Z1

Z2 − Z1
= 2Z2Z1

Z2 − Z1
(1.157)
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よって，対称格子形回路の基本行列 [F ]は，

[F ] =
(
A B
C D

)
=
(

Z2+Z1
Z2−Z1

2Z2Z1
Z2−Z12

Z2−Z1
Z2+Z1
Z2−Z1

)
(1.158)

インピーダンス行列 [Z]は，基本行列 [F ]より，

[Z] =
(
Z11 Z12
Z21 Z22

)
= 1
C

(
A detF
1 D

)
=
(

Z2+Z1
2

Z2−Z1
2

Z2−Z1
2

Z2+Z1
2

)
(1.159)

ここで，

detF = AD −BC = 1 (1.160)

よって，

Z1 = Z11 − Z12 (1.161)
Z2 = Z11 + Z12 (1.162)

1.6 信号源および終端抵抗のある回路

出力側については負荷抵抗 RL で終端し，

V2 = −I2RL (1.163)

入力側については，図のように電圧源が接続されている．

V1 = Eg − I1Rg (1.164)

I1

V1
Rg

RL
Eg

1

1'

I2

V2

2

2'

２端⼦対回路

図 1.10. 電圧源および終端抵抗を接続した回路

また，電圧源のかわりに電流源を接続すると，

I1 = Jg − V1

Rg
(1.165)
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I1

Rg RLJg

1

1'

I22

2'

２端⼦対回路

図 1.11. 電流源および終端抵抗を接続した回路

回路の基本行列が与えられているものとすると，(
V1
I1

)
=
(
A B
C D

)(
V2

−I2

)
(1.166)

上式に V2 = −I2RL を代入して，

V1 = AV2 +B(−I2) = (ARL +B) (−I2) (1.167)
I1 = CV2 +D(−I2) = (CRL +D) (−I2) (1.168)

電圧源を接続した回路に対しては，式 (1.164)に上式を代入して V1，I1 を消去すると，

(ARL +B)(−I2) = Eg − (CRL +D)(−I2)Rg

∴ (ARL +B + CRgRL +DRg)(−I2) = Eg (1.169)

これより，

−I2

Eg
= 1
ARL +B + CRgRL +DRg

(1.170)

V2

Eg
= −I2

Eg
RL = RL

ARsL +B + CRgRL +DRg
(1.171)

一方，電流源を接続した回路に対しては，式 (1.165)に上式を代入して V1，I1を消去すると，

(CRL +D)(−I2) = Jg − (ARL +B)(−I2)
Rg

∴ (ARL +B + CRgRL +DRg)(−I2) = RgJg (1.172)

これより，

−I2

Jg
= Rg

ARL +B + CRgRL +DRg
(1.173)

V2

Jg
= −I2

Jg
RL = RgRL

ARL +B + CRgRL +DRg
(1.174)
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1.7 理想変成器

1.7.1 基本行列

まず，理想変圧器（ideal transformer）（理想変成器ともいう）の基本行列（F-matrix）を
求める．理想変成器は n : 1のとき，電圧を 1/n倍，電流を n倍するような特性を持つ回路
で，2端子対回路の基本行列と同様に電圧 V1，V2，電流 I1，I2 を定義すると（I1，I2 は回
路に向かう電流），

V2 = V1

n
(1.175)

I2 = −nI1 (1.176)

これより，基本行列は次のようになる．(
V1
I1

)
=
(
n 0
0 1

n

)(
V2

−I2

)
(1.177)

例えば，巻線比 n = N1/N2 で密に巻かれたリアクタンス成分の大きい二つのコイル（結合
係数 1）などはそれとほぼ等しい動作をする．磁束を Φとして共通とすると電磁誘導の法則
より起電力 e1，e2 は，

e1 = −N1
dΦ
dt

(1.178)

e2 = −N2
dΦ
dt

(1.179)

上式より，微分の項を消去して，
e1

N1
= e2

N2
(1.180)

よって，

e2 = N2

N1
e1 = e1

n
(1.181)

ここで，

n = N1

N2
(1.182)

1.7.2 インピーダンス整合

次の左の図のように線路と異なるインピーダンスの負荷で終端すると不整合が生じる．理
想変成器を用いれば，計算上，インピーダンス整合できる．右の図の入力インピーダンス
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Zin は，

Zin = V1

I1
= nV2

−1
n I2

= n2 V2

−I2
= n2ZL (1.183)

理想変成器Z0 Zin

A1

A1'

A2

A2'

ZL Z0 ZL

I1

V1 V2

I2

(a) (b)

図 1.12. (a) 不整合の場合，(b) 整合させた場合

整合条件より，

Zin = Z0 = n2ZL (1.184)

よって，インピーダンス整合のための巻線比 nは，

n =
√
Z0

ZL
(1.185)

1.8 軸対称回路

1.8.1 中心線で切断された回路

図のような構造が中心線で対称な軸対称回路を考える．インピーダンス行列 [Z]は，(
V1
V2

)
= [Z]

(
I1
I2

)
, [Z] =

(
Z11 Z12
Z21 Z22

)
(1.186)

図 1.13. 軸対称回路のインピーダンス行列
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中心線で 2等分して，切断された接続線を新たな端子とし，電圧，電流を列ベクトル (v0)，
(i0)，2等分された回路のインピーダンス行列を [Z 1

2
]とすると，

(
V1

(v0)

)
= [Z 1

2
]
(
I1

(i0)

)
(1.187)(

V2
(v0)

)
= [Z 1

2
]
(

I2
−(i0)

)
(1.188)

(i
0
)

(v
0
)

図 1.14. 中心線で切断された回路

いま，もとの軸対称回路において入出力電圧を

V1 = −V2 = V (1.189)

とすると，インピーダンス行列より，

V1 = Z11I1 + Z12I2 = V = −V2 = −(Z12I1 + Z11I2) (1.190)

整理して，

(Z11 + Z12)(I1 + I2) = 0 (1.191)

よって，電流 I1，I2 の関係は，

I1 = −I2 ≡ I (1.192)

このとき，2等分した 2つの回路では，(
V

(v0)

)
= [Z 1

2
]
(
I

(i0)

)
(1.193)(

−V
(v0)

)
= [Z 1

2
]
(

−I
−(i0)

)
(1.194)

両者の和をとって，(
0

2(v0)

)
= [Z 1

2
]
(

0
(0)

)
(1.195)
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これより，左図のように中心の端子の電位（列ベクトル (v0)の要素）はすべてゼロとなる
ので，右図のように中心の端子を全て短絡（ショート）しても，入出力の端子の電圧，電流
は変わらない．

(i
0
)

(v
0
)=(0)

図 1.15. 軸対称回路の中心端子を短絡したときの等価回路

また，入出力電圧を

V1 = V2 = V (1.196)

とすると，入出力電流の関係は（導出省略），

I1 = I2 = I (1.197)

このとき，中心端子の電流はすべてゼロになり，開放（オープン）しても入出力の端子の電
圧，電流は変わらない．

(i
0
)=(0)

(v
0
)

図 1.16. 軸対称回路の中心端子を開放したときの等価回路

1.8.2 インピーダンス行列要素

中心端子を短絡したときの入力インピーダンス Zsc, 1
2
は，

Zsc, 1
2

= V1

I1

∣∣∣∣
I1=−I2=I

= Z11I + Z12(−I)
I

= Z11 − Z12 (1.198)

また，開放したときの入力インピーダンス Zoc, 1
2
は，

Zoc, 1
2

= V1

I1

∣∣∣∣
I1=I2=I

= Z11I + Z12I

I
= Z11 + Z12 (1.199)
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逆に，インピーダンス行列要素は，

Z11 =
Zoc, 1

2
+ Zsc, 1

2

2 = Z22 (1.200)

Z12 =
Zoc, 1

2
− Zsc, 1

2

2 = Z21 (1.201)

1.9 伝送回路パラメータ

1.9.1 動作伝送係数

次の図のように 2端子対回路のポート 1に内部抵抗 R1 の電圧源 E を接続し，ポート 2
には任意の負荷 R2 を接続する．

I1

V1
R1

R2
E

1

1'

-I2

V2

2

2'

２端⼦対回路

図 1.17. 負荷 R2 で終端した回路

このような電圧源から最大電力を得るためには，次の図のように電源の内部抵抗 R1 に等
しい負荷を接続すればよい．

R1

1

1'

I00

V00
R1

E

図 1.18. 最大電力が得られる回路

整合負荷 R1 で得られる最大電力 P00 と任意の負荷 R2 で消費される電力 P2 との比の平
方根によってによって動作伝送係数 SB が次のように定義される．

SB =
√
P00

P2
=
√

V00I00

V2(−I2) =

√√√√ R1I2
00

R2(−I2)2 =
√
R1

R2
· I00

−I2
(1.202)
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ここで，

I00 = E

2R1
(1.203)

よって，動作伝送係数 SB は*1 [1]，

SB = 1
2

√
R2

R1

E

V2
(1.204)

最大電力が得られる基準の回路として，終端負荷 R2 とするなら，次の図のように理想変成
器（n : 1）を用いてもよい．端子 1-1’から負荷側を見た入力インピーダンス Zin を R1 と等
しくすれば最大電力が得られる．

Zin = V ′
1
I ′

1
= nV ′

2
−1
n I

′
2

= n2 V
′

2
−I ′

2
= n2R2 = R1 (1.205)

よって，変成比 n は，

n =
√
R1

R2
(1.206)

V1
R1

R2
E

1

1'

V2'

2

2'

理想変成器'

I1' -I1'

図 1.19. 理想変成器を用いた基準の回路

1.9.2 挿入伝送係数

挿入伝送係数 SI は，電源と負荷の間に 2端子対回路を挿入した場合としない場合の負荷
R2 における消費電力比の平方根によって次のように定義される．

SI =
√
P0

P2
=
√

V0I0

V2(−I2) =

√√√√ R2I2
0

R2(−I2)2 = I0

−I2
= V0

V2
(1.207)

*1 G. C. Temes and S. K. Mitra, Modern Filter Theory and Design, “Transducer Function, Character-
istics Functions,” pp. 14–16, Wiley (1973).
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図 1.20. 挿入伝送係数の定義で用いられる回路：回路挿入前

I1

V1
R1

R2
E

1

1'

-I2

V2

2

2'

２端⼦対回路

図 1.21. 挿入伝送係数の定義で用いられる回路：回路挿入後

1.9.3 挿入伝達係数

挿入伝達係数は挿入伝送係数 SI の逆数で与えられる．

1
SI

=
√
P2

P0
= −I2

I0
= V2

V0
(1.208)

回路挿入前の図より，I0 は，

I0 = E

R1 +R2
(1.209)

一方，回路挿入後の図より，

V1 = E − I1R1 (1.210)
V2 = −I2R2 (1.211)

1.9.4 基本行列との関係

回路の基本行列が与えられている場合，(
V1
I1

)
=
(
A B
C D

)(
V2

−I2

)
(1.212)

式 (1.211)より，

V1 = AV2 +B(−I2) = (AR2 +B) (−I2) (1.213)
I1 = CV2 +D(−I2) = (CR2 +D) (−I2) (1.214)
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式 (1.210)に上式を代入して V1，I1 を消去すると，

(AR2 +B)(−I2) = E − (CR2 +D)(−I2)R1

∴ (AR2 +B + CR1R2 +DR1)(−I2) = E (1.215)

よって，(−I2)は，

−I2 = E

AR2 +B + CR1R2 +DR1
(1.216)

上式と式 (1.209) より，挿入伝送係数 SI，およびその逆数の挿入伝達係数は，次のように
なる．

SI = I0

−I2
= AR2 +B + CR1R2 +DR1

R1 +R2
1
SI

= R1 +R2

AR2 +B + CR1R2 +DR1
(1.217)

式 (1.203)，式 (1.216)より，

I00

−I2
=

E
2R1
E

AR2+B+CR1R2+DR1

= AR2 +B + CR1R2 +DR1

2R1
(1.218)

これより，動作伝送係数 SB は*2 [2]，

SB =
√
R1

R2
· I00

−I2
=
√
R1

R2
· AR2 +B + CR1R2 +DR1

2R1

= AR2 +B + CR1R2 +DR1

2
√
R1R2

= R1 +R2

2
√
R1R2

SI (1.219)

電源の内部抵抗 R1 と負荷抵抗 R2 が等しく R ≡ R1 = R2 のとき，挿入伝送係数 SI と動作
伝送係数 SB は一致し，

SB

∣∣∣∣
R=R1=R2

= SI

∣∣∣∣
R=R1=R2

= AR +B + CR2 +DR

2R (1.220)

さらに，R = 1であれば，

SB

∣∣∣∣
R1=R2=1

= SI

∣∣∣∣
R1=R2=1

= A+B + C +D

2 (1.221)

*2 R. S. Elliott, An Introduction to Guided Waves and Microwave Circuits, “13.5 The Insertion Loss
Method: Lumped Elements,” Prentice Hall (1992).
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1.9.5 インピーダンス行列との関係

回路のインピーダンス行列が与えられている場合，(
V1
V2

)
=
(
Z11 Z12
Z12 Z22

)(
I1
I2

)
(1.222)

式 (1.211)より，

V2 = −I2R2 = Z12I1 + Z22I2

∴ I1 = R2 + Z22

Z12
(−I2) (1.223)

式 (1.210)より，

V1 = E − I1R1 = Z11I1 + Z12I2 (1.224)

式 (1.223)を用いて I1 を消去すると，

E = (R1 + Z11)I1 + Z12I2 = (R1 + Z11)R2 + Z22

Z12
(−I2) + Z12I2

= (R1 + Z11)(R2 + Z22) − Z2
12

Z12
(−I2) (1.225)

式 (1.225)，式 (1.216)より，

I00

−I2
=

E
2R1

EZ12
(R1+Z11)(R2+Z22)−Z2

12

= 1
2R1

· (R1 + Z11)(R2 + Z22) − Z2
12

Z12
(1.226)

これより，動作伝送係数 SB は，

SB =
√
R1

R2
· I00

−I2
=
√
R1

R2
· 1

2R1
· (R1 + Z11)(R2 + Z22) − Z2

12
Z12

= 1
2
√
R1R2

· (R1 + Z11)(R2 + Z22) − Z2
12

Z12
(1.227)

1.9.6 反射係数

回路挿入後の回路において，端子 1-1’から回路を見たときの反射係数 Γ1 は，

Γ1 = Zin −R1

Zin +R1
=

V1
I1

−R1
V1
I1

+R1
= V1 − I1R1

V1 + I1R1

= AR2 +B − (CR2 +D)R1

AR2 +B + (CR2 +D)R1
(1.228)
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CHAPTER 2

方形導波菅

　方形導波管内の電磁波の伝搬モードについて詳細に解説する．まず，スカラーヘル
ムホルツ方程式を変数分離法で解き，TEモードと TMモードについて各々，電界と
磁界のモード関数を導出する．次に，これらのモード関数の正規化係数を求め，基本
モードや低次の高次モードにおける電界および磁界の分布を図示している．そして，
標準的な方形導波管の寸法と，様々なモードに対応する遮断波数，遮断波長，遮断
周波数を示し，実際の導波管設計における基礎的な理解を深めることを目的として
いる．

2.1 スカラーヘルムホルツ方程式（直角座標系）

z 軸に直交する面内で定義した 2 次元微分演算子 ∇t を用いたスカラーヘルムホルツ方
程式

∇2
t Ψ + k2

c Ψ = 0 (2.1)

を直角座標系 (x, y, z)で表すと，

∂2Ψ
∂x2 + ∂2Ψ

∂y2 + k2
cψ = 0 (2.2)

いま，Ψ(x, t) = X (x)Y(y)（変数分離形）で表されるとすると，

Y ∂
2X
∂x2 + X ∂2Y

∂y2 + k2
c X Y = 0 (2.3)

両辺を X Y で割ると，

1
X (x)

∂2X (x)
∂x2 + 1

Y(y)
∂2Y(y)
∂y2 + k2

c = 0 (2.4)
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いま，xに依らない定数 kx，y に依らない定数 ky を定義すると，上式は次のようになる．

1
X (x)

∂2X (x)
∂x2 + k2

x = 0, 1
Y(y)

∂2Y(y)
∂y2 + k2

y = 0 (2.5)

したがって，

∂2X (x)
∂x2 + k2

xX (x) = 0, ∂2Y(y)
∂y2 + k2

yY(y) = 0 (2.6)

ここで，

k2
c = k2

x + k2
y (2.7)

これより，微分方程式の解 X (x)は，sin kxx，cos kxx あるいは，ejkxx，e−jkxx で与えられ，
これらを一般化して h(kxx)と書くことにする．同様にして，Y(x)については h(kyy)で表
わす．

2.2 方形導波管のTEモード

2.2.1 境界条件

TEモードの場合，導波管の管壁を C，その法線方向の長さを nとすると，管壁 C での
境界条件は次のようになる．

∂ΨTE

∂n
= 0 (on C) (2.8)

方形導波管の場合，

∂ΨTE

∂x

∣∣∣∣∣
x=0,a

= 0 (0 ≤ y ≤ b) (2.9)

∂ΨTE

∂y

∣∣∣∣∣
y=0,b

= 0 (0 ≤ x ≤ a) (2.10)

2.2.2 TEモード

これを満たすように h(kxx)，h(kyy)を決めると，次のようになる．

h(kxx) = cos kxx, kx = mπ

a
(m = 0, 1, 2, · · · ) (2.11)

h(kyy) = cos kyy, ky = nπ

b
(n = 0, 1, 2, · · · ) (2.12)
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ただし，m = n = 0 を除く．よって，

ψTE = ΨTE(x, y)ZTE(z) (2.13)

ここで，

ΨTE = A[mn] cos
(
mπx

a

)
cos

(
nπy

b

)
(2.14)

ZTE = e−jkz,[mn]z (2.15)

このとき，

k2 =
(
mπ

a

)2
+
(
nπ

b

)2
+ k2

z,[mn]

= k2
c,[mn] + k2

z,[mn] (2.16)

これより，遮断波数 kc,[mn] は，

kc,[mn] =
√(

mπ

a

)2
+
(
nπ

b

)2
(2.17)

伝搬定数 γ[mn] は，

γ[mn] = jkz,[mn] =

 jβ[mn] = j
√
k2 − k2

c,[mn] (k > kc,[mn])
α[mn] =

√
k2

c,[mn] − k2 (k < kc,[mn])
(2.18)

ここで，β[mn] は位相定数を示し，これがゼロとなる周波数 fc を遮断周波数，波長 λc を遮
断波長と呼び，次のようになる．

fc,[mn] =
kc,[mn]

2π√
εµ

= 1
2π√

εµ

√(
mπ

a

)2
+
(
nπ

b

)2
(2.19)

λc,[mn] = 2π
kc,[mn]

= 2π√(
mπ

a

)2
+
(
nπ

b

)2
(2.20)

伝搬モードの管内波長 λg,[mn] は，

λg,[mn] = 2π
β[mn]

= 2π√
k2 − k2

c,[mn]
= λ√

1 −
(

λ
λc,[mn]

)2
(2.21)
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2.2.3 モード関数

モード関数の定義式 [3]より h[mn] を求めると，

h[mn] = −∇tΨTE

= −A[mn]∇t

(
cos

(
mπx

a

)
cos

(
nπy

b

))
= A[mn]

[
mπ

a
sin

(
mπx

a

)
cos

(
nπy

b

)
ax + nπ

b
cos

(
mπx

a

)
sin

(
nπy

b

)
ay

]
(2.22)

これより，e[mn] は，

e[mn] = h[mn] × az

= A[mn]

[
−mπ

a
sin

(
mπx

a

)
cos

(
nπy

b

)
ay + nπ

b
cos

(
mπx

a

)
sin

(
nπy

b

)
ax

]
= A[mn]

[
nπ

b
cos

(
mπx

a

)
sin

(
nπy

b

)
ax − mπ

a
sin

(
mπx

a

)
cos

(
nπy

b

)
ay

]
(2.23)

2.3 方形導波管のTEモードの正規化

2.3.1 磁界モード関数の正規化条件

モード関数の正規化条件より，
¨

S

∣∣∣h[mn]
∣∣∣2dS = A2

[mn]

¨
(a×b)

[{
mπ

a
sin

(
mπx

a

)
cos

(
nπy

b

)}2

+
{
nπ

b
cos

(
mπx

a

)
sin

(
nπy

b

)}2
]
dS = 1 (2.24)

整理して，

A2
[mn]

[(
mπ

a

)2 ˆ a

0
sin2

(
mπx

a

)
dx

ˆ b

0
cos2

(
nπy

b

)
dy

+
(
nπ

b

)2 ˆ a

0
cos2

(
mπx

a

)
dx

ˆ b

0
sin2

(
nπy

b

)
dy

]
= 1 (2.25)
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積分項は，m 6= 0 のとき，
ˆ a

0
sin2

(
mπx

a

)
dx = 1

2

ˆ a

0

{
1 − cos

(2mπx
a

)}
dx = 1

2

[
x− a

2mπ sin
(2mπx

a

)]a

0

= a

2 (2.26)ˆ a

0
cos2

(
mπx

a

)
dx = 1

2

ˆ a

0

{
1 + cos

(2mπx
a

)}
dx

= a

2 (2.27)

また，m = 0 のとき，
ˆ a

0
sin2

(
mπx

a

)
dx = 0 (2.28)

ˆ a

0
cos2

(
mπx

a

)
dx =

ˆ a

0
dx = a (2.29)

まとめると，
ˆ a

0
sin2

(
mπx

a

)
dx =


a

2 (m 6= 0)
0 (m = 0)

(2.30)

ˆ a

0
cos2

(
mπx

a

)
dx =


a

2 (m 6= 0)
a (m = 0)

≡ a

εm
(2.31)

ここで，

εm =
{

1 (m = 0)
2 (m = 1, 2, · · · ) (2.32)

これより，
¨

S

∣∣∣h[mn]
∣∣∣2dS = A2

[mn]

[(
mπ

a

)2 a

2 · b
εn

+
(
nπ

b

)2 a

εm
· b2

]

= A2
[mn]π

2 (mb)2εm + (nb)2εn
2abεmεn

= A2
[mn]π

2 (mb)2 + (nb)2

abεmεn
= 1 (2.33)

よって，正規化係数 A[mn] は次のようになる．

A[mn] = 1
π

√
abεmεn

(mb)2 + (na)2 =
√
εmεn
ab

1
kc,[mn]

(2.34)
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2.3.2 スカラ関数を用いた正規化

あるいは，スカラ関数 ΨTE より求めることもでき次のようになる．
¨

S

∣∣∣h[mn]
∣∣∣2dS = k2

c,[mn]

¨ (
ΨTE(x, y)

)2
dS

= k2
c,[mn]A

2
[mn]

ˆ b

0

ˆ a

0

{
cos

(
mπx

a

)
cos

(
nπy

b

)}2
dxdy

= k2
c,[mn]A

2
[mn]

ˆ a

0
cos2

(
mπx

a

)
dx

ˆ b

0
cos2

(
nπy

b

)
dy

= k2
c,[mn]A

2
[mn]

a

εm

b

εn
= 1 (2.35)

2.4 方形導波管のTEモードの例

2.4.1 TE10モード

基本 TE10 モード（m = 1，n = 0）では，

kc,[10] = π

a
(2.36)

λc,[10] = 2a (2.37)

A[10] =
√

2
ab

a

π
(2.38)

より，

e[10] = A[10]

(
−π

a

)
sin

(
πx

a

)
ay = −

√
2
ab

sin
(
πx

a

)
ay (2.39)

h[10] = A[10]
π

a
sin

(
πx

a

)
ax =

√
2
ab

sin
(
πx

a

)
ax (2.40)

図 2.1. 電界モード関数 e[10] の x 成分 ex（左図）および y 成分 ey（右図）
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図 2.2. 磁界モード関数 h[10] の x 成分 hx（左図）および y 成分 hy（右図）

図 2.3. モード関数 e[10]（左図），h[10]（右図）のベクトルの向き

2.4.2 TE11モード

図 2.4. 電界モード関数 e[11] の x 成分 ex（左図）および y 成分 ey（右図）

図 2.5. 磁界モード関数 h[11] の x 成分 hx（左図）および y 成分 hy（右図）
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図 2.6. モード関数 e[11]（左図），h[11]（右図）のベクトルの向き

2.4.3 TE21モード

図 2.7. 電界モード関数 e[21] の x 成分 ex（左図）および y 成分 ey（右図）

図 2.8. 磁界モード関数 h[21] の x 成分 hx（左図）および y 成分 hy（右図）

図 2.9. モード関数 e[21]（左図），h[21]（右図）のベクトルの向き
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2.5 方形導波管のTMモードの正規化

TMモードの場合，管壁 C での境界条件

ΨTM = 0 (on C) (2.41)

より，h(kxx)，h(kyy)は次のようになる．

h(kxx) = sin kxx, kx = mπ

a
(m = 1, 2, 3, · · · ) (2.42)

h(kyy) = sin kyy, ky = nπ

b
(n = 1, 2, 3, · · · ) (2.43)

よって，

ψTM = ΨTM(x, y)ZTM(z) (2.44)

ここで，

ΨTM = A(mn) sin
(
mπx

a

)
sin

(
nπy

b

)
(2.45)

ZTM = e−jkz,(mn)z (2.46)

ただし，m 6= 0，n 6= 0．TEモードと同様にして，

k2 =
(
mπ

a

)2
+
(
nπ

b

)2
+ k2

z,(mn) = k2
c,(mn) + k2

z,(mn) (2.47)

よって，遮断波数 kc,(mn) は，

kc,(mn) =
√(

mπ

a

)2
+
(
nπ

b

)2
(2.48)

これより，TMmn モード関数は，

e(mn) = −∇tΨTM

= −A(mn)∇t

(
sin

(
mπx

a

)
sin

(
nπy

b

))
= −A(mn)

[
mπ

a
cos

(
mπx

a

)
sin

(
nπy

b

)
ax + nπ

b
sin

(
mπx

a

)
cos

(
nπy

b

)
ay

]
(2.49)

h(mn) = az × e(mn)

= A(mn)

[
−mπ

a
cos

(
mπx

a

)
sin

(
nπy

b

)
ay + nπ

b
sin

(
mπx

a

)
cos

(
nπy

b

)
ax

]
= A(mn)

[
nπ

b
sin

(
mπx

a

)
cos

(
nπy

b

)
ax − mπ

a
cos

(
mπx

a

)
sin

(
nπy

b

)
ay

]
(2.50)
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正規化条件より，係数 A(mn) を求めると，
¨

S

∣∣∣e(mn)
∣∣∣2dS = A2

(mn)

¨
(a×b)

[{
mπ

a
cos

(
mπx

a

)
sin

(
nπy

b

)}2

+
{
nπ

b
sin

(
mπx

a

)
cos

(
nπy

b

)}2
]
dS = 1 (2.51)

整理して，

A2
(mn)

[(
mπ

a

)2 ˆ a

0
cos2

(
mπx

a

)
dx

ˆ b

0
sin2

(
nπy

b

)
dy

+
(
nπ

b

)2 ˆ a

0
sin2

(
mπx

a

)
dx

ˆ b

0
cos2

(
nπy

b

)
dy

]

= A2
(mn)

[(
mπ

a

)2 a

2 · b2 +
(
nπ

b

)2 a

2 · b2

]

= A2
(mn)π

2 (mb)2 + (nb)2

4ab = 1 (2.52)

よって，正規化係数 A(mn) は，

A(mn) = 2
π

√
ab

(mb)2 + (na)2 = 2√
ab

1
kc,(mn)

(2.53)

TEmn モードと TMmn モードをまとめて，

Amn =
√
εmεn
ab

1
kc,mn

(2.54)

ここでは省略するが，スカラ関数による面積分によっても求めることができる．

2.6 方形導波管のTMモードの例

2.6.1 TM11モード

図 2.10. 電界モード関数 e(11) の x 成分 ex（左図）および y 成分 ey（右図）
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図 2.11. 磁界モード関数 h(11) の x 成分 hx（左図）および y 成分 hy（右図）

図 2.12. モード関数 e(11)（左図），h(11)（右図）のベクトルの向き

2.6.2 TM21モード

図 2.13. 電界モード関数 e(21) の x 成分 ex（左図）および y 成分 ey（右図）

図 2.14. 磁界モード関数 h(21) の x 成分 hx（左図）および y 成分 hy（右図）
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図 2.15. モード関数 e(21)（左図），h(21)（右図）のベクトルの向き

2.6.3 TM22モード

図 2.16. 電界モード関数 e(22) の x 成分 ex（左図）および y 成分 ey（右図）

図 2.17. 磁界モード関数 h(22) の x 成分 hx（左図）および y 成分 hy（右図）

図 2.18. モード関数 e(22)（左図），h(22)（右図）のベクトルの向き

2.7 標準的な方形導波管
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2.7.1 方形導波管の主な寸法規格

標準的な方形導波管の周波数帯域，寸法，基本モードの遮断波長を表にまとめている．方
形導波管は，丸角変換器を介して円形導波管と接続され，参考までよく用いられる円形の直
径もいっしょに示している．

表 2.1 方形導波管の寸法と仕様（代表例）

周波数帯域 呼称 WR 形名 幅 a 高さ b fc,[10] 円形直径 D

[GHz] [帯] EIA JIS ほか [mm] [mm] [GHz] [mm]
2.60–3.95 S 284 WRJ-3 72.14 34.04 2.078 73.9
3.94–5.99 C 187 WRJ-5 47.55 22.149 3.152 48.8
8.20–12.5 X 90 WRJ-10 22.860 10.160 6.557 23.4
11.9–18.0 Ku 62 WRJ-15 15.799 7.899 9.486 16.1
17.6–26.7 K 42 WRJ-24 10.668 4.318 14.047 10.9
21.7–33.7 34 WRJ-27 8.636 4.318 17.328 8.8
26.4–40.1 Ka 28 WRJ-34 7.112 3.556 21.081 7.3
33.0–50.1 Q 22 WRJ-40 5.690 2.845 26.342 5.8
39.3–59.7 U 19 WRJ-50 4.775 2.388 31.357 4.8
49.9–75.8 V 15 WRJ-60 3.759 1.880 39.863 3.9
73.8–112 10 WRJ-95 2.540 1.270 59.010 2.6

2.7.2 方形導波管の遮断波長の例

X 帯の方形導波管（a = 22.9 mm, b = 10.20 mm）の TEmn，TMmn モードのしゃ断波
数 kc，しゃ断波長 λc，しゃ断周波数 fc を低次モードから順に示すと次のようになる．

表 2.2 方形導波管（X 帯, a = 22.9 mm, b = 10.20 mm）のモード別の遮断特性

No. モード kc λc [mm] fc [GHz]
1 TE1,0 0.1371875 45.8000 6.5456
2 TE2,0 0.2743749 22.9000 13.0913
3 TE0,1 0.3079993 20.4000 14.6956

4,5 TE1,1 0.3371705 18.6350 16.0874
4,5 TM1,1 0.3371705 18.6350 16.0874

6 TE3,0 0.4115624 15.2667 19.6369
7,8 TE2,1 0.4124865 15.2325 19.6810
7,8 TM2,1 0.4124865 15.2325 19.6810

9,10 TE3,1 0.5140497 12.2229 24.5269
9,10 TM3,1 0.5140497 12.2229 24.5269

11 TE4,0 0.5487498 11.4500 26.1825
12 TE0,2 0.6159986 10.2000 29.3912

13,14 TE4,1 0.6292773 9.9848 30.0247
13,14 TM4,1 0.6292773 9.9848 30.0247

15 TE1,2 0.6310900 9.9561 30.1112
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CHAPTER 3

円形導波菅

　円形導波管内の電磁波の伝搬モードについて詳細に解説する．まず，スカラーヘル
ムホルツ方程式を円筒座標系で解き，変数分離法を用いて電磁界の振る舞いを記述す
る．TEモードと TMモードについて，それぞれ境界条件，スカラ関数，伝搬定数，
管内波長，遮断波長を導出する．さらに，これらのモードの電界および磁界モード関
数を導き，正規化係数の計算過程を詳述する．そして，代表的なモードの電界分布の
図示し，様々なモードの遮断波数と遮断波長を表形式で示している．

3.1 スカラーヘルムホルツ方程式（円筒座標系）

2次元微分演算子∇t を用いたスカラーヘルムホルツ方程式

∇2
t Ψ + k2

c Ψ = 0 (3.1)

を円筒座標系 (ρ, φ, z)において解くため，変数分離形で

Ψ(ρ, φ) = R(ρ)Φ(φ) (3.2)

とおくと，次式が得られる．

ρ
∂

∂ρ

(
ρ
∂R
∂ρ

)
+ {k2

c −m2}R = 0 (3.3)

これは，m 次のベッセル関数の微分方程式（Bessel’s equation of order m）であり，半径
ρ = aの円形導波管の中心（ρ = 0）においては有限な値をとるため，第 1種ベッセル関数
Jm(kρρ)を選べばよい．また，

∂2Φ
∂φ2 +m2Φ = 0 [Harmonic equation] (3.4)
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ここで，

Φ(φ) = Φ(φ+ 2π) (3.5)

より, mは整数となり，sinmφ，cosmφを用いればよい．

3.2 円形導波管のTEモード

3.2.1 境界条件

TEモードの円形導波菅の半径 aの管壁 C 上での境界条件は，

∂ΨTE

∂ρ

∣∣∣∣∣
ρ=a

= 0 (3.6)

よって，

J ′
m(kca) = 0, kc = χ′

mn

a
(3.7)

ただし，χ′
mn は J ′

m(χ) = 0 を満たす n番目の零点を示す．

3.2.2 TEモード

境界条件より，TEモードのスカラ関数 ψTE は，

ψTE = ΨTE(ρ, φ)ZTE(z) (3.8)

ここで，

ΨTE = A[mn]Jm

(
χ′

mnρ

a

)
sin
cos mφ (3.9)

ZTE = e−jkz,[mn]z (3.10)

ただし，m = 0 のとき，sinmφ = 0 ゆえ，上式の下側のみである．また，A[mn] は TEmn

モードの正規化係数を示す．ここで，

k2 =
(
χ′

mn

a

)2

+ k2
z,[mn] ≡ k2

c,[mn] + k2
z,[mn] (3.11)

ただし，

kc,[mn] = χ′
mn

a
, J ′

m (χ′
mn) = 0 (3.12)
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このとき，伝搬定数 γ[mn] は，

γ[mn] = jkz,[mn] =

 jβ[mn] = j
√
k2 − k2

c,[mn] (k > kc,[mn])
α[mn] =

√
k2

c,[mn] − k2 (k < kc,[mn])
(3.13)

また，管内波長 λg,[mn]（伝搬モード），遮断波長 λc,[mn] は，

λg,[mn] = 2π
β[mn]

(3.14)

λc,[mn] = 2π
kc,[mn]

= 2π
χ′

mn

a

= 2πa
χ′

mn

(3.15)

3.2.3 モード関数

磁界のモード関数 h[mn] は，

h[mn] = −∇tΨTE = −
(
∂ΨTE

∂ρ
aρ + 1

ρ

∂ΨTE

∂φ
aφ

)

= −A[mn]

[
d

dρ

{
Jm

(
χ′

mnρ

a

)}
sin
cos mφ aρ +1

ρ
Jm

(
χ′

mnρ

a

)
∂

∂φ

(
sin
cos mφ

)
aφ

]

= A[mn]

[
−χ′

mn

a
J ′

m

(
χ′

mnρ

a

)
sin
cos mφ aρ ∓m

ρ
Jm

(
χ′

mnρ

a

)
cos
sin mφ aφ

]
≡ hρ,[mn]aρ + hφ,[mn]aφ (3.16)

また，電界のモード関数 e[mn] は，

e[mn] = h[mn] × az =
(
hρ,[mn]aρ + hφ,[mn]aφ

)
× az

= −hρ,[mn]aφ + hφ,[mn]aρ = hφ,[mn]aρ − hρ,[mn]aφ

= A[mn]

[
∓m

ρ
Jm

(
χ′

mnρ

a

)
cos
sin mφ aρ +χ

′
mn

a
J ′

m

(
χ′

mnρ

a

)
sin
cos mφ aφ

]
≡ eρ,[mn]aρ + eφ,[mn]aφ (3.17)

3.3 円形導波管のTEモードの正規化
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3.3.1 磁界モード関数の正規化条件

モード関数の正規化条件に関わる積分は，¨
S

∣∣∣h[mn]
∣∣∣2dS =

∣∣∣A[mn]
∣∣∣2k2

c,[mn]

¨
S

(Ψ[mn])2dS

=
∣∣∣A[mn]

∣∣∣2k2
c,[mn]

ˆ a

0

ˆ 2π

0

[
Jm

(
χ′

mnρ

a

)
sin
cos mφ

]2

ρdρdφ

=
∣∣∣A[mn]

∣∣∣2k2
c,[mn]

ˆ 2π

0

sin2

cos2 mφ dφ

ˆ a

0
J2

m

(
χ′

mnρ

a

)
ρdρ (3.18)

ここで，
ˆ 2π

0
sin2 mφ dφ =

{
π (m 6= 0)
0 (m = 0) (3.19)

ˆ 2π

0
cos2 mφ dφ =

{
π (m 6= 0)
2π (m = 0) = 2π

εm
(3.20)

このとき，m = 0のモードは cosmφ = 1のみによって表されており，sinmφ = 0は用いな
い．sin2 mφの積分でもm 6= 0として，

ˆ 2π

0

sin2

cos2 mφ dφ = 2π
εm

(3.21)

3.3.2 ベッセル関数の積分

ベッセル関数の不積分公式ˆ
zJ2

ν (αz)dz = 1
2

{
z2J ′2

ν (αz) +
(
z2 − ν2

α2

)
J2

ν (αz)
}

(3.22)

より，
ˆ a

0
J2

m

(
χ′

mnρ

a

)
ρdρ = 1

2

[
ρ2J ′2

m

(
χ′

mnρ

a

)
+
(
ρ2 − m2a2

χ′2
mn

)
J2

m

(
χ′

mnρ

a

)]a

0

= 1
2

[
a2J ′2

m(χ′
mn) +

(
a2 − m2a2

χ′2
mn

)
J2

m(χ′
mn)

]
(3.23)

TEモードの境界条件より，J ′
m (χ′

mn) = 0より，
ˆ a

0
J2

m

(
χ′

mnρ

a

)
ρdρ = 1

2

(
a2 − m2a2

χ′2
mn

)
J2

m(χ′
mn) (3.24)

したがって，
¨

S

∣∣∣h[mn]
∣∣∣2dS =

∣∣∣A[mn]
∣∣∣2 (χ′

mn

a

)2 2π
εm

1
2

(
a2 − m2a2

χ′2
mn

)
J2

m(χ′
mn)

=
∣∣∣A[mn]

∣∣∣2 π
εm

(
χ′2

mn −m2
)
J2

m (χ′
mn) ≡ 1 (3.25)
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3.3.3 正規化係数

TEmn モードの正規化係数 A[mn](> 0)を求めると次のようになる（絶対値をつけない定
義もできる）．

A[mn] =
√√√√ εm

π
(
χ′2

mn −m2
) 1

|Jm(χ′
mn)| =

√√√√ εm

π
(
k2

c,[mn]a
2 −m2

) 1
|Jm(χ′

mn)| (3.26)

モード関数を再記して，

e[mn] = A[mn]

[
∓m

ρ
Jm

(
χ′

mnρ

a

)
cos
sin mφ aρ +χ

′
mn

a
J ′

m

(
χ′

mnρ

a

)
sin
cos mφ aφ

]
(3.27)

h[mn] = az × e[mn] = −eφ,[mn]aρ + eρ,[mn]aφ

= A[mn]

[
−χ′

mn

a
J ′

m

(
χ′

mnρ

a

)
sin
cos mφ aρ ∓m

ρ
Jm

(
χ′

mnρ

a

)
cos
sin mφ aφ

]
(3.28)

なお，m = 0のとき，sinmφ = 0，cosmφ = 1ゆえ，上側符号はゼロ，下側符号のみとな
り，次のようになる．

e[0n] = A[0n]
χ′

0n

a
J ′

0

(
χ′

0nρ

a

)
aφ = eφ,[0n]aφ (3.29)

h[0n] = −eφ,[0n]aρ (3.30)

3.4 円形導波管のTEモードの例

3.4.1 TE11モード

図 3.1. 電界モード関数 e[11] の電気力線
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3.4.2 TE21モード

図 3.2. 電界モード関数 e[21] の電気力線

3.4.3 TE01モード

図 3.3. 電界モード関数 e[01] の電気力線

3.4.4 TE12モード

図 3.4. 電界モード関数 e[12] の電気力線
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3.5 円形導波管のTMモードの正規化

TMモードの管壁 C での境界条件より，

ΨTM
∣∣∣∣
ρ=a

= 0 (3.31)

よって，

Jm(kca) = 0, kc = χmn

a
(3.32)

ただし，χmn は Jm(χ) = 0をみたす n番目の零点を示す．よって，

ψTM = ΨTM(ρ, φ)ZTM(z) (3.33)

ここで．

ΨTM = A(mn)Jm

(
χmnρ

a

) sin
cos mφ (3.34)

ZTM = e−jkz,(mn)z (3.35)

また，

k2 =
(
χmn

a

)2
+ k2

z,(mn) ≡ k2
c,(mn) + k2

z,(mn) (3.36)

ただし，

kc,(mn) = χmn

a
, Jm (χmn) = 0 (3.37)

このとき，伝搬定数 γ(mn) は，

γ(mn) = jkz,(mn) =

 jβ(mn) = j
√
k2 − k2

c,(mn) (k > kc,(mn))
α(mn) =

√
k2

c,(mn) − k2 (k < kc,(mn))
(3.38)

また，管内波長 λg,[mn]（伝搬モード），遮断波長 λc,[mn] は，

λg,(mn) = 2π
β(mn)

(3.39)

λc,(mn) = 2π
kc,(mn)

= 2π
χmn

a

= 2πa
χmn

(3.40)

よって，モード関数 e(mn) は，

e(mn) = −∇tΨTM = −
(
∂ΨTM

∂ρ
aρ + 1

ρ

∂ΨTM

∂φ
aφ

)

= A(mn)

[
−χmn

a
J ′

m

(
χmnρ

a

) sin
cos mφ aρ ∓m

ρ
Jm

(
χmnρ

a

) cos
sin mφ aφ

]
≡ eρ,(mn)aρ + eφ,(mn)aφ (3.41)
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また，h(mn) は，

h(mn) = az × e(mn) = az ×
(
eρ,(mn)aρ + eφ,(mn)aφ

)
= eρ,(mn)aφ − eφ,(mn)aρ

= −eφ,(mn)aρ + eρ,(mn)aφ ≡ hρ,(mn)aρ + hφ,(mn)aφ

= A(mn)

[
±m

ρ
Jm

(
χmnρ

a

) cos
sin mφ aρ −χmn

a
J ′

m

(
χmnρ

a

) sin
cos mφ aφ

]
(3.42)

モード関数の正規化条件に関わる面積分は，
¨

S

∣∣∣e(mn)
∣∣∣2dS =

∣∣∣A(mn)
∣∣∣2k2

c,(mn)

¨
S

(Ψ(mn))2dS

=
∣∣∣A(mn)

∣∣∣2k2
c,(mn)

ˆ a

0

ˆ 2π

0

[
Jm

(
χmnρ

a

) sin
cos mφ

]2

ρdρdφ

=
∣∣∣A(mn)

∣∣∣2k2
c,(mn)

ˆ 2π

0

sin2

cos2 mφ dφ

ˆ a

0
J2

m

(
χmnρ

a

)
ρdρ (3.43)

ベッセル関数の積分公式より，
ˆ a

0
J2

m

(
χmnρ

a

)
ρdρ = 1

2

[
a2J ′2

m(χmn) +
(
a2 − m2a2

χ′2
mn

)
J2

m(χmn)
]

(3.44)

TMモードの境界条件（Jm (χmn) = 0）を用いれば，
ˆ a

0
J2

m

(
χmnρ

a

)
ρdρ = a2

2 J
′2
m(χmn) (3.45)

したがって，
¨

S

∣∣∣e(mn)
∣∣∣2dS =

∣∣∣A(mn)
∣∣∣2 (χmn

a

)2 2π
εm

a2

2 J
′2
m(χmn)

=
∣∣∣A(mn)

∣∣∣2 π
εm
χ2

mnJ
′2
m (χmn) ≡ 1 (3.46)

とおいて，TMmn モードの正規化係数 A(mn)(> 0)を求めると次のようになる（絶対値をと
らない場合もある）．

A(mn) =
√
εm
π

1
χmn

∣∣∣J ′
m(χmn)

∣∣∣ (3.47)

ベッセル関数の公式

J ′
m(z) = m

z
Jm(z) − Jm+1(z) (3.48)

および境界条件 Jm (χmn) = 0を用いると，

J ′
m(χmn) = m

χmn
Jm(χmn) − Jm+1(χmn)

= −Jm+1(χmn) (3.49)
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よって，

A(mn) =
√
εm
π

1
χmn

∣∣∣Jm+1(χmn)
∣∣∣ (3.50)

主偏波成分のベクトルの向きを TEモードに合わせるため上側と下側を入れ替えると（正弦
モードと余弦モードを対応させる），

e(mn) = A(mn)

[
−χmn

a
J ′

m

(
χmnρ

a

) cos
sin mφ aρ ±m

ρ
Jm

(
χmnρ

a

) sin
cos mφ aφ

]
(3.51)

h(mn) = az × e(mn) = −eφ,(mn)aρ + eρ,(mn)aφ

= A(mn)

[
∓m

ρ
Jm

(
χmnρ

a

) sin
cos mφ aρ −χmn

a
J ′

m

(
χmnρ

a

) cos
sin mφ aφ

]
(3.52)

m = 0のとき，sinmφ = 0，cosmφ = 1ゆえ，下側符号はゼロ，上側符号のみとなり，次
のようになる．

e(0n) = −A(0n)
χ0n

a
J ′

0

(
χ0nρ

a

)
aρ = eρ,(0n)aρ (3.53)

h(0n) = eρ,(0n)aφ (3.54)

3.6 円形導波管のTMモードの例

3.6.1 TM01モード

図 3.5. 電界モード関数 e(01) の電気力線

55



3.6.2 TM11モード

図 3.6. 電界モード関数 e(11) の電気力線

3.6.3 TM21モード

図 3.7. 電界モード関数 e(21) の電気力線

3.6.4 TM12モード

図 3.8. 電界モード関数 e(12) の電気力線
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3.7 円形導波管モードの遮断波数

円形導波管（半径 a）の TEmn，TMmn モードの遮断波長 λc を低次モードから順に示す
と次のようになる [4]．

表 3.1 円形導波管のモード別遮断定数と遮断波長（半径 a を単位とする）
No. モード χ′

mn または χmn λc

1 TE11 χ′
11 = 1.841184 3.4126a

2 TM01 χ01 = 2.404826 2.6127a
3 TE21 χ′

21 = 3.054237 2.0572a
4,5 TM11 χ11 = 3.831706 1.6398a
4,5 TE01 χ′

01 = 3.831706 1.6398a
6 TE31 χ′

31 = 4.201189 1.4956a
7 TM21 χ21 = 5.135622 1.2235a
8 TE41 χ′

41 = 5.317553 1.1816a
9 TE12 χ′

12 = 5.331443 1.1785a
10 TM02 χ02 = 5.520078 1.1382a
11 TM31 χ31 = 6.380162 0.9848a
12 TE51 χ′

51 = 6.415616 0.9794a
13 TE22 χ′

22 = 6.706133 0.9369a
14,15 TM12 χ12 = 7.015587 0.8956a
14,15 TE02 χ′

02 = 7.015587 0.8956a
16 TE61 χ′

61 = 7.501266 0.8376a
17 TM41 χ41 = 7.588342 0.8280a
18 TE32 χ′

32 = 8.015237 0.7839a
19 TM22 χ22 = 8.417244 0.7465a
20 TE13 χ′

13 = 8.536316 0.7361a
21 TE71 χ′

71 = 8.577836 0.7325a
22 TM03 χ03 = 8.653728 0.7261a
23 TM51 χ51 = 8.771484 0.7163a
24 TE42 χ′

42 = 9.282396 0.6769a
25 TE81 χ′

81 = 9.647422 0.6513a
26 TM32 χ32 = 9.761023 0.6437a
27 TM61 χ61 = 9.936110 0.6324a
28 TE23 χ′

23 = 9.969468 0.6302a
29,30 TM13 χ13 = 10.173468 0.6176a
29,30 TE03 χ′

03 = 10.173468 0.6176a

m = 1 のモードを n ≤ 5 についてまとめると次のようになる．軸対称のテーパ導波管に
基本 TE11 モードが入射した場合，このような高次モードが発生するが，m 6= 1 のモード
は発生しない．

表 3.2 m = 1 の TE/TM モードとベッセル関数の零点（χ′
mn, χmn）

No. モード χ′
mn No. モード χmn

1 TE11 χ′
11 = 1.841184 4,5 TM11 χ11 = 3.831706

9 TE12 χ′
12 = 5.331443 14,15 TM12 χ12 = 7.015587

20 TE13 χ′
13 = 8.536316 29,30 TM13 χ13 = 10.173468

37 TE14 χ′
14 = 11.706005 48,49 TM14 χ14 = 13.323692

60 TE15 χ′
15 = 14.863589 73,74 TM15 χ15 = 16.470630
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CHAPTER 4

スミス図表

　スミス図表とアドミタンス図表について詳しく説明する．これらの図表は，複素平
面上で電圧反射係数を視覚的に表現するもので，伝送線路におけるインピーダンスや
アドミタンスの計算が容易になる．特に，定抵抗円や定リアクタンス円，定コンダク
タンス円，定サセプタンス円が図表上でどのように構成されるかを導出し，その使い
方を複数の演習問題を通して解説していく．さらに，伝送線路上の入力インピーダン
ス，損失のある伝送線路，1/4波長の伝送線路，電圧定在波比の概念をスミス図表と
関連付けて説明する．最後に，スミス図表とアドミタンス図表を統合したイミタンス
図表を示し，直列・並列素子が混在する回路解析におけるその有用性を明らかにして
いる．

4.1 スミス図表とは

4.1.1 複素平面上の電圧反射係数

複素平面上に，電圧反射係数 Γ = |Γ|ejθ（極形式）の |Γ|一定の円（等反射係数円），θ一
定の直線（等位相角線）を描くと，次の図のようになる．
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図 4.1. 等反射係数円と等位相角線

• 中心の点：Γ = 0 ゆえ，無反射
• 単位円上：|Γ| = 1 ゆえ，完全反射
• Γ = 1 の点：開放（オープン）
• Γ = −1 の点：短絡（ショート）

負荷から距離 l離れた点での反射係数 Γ(l)は，負荷点での反射係数 ΓL を用いて，

Γ(l) = ΓLe
−j2βl = |ΓL|ej(θ−2βl) (4.1)

ここで，Γ(l)の偏角は，θ− 2βlである．また Γ(l)は，ΓL の点から時計回りに 2βl [rad]回
転した点になる．伝送線路の管内波長を λg とすると，

2βl = 2 · 2π
λg

· l = 4π l

λg
(4.2)

4.1.2 定在波の最大・最小について

負荷点から距離 l 離れた点での電圧定在波 V (l)は，

V (l) = V +(1 + Γ(l)) = V +
(
1 + |ΓL|ej(θ−2βl)

)
(4.3)

電圧の最大は，ej(θ−2βl) = 1のときで，このときの電圧反射係数および最大値 |V |max は，

Γ
∣∣∣∣
Vmax

= |ΓL|ej(θ−2βl)
∣∣∣∣
Vmax

= |ΓL| (4.4)

|V |max = |V +| (1 + |ΓL|) (4.5)
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電圧が最大となる位置での電圧反射係数は正の実数ゆえ，複素平面の正の実軸上にあること
がわかる．逆に，電圧の最小は，ej(θ−2βl) = −1のときで，このときの電圧反射係数および
最小値 |V |min は，

Γ
∣∣∣∣
Vmin

= |ΓL|ej(θ−2βl)
∣∣∣∣
Vmin

= −|ΓL| (4.6)

|V |min = |V +| (1 − |ΓL|) (4.7)

電圧が最小となる位置での電圧反射係数は負の実数ゆえ，複素平面の負の実軸上にあること
がわかる．

4.1.3 規格化入力インピーダンス，規格化入力アドミタンスの図表

スミス図表（Smith chart）[5]は，電圧反射係数 Γ = |Γ|ejθ（大きさ，位相）を表す複素
平面上に，規格化入力インピーダンス zin の

• 実部：規格化抵抗（resistance）
• 虚部：規格化リアクタンス（reactance）

の目盛を書き込んだものである．同様にして，アドミタンス図表（admittance chart）は，
電圧反射係数を表す複素平面であるが，目盛は次の規格化入力アドミタンス yin からなる．

• 実部：規格化コンダクタンス（conductance）
• 虚部：規格化サセプタンス（susceptance）

4.1.4 定抵抗円と定リアクタンス円

伝送線路終端に負荷 ZL が接続された場合，規格化負荷インピーダンス zL は，負荷点で
の電圧反射係数 ΓL を用いて，

ZL

Z0
= zL = 1 + ΓL

1 − ΓL
(4.8)

同様にして，特性インピーダンス Z0 の伝送線路上のある点における規格化入力インピーダ
ンス zin(l)は，その点での電圧反射係数 Γ(l)を用いて，

Zin(l)
Z0

= zin(l) = 1 + Γ(l)
1 − Γ(l) (4.9)

実部，虚部を

zin ≡ r + jx (4.10)

Γ
(

= |Γ|ejθ
)

≡ u+ jv (4.11)

61



とおき（rは規格化抵抗，xは規格化リアクタンス），式 (4.9)に代入すると，

r + jx = 1 + (u+ jv)
1 − (u+ jv) = −1 + 2

1 − (u+ jv) (4.12)

上式を実部，虚部で整理して，

(r + 1) + jx = 2
(1 − u) − jv

=
2
{
(1 − u) + jv

}
(1 − u)2 + v2 (4.13)

式 (4.13)の実部を u，v について整理すると，

r + 1 = 2(1 − u)
(1 − u)2 + v2 (4.14)(

u− r

r + 1

)2
+ v2 =

( 1
r + 1

)2
(4.15)

これは，中心が u = r
r+1，v = 0，半径が 1

r+1 の円を表している．

u

v

0–1 1

–j

j

r+1
r

r+1
1

図 4.2. 定抵抗円

また，式 (4.13)の虚部を同様にして整理すると，

x = 2v
(1 − u)2 + v2 (4.16)

(
1 − u

)2
+
(
v − 1

x

)2
=
(1
x

)2
(4.17)

これは，中心が u = 1，v = 1
x，半径が

1
|x| の円を表している．
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図 4.3. 定リアクタンス円

4.1.5 スミス図表

これより，u− v 面上に，次の２つの円群を描くと次の図のようになる．
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図 4.4. 定抵抗円：r 一定の円群
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図 4.5. 定リアクタンス円：x 一定の円群

両者を重ね合わせがスミス図表の基本となる．

4.2 スミス図表の使い方

問題

　次の規格化負荷 z1 をスミス図表にプロットせよ．

• z1 = 0.2 + j0.5
• z1 = 0.5 − j0.5
• z1 = 1 − j2
• z1 = 2 + j1
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解答

図 4.6. 規格化負荷 z1

問題

　次の規格化入力インピーダンス zin = zL + 1
jωC をスミス図表にプロットせよ．た

だし，0 ≤ ω ≤ ∞．

• zL = 0.2
• zL = 0.5
• zL = 1
• zL = 2
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解答

図 4.7. 規格化入力インピーダンス zin

問題

　次の規格化入力インピーダンス zin = zL + 1
jωC をスミス図表にプロットせよ．た

だし，0 ≤ ω ≤ ∞．

• z1 = 0.2 + j0.5
• z1 = 0.5 − j0.5
• z1 = 1 − j2
• z1 = 2 + j1
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解答

図 4.8. 規格化入力インピーダンス zin

4.2.1 伝送線路上の入力インピーダンス

負荷点から l = 0.2λg 離れた無損失線路上の点での反射係数は，

Γ(l) = ΓLe
−j2βl (4.18)

スミス図表において，規格化負荷インピーダンス zL

zL = r1 + jx1 = 0.5 + j0.5 (4.19)

の点 P1 を，等反射係数円上において位相角 [rad]

θ = 2βl = 2 · 2π
λg

· 0.2λg = 0.8π (4.20)

だけ時計回りに回転させた点 P2 から入力インピーダンス zin(l) がわかる（スミス図表
参照）．
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図 4.9. 負荷点 P1：zL = r1 + jx1 = 0.5 + j0.5

2βl=0.8π
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伝送線路上の

規格化⼊⼒インピーダンス

図 4.10. 負荷点から l = 0.2λg 離れた点 P2

数式を用いて求める場合，規格化負荷インピーダンス zL が

zL = r1 + jx1 = 0.5 + j0.5 (4.21)
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のとき，負荷点での電圧反射係数 ΓL は，

ΓL = zL − 1
zL + 1 = (0.5 + j0.5) − 1

(0.5 + j0.5) + 1
= −0.2 + j0.4 = 0.447ej0.65π (4.22)

負荷点から l = 0.2λg 離れた無損失伝送線路上の点での電圧反射係数は，

Γ = ΓLe
−j2βl = ΓLe

−j2 2π
λg

·0.2λg

= (−0.2 + j0.4)e−j0.8π ' 0.4 − j0.2 (4.23)

よって，規格化入力インピーダンス zin，規格化入力アドミタンス yin は，

zin = 1 + ΓLe
−j2βl

1 − ΓLe−j2βl
= 1 + (0.4 − j0.2)

1 − (0.4 − j0.2) ' 2 − j1 (4.24)

yin = 1
zin

= 1
2 − j1 = 0.4 + j0.2 (4.25)

4.2.2 損失のある伝送線路

負荷点から l 離れた点での電圧反射係数 Γ(l) について，伝送線路に損失がある場合
（α 6= 0）とない場合（α = 0）の比は e−2αl，両者の差は，

Γ(l) − Γ(l)|α=0 = ΓLe
−2(α+jβ)l − ΓLe

−j2βl

= ΓLe
−j2βl(1 − e−2αl) (4.26)

図 4.11. 無損失と損失のある場合の比較
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4.3 1/4波長の伝送線路

規格化負荷インピーダンス zL = r1 + jx1 のとき，負荷点から l = λg/4だけ離れた点は，

θ = 2βl = 2 · 2π
λg

· λg

4 = π (4.27)

だけ時計回りに回転させた点をスミス図表にプロットすればよい．規格化入力インピーダン
ス zin は，

zin(λg/4) = 1 + ΓLe
−jπ

1 − ΓLe−jπ
= 1 + ΓL(−1)

1 − ΓL(−1) = 1 − ΓL

1 + ΓL
= 1
zL

= yL (4.28)

P
1

P
2
'

z
in
=r'

2
+jx'

2
=1-j1

伝送線路上の

規格化⼊⼒インピーダンス

2βl=π

図 4.12. 負荷点から l = λg/4 離れた点 P’2

このように 1/4波長の伝送線路を挿入すると，入力インピーダンスが，負荷点での値の逆
数となる．よって，

zin = 1
zL

= 1
0.5 + j0.5 = 2

1 + j1 = 1 − j1 (4.29)

これより，スミス図表上で π rad回転させた点から規格化負荷アドミタンス yL の値を読み
取ることもできる．
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4.4 入力インピーダンスと電圧定在波比

入力インピーダンスが純抵抗，つまり zin = r(jx = 0)で与えられるとき，電圧反射係数
Γは，

Γ
∣∣∣∣
jx=0

= zin − 1
zin + 1 = r − 1

r + 1 =
{

|Γ| (r ≥ 1)
−|Γ| (r ≤ 1) (4.30)

これより，規格化入力インピーダンス zin は，

zin = r = 1 + Γ
1 − Γ = 1 + (±|Γ|)

1 − (±|Γ|) =


1 + |Γ|
1 − |Γ|

= ρ (r ≥ 1)
1 − |Γ|
1 + |Γ|

= 1
ρ

(r ≤ 1)
(4.31)

となり，電圧定在波比 ρもわかる．
電圧定在波の最大の位置での電圧反射係数は Γ = |Γ| ゆえ，その点での規格化入力イン
ピーダンス zin は，

zin

∣∣∣∣
Vmax

= 1 + Γ
1 − Γ

∣∣∣∣∣
Vmax

= 1 + |Γ|
1 − |Γ|

= ρ (4.32)

ここで，ρは電圧定在波比を示し，

ρ = |V |max

|V |min
≥ 1 (4.33)

このとき，zin(= r + jx)は実数となる（純抵抗）．したがって，r ≥ 1，x = 0．これは，複
素平面の正の実軸上である．
電圧定在波の最小の位置での電圧反射係数は Γ = −|Γ|ゆえ，その点での規格化入力アド
ミタンス yin は，

yin

∣∣∣∣
Vmin

= 1 − Γ
1 + Γ

∣∣∣∣∣
Vmin

= 1 − (−|Γ|)
1 + (−|Γ|) = 1 + |Γ|

1 − |Γ|
= ρ = 1

zin

∣∣∣∣
Vmin

≥ 1 (4.34)

このとき，yin(= g + jb)は実数となる（純コンダクタンス）．したがって，g ≥ 1，b = 0．
あるいは，zin(= r + jx)が実数となり（純抵抗），r ≤ 1，x = 0．これは，複素平面の負の
実軸上であり，スミス図表では電圧定在波比 ρの読み取りにも対応している．
スミス図表を用いる場合，

• 点 P1：規格化負荷インピーダンス zL = 0.8 + j1.0をプロット．
• 点 P2：点 P1 をとおる等反射係数円と正の実軸との交点（電圧最大）．
• 図表より，電圧定在波比 ρ = zin = r = 3がわかる．
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この手順を逆にすれば，電圧定在波 ρ，負荷点から電圧定在波の最大の位置までの距離 l

がわかれば，実軸上の点 P2 を反時計回りに 2βl回転させ，規格化負荷インピーダンス（点
P1）を求めることができる．

P
2

P
1

z
L
=r

L
+jx

L
=0.8+j1

z
in
=r=3

図 4.13. 電圧定在波比

4.5 アドミタンス図表

4.5.1 電圧反射係数と入力アドミタンス

伝送線路終端に負荷アドミタンス YL が接続された場合，規格化負荷アドミタンス yL は，
負荷点での電圧反射係数 ΓL を用いて，

YL

Y0
= yL = 1 − ΓL

1 + ΓL
(4.35)

同様にして，特性アドミタンス Y0 の伝送線路上のある点における規格化入力アドミタンス
yin(l)は，その点での電圧反射係数 Γ(l)を用いて，

Yin(l)
Y0

= yin(l) = 1 − Γ(l)
1 + Γ(l) (4.36)
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同様にして yin ≡ g + jbとおいて，u，v（Γ = u+ jv）に関する式を求めると，実部を u，
v について整理して，(

u+ g

g + 1

)2

+ v2 =
(

1
g + 1

)2

(4.37)

これは，中心が u = − g
g+1，v = 0，半径が 1

g+1 の円を表している．また，虚部も同様にして，

(
1 + u

)2
+
(
v + 1

b

)2
=
(1
b

)2
(4.38)

これは，中心が u = −1，v = −1
b，半径

1
|b| の円を表している．

u

v

0–1 1

–j

j

g+1
g

g+1
1

図 4.14. 定コンダクタンス円

u

v

0–1 1

–j

j

b
1

|b|
1

図 4.15. 定サセプタンス円
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4.5.2 アドミタンス図表

Real part
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図 4.16. 規格化コンダクタンス g の円群
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図 4.17. 規格化サセプタンス b の円群
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問題

　無損失伝送線路の終端に規格化負荷アドミタンス yL

yL = g + jb = 0.5 + j0 (4.39)

が接続されている．この負荷点から (a) 距離 l1 = λg/離れた位置から負荷側を見た規
格化入力アドミタンス yin,1，(b) 距離 l2 = λg/4離れた位置から負荷側を見た規格化入
力アドミタンス yin,2 を，各々求めよ．ただし，λg はこの伝送線路の管内波長を示す．

解答

(a) 負荷点での電圧反射係数 ΓL は，

ΓL = 1 − yL

1 + yL
= 1 − (0.5 + j0.5)

1 + (0.5 + j0.5) = 0.2 − j0.4 = 0.447e−j0.65π (4.40)

負荷点から l1 = λg/5 離れた点での Γ1，yin,1 は，

Γ1 = ΓLe
−j2 2π

λg
· λg

5 = (0.2 − j0.4)e−j0.8π ' −0.4 + j0.2 (4.41)

よって，規格化入力アドミタンス yin,1 は，

yin,1 = 1 − ΓLe
−j2βl

1 + ΓLe−j2βl
= 1 − (−0.4 + j0.2)

1 + (−0.4 + j0.2) ' 2 − j1 (4.42)

図 4.18. 点 P2：yin,1 = 2 − j1
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解答

(b) 負荷点から l2 = λg/4 離れた点での yin,2 は，

yin,2 = 1
yL

= 1
0.5 + j0.5 = 2

1 + j1 = 1 − j1 (4.43)

図 4.19. 点 P′
2：yin,2 = 1 − j1

76



4.6 イミタンス図表

スミス（インピーダンス）図表とアドミタンス図表を並べると次のようになる．直列素子
や並列素子が混在する回路では，直列素子にはスミス図表の定抵抗円と定リアクタンス円，
並列素子にはアドミタンス図表の定コンダクタンス円と定サセプタンス円の目盛りが必要
となる．

(a) (b)

図 4.20. (a) スミス図表，(b) アドミタンス図表

上の 2 つの図表を重ね合わせると次のようになる．このようにスミス図表とアドミタン
ス図表を重ね合わせたものをイミタンス図表という．

図 4.21. スミス図表とアドミタンス図表の重ね合わせ
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CHAPTER 5

伝送特性の測定評価

　高周波回路の伝送特性測定における誤差とその補正方法を説明する．まず，測定誤
差としてシステマティック誤差，ランダム誤差，ドリフト誤差について解説し、特に
システマティック誤差は校正によって除去可能である．次に，振幅のみを補正するス
カラー誤差補正と，振幅・位相を測定して高精度に Sパラメータを求めるベクトル誤
差補正（ディエンベッディング）を説明している．ベクトル誤差補正には，SOL校
正，TM校正，SOLT校正，TRL校正など，様々な校正方法が開発されており，特
に TRL校正については詳細な導出と，未知の反射器や伝送線路でも適用できる利点
を明らかにしている．そして，これらの校正によって誤差回路の Sパラメータを決定
し，被測定素子（DUT）の正確な Sパラメータを求める方法を示している．

5.1 伝送特性の計測誤差

5.1.1 測定誤差の要因

伝送特性を測定するとき，次のような誤差がある．

• システマティック誤差：測定系の理想値からのずれ（不完全性）の誤差のことで，校
正によって除去できる．

• ランダム誤差：雑音，ケーブルのまがりの変化，コネクタの取り付け等の再現性のな
い誤差はランダムに生じるため，校正によって除去できない．

• ドリフト誤差：温度変動等によるシステム状態の変化による誤差のことで，再校正す
れば除去できる．
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5.1.2 スカラー誤差補正

振幅測定による周波数レスポンス誤差の補正をスカラー誤差補正と呼び，次のような方法
がある．

• 伝送測定：スルー（入出力ポートを直接接続）の測定値で正規化
• 反射測定：ショート（あるいはオープン）を取り付けた測定値で正規化

5.1.3 ベクトル誤差補正

振幅・位相を測定して演算処理することによって，システマティック誤差を除去でき，被
測定素子（DUT: device under test）の Sパラメータを高精度に求めることができる．これ
をディエンベッディング（de-embedding）という．このような誤差は標準器を用いて計測
評価され，校正，あるいはキャリブレーション（calibration）と呼ばれ，次のような方法が
ある．

• 反射測定：１ポート校正
• 反射・伝送測定：フル２ポート校正
• その他：TRL校正など

5.1.4 1ポート校正

• SOL校正：短絡器（Short），開放器（Open），負荷（Load）
• 左右対称 TM校正：スルー（Through），整合（Match）

5.1.5 2ポート校正

• SOLT校正：短絡器（Short），開放器（Open），負荷（Load），スルー（Through）
• TRL校正：スルー（Through），反射器（Reflect），伝送線路（Line）
• TLS校正：スルー（Through），伝送線路（Line），短絡器（Short）

5.1.6 ネットワークアナライザの基本構成

高周波回路素子の Sパラメータ等の周波数応答の測定によく用いられている計測装置が
ネットワークアナライザであり，主な構成は次のとおりである．

• スイーパ：周波数掃引信号源
• Sパラメータ・テストセット：反射・透過を分離するスイッチ，電力分配器，方向性
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結合器等
• レシーバ：信号の検波
• 計算処理部：校正など

このように一つの装置としてまとめられているのでベクトル誤差補正が行い易い．

5.1.7 誤差回路

測定ポート 1，2内部に誤差回路（error box, error adapter）を考える．散乱行列は，(
b0
b1

)
= [Sa]

(
a0
a1

)
,

(
b2
b3

)
= [Sb]

(
a2
a3

)
(5.1)

a1

b1

1

1'

2

2'

散乱⾏列

DUT

[S]
a2

b2

a3

b3

3

3'

散乱⾏列

[Sb]
a0

b0

散乱⾏列

[Sa]

0

0'
誤差回路 誤差回路

ネットワーク・アナライザの測定値 [Sa]

図 5.1. 誤差回路と DUT の縦続接続

散乱行列要素を，

[Sa] =
(
e00 e01
e10 e11

)
, [Sb] =

(
e22 e23
e32 e33

)
(5.2)

とおき，各々，Rマトリクスに変換すると，

[Ra] = 1
e10

(
−e00e11 + e01e10 e00

−e11 1

)
≡ 1
e10

[R′
a] (5.3)

[Rb] = 1
e32

(
−e22e33 + e23e32 e22

−e33 1

)
≡ 1
e32

[R′
b] (5.4)

ここで，(
b0
a0

)
= [Ra]

(
a1
b1

)
,

(
b2
a2

)
= [Rb]

(
a3
b3

)
(5.5)

ネットワークアナライザの測定値の散乱行列 [Sm]を，
(
b0
b3

)
= [Sm]

(
a0
a3

)
, [Sm] =

S(m)
11 S

(m)
12

S
(m)
21 S

(m)
22

 (5.6)

81



とすると，Rマトリクス
(
b0
a0

)
= [Rm]

(
a3
b3

)
, [Rm] =

R(m)
11 R

(m)
12

R
(m)
21 R

(m)
22

 (5.7)

は次のようになる．

[Rm] = 1
S

(m)
21

−S(m)
11 S

(m)
22 + S

(m)
12 S

(m)
21 S

(m)
11

−S(m)
22 1

 (5.8)

5.1.8 ディエンベッディング

この測定値の Rマトリクス [Rm]は，誤差回路 [Ra]，[Rb]，被測定素子の [R]を用いて次
のように計算できる．

[Rm] = [Ra][R][Rb] = 1
e10

[R′
a][R] 1

e32
[R′

b] (5.9)

これより，被測定素子の Rマトリクス [R]は，

[R] =
(
R11 R12
R21 R22

)
= [Ra]−1[Rm][Rb]−1 = e10e32[R′

a]−1[Rm][R′
b]−1 (5.10)

したがって，被測定素子の散乱行列 [S が次のようにして得られる．

[S] = 1
R22

(
R12 R11R22 −R12R21
1 R21

)
,

(
a1
a2

)
= [S]

(
b1
b2

)
(5.11)

5.2 シグナルフローグラフの応用

5.2.1 誤差回路とDUT

次の図は誤差モデルを考慮したシグナルフローグラフを示したもので，測定ポートをノー
ド a0，b0 と a3，b3 とし，DUTの入出力部に 2つの誤差回路を加えている．

図 5.2. 誤差回路と DUT からなるシグナルフローグラフ
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5.2.2 順方向伝送・反射

ポート 0からの入射波を考えた場合を順方向という．順方向伝送・反射においては，ポー
ト 3からの入射波は考えないので（a3 = 0），上のシグナルフローグラフにおいて伝送波の
ないブランチを削除すると次のようになる．

図 5.3. 順方向伝送・反射のシグナルフローグラフ

次に，入出力のノード以外について，1/e10 を乗じて新たなノードを定義する．まず，上
側のブランチについて，

b1 = e10a0 ∴
b1

e10
≡ b̄1 = 1 · a0 (5.12)

a′
1 = 1 · b1 ∴

a′
1

e10
≡ ā′

1 = b1

e10
= 1 · b̄1 (5.13)

b′
2 = S21a

′
1 ∴

b′
2
e10

≡ b̄′
2 = S21

a′
1

e10
= S21ā

′
1 (5.14)

a2 = 1 · b′
2 ∴

a2

e10
≡ ā2 = b′

2
e10

= 1 · b̄′
2 (5.15)

b3 = e32a2 = e32e10 · ā2 (5.16)

ポート 2における上から下へのブランチについては，

b2 = e22a2 ∴
b2

e10
≡ b̄2 = e22

a2

e10
= e22 · ā2 (5.17)

同様にして，下側のブランチについて，

a′
2 = 1 · b2 ∴

a′
2

e10
≡ ā′

2 = b2

e10
= 1 · b̄2 (5.18)

b′
1 = S12a

′
2 ∴

b′
1
e10

≡ b̄′
1 = S12

a′
2

e10
= S12ā

′
2 (5.19)

a1 = 1 · b′
1 ∴

a1

e10
≡ ā1 = b′

1
e10

= 1 · b̄′
1 (5.20)

b0 = e01a1 = e01e10 · ā1 (5.21)

その他，上下のブランチの値は変わらない．これより，順方向シグナルフローグラフが次の
ように変形される．
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図 5.4. ノードの定義を変更した順方向シグナルフローグラフ

5.2.3 逆方向伝送・反射

逆方向伝送・反射においては，ポート 0からの入射波は考えないので（a0 = 0），順方向
シグナルフローグラフと同様にして，

• 伝送波のない不要ブランチを削除した逆方向シグナルフローグラフを考える．
• 入出力のノード以外について，1/e23 を乗じたノードを定義する．
• 新たに定義したノードからのブランチの値を求める．
• ノードの定義を変更した逆方向シグナルフローグラフを作成する．

これより，逆方向シグナルフローグラフもまた，次のようになる．

図 5.5. 逆方向伝送・反射のシグナルフローグラフ

図 5.6. ノードの定義を変更した逆方向シグナルフローグラフ

5.3 1ポート校正
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5.3.1 SOL校正

測定ポート 1（a1，b1）に DUT（1 端子対回路）を接続して反射係数を高精度に測定す
るための SOL校正について説明する．まず，ある負荷を接続したときの反射係数を ΓL と
する．

a1

b1

1'

a0

b0

散乱⾏列

[Sa]

0

0'
誤差回路

測定ポート1

測定値

ΓL ZL

図 5.7. 反射器の接続

ポート 0での反射係数 Γ0 は，

Γ0 = e00 + e10e01ΓL

1 − e11ΓL
(5.22)

で表され，例えば，負荷として短絡器（ΓL = −1）を接続すると，

Γ(S)
0 = Γ0

∣∣∣∣
short

= e00 + e10e01(−1)
1 − e11(−1) = e00 − e10e01

1 + e11
(5.23)

また，負荷として開放器（ΓL = 1）を接続すると，

Γ(O)
0 = Γ0

∣∣∣∣
open

= e00 + e10e01 · 1
1 − e11 · 1 = e00 + e10e01

1 − e11
(5.24)

負荷が整合負荷（ΓL = 0）のときは言うまでもなく，

Γ(L)
0 = Γ0

∣∣∣∣
load

= e00 + e10e01 · 0
1 − e11 · 0 = e00 (5.25)

これより，e00，e11，e10e01 は，次式によって求めることができる．

e00 = Γ(L)
0 (5.26)

e11 = 2Γ(L)
0 − Γ(S)

0 − Γ(O)
0

Γ(S)
0 − Γ(O)

0
(5.27)

e10e01 = 2(Γ(L)
0 − Γ(S)

0 )(Γ(L)
0 − Γ(O)

0 )
Γ(S)

0 − Γ(O)
0

(5.28)

このように 1つのポートの誤差補正を行うものを 1ポート校正という．同様にして，測定
ポート 2（a2，b2）についても整合負荷，短絡器，開放器を接続して測定を行えば，e33, e22,
e23e32 が得られる．
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5.3.2 左右対称TM校正

2つの誤差回路の特性が鏡像の関係の場合，散乱行列 [Sa]，[Sb]は，

[Sa] =
(
e00 e01
e10 e11

)
(5.29)

[Sb] =
(
e22 e23
e32 e33

)
=
(
e11 e10
e01 e00

)
(5.30)

スルー（Through）と整合負荷（Match）により行うのが TM（thru-match）校正である．
整合負荷（Match）は SOL校正の Loadと同じで，測定値 Γ(M)

0 より e00 は，

e00 = Γ(M)
0 (5.31)

スルー（Through）での測定値 S
(T)
11 ，S

(T)
21 は，散乱行列の縱続接続より，

S
(T)
21 = e01e10

1 − e2
11

(5.32)

S
(T)
11 = e00 + e01e11e10

1 − e2
11

= e00 + e11S
(T )
21 (5.33)

これより，e11 は，

e11 = S
(T)
11 − e00

S
(T)
21

= S
(T)
11 − Γ(M)

0

S
(T)
21

(5.34)

また，e01e10 は，

e01e10 = S
(T)
21 (1 − e2

11) = S
(T)
21 −

(
S

(T)
11 − Γ(M)

0

)2

S
(T)
21

(5.35)

5.4 2ポート校正

5.4.1 SOLT校正

測定ポート 1と 2を直接接続したときの透過係数 S
(T)
21 ，S

(T)
12 は，散乱行列 [Sa]と [Sb]の

縦続接続より求められ，

S
(T)
21 = e10e32

1 − e11e22
(5.36)

S
(T)
12 = e01e23

1 − e11e22
(5.37)
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図 5.8. 測定ポートの直接接続（スルー）

これと SOL校正を行えば，e10e32，e01e23 は次のようにして求めることができる．

e10e32 = S
(T)
21 (1 − e11e22) (5.38)

e01e23 = S
(T)
12 (1 − e11e22) (5.39)

このようにして得られた誤差回路パラメータ e00，e11，e10e01，e33，e22，e23e32，e10e32，
e01e23 を用いれば，ディエンベッディングによって被測定素子の S パラメータを求めるこ
とができる．後述する TRL 校正でも同様である（2 ポート校正）．さらに，測定系内部の
ポート 0–3間のアイソレーションも含めた全誤差回路定数を評価するものをフル 2ポート
校正という．

5.4.2 TRL校正

TRL（thru-reflect-line）校正は次の 3つの接続状態で測定を行い，校正するものである*1

[6]．

• スルー（Through）：ポート 1，2を直接接続（あるいは短い伝送線路を介して接続）
し，測定する．

• 反射器（Reflect）：ポート 1，2に反射の大きな（未知数）終端負荷を接続し，各々，
測定する．通常，ショートに近いか，オープンに近いかがわかっていて，反射係数の
大きさが 1に近いものが用いられる．

• 伝送線路（Line）：ポート 1，2を短い伝送線路（スルーで用いたものとは長さの異な
る伝送線路）を介して接続し，測定する．

反射器の反射係数や伝送線路の長さが正確にわかっていない場合でも適用できるのが TRL
校正の大きな特徴である．

*1 G. F. Engen and C. A. Hoer, “Thru-Reflect-Line: An improved technique for calibrating the dual
six-port automatic network analyzer,” IEEE Trans. On Micr. Theory and Tech., vol.27, pp.987-993,
Dec. 1979.
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5.4.3 TLS校正（TSD校正）

TRL校正の反射器（Reflect）のかわりに短絡器（short）を用いた校正を，TLS（thru-
line-short）校正という．伝送線路（line）を delayと呼ぶときには，TSD（thru-short-delay）
校正という．短絡器（short）を用いるため，ΓL = −1とおいて求めれば，次のようにして
e11，e22 を決定できる．

e11 = −S
(R)
11 − x2

S
(R)
11 − x1

(5.40)

e22 = −S
(R)
22 + y2

S
(R)
22 + y1

(5.41)

それ以外は，TRL校正と同じである．</p>

5.5 TRL校正の詳細

TRL校正*2 [6] について詳しく導出して解説する．

5.5.1 スルー（Through）

まず，スルーのとき，ポート 0-3間の Rマトリクス（測定値）は，

[Rthru] = [Ra][Rb] (5.42)

よって，

[Rb] = [Ra]−1[Rthru] (5.43)

5.5.2 伝送線路（Line）

次に，図のように伝送線路（Line）を接続すると，

[Rline] = [Ra][Rl][Rb] = [Ra][Rl][Ra]−1[Rthru] (5.44)

*2 G. F. Engen and C. A. Hoer, “Thru-Reflect-Line: An improved technique for calibrating the dual
six-port automatic network analyzer,” IEEE Trans. On Micr. Theory and Tech., vol.27, pp.987-993,
Dec. 1979.
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図 5.9. 測定ポート間に伝送線路を接続した場合

これより，

[Rline][Rthru]−1 = [Ra][Rl][Ra]−1 (5.45)

ただし，[Rl]は線路長 lの伝送線路の Rマトリクスを示し，次のようになる．

[Rl] =
(
e−γl 0

0 eγl

)
(5.46)

ここで，測定値から求められる値を次のようにおく．

[Rline][Rthru]−1 ≡
(
r11 r12
r21 r22

)
(5.47)

5.5.3 行列のトレース

要素 aij（i, j = 1, 2, · · · , n）からなる行列を [A]とすると，行列のトレース tr は，対角
要素 aii の和より，

tr [A] = a11 + a22 + · · · + ann =
n∑

i=1
aii (5.48)

行列 [A][B]のトレースは，

tr [A][B] =
n∑

i=1
([A][B])ii =

n∑
i=1

(
n∑

m=1
aimbmi

)
=

n∑
m=1

(
n∑

i=1
bmiaim

)

=
n∑

m=1
([B][A])mm = tr [B][A] (5.49)

つまり，行列を入れ替えてもトレースは不変である．これより，

tr([P ]−1[A][P ]) = tr
{
([P ]−1[A])[P ]

}
= tr

{
[P ]([P ]−1[A])

}
= tr

{
([P ][P ]−1)[A]

}
= tr {[U ][A]} = tr [A] (5.50)

ただし，[U ]は単位行列を示す．よって，行列の相似変換でもトレースは不変である．
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5.5.4 伝送線路の電気長

式 (5.45)の行列のトレースを求めると，

tr
{
[Rline][Rthru]−1

}
= tr

{
[Ra][Rl][Ra]−1

}
= tr

{
[Ra]−1([Ra][Rl])

}
= tr [Rl] = e−γl + eγl (5.51)

行列のトレースは，対角要素の和ゆえ，

r11 + r22 = e−γl + eγl = 2 cosh γl (5.52)

よって，伝送線路の電気長 γlを求めることができる．

γl = cosh−1
(
r11 + r22

2

)
(5.53)

5.5.5 誤差回路の Sパラメータ

誤差回路の Rマトリクス要素を

[Ra] ≡

r(a)
11 r

(a)
12

r
(a)
21 r

(a)
22

 (5.54)

とおくと，

[Rline][Rthru]−1 = [Ra][Rl][Ra]−1

[Rline][Rthru]−1[Ra] = [Ra][Rl] (5.55)

より，(
r11 r12
r21 r22

)r(a)
11 r

(a)
12

r
(a)
21 r

(a)
22

 =
r(a)

11 r
(a)
12

r
(a)
21 r

(a)
22

(e−γl 0
0 eγl

)
(5.56)

これより，

r11r
(a)
11 + r12r

(a)
21 = r

(a)
11 e

−γl (5.57)

r11r
(a)
12 + r12r

(a)
22 = r

(a)
12 e

γl (5.58)

r21r
(a)
11 + r22r

(a)
21 = r

(a)
21 e

−γl (5.59)

r21r
(a)
12 + r22r

(a)
22 = r

(a)
22 e

γl (5.60)

式 (5.57)と式 (5.59)の比をとり，e−γl を消去すると，

r11r
(a)
11 + r12r

(a)
21

r21r
(a)
11 + r22r

(a)
21

= r
(a)
11

r
(a)
21

(5.61)
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整理すると次の 2次方程式となる．

r21

r(a)
11

r
(a)
21

2

+ (r22 − r11)r
(a)
11

r
(a)
21

− r12 = 0 (5.62)

また，式 (5.58)と式 (5.60)の比をとり，eγl を消去して整理すると，

t11t
(a)
12 + t12t

(a)
22

t21t
(a)
12 + t22t

(a)
22

= t
(a)
12

t
(a)
22

(5.63)

r21

r(a)
12

r
(a)
22

2

+ (r22 − r11)r
(a)
12

r
(a)
22

− r12 = 0 (5.64)

上の二つの 2次方程式は，係数が同じゆえ，

r21x
2 + (r22 − r11)x− r12 = 0 (5.65)

よって，解は，

x =
−(r22 − r11) ±

√
(r22 − r11)2 + 4r21r12

2r21
= x1, x2 (5.66)

Rマトリクスから Sマトリクスに変換して，

x1 = r
(a)
11

r
(a)
21

= −e00e11 + e01e01

−e11
= e00 − e01e10

e11
(5.67)

x2 = r
(a)
12

r
(a)
22

= e00 (5.68)

とおく．誤差回路による反射が大きくないとすれば，|x1| > |x2|となるような解を選べばよ
い．したがって，

e00 = x2 (5.69)
e01e10

e11
= x2 − x1 (5.70)

　同様にして，ポート 2-3間の誤差回路のパラメータも求めることができ，

[Rline] = [Ra][Rl][Rb] = [Rthru][Rb]−1[Rl][Rb] (5.71)

変形して，

[Rthru]−1[Rline] = [Rb]−1[Rl][Rb] (5.72)
[Rb][Rthru]−1[Rline] = [Rl][Rb] (5.73)
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いま，

[Rthru]−1[Rline] ≡
(
r′

11 r′
12

r′
21 r′

22

)
(5.74)

[Rb] ≡

r(b)
11 r

(b)
12

r
(b)
21 r

(b)
22

 (5.75)

とおくと，r(b)
11 r

(b)
12

r
(b)
21 r

(b)
22

(r′
11 r′

12
r′

21 r′
22

)
=
(
e−γl 0

0 eγl

)r(b)
11 r

(b)
12

r
(b)
21 r

(b)
22

 (5.76)

これより，

r
(b)
11 r

′
11 + r

(b)
12 r

′
21 = r

(b)
11 e

−γl (5.77)

r
(b)
11 r

′
12 + r

(b)
12 r

′
22 = r

(b)
12 e

−γl (5.78)

r
(b)
21 r

′
11 + r

(b)
22 r

′
21 = r

(b)
21 e

γl (5.79)

r
(b)
21 r

′
12 + r

(b)
22 r

′
22 = r

(b)
22 e

γl (5.80)

式 (5.77)と式 (5.78)の比をとり e−γl を消去，

r
(b)
11 r

′
11 + r

(b)
12 r

′
21

r
(b)
11 r

′
12 + r

(b)
12 r

′
22

= r
(b)
11

r
(b)
12

r′
12

r(b)
11

r
(b)
12

2

+ (r′
22 − r′

11)r
(b)
11

r
(b)
12

− r′
21 = 0 (5.81)

また，式 (5.79)と式 (5.80)の比をとり eγl を消去して整理すると，

r
(b)
21 r

′
11 + r

(b)
22 r

′
21

r
(b)
21 r

′
12 + r

(b)
22 r

′
22

= r
(b)
21

r
(b)
22

r′
12

r(b)
21

r
(b)
22

2

+ (r′
22 − r′

11)r
(b)
21

r
(b)
22

− r′
21 = 0 (5.82)

上の二つの方程式は，

r′
12y

2 + (r′
22 − r′

11)y − r′
21 = 0 (5.83)

で表され，解は (|y1| > |y2|)，

y =
−(r′

22 − r′
11) ±

√
(r′

22 − r′
11)2 + 4r′

12r
′
21

2r′
12

= y1, y2 (5.84)
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Rマトリクスから Sマトリクスに変換して，

y1 = r
(b)
11

r
(b)
12

= −e22e33 + e23e32

e22
= −e33 − e23e32

e22
(5.85)

y2 = r
(b)
21

r
(b)
22

= −e33 (5.86)

したがって，

e33 = −y2 (5.87)
e23e32

e22
= y1 − y2 (5.88)

5.5.6 反射器（Reflect）

測定ポートに反射器（Reflect）を接続した場合を考える（反射係数 ΓL）．

a1

b1

1' 2'

a2

b2

a3

b3

3

3'

散乱⾏列

[Sb]
a0

b0

散乱⾏列

[Sa]

0

0'
誤差回路 誤差回路

測定ポート1 測定ポート2

測定値 [SR]

ΓL ΓLZL ZL

測定値 [SR]

図 5.10. 測定ポート間に伝送線路を接続した場合

ポート 0での反射係数 S
(R)
11 ，およびポート 3での反射係数 S

(R)
22 は，

S
(R)
11 = e00 + e01e10ΓL

1 − e11ΓL
= x2 + e11(x2 − x1)ΓL

1 − e11ΓL
(5.89)

S
(R)
22 = e33 + e23e32ΓL

1 − e22ΓL
= −y2 + e22(y1 − y2)ΓL

1 − e22ΓL
(5.90)

これより，

ΓL = S
(R)
11 − x2

(S(R)
11 − x1)e11

= S
(R)
22 + y2

(S(R)
22 + y1)e22

(5.91)

∴
e22

e11
= (S(R)

11 − x1)(S(R)
22 + y2)

(S(R)
11 − x2)(S(R)

22 + y1)
(5.92)

一方，スルーのときの反射係数 S
(T)
11 ，S

(T)
22 は，

S
(T)
11 = e00 + e22e01e10

1 − e11e22
= x2 + e11e22(x2 − x1)

1 − e11e22
= x2 − e11e22x1

1 − e11e22
(5.93)

S
(T)
22 = e33 + e22e23e32

1 − e11e22
= −y2 + e11e22(y1 − y2)

1 − e11e22
= −y2 + e11e22y1

1 − e11e22
(5.94)
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よって，

e11e22 = S
(T)
11 − x1

S
(T)
11 − x2

= S
(T)
22 + y1

S
(T)
22 + y2

(5.95)

したがって，

e2
11 = (S(T)

11 − x1)(S(R)
11 − x2)(S(R)

22 + y1)
(S(T)

11 − x2)(S(R)
11 − x1)(S(R)

22 + y2)
(5.96)

e22 = (S(R)
11 − x1)(S(R)

22 + y2)
(S(R)

11 − x2)(S(R)
22 + y1)

e11 (5.97)

ここで，ΓL の推定値を用いて，

e11 = S
(R)
11 − x2

(S(R)
11 − x1)ΓL

(5.98)

e22 = S
(R)
22 + y2

(S(R)
22 + y1)ΓL

(5.99)

より推定値を求め，e11，e22 の符号を決定すればよい．さらに e10e32，e01e23 は，SOLT校
正のスルーの式と同様であり，スルーの透過係数 S

(T)
21 ，S

(T)
12 がわかれば求められる．した

がって，

e00, e11, e10e01, e33, e22, e23e32, e10e32, e01e23

が決定され，ディエンベッディングによって被測定素子の S パラメータを得ることがで
きる．
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CHAPTER 6

フィルタ合成のための特性関数

　フィルタ合成における特性関数と動作パラメータの理論的基礎を解説する．まず，
二端子対リアクタンス回路における入力インピーダンスと反射係数を導入し，最大電
力と消費電力の比として動作伝送関数を定義する．次に，これを基にしてフィルタの
特性関数を定義し，反射係数との関係も言及している．また，無損失回路の性質につ
いて，その入力インピーダンス，インピーダンス行列，アドミタンス行列，および基
本行列が持つ偶関数・奇関数特性を詳述する．最後に，動作パラメータ，散乱行列，
そして入力インピーダンスと特性関数との間の関係を導き，伝送特性としての挿入損
失，反射損失，位相特性，群遅延特性を求めていく．

6.1 2端子対リアクタンス回路

2 端子対リアクタンス回路のポート 1, 2 を R1，R2（実数）で終端し，ポート 1, 2 から
回路側を見た入力インピーダンスを Zin,1(s)，Zin,2(s)とすると，ポート 1, 2での反射係数
Γ1(s)，Γ2(s)は，

Γ1(s) = Zin,1(s) −R1

Zin,1(s) +R1
(6.1)

Γ2(s) = Zin,2(s) −R2

Zin,2(s) +R2
(6.2)

ただし，s = jω．
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I1

V1
R1

R2
E

1

1'

I2

V2

2

2'

２端⼦対

リアクタンス

回路Zin,1 Zin,2

図 6.1. 入出力を終端した回路

ポート 2の終端負荷 R2 に消費される電力 P2 は，

P2 = V2(−I2)∗ = |V2|2

R2
(6.3)

ポート 1に内部抵抗 R1 の信号源を接続した場合を考える．内部抵抗に等しい整合抵抗 R1

をこれに接続すれば最大電力 Pmax が得られ，次のようになる．

Pmax = E2R1

(R1 +R1)2 = E2

4R1
(6.4)

I1

V1
R1

R1
E

1

1'

図 6.2. 整合負荷を接続した回路

これより，終端負荷 R2 に消費される電力 P2 と最大電力 Pmax との比は，

Pmax

P2
=

E2

4R1
|V2|2
R2

= 1
4
R2

R1

E2

|V2|2
=
∣∣∣∣∣12
√
R2

R1

E

V2

∣∣∣∣∣
2

(6.5)

ここで，回路が無損失のとき，出力電力 P2 は入力電力 Pin = |I1|2<(Zin,1)に等しいから，

|I1|2<(Zin,1) = |V2|2

R2
(6.6)

よって，
∣∣∣∣V2

I1

∣∣∣∣2 = R2<(Zin,1) (6.7)
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これより，

V2

E
= I1

E
· V2

I1
= 1
R1 + Zin,1

· V2

I1
(6.8)

∣∣∣∣V2

E

∣∣∣∣2 = 1
|R1 + Zin,1|2

·
∣∣∣∣V2

I1

∣∣∣∣2 = R2<(Zin,1)
|R1 + Zin,1|2

(6.9)

よって，

Pmax

P2
=
∣∣∣∣∣12
√
R2

R1

E

V2

∣∣∣∣∣
2

= 1
4
R2

R1

|R1 + Zin,1|2

R2<(Zin,1) = |R1 + Zin,1|2

4R1<(Zin,1) (6.10)

受動回路の場合，Pmax/P2 ≥ 1．

6.2 フィルタの特性関数

特性関数（characteristic function）K(s)を，

Pmax

P2
= 1 + |K(s)|2 (6.11)

で定義し（s = jω），Transducer Function H(s)*1を次のように定義する．

H(s) =
√
Pmax

P2
= 1

2

√
R2

R1

E

V2
(6.12)

よって，

|H(s)|2 = 1 + |K(s)|2 (6.13)

*1 Transducer Function（動作伝送関数）には，次のような２つの定義があるが，本章では後者の定義を用
いている）．

• 広義の Transducer Function：電源・負荷を含めた入出力関係（E → V2）を扱い，実用的な電圧伝送性
能を示す．

• 狭義の Transducer Function（Insertion Loss 法）：規格化された電源・負荷（R1, R2）におけるフィル
タ設計のための関数を示す（動作伝送係数と同じ定義）．
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次に，反射係数との関係を導出する．

1 − P2

Pmax
= 1 − 4R1

R2

∣∣∣∣V2

E

∣∣∣∣2 = 1 − 4R1

R2
· R2<(Zin,1)

|R1 + Zin,1|2

=
(R1 + Zin,1)(R1 + Z∗

in,1) − 4R1<(Zin,1)
|R1 + Zin,1|2

=
R2

1 +R1(Zin,1 + Z∗
in,1) + |Zin,1|2 − 2R1(Zin,1 + Z∗

in,1)
|R1 + Zin,1|2

=
R2

1 −R1(Zin,1 + Z∗
in,1) + |Zin,1|2

|R1 + Zin,1|2

=
(R1 − Zin,1)(R1 − Z∗

in,1)
|R1 + Zin,1|2

=
∣∣∣∣∣Zin,1 −R1

Zin,1 +R1

∣∣∣∣∣
2

= |Γ1|2 (6.14)

つまり，

|Γ1|2 = 1 − 1
|H|2

= |H|2 − 1
|H|2

= |K|2

|H|2
= |K|2

1 − |K|2
(6.15)

これより，特性関数 K に関して次式が成り立つ．

|K|2 = |Γ1|2|H|2 (6.16)
KK∗ = Γ1Γ∗

1HH
∗ (6.17)

6.3 入力インピーダンスの性質

物理的に実現可能な受動回路（passive network）の入力インピーダンスの偶・奇特性
（even/odd properties）を説明する．

6.3.1 フーリエ変換

いま，f(t)を時間 t（実数）の実数の関数とし，時間領域（time domain）から周波数領
域（frequency domain）にフーリエ変換（Fourier transform）すると，

F (ω) =
ˆ ∞

−∞
f(t)e−jωtdt (6.18)

これは次のように実部と虚部で表すことができる．

F (ω) =
ˆ ∞

−∞
f(t)(cosωt− j sinωt)dt

=
ˆ ∞

−∞
f(t) cosωtdt− j

ˆ ∞

−∞
f(t) sinωtdt (6.19)
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ここで，F1(ω)，F2(ω)を実数として，

F (ω) = <(F ) + =(F ) ≡ F1(ω) − jF2(ω) (6.20)

とおくと，

F1(−ω) =
ˆ ∞

−∞
f(t) cos(−ω)tdt =

ˆ ∞

−∞
f(t) cosωtdt = F1(ω) (6.21)

F2(−ω) =
ˆ ∞

−∞
f(t) sin(−ω)tdt = −

ˆ ∞

−∞
f(t) sinωtdt = −F2(ω) (6.22)

よって，F1(ω)は偶関数（even），F2(ω)は奇関数（odd）である．信号源を含まない定数素
子 R，L，C（周波数や信号の大きさに依存しない）から構成される 1端子対回路を考える
と，電圧 v(t)，電流 i(t)は時間 tの実数関数であり，これらのフーリエ変換を V (ω)，I(ω)
とすると，

V (ω) = Z(jω)I(ω) (6.23)

ただし，Z(jω)は入力インピーダンスを示し，

Z(jω) = R(ω) + jX(ω) (6.24)

このとき，実部，虚部は先に求めた式 (6.21)，式 (6.22)の関係があり，

V (ω) = V1(ω) − jV2(ω) (6.25)
I(ω) = I1(ω) − jI2(ω) (6.26)

入力インピーダンスとの関係を考えて，

V1(ω) − jV2(ω) =
{
R(ω) + jX(ω)

}{
I1(ω) − jI2(ω)

}
= R(ω)I1(ω) +X(ω)I2(ω) + j

{
−R(ω)I2(ω) +X(ω)I1(ω)

}
(6.27)

実部，虚部より，

V1(ω) = R(ω)I1(ω) +X(ω)I2(ω) (6.28)
V2(ω) = R(ω)I2(ω) −X(ω)I1(ω) (6.29)

これより，

R(−ω) = V1(−ω)I1(−ω) + V2(−ω)I2(−ω)
I2

1 (−ω) + I2
2 (−ω) =

V1(ω)I1(ω) +
(

− V2(ω)
)(

− I2(ω)
)

I2
1 (ω) +

(
− I2(ω)

)2

= R(ω) (6.30)
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X(−ω) = V1(−ω)I2(−ω) − V2(−ω)I1(−ω)
I2

1 (−ω) + I2
2 (−ω) =

V1(ω)
(

− I2(ω)
)

+
(

− V2(ω)
)
I1(ω)

I2
1 (ω) +

(
− I2(ω)

)2

= −X(ω) (6.31)

よって，

Zin(−ω) = R(−ω) + jX(−ω) = R(ω) − jX(ω) = Z∗
in(ω) (6.32)

したがって，R(ω)は偶関数（even），X(ω)は奇関数（odd）であることがわかる．もちろ
ん，規格化入力インピーダンス zin の複素共役についても同様である．

z∗
in(ω) = r(ω) − jx(ω) = r(−ω) − j[−x(−ω)] = zin(−ω) (6.33)

6.3.2 入力インピーダンスの偶・奇特性

入力インピーダンス Zinの分母，分子を，s = jω に関する偶関数（even）mi(s) = mi(−s)
と，奇関数（odd）ni(s) = −ni(−s) (i = 1, 2)で表すと，

Zin = m1(s) + n1(s)
m2(s) + n2(s) (6.34)

ここで，偶関数mi(s)は偶多項式で表され（nは整数），

mi(s) = a2ns
2n + a2n−2s

2n−2 + · · · + a2s
2 + a0

= mi(−s) (6.35)

このとき，

s2n = (jω)2n = (−1)ns2n (6.36)

より，mi(s)は実数．また，奇関数 ni(s)は奇多項式で表され（nは整数），

ni(s) = a2n−1s
2n−1 + a2n−3s

2n−3 + · · · + a3s
3 + a1s

= −ni(−s) (6.37)

このとき，

s2n+1 = (jω)2n+1 = j(−1)ns2n+1 (6.38)

より，ni(s)は純虚数となることがわかる．そこで，n̄1，n̄2 を実数とすると，

n1 ≡ jn̄1, n2 ≡ jn̄2 (6.39)
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これより，

Zin = m1 + n1

m2 + n2
= m1 + jn̄1

m2 + jn̄2
= m1 + jn̄1

m2 + jn̄2
· m2 − jn̄2

m2 − jn̄2

= (m1m2 − n̄1n̄2) + j(m1n̄2 +m2n̄1)
m2

2 + n̄2
2

= 1
Yin

(6.40)

上式より，Zin の分母は偶関数である．一方，分子の実部は，

m1(−s)m2(−s) − n̄1(−s)n̄2(−s) = m1(s)m2(s) −
(

− n̄1(s)
)(

− n̄2(s)
)

= m1(s)m2(s) − n̄1(s)n̄2(s) (6.41)

ゆえ偶関数である．同様にして，分子の虚部は，

m1(−s)n̄2(−s) +m2(−s)n̄1(−s) = m1(s)
(

− n̄2(s)
)

+m2(s)
(

− n̄1(s)
)

= −
(
m1(s)n̄2(s) +m2(s)n̄1(s)

)
(6.42)

ゆえ奇関数であることがわかる．そこで，Zin の偶関数を Ev(Zin)，奇関数を Odd(Zin)と
して，

Zin = <(Zin) + =(Zin) ≡ Ev(Zin) + Odd(Zin) (6.43)

とおくと，

<(Zin) = Ev(Zin), =(Zin) = Odd(Zin) (6.44)

ただし，<(Zin)，=(Zin)は Zinの実部，虚部を各々示す．以上をまとめると，入力インピー
ダンス Zin について，

• Zin の偶関数の項を表す Ev(Zin)は実数
• Zin の奇関数の項を表す Odd(Zin)は純虚数

入力アドミタンス Yin も同様である．

6.4 無損失回路の性質

無損失回路では入力インピーダンスは純虚数，つまり <(Zin) = 0ゆえ，

Zin = m1 + jn̄1

m2 + jn̄2
= j

m1n̄2 +m2n̄1

m2
2 + n̄2

2

= =(Zin) = Odd(Zin) = 1
Yin

(6.45)

よって，無損失回路では入力インピーダンス Zin，入力アドミタンス Yin は純虚数かつ奇関
数である．
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6.4.1 無損失回路のインピーダンス行列

インピーダンス行列 [Z]についても(
V1
V2

)
=
(
Z11 Z12
Z12 Z22

)(
I1
I2

)
(6.46)

無損失回路では，i, j, k = 1, 2 (j 6= k)として，

Zij = Vi

Ij

∣∣∣∣∣
Ik=0

= =(Zij) = Odd(Zij) (6.47)

よって，[Z]の全ての行列要素が純虚数，奇関数となる．

6.4.2 無損失回路のアドミタンス行列

アドミタンス行列 [Y ]についても(
I1
I2

)
=
(
Y11 Y12
Y12 Y22

)(
V1
V2

)
(6.48)

無損失回路では，i, j, k = 1, 2 (j 6= k)として同様に，

Yij = Ii

Jj

∣∣∣∣∣
Ik=0

= =(Yij) = Odd(Yij) (6.49)

よって，[Y ]の全ての行列要素が純虚数，奇関数となる．

6.4.3 無損失回路の基本行列

さらに，基本行列 [F ]は，(
V1
I1

)
= [F ]

(
V2

−I2

)
, [F ] =

(
A B
C D

)
(6.50)

インピーダンス行列要素を用いて表すと，(
A B
C D

)
= 1
Z12

(
Z11 Z11Z22 − Z2

12
1 Z22

)
(6.51)
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これより，

C(s) = 1
Z12(s) = 1

−Z12(−s) = −C(−s) = =(C) (6.52)

A(s) = Z11(s)
Z12(s) = −Z11(−s)

−Z12(−s) = A(−s) = <(A) (6.53)

D(s) = Z22(s)
Z12(s) = −Z22(−s)

−Z12(−s) = D(−s) = <(D) (6.54)

B(s) = Z11(s)Z22(s) − Z2
12(s)

Z12(s) = −B(−s) = =(B) (6.55)

よって，無損失回路では四端子定数の A，Dは実数かつ偶関数，B，C は純虚数かつ奇関数
となる．

6.5 動作パラメータの性質

6.5.1 動作伝送関数と Sパラメータの関係

動作伝送関数 H(s)は，基本行列の要素 A，B，C，Dより，

H(s) = A(s)R2 +B(s) + C(s)R1R2 +D(s)R1

2
√
R1R2

(6.56)

一方，散乱行列要素 S21，S12 は（導出省略），

S21 = S12 = 2
√
R1R2

AR1 +DR2 +B + CR1R2
(6.57)

よって，

H(s) = 1
S21

= 1
S12

(6.58)

6.5.2 無損失回路

無損失回路のとき，A，Dは実数，B，C は純虚数ゆえ，H(s)の複素共役 H∗(s)は，

H∗(s) = A(s)R2 −B(s) − C(s)R1R2 +D(s)R1

2
√
R1R2

(6.59)

また，A，Dは偶関数，B，C は奇関数より，

H∗(s) = A(−s)R2 +B(−s) + C(−s)R1R2 +D(−s)R1

2
√
R1R2

= H(−s) (6.60)
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6.5.3 特性関数

動作伝送関数 H より |H|2 を計算すると，

|H|2 = HH∗ = (A+D)R + (B + CR2)
2R · (A+D)R − (B + CR2)

2R

= (A+D)2R2 − (B + CR2)2

4R2

= 1 + −4R2 + (A+D)2R2 − (B + CR2)2

4R2

= 1 + −4R2 + (A−D)2R2 − 4ADR2 − (B − CR2)2 + 4BCR2

4R2

ここで，AD −BC = 1より，

|H|2 = 1 + (A−D)2R2 − (B − CR2)2

4R2

= 1 + 1
4R2

{
R2
(
A−D

)2
−
(
B − CR2

)2
}

(6.61)

B，C は純虚数ゆえ，上式の第 2項は正である．特性関数 K は次式で定義される．

|H|2 ≡ 1 + |K|2 (6.62)

|K|2 を複素共役 K∗ を用いて表すと，

|K|2 = KK∗

= R2(A−D)2 − (B − CR2)2

4R2

= R(A−D) + (B − CR2)
2R · R(A−D) − (B − CR2)

2R
これより，特性関数 K は次のようになる．

K(s) ≡ 1
2R

{
R
(
A(s) −D(s)

)
+ (B(s) − C(s)R2)

}
(6.63)

複素共役 K∗(s)については，

K∗(s) = 1
2R

{
R
(
A(s) −D(s)

)
− (B(s) − C(s)R2)

}
= 1

2R

{
R
(
A(−s) −D(−s)

)
+ (B(−s) − C(−s)R2)

}
= K(−s) (6.64)
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6.5.4 基本行列と動作伝送関数，特性関数の関係

動作伝送関数 H，特性関数 K の実部は (s = jω)，

<(H(s)) = A(s)R2 +D(s)R1

2
√
R1R2

= A(−s)R2 +D(−s)R1

2
√
R1R2

= <(H(−s)) ≡ He(s) (6.65)

<(K(s)) = A(s)R2 −D(s)R1

2
√
R1R2

= A(−s)R2 −D(−s)R1

2
√
R1R2

= <(K(−s)) ≡ Ke(s) (6.66)

式 (6.65)および式 (6.66)より，

He ±Ke = AR2 +DR1

2
√
R1R2

± AR2 −DR1

2
√
R1R2

(6.67)

上側，下側符号を各々，別々に求めて，

He +Ke = AR2√
R1R2

(6.68)

よって，

A =
√
R1R2

R2
(He +Ke) = R1√

R1R2
(He +Ke) (6.69)

また，

He −Ke = DR1√
R1R2

(6.70)

よって，

D =
√
R1R2

R1
(He −Ke) = R2√

R1R2
(He −Ke) (6.71)

同様にして，動作伝送関数 H，特性関数 K の虚数部は，

=(H(s)) = B(s) + C(s)R1R2

2
√
R1R2

= −B(−s) − C(−s)R1R2

2
√
R1R2

= −=(H(−s)) ≡ Ho(s) (6.72)

=(K(s)) = B(s) − C(s)R1R2

2
√
R1R2

= −B(−s) + C(−s)R1R2

2
√
R1R2

= −=(K(−s)) ≡ Ko(s) (6.73)

式 (6.72)および式 (6.73)より，

Ho ±Ko = B + CR1R2

2
√
R1R2

± B − CR1R2

2
√
R1R2

(6.74)
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上側，下側符号を各々，別々に求めて，

Ho +Ko = B√
R1R2

(6.75)

よって，

B =
√
R1R2(Ho +Ko) = R1R2√

R1R2
(Ho +Ko) (6.76)

また，

Ho −Ko = CR1R2√
R1R2

(6.77)

よって，

C = 1√
R1R2

(Ho −Ko) (6.78)

基本行列と動作伝送関数，特性関数の関係をまとめると*2 [2]，

He = AR2 +DR1

2
√
R1R2

(6.79)

Ho = B + CR1R2

2
√
R1R2

(6.80)

Ke = AR2 −DR1

2
√
R1R2

(6.81)

Ko = B − CR1R2

2
√
R1R2

(6.82)

逆は，(
A B
C D

)
= 1√

R1R2

(
R1(He +Ke) R1R2(Ho +Ko)
Ho −Ko R2(He −Ke)

)
(6.83)

6.5.5 入力インピーダンスと特性関数の関係

端子 1-1’から回路を見た入力インピーダンス Zin,1 は，

Zin,1 = V1

I1
= AV2 +B(−I2)
CV2 +D(−I2) =

AV2 +B V2
R2

CV2 +D V2
R2

= AR2 +B

CR2 +D
(6.84)

*2 R. S. Elliott, “An Introduction to Guided Waves and Microwave Circuits,” Prentice Hall (1992).
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式 (6.69)，(6.71)，(6.76)，(6.78)を代入すると，

zin,1 = Zin,1

R1

= 1
R1

· R1(He +Ke) ·R2 +R1R2(Ho +Ko)
(Ho −Ko) ·R2 +R2(He −Ke)

= (He +Ho) + (Ke +Ko)
(He +Ho) − (Ke +Ko)

= (<(H) + =(H)) + (<(K) + =(K))
(<(H) + =(H)) − (<(K) + =(K))

= H(s) +K(s)
H(s) −K(s) (6.85)

同様にして，端子 2-2’から回路を見た入力インピーダンス Zin,2 は，

Zin,2 = V2

I2
= DV1 +B(−I1)
CV1 + A(−I1) =

DV1 +B V1
R1

CV1 + A V1
R1

= DR1 +B

CR1 + A
(6.86)

式 (6.69)，(6.71)，(6.76)，(6.78)を代入すると，

zin,2 = Zin,2

R2

= 1
R2

· R2(He −Ke) ·R1 +R1R2(Ho +Ko)
(Ho −Ko) ·R1 +R1(He +Ke)

= (He +Ho) − (Ke −Ko)
(He +Ho) + (Ke −Ko)

= (<(H) + =(H)) − (<(K) − =(K))
(<(H) + =(H)) + (<(K) − =(K))

= H(s) −K∗(s)
H(s) +K∗(s) = H(s) −K(−s)

H(s) +K(−s) (6.87)

6.5.6 インピーダンス行列と特性関数の関係

基本行列要素 A，B，C，Dを用いてインピーダンス行列 [Z]を表すと（AD−BC = 1），

[Z] =
(
Z11 Z12
Z21 Z22

)
= 1
C

(
A 1
1 D

)
(6.88)

これより，

Z11 = A

C
= He +Ke

Ho −Ko
R1 (6.89)

Z12 = Z21 = 1
C

= 1
Ho −Ko

√
R1R2 (6.90)

Z22 = D

C
= He −Ke

Ho −Ko
R2 (6.91)
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6.5.7 アドミタンス行列と特性関数の関係

同様にして，A，B，C，Dを用いてアドミタンス行列 [Y ]を表すと，

[Y ] =
(
Y11 Y12
Y21 Y22

)
= 1
B

(
D −1
−1 A

)
(6.92)

これより，

Y11 = D

B
= He −Ke

Ho +Ko
· 1
R1

(6.93)

Y12 = Y21 = −1
B

= −1
Ho +Ko

· 1√
R1R2

(6.94)

Y22 = A

B
= He +Ke

Ho +Ko
· 1
R2

(6.95)

6.5.8 終端開放，終端短絡

端子 1-1’から回路を見た入力インピーダンス Zin,1 は，

Zin,1 = V1

I1
= AV2 +B(−I2)
CV2 +D(−I2) (6.96)

端子 2-2’の終端を開放，あるいは短絡したとき，端子 1-1’から回路を見た入力インピーダ
ン Zo,1，Zs,1 は，

Zo,1

R1
= 1
R1

· V1

I1

∣∣∣∣
I2=0

= 1
R1

· A
C

= Z11

R1
= He +Ke

Ho −Ko
(6.97)

Zs,1

R1
= 1
R1

· V1

I1

∣∣∣∣
V2=0

= 1
R1

· B
D

= 1
R1Y11

= Ho +Ko

He −Ke
(6.98)

逆に，端子 2-2’から回路を見た入力インピーダンス Zin,2 は，

Zin,2 = V2

I2
= DV1 +B(−I1)
CV1 + A(−I1) (6.99)

端子 1-1’の終端を開放，あるいは短絡したとき，端子 2-2’から回路を見た入力インピーダ
ンス Zo,2，Zs,2 は，

Zo,2

R2
= 1
R2

· V2

I2

∣∣∣∣
I1=0

= 1
R2

· D
C

= Z22

R2
= He −Ke

Ho −Ko
(6.100)

Zs,2

R2
= 1
R2

· V2

I2

∣∣∣∣
V1=0

= 1
R2

· B
A

= 1
R2Y22

= Ho +Ko

He +Ke
(6.101)
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6.6 特性関数と散乱行列の関係

端子 1-1’から回路を見た反射係数 Γ1 は，

Γ1 = Zin,1 −R1

Zin,1 +R1
=

AR2+B
CR2+D −R1
AR2+B
CR2+D +R1

= (AR2 +B) −R1(CR2 +D)
(AR2 +B) +R1(CR2 +D)

= S11 (6.102)

同様にして，端子 2-2’から回路を見た反射係数 Γ2 は，

Γ2 = Zin,2 −R2

Zin,2 +R2
=

DR1+B
CR1+A −R2
DR1+B
CR1+A +R2

= (DR1 +B) −R2(CR1 + A)
(DR1 +B) +R2(CR1 + A)

= S22 (6.103)

また，反射係数 Γ1，Γ2 と特性関数 K との関係は，

Γ1 = Zin,1 −R1

Zin,1 +R1
=

Zin,1
R1

− 1
Zin,1
R1

+ 1
= zin,1 − 1
zin,1 + 1

=
H(s)+K(s)
H(s)−K(s) − 1
H(s)+K(s)
H(s)−K(s) + 1

= (H +K) − (H −K)
(H +K) + (H −K) = K

H

= S11 (6.104)

Γ2 = Zin,2 −R2

Zin,2 +R2
=

Zin,2
R2

− 1
Zin,2
R2

+ 1
= zin,2 − 1
zin,2 + 1

=
H(s)−K∗(s)
H(s)+K∗(s) − 1
H(s)−K∗(s)
H(s)+K∗(s) + 1

= (H −K∗) − (H +K∗)
(H −K∗) + (H +K∗) = −K∗

H
= −K(−s)

H(s)

= S22 (6.105)

式 (6.58)とで，散乱行列 [S]は次のようになる．

[S] =
(
S11 S12
S21 S22

)
=
(

K
H

1
H

1
H

−K∗

H

)
= 1
H(s)

(
K(s) 1

1 −K(−s)

)
(6.106)

109



6.7 特性関数と入力インピーダンスの関係

反射係数を Γとすると，

Γ∗(ω) = z∗
in(ω) − 1
z∗

in(ω) + 1 = zin(−ω) − 1
zin(−ω) + 1 = Γ(−ω) (6.107)

所望の周波数応答 |H(s)|2 は，

|H(s)|2 = 1 + |K(s)|2 = 1 + |Γ(s)|2|H(s)|2 (6.108)

特性関数 K(s)を

K(s) = H(s)Γ(s) (6.109)

とすると，反射係数 Γ(s)は，

Γ(s) = K(s)
H(s) (6.110)

Γ(−s) = K(−s)
H(−s) (6.111)

これより，

|Γ|2 = ΓΓ∗ = K(s)
H(s)

K(s)∗

H(s)∗

= Γ(ω)Γ(−ω) = K(s)
H(s)

K(−s)
H(−s) （偶関数） (6.112)

よって，

H(s)H(s)∗ = 1 +K(s)K(s)∗

H(s)H(−s) = 1 +K(s)K(−s) (6.113)

　規格化入力インピーダンス z+
in は，HΓ = K より，

z+
in = 1 + Γ(s)

1 − Γ(s) = H(s)
H(s) · 1 + Γ(s)

1 − Γ(s) = H(s) +K(s)
H(s) −K(s) (6.114)

特性関数K(s)を適切な関数で与え，回路で実現可能な関数H(s)を求めることができれば，
Γ(s)がわかり，上式より規格化入力インピーダンスを表す式が得られる．K = −HΓとす
ると，反射係数は −Γとなるので，規格化入力インピーダンスは次のようになり，双対的な
回路が得られる*3．

z−
in = H(s) −K(s)

H(s) +K(s) = 1
z+

in

= y+
in (6.115)

*3 双対的な回路の反射係数は互いに逆相である．
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6.8 伝送特性

6.8.1 挿入損失，反射損失

挿入損失（insertion loss）は，挿入伝送係数 SI より，20 log10 |SI | [dB]．ネットワーク
アナライザによる測定では，挿入損失は S21 より，LA = −20 log10 |S21| [dB]，反射損失
（return loss）は S11 より，LR = −20 log10 |S11| [dB]として求めることが多い．
また，フィルタの設計においては，動作伝送関数H より，損失（transducer loss）α [dB]は

α = 10 log10

∣∣∣∣Pmax

P2

∣∣∣∣ = 10 log10 |H|2 = 20 log10 |H| (6.116)

より評価される．
動作伝送関数 H(s)の偶関数 He(s)，奇関数 Ho(s)は，

He(s) = He(−s) = <(H(s)) = H(s) +H(−s)
2 (6.117)

Ho(s) = −Ho(−s) = =(H(s)) = H(s) −H(−s)
2 (6.118)

より，

|H(s)|2 = H(s)H∗(s) = H(s)H(−s)

=
{
He(s) +Ho(s)

}{
He(−s) +Ho(−s)

}
=
{
He(s) +Ho(s)

}{
He(s) −Ho(s)

}
= H2

e (s) −H2
o (s) (6.119)

6.8.2 位相特性

動作伝送関数 H(s)の位相 θH は，

θH = tan−1 =(H(s))/j
<(H(s)) = tan−1 Ho(s)/j

He(s)
= 1
j

tanh−1 Ho(s)
He(s)

(6.120)

6.8.3 群遅延特性

群遅延（group delay）Tg は，s = jω より，

Tg = dθH

dω
= ds

dω

dθH

ds
= j

d

ds

(
1
j

tanh−1 Ho(s)
He(s)

)
(6.121)

逆双曲線関数 y = tanh−1 xの微分は，x = tanh y より，

dx

dy
= 1

cosh2 y
= cosh2 y − sinh2 y

cosh2 y
= 1 − tanh2 y = 1 − x2 (6.122)
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よって，

d

dx
tanh−1 x = dy

dx
= 1

dx
dy

= 1
1 − x2 (6.123)

これより，

Tg = d

ds

(
tanh−1 Ho(s)

He(s)

)
= 1

1 −
(

Ho

He

)2 · H
′
oHe −HoH

′
e

H2
e

= H ′
oHe −HoH

′
e

H2
e −H2

o

(6.124)

ここで，

4(H ′
oHe −HoH

′
e) =

{
H(s) −H(−s)

}′{
H(s) +H(−s)

}
−
{
H(s) −H(−s)

}{
(H(s) +H(−s)

}′

= H ′(s)H(s) − (−1)H ′(−s)H(s) (6.125)

ただし，H ′(s) = dH(s)
ds ．また，

4(H2
e −H2

o ) =
{
H(s) −H(−s)

}2
−
{
H(s) +H(−s)

}2

= 2H(s)H(−s) (6.126)

よって，

Tg = H ′
oHe −HoH

′
e

H2
e −H2

o

= H ′(s)H(s) +H ′(−s)H(s)
2H(s)H(−s)

= 1
2

{
H ′(s)
H(s) + H ′(−s)

H(−s)

}

= Ev
(
H ′(s)
H(s)

)
(6.127)
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CHAPTER 7

最平坦特性を有するフィルタ

　平坦な周波数特性（バタワース特性）を持たせるフィルタの設計と特性について詳
しく解説する．まず，フィルタの特性関数と伝送関数を定義し，その周波数応答が理
想的な低域通過フィルタに近づくことを示している．さらに，周波数変換の概念を用
いて，低域通過フィルタから高域通過，帯域通過、および帯域阻止フィルタへの変換
と，それぞれのフィルタ特性を示している．これらのフィルタ特性を実現するはしご
型回路の正規化素子値の導出として，2段および 3段の例を用いて，入力インピーダ
ンスの連分数展開から素子値を求める方法を示している．そして，任意の次数に対す
る正規化素子値の一般式も導出する．また，各タイプのフィルタにおける素子値の表
と周波数特性の図も示している．

7.1 最平坦（Maximally-flat）特性

7.1.1 最平坦特性の特性関数

特性関数 K(s)を，

K(s) ≡ sN (7.1)

とすると，

|K(s)|2 = K(s)K(s)∗ = K(s)K(−s) = sN (−s)N =
(
−s2

)N
(7.2)

|H(s)|2 = 1 + |K(s)|2 = 1 +
(
−s2

)N
(7.3)

1
|Γ(s)|2 = 1 + |K(s)|−2 = 1 +

(
−s2

)−N
(7.4)
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遮断角周波数 ωc で角周波数 ω を規格化して，規格化角周波数 Ωを次式によって定義する．

s = jΩ, Ω = ω

ωc
(7.5)

これより，|H|2 は，

|H|2 = 1 + (−s2)N = 1 + Ω2N = 1 +
(
ω

ωc

)2N

(7.6)

ただし，Ω = 1，ω = ωc を遮断点と呼び，このとき，|H(Ω)|2 は，|H(1)|2 = 1 + 12N = 2
である．また，Ω = 0のとき，|H(0)|2 = 1．N → ∞では，0 ≤ Ω ≤ 1のとき |H|2 = 1で
無損失伝送，Ω ≥ 1のとき |H|2 = ∞で損失が無限大（全く伝送しない）となり，理想的な
低域通過フィルタ（lowpass filter）の特性となる．

|H|2

図 7.1. 低域通過の最平坦特性

7.1.2 特性関数の零点

特性関数の零点を求めるため因数分解する．まず準備として，

1 +
(
−s2

)N
= 0 (7.7)

とおいて解くと，(
−s2

)N
= −1 = ej(2n−1)π

−s2 = ej 2n−1
N

π

s = ±jej 2n−1
2N

π (7.8)

いま，ε ≡ ej π
2N とおくと，

H(s)H(−s) = 1 +
(
−s2

)N

= (s− jε)(s− jε3) · · · (s− jε2N−1) · (s+ jε)(s+ jε3) · · · (s+ jε2N−1) (7.9)
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実際の回路で実現できるように，H(s)を複素平面の左半平面内のゼロ点の値を用いて因数
分解すると，

H(s) = (s− jε)(s− jε3) · · · (s− jε2N−1) =
N∏

n=1

(
s− jε2n−1

)
=

N∏
n=1

(s− sn) (7.10)

ここで，

sn = jε2n−1 = jej 2n−1
2N

π = ej 2n−1+N
2N

π (7.11)

このとき，反射係数 Γ(s)は，

Γ(s) = ±K(s)
H(s) = ± sN

N∏
n=1

(s− sn)
(7.12)

7.1.3 低域通過の最平坦特性

次数 N = 2, 3, 4, 5に対して動作伝送関数および反射係数を計算すると次のようなる．次
数 N が大きくなると，少しずつ理想の低域通過特性に近づいていくことがわかる．

図 7.2. 低域通過の最平坦特性（n = 2, 3, 4, 5）
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7.1.4 低域通過から高域通過への周波数変換

原型の低域通過フィルタ（lowpass filter）を，

ŝ = jΩ̂ (7.13)

とすると，高域通過フィルタ（highpass filter）への周波数変換は，

Ω = − 1
Ω̂

(7.14)

より次のようになる．

s = jΩ = j
(

− 1
Ω̂

)
= 1
jΩ̂

= 1
ŝ

(7.15)

下図は次数 N = 2, 3, 4, 5に対する動作伝送関数および反射係数を示したもので，周波数変
換によって容易に高域通過特性が得られている．

図 7.3. 高域通過の最平坦特性

7.1.5 低域通過から帯域通過への周波数変換

原型の低域通過フィルタ（ŝ = jΩ̂）から帯域通過フィルタ（bandpass filter）への周波数
変換は，

s = jΩ = j

W

(
Ω̂ − 1

Ω̂

)
= 1
W

(
jΩ̂ + 1

jΩ̂

)
= 1
W

(
ŝ+ 1

ŝ

)
(7.16)
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ここで，W は比帯域幅を示し，

W = ωh − ωl

ω0
(7.17)

ω0 = √
ωlωh (7.18)

ただし，ω0 は中心角周波数，ωl，ωh を帯域の下限，上限の角周波数を示す．下図は次数
N = 2, 3, 4, 5 に対する帯域通過の動作伝送関数および反射係数を示したもので，比帯域
W = 0.3として周波数変換している．

図 7.4. 帯域通過の最平坦特性（W = 0.3）

7.1.6 低域通過から帯域阻止への周波数変換

原型の低域通過フィルタ（ŝ = jΩ̂）から<b>帯域阻止フィルタ</b>（bandstop filter）
への周波数変換は，

s = jΩ = −j 1
Ω′ = − j

1
W

(
Ω̂ − 1

Ω̂

) = 1
1

W

(
jΩ̂ + 1

jΩ̂

) = 1
1

W

(
ŝ+ 1

ŝ

) (7.19)

ここで，

W = ωh − ωl

ω0
(7.20)

ω0 = √
ωlωh (7.21)

ただし，W は比帯域幅，ω0 は中心角周波数，ωl，ωh を帯域の下限，上限の角周波数を示
す．同様にして，比帯域W = 0.3として帯域阻止に周波数変換した特性を下図に示す．

117



図 7.5. 帯域阻止の最平坦特性（W = 0.3）

7.2 梯子型回路

　梯子型回路の規格化入力インピーダンス zin(s)は，次のように連分数展開で表される．

zin(s) = g1s+ 1

g2s+ 1

g3s+ 1
g4s+ · · · · · ·

(7.22)

gN
=CN

g1=L1 g3=L3 gN=LN

gN+1
=GN+1

gN+1
=RN+1

g0
=G0

'

' '' ' ' '

''

'
gN-1
=CN-1

g4
=C4

g2
=C2

図 7.6. zin により合成した原型低域通過フィルタ

逆に，規格化入力アドミタンス yin が同様の形で連分数展開できる場合，図のような回路
構成となる（上の回路に対して双対的な回路）．

118



g2=L2 g4=L4 gN-1=LN-1 gN=LN

gN+1
=GN+1

g0
=R0

gN
=CN

gN-1
=CN-1

g3
=C3

g1
=C1

gN+1
=RN+1

' ' ' '

'''''' '

図 7.7. yin により合成した原型低域通過フィルタ

7.3 最平坦特性を持つ 2段の梯子型回路

N = 2のとき，特性関数 K(s) = s2．このとき，H(s) = 0のゼロ点 sn(n = 1, 2)は，

s1 = ej 2·1−1+2
2·2 π = ej 3

4 π (7.23)

s2 = ej 2·2−1+2
2·2 π = ej 5

4 π = s∗
1 (7.24)

ただし，∗は複素共役を示す．よって，動作伝送関数 H(s)は，

H(s) = (s− s1)(s− s2) = s2 − (s1 + s∗
1)s+ 1 = s2 +

√
2s+ 1 (7.25)

s
1

s
2

図 7.8. sn の位置（N = 2）

これより，規格化入力インピーダンス z±
in は，

z±
in = (s2 +

√
2s+ 1) ± s2

(s2 +
√

2s+ 1) ∓ s2 (7.26)

これを，終端負荷 1の梯子型回路で構成するため，まず，上式の上側符号の z+
in を連分数展

開すると，

z+
in = 2s2 +

√
2s+ 1√

2s+ 1
=

√
2s+ 1√

2s+ 1
(7.27)
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したがって，梯子型回路の素子値は次のようになる．

• 初段：直列素子 L′
1 = g1 =

√
2

• 2段目：並列素子 C ′
2 = g2 =

√
2

一方，下側符号の zin− については，

z−
in = 1

z+
in

= y+
in (7.28)

ゆえ，

• 初段：並列素子 C ′
1 = g1 =

√
2

• 2段目：直列素子 L′
2 = g2 =

√
2

からなる梯子型回路が得られる（反射特性の符号は異なる）．なお，両者とも終端負荷は，

R′
3 = G′

3 = g3 = 1 (7.29)

7.4 最平坦特性を持つ 3段の梯子型回路

N = 3のとき，特性関数 K(s) = s3．このとき，H(s) = 0のゼロ点 sn(n = 1, 2, 3)は，

s1 = ej 2·1−1+3
2·3 π = ej 2

3 π (7.30)

s2 = ej 2·2−1+3
2·3 π = ejπ = −1 (7.31)

s3 = ej 2·3−1+3
2·3 π = ej 4

3 π = s∗
1 (7.32)

よって，動作伝送関数 H(s)は，

H(s) = (s− s1)(s− s2)(s− s3) = (s+ 1)(s2 + s+ 1) = s3 + 2s2 + 2s+ 1 (7.33)
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s
1

s
3

s
2

図 7.9. sn の位置（N = 3）

これより，規格化入力インピーダンス z±
in は，

z±
in = (s3 + 2s2 + 2s+ 1) ± s3

(s3 + 2s2 + 2s+ 1) ∓ s3 (7.34)

これを，終端負荷 1の梯子型回路で構成しよう．まず，上式の上側符号の z+
in を連分数展開

すると，

z+
in = 2s3 + 2s2 + 2s+ 1

2s2 + 2s+ 1 = s+ 1
2s+ 1

s+1
(7.35)

よって，次のような梯子型回路となる．

• 初段：直列素子 L′
1 = g1 = 1

• 2段目：並列素 C ′
2 = g2 = 2

• 3段目：直列素子 L′
3 = g3 = 1

一方，下側符号の z−
in では，z−

in = 1
z+

in

ゆえ，次のような双対的な梯子型回路でもよい．

• 初段：並列素子 C ′
1 = g1 = 1

• 2段目：直列素子 L′
2 = g2 = 2

• 3段目：並列素子 C ′
3 = g3 = 1

なお，両者とも終端負荷は，

R′
4 = G′

4 = g4 = 1 (7.36)
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7.5 最平坦特性を持つ低域通過梯子型回路の規格化素子値

低域通過梯子型回路は双対的な次のような回路で表され，N 次の最平坦特性を有する梯
子型リアクタンス回路を合成すると，規格化素子値 gk は，次のようになる．

g0 = 1 (7.37)

gk = 2 sin
(

(2k − 1)π
2N

)
(k = 1, 2, · · · , N) (7.38)

gN+1 = 1 (7.39)

ただし，g0 は入力の負荷抵抗，gN+1 は終端負荷の抵抗を示す．

gN

g1 g3 gN

gN-1g4 r rg2
1

図 7.10. 入力インピーダンス z+
in により合成した梯子型回路

g2 g4 gN-1 gN

gN gN-1g3 r rg1
1

図 7.11. 入力インピーダンス z−
in により合成した梯子型回路

最平坦特性を有する低域通過フィルタの規格化素子値 gk を求めると次のようになる．

表 7.1 最平坦特性を有する低域通過フィルタの規格化素子値 gk（最終終端抵抗は gN+1 = 1）

次数 N g1 g2 g3 g4 g5 g6 g7 g8

1 2 1
2

√
2

√
2 1

3 1 2 1 1
4 0.7654 1.8478 1.8478 0.7654 1
5 0.6180 1.6180 2 1.6180 0.6180 1
6 0.5176

√
2 1.9318 1.9318

√
2 0.5176 1

7 0.4450 1.2470 1.8019 2 1.8019 1.2470 0.4450 1

これより，N = 2, 3, 4, 5について入力インピーダンス z+
in で合成した回路の特性を求める

と次のようになる．
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図 7.12. 2 段梯子型回路の低域通過特性（入力インピーダンス z+
in）

図 7.13. 3 段梯子型回路の低域通過特性（入力インピーダンス z+
in）
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図 7.14. 4 段梯子型回路の低域通過特性（入力インピーダンス z+
in）

図 7.15. 5 段梯子型回路の低域通過特性（入力インピーダンス z+
in）
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7.6 周波数変換により求めた最平坦特性を持つ高域通過梯子
型回路の規格化素子値

高域通過梯子型回路は双対的な次のような回路で表され，N 次の最平坦特性を有する梯
子型リアクタンス回路の規格化素子値 gk は，次のようになる．

gN

g1 g3 gN

gN-1g4 r rg2
1

図 7.16. z+
in により合成した原型低域通過回路を周波数変換した高域通過梯子型回路

g2 g4 gN-1 gN

gN gN-1g3 r rg1
1

図 7.17. z−
in により合成した原型低域通過回路を周波数変換した高域通過梯子型回路

最平坦特性を有する高域通過フィルタの規格化素子値 ĝk を求めると次のようになる．た
だし，g0 = 1，gN+1 = 1．これより，N = 2, 3, 4, 5について入力インピーダンス z+

in で合成

表 7.2 Butterworth 高域通過フィルタの規格化素子値 ĝk

次数 N ĝ1 ĝ2 ĝ3 ĝ4 ĝ5 ĝ6 ĝ7

2 0.7071 0.7071
3 1.0000 0.5000 1.0000
4 1.3066 0.5412 0.5412 1.3066
5 1.6180 0.6180 0.5000 0.6180 1.6180
6 0.5176 1.4142 1.9319 1.9319 1.4142 0.5176
7 0.4450 1.2470 1.8019 2.0000 1.8019 1.2470 0.4450

した回路の特性を求めると次のようになる．
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図 7.18. 2 段梯子型回路の高域通過特性（入力インピーダンス z+
in）

図 7.19. 3 段梯子型回路の高域通過特性（入力インピーダンス z+
in）
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図 7.20. 4 段梯子型回路の高域通過特性（入力インピーダンス z+
in）

図 7.21. 5 段梯子型回路の高域通過特性（入力インピーダンス z+
in）

127



7.7 周波数変換により求めた最平坦特性を持つ帯域通過梯子
型回路の規格化素子値

帯域通過フィルタは，原型低域通過フィルタを周波数変換して，

s = 1
W

(
ŝ+ 1

ŝ

)
(7.40)

これより，直列素子の正規化インピーダンス zk は，

zk = sgk = gk

W

(
ŝ+ 1

ŝ

)
= ŝ

gk

W
+ 1
ŝW

gk

≡ ŝl̂k + 1
ŝĉk

(7.41)

直列接続された規格化インダクタンス l̂k，規格化キャパシタンス ĉk は（直列共振回路），

l̂k = gk

W
≡ ĝk (7.42)

ĉk = W

gk
≡ ĝ′

k (7.43)

また，並列素子の正規化アドミタンス yk は，

yk = sgk = gk

W

(
ŝ+ 1

ŝ

)
= ŝ

gk

W
+ 1
ŝW

gk

≡ ŝĉk + 1
ŝl̂k

(7.44)

並列接続された規格化キャパシタンス ĉk，規格化インダクタンス l̂k は（並列共振回路），

ĉk = gk

W
≡ ĝk (7.45)

l̂k = W

gk
≡ ĝ′

k (7.46)

したがって，帯域通過梯子型回路は双対的な次のような回路で表される．

N: odd N: even

g2' g2 g4' g4

g1 g1' g3 g3' gN gN'

gNgN'

gN-1 gN-1'

gN-1gN-1' r r
1

図 7.22. z+
in により合成した原型低域通過回路を周波数変換した帯域通過梯子型回路
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N: odd N: even

g2'g2 g4'g4

g1g1' g3g3' gNgN'

gN gN'

gN-1gN-1'

gN-1 gN-1'

r r
1

図 7.23. z−
in により合成した原型低域通過回路を周波数変換した帯域通過梯子型回路

最平坦特性を有する帯域通過フィルタ（比帯域W = 0.3）の規格化素子値 ĝk，ĝ′
k を求め

ると次のようになる．ただし，g0 = 1，gN+1 = 1．これより，N = 2, 3, 4, 5について入力イ

表 7.3 Butterworth 帯域通過フィルタ（比帯域 W = 0.3）の規格化素子値 ĝk，ĝ′
k

次数 N ĝ1 ĝ2 ĝ3 ĝ4 ĝ5 ĝ6 ĝ7

2 4.7140 4.7140
0.2121 0.2121

3 3.3333 6.6667 3.3333
0.3000 0.1500 0.3000

4 2.5512 6.1592 6.1592 2.5512
0.3920 0.1624 0.1624 0.3920

5 2.0601 5.3934 6.6667 5.3934 2.0601
0.4854 0.1854 0.1500 0.1854 0.4854

6 1.7255 4.7140 6.4395 6.4395 4.7140 1.7255
0.5796 0.2121 0.1553 0.1553 0.2121 0.5796

7 1.4835 4.1566 6.0065 6.6667 6.0065 4.1566 1.4835
0.6741 0.2406 0.1665 0.1500 0.1665 0.2406 0.6741

ンピーダンス z+
in で合成した回路の特性を求めると次のようになる．
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図 7.24. 2 段梯子型回路の帯域通過特性（z+
in，W = 0.3）

図 7.25. 3 段梯子型回路の帯域通過特性（z+
in，W = 0.3）

130



図 7.26. 4 段梯子型回路の帯域通過特性（z+
in，W = 0.3）

図 7.27. 5 段梯子型回路の帯域通過特性（z+
in，W = 0.3）
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7.8 周波数変換により求めた最平坦特性を持つ帯域阻止梯子
型回路の規格化素子値

帯域阻止フィルタは，周波数変換より，

s = 1
1

W

(
ŝ+ 1

ŝ

) (7.47)

これより，直列素子の正規化インピーダンス zk は，

zk = sgk = gk

1
W

(
ŝ+ 1

ŝ

) = 1
ŝ 1

W gk
+ 1

ŝW gk

≡ 1
ŝĉk + 1

ŝl̂k

= 1
ŷk

(7.48)

並列接続された規格化キャパシタンス ĉk，規格化インダクタンス l̂k は（並列共振回路），

ĉk = 1
Wgk

≡ ĝk (7.49)

l̂k = Wgk ≡ ĝ′
k (7.50)

また，並列素子の正規化アドミタンス yk は，

yk = sgk = gk

1
W

(
ŝ+ 1

ŝ

) = 1
ŝ 1

W gk
+ 1

ŝW gk

≡ 1
ŝl̂k + 1

ŝĉk

= 1
ẑk

(7.51)

直列接続された規格化キャパシタンス l̂k，規格化インダクタンス ĉk は（直列共振回路），

l̂k = 1
Wgk

≡ ĝk (7.52)

ĉk = Wgk ≡ ĝ′
k (7.53)

したがって，帯域阻止梯子型回路は双対的な次のような回路で表される．

N: odd N: even

g1'

g1

g3'

g3
g2
g2'

g4
g4'

gN-1
gN-1'

gN-1

gN-1'

gN
gN'

gN

gN'

r r
1

図 7.28. z+
in により合成した原型低域通過回路を周波数変換した帯域阻止梯子型回路
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N: odd N: even

g2'

g2

g4'

g4
g1
g1'

g3
g3'

gN
gN'

gN

gN'

gN-1
gN-1'

gN-1

gN-1'

r r
1

図 7.29. z−
in により合成した原型低域通過回路を周波数変換した帯域阻止梯子型回路

最平坦特性を有する帯域阻止フィルタ（比帯域W = 0.3）の規格化素子値 ĝk，ĝ′
k を求め

ると次のようになる．ただし，g0 = 1，gN+1 = 1．</p> これより，N = 2, 3, 4, 5につい

表 7.4 Butterworth 帯域阻止フィルタ（比帯域 W = 0.3）の規格化素子値 ĝk，ĝ′
k

次数 N ĝ1 ĝ2 ĝ3 ĝ4 ĝ5 ĝ6 ĝ7

2 2.3570 2.3570
0.4243 0.4243

3 3.3333 1.6667 3.3333
0.3000 0.6000 0.3000

4 4.3552 1.8040 1.8040 4.3552
0.2296 0.5543 0.5543 0.2296

5 5.3934 2.0601 1.6667 2.0601 5.3934
0.1854 0.4854 0.6000 0.4854 0.1854

6 6.4395 2.3570 1.7255 1.7255 2.3570 6.4395
0.1553 0.4243 0.5796 0.5796 0.4243 0.1553

7 7.4899 2.6731 1.8499 1.6667 1.8499 2.6731 7.4899
0.1335 0.3741 0.5406 0.6000 0.5406 0.3741 0.1335

て入力インピーダンス z+
in で合成した回路の特性を求めると次のようになる．

133



図 7.30. 2 段梯子型回路の帯域阻止特性（z+
in，W = 0.3）

図 7.31. 3 段梯子型回路の帯域阻止特性（z+
in，W = 0.3）
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図 7.32. 4 段梯子型回路の帯域阻止特性（z+
in，W = 0.3）

図 7.33. 5 段梯子型回路の帯域阻止特性（z+
in，W = 0.3）

135



7.9 最平坦特性を有する低域通過梯子型回路の規格化素子値
の導出

最平坦特性の低域通過梯子型回路の規格化素子値の導出*1を示そう．
最平坦特性の特性関数 K(s) = sN より，動作伝送関数 H(s)は，

H(s) =
N∏

n=1

(
s− jε2n−1

)
(7.54)

まず，

ε ≡ ej π
2N (7.55)

とおき，次式を求めておく．

ε±N =
(
ej π

2N

)±N
= e±j π

2 = ±j (7.56)

ε±2N =
(
ej π

2N

)±2N
= e±jπ = −1 (7.57)

ここで，s → ε2sとした式を考えると，

H(ε2s) =
N∏

n=1

(
ε2s− jε2n−1

)
=

N∏
n=1

ε2
(
s− jε2n−3

)
= ε2N

N−1∏
n′=0

(
s− jε2n′−1

)

= −
N−1∏
n=0

(
s− jε2n−1

)
(7.58)

これに n = N の項を乗じると，

H(ε2s) · (s− jε2N−1) = H(ε2s) · (s+ jε−1) = −(s− jε2N−1)
N−1∏
n=0

(
s− jε2n−1

)

= −
N∏

n=0

(
s− jε2n−1

)
(7.59)

上式の初項（n = 0の項）を分離して，

−
N∏

n=0

(
s− jε2n−1

)
= −(s− jε−1)

N∏
n=1

(
s− jε2n−1

)
= −(s− jε−1)H(s) (7.60)

よって，次の関係が得られる．

−(s− jε−1)H(s) = (s+ jε−1)H(ε2s) (7.61)

*1 高橋秀俊，“Tschebyscheff特性を有する梯子型ろ波器について,” 電気通信学会雑誌，vol.34, no.2, pp.65-74
(1951).
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また，級数展開した形を考え（A0 = 1），

H(s) ≡
N∑

i=0
Ai s

N−i (7.62)

とおき，これについても s → ε2sとした式を考えると，

H(ε2s) =
N∑

i=0
Ai

(
ε2s
)N−i

= −
N∑

i=0
Aiε

−2isN−i (7.63)

これらを上で求めた関係式に代入し，

(s− jε−1)
N∑

i=0
Ai s

N−i = (s+ jε−1)
N∑

i=0
Ai ε

−2isN−i (7.64)

sについて整理していくと，

N∑
i=0

(
1 − ε−2i

)
Ai s

N−i+1 =
N−1∑
i′=−1

(
1 − ε−2(i′+1)

)
Ai′+1 s

N−i′

= jε−1
N∑

i=0

(
1 + ε−2i

)
Ais

N−i (7.65)

そして，sについて係数比較して，(
1 − ε−2(i+1)

)
Ai+1 = jε−1

(
1 + ε−2i

)
Ai (7.66)

これより，

Ai+1

Ai
= jε−1(1 + ε−2i)

1 − ε−2(i+1) = jε−1ε−i(εi + ε−i)
ε−(i+1)(εi+1 − ε−(i+1)) = j(εi + ε−i)

εi+1 − ε−(i+1)

=
j2 cos

(
iπ
2N

)
j sin

(
(i+1)π

2N

) (7.67)

ここで，

s̄i ≡ 2 sin
(
iπ

2N

)
(7.68)

c̄i ≡ 2 cos
(
iπ

2N

)
(7.69)

とおくと，

Ai+1

Ai
= c̄i

s̄i+1
(7.70)
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ただし，A0 = 1ゆえ，

A1 = A0
c̄0

s̄1
= c̄0

s̄1
(7.71)

A2 = A1
c̄1

s̄2
= c̄0c̄1

s̄1s̄2
(7.72)

· · · · · · · · ·

Ai = Ai−1
c̄i

s̄i−1
= c̄0c̄1 · · · c̄i−1

s̄1s̄2 · · · s̄i
, · · · (7.73)

ここで，

s̄0 = 0, s̄i = −s̄−i = s̄2N−i, s̄N = 2 (7.74)
c̄0 = 2, c̄i = c̄−i = s̄N−i, c̄N = 0 (7.75)

さらに，加法定理等で得られる関係式を整理しておく．

2s̄i±j = s̄ic̄j ± c̄is̄j , s̄2i = s̄ic̄i (7.76)
2c̄i±j = c̄ic̄j ∓ s̄is̄j , c̄2i = c̄2

i − s̄2
i (7.77)

また，

s̄ic̄j = s̄i+j + s̄i−j (7.78)
c̄is̄j = s̄i+j − s̄i−j (7.79)
c̄ic̄j = c̄i+j − c̄i−j (7.80)
s̄is̄j = −c̄i+j + c̄i−j (7.81)

これらより，

s̄is̄i+1 − s̄1s̄2i = −c̄2i+1 + c̄−1 − (−c̄1+2i + c̄1−2i) = c̄−1 − c̄2i−1

= −c̄(i−1)+i + c̄(i−1)−i = s̄i−1s̄i (7.82)
s̄is̄i+1 − s̄3s̄2i−2 = −c̄2i+1 + c̄−1 − (−c̄1+2i + c̄5−2i) = c̄−1 − c̄2i−5

= −c̄(i−3)+(i−2) + c̄(i−3)−(i−2) = s̄i−3s̄i−2 (7.83)

さらに，

s̄is̄i+1 − s̄j s̄2i−(j−1) = −c̄2i+1 + c̄−1 − (−c̄1+2i + c̄5−2i) = c̄−1 − c̄2i−5

= −c̄(i−3)+(i−2) + c̄(i−3)−(i−2) = s̄i−3s̄i−2 (7.84)
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Ai について再記して，

A1 = 2
s̄1

(7.85)

A2 = 2s̄2

s̄2
1s̄2

(7.86)

A3 = 2s̄2s̄4

s̄2
1s̄

2
2s̄3

(7.87)

· · · · · · · · ·

Ai = 2s̄2s̄4 · · · s̄2i−2

s̄2
1s̄

2
2 · · · s̄2

i−1s̄i
(7.88)

· · · · · · · · ·

規格化入力インピーダンス zin を次のように連分数展開して，梯子型回路を求めていく．

zin(s) = g1s+ 1

g2s+ 1

g3s+ 1
g4s+ · · · · · ·

(7.89)

ただし，gk（k = 1, 2, · · · , N）は梯子型回路の規格化素子値，N は素子数（段数），r は終
端負荷を示し，次のような関係式が得られる．

zin ≡ P0(s)
P1(s) = g1s+ 1

P1(s)
P2(s)

(7.90)

P1(s)
P2(s) = g2s+ 1

P2(s)
P3(s)

(7.91)

· · · · · · (7.92)
Pk−1(s)
Pk(s) = gks+ 1

Pk(s)
Pk+1(s)

(7.93)

· · · · · · (7.94)
PN−1(s)
PN (s) = g

N
s+ r (7.95)

あるいは，

P0 = g1sP1 + P2 (7.96)
P1 = g2sP2 + P3 (7.97)

· · · · · · · · ·
Pk−1 = gksPk + Pk+1, · · · (7.98)

ここで，

P0(s) ≡ S(s) ±K(s) (7.99)
P1(s) ≡ S(s) ∓K(s) (7.100)
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これらの式より，P2，P3，· · · と順次，次数の低い多項式になるように g1，g2，· · ·，gk，
· · · を決めていけばよい．まず，P0(s)は，

P0(s) = S(s) + sN = (A0 + 1)sN +
N∑

i=1
Ais

N−i

= 2sN + 2
s̄1
sN−1 + 2s̄2

s̄2
1s̄2

sN−2 + 2s̄2s̄4

s̄2
1s̄

2
2s̄3

sN−3 + · · ·

· · · + 2s̄2s̄4 · · · s̄2i−2

s̄2
1s̄

2
2 · · · s̄2

i−1s̄i
sN−i + · · · (7.101)

次に，P1(s)は，

P1(s) = S(s) − sN =
N∑

i=1
Ais

N−i

= 2
s̄1
sN−1 + 2s̄2

s̄2
1s̄2

sN−2 + 2s̄2s̄4

s̄2
1s̄

2
2s̄3

sN−3 + · · · · · · + 2s̄2s̄4 · · · s̄2i−2

s̄2
1s̄

2
2 · · · s̄2

i−1s̄i
sN−i + · · ·

(7.102)

ここで，

P0(s) = g1sP1(s) + P2(s) (7.103)

より，g1 を，

g1 = P0(s)の最高次Nの係数
P1(s)の最高次N − 1の係数 = A0 + 1

A1
= 1 + 1

2
s̄1

= s̄1 (7.104)

とすれば，P2(s)の sN の係数はゼロとなる．これより，

P2(s) = P0(s) − s̄1sP1(s)
= (A1 − s̄1A2)sN−1 + (A2 − s̄1A3)sN−2 + · · · · · · + (Ai − s̄1Ai+1)sN−i + · · ·

(7.105)

ここで，

A1 − s̄1A2 = 2
s̄1

− s̄1
2s̄2

s̄2
1s̄2

= 0 (7.106)

A2 − s̄1A3 = 2s̄2

s̄2
1s̄2

− s̄1
2s̄2s̄4

s̄2
1s̄

2
2s̄3

= 2s̄2

s̄2
1s̄

2
2s̄3

(s̄2s̄3 − s̄1s̄4) = 2s̄2

s̄2
1s̄

2
2s̄3

s̄1s̄2

= 2s̄2

s̄1s̄2s̄3
(7.107)

さらに，

A3 − s̄1A4 = 2s̄2s̄4

s̄2
1s̄

2
2s̄3

− s̄1
2s̄2s̄4s̄6

s̄2
1s̄

2
2s̄

2
3s̄4

= 2s̄2s̄4

s̄2
1s̄

2
2s̄

2
3s̄4

(s̄3s̄4 − s̄1s̄6) = 2s̄2s̄4

s̄2
1s̄

2
2s̄

2
3s̄4

s̄2s̄3

= 2s̄2s̄4

s̄2
1s̄2s̄3s̄4

(7.108)
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また，

Ai − s̄1Ai+1 = 2s̄2s̄4 · · · s̄2i−2

s̄2
1s̄

2
2 · · · s̄2

i−1s̄i
− s̄1

2s̄2s̄4 · · · s̄2i−2s̄2i

s̄2
1s̄

2
2 · · · s̄2

i−1s̄
2
i s̄i+1

= 2s̄2s̄4 · · · s̄2i−2

s̄2
1s̄

2
2 · · · s̄2

i−1s̄
2
i s̄i+1

(s̄is̄i+1 − s̄1s̄2i)

= 2s̄2s̄4 · · · s̄2i−2

s̄2
1s̄

2
2 · · · s̄2

i−1s̄
2
i s̄i+1

s̄i−1s̄i

= 2s̄2s̄4 · · · s̄2i−2

s̄2
1s̄

2
2 · · · s̄2

i−2s̄i−1s̄is̄i+1
(7.109)

よって，P2(s)は，

P2(s) = 2s̄2

s̄1s̄2s̄3
sN−2 + 2s̄2s̄4

s̄2
1s̄2s̄3s̄4

sN−3 + · · · · · · + 2s̄2s̄4 · · · s̄2i−2

s̄2
1s̄

2
2 · · · s̄2

i−2s̄i−1s̄is̄i+1
sN−i + · · ·

(7.110)

次に，

P1(s) = g2sP2(s) + P3(s) (7.111)

これより，g2 を，

g2 = P1(s)の最高次N − 1の係数
P2(s)の最高次N − 2の係数 =

2
s̄1
2s̄2

s̄1s̄2s̄3

= s̄3 (7.112)

とすれば，P3(s)の sN−1 の係数はゼロとなる．これより，

P3(s) = P1(s) − s̄3sP2(s)
= A2s

N−2 + · · · + Ai−1s
N−(i−1) + · · ·

− s̄3

(
2s̄2s̄4

s̄2
1s̄2s̄3s̄4

sN−2 + · · · + 2s̄2s̄4 · · · s̄2i−2

s̄2
1s̄

2
2 · · · s̄2

i−2s̄i−1s̄is̄i+1
sN−i+1 + · · ·

)
(7.113)

ここで，

A2 − s̄3
2s̄2s̄4

s̄2
1s̄2s̄3s̄4

= 2s̄2

s̄2
1s̄2

− s̄3
2s̄2s̄4

s̄2
1s̄2s̄3s̄4

= 0 (7.114)

A3 − s̄3
2s̄2s̄4s̄6

s̄2
1s̄

2
2s̄3s̄4s̄5

= 2s̄2s̄4

s̄2
1s̄

2
2s̄3

− s̄3
2s̄2s̄4s̄6

s̄2
1s̄

2
2s̄3s̄4s̄5

= 2s̄2s̄4

s̄2
1s̄

2
2s̄3s̄4s̄5

(s̄4s̄5 − s̄3s̄6)

= 2s̄2s̄4

s̄2
1s̄

2
2s̄3s̄4s̄5

s̄1s̄2 = 2s̄2s̄4

s̄1s̄2s̄3s̄4s̄5
(7.115)
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さらに，

Ai−1 − s̄3
2s̄2s̄4 · · · s̄2i−2

s̄2
1s̄

2
2 · · · s̄2

i−2s̄i−1s̄is̄i+1

= 2s̄2s̄4 · · · s̄2i−4

s̄2
1s̄

2
2 · · · s̄2

i−2s̄i−1
− s̄3

2s̄2s̄4 · · · s̄2i−2

s̄2
1s̄

2
2 · · · s̄2

i−2s̄i−1s̄is̄i+1

= 2s̄2s̄4 · · · s̄2i−4

s̄2
1s̄

2
2 · · · s̄2

i−2s̄i−1s̄is̄i+1
(s̄is̄i+1 − s̄3s̄2i−2)

= 2s̄2s̄4 · · · s̄2i−4

s̄2
1s̄

2
2 · · · s̄2

i−2s̄i−1s̄is̄i+1
s̄i−3s̄i−2

= 2s̄2s̄4 · · · s̄2i−4

s̄2
1s̄

2
2 · · · s̄2

i−4s̄i−3s̄i−2s̄i−1s̄is̄i+1
(7.116)

したがって，

P3(s) = 2s̄2s̄4

s̄1s̄2s̄3s̄4s̄5
sN−3 + · · · + 2s̄2s̄4 · · · s̄2i−4

s̄2
1s̄

2
2 · · · s̄2

i−4s̄i−3s̄i−2s̄i−1s̄is̄i+1
sN−(i−1) + · · ·

(7.117)

同様にして，一般項については，

Pk(s) = 2s̄2s̄4 · · · s̄2k−2

s̄1s̄2 · · · s̄2k−1
sN−k + 2s̄2s̄4 · · · s̄2k−2s̄2k

s̄2
1s̄2 · · · s̄2k−1s̄2k

sN−k−1 + · · ·

+ 2s̄2s̄4 · · · s̄2k−2+2i

s̄2
1s̄

2
2 · · · s̄2

i s̄i+1 · · · s̄2k−1+i
sN−(k−i) + · · · (7.118)

連分数展開は，

Pk−1(s) = gksPk(s) + Pk+1(s) (7.119)

ゆえ，gk を次のように決めれば，Pk−1(s)の sN−k+1 の係数はゼロとなる．これより，gk の
一般式は，

gk = Pk−1(s)の最高次N − k + 1の係数
Pk(s)の最高次N − kの係数 =

2s̄2s̄4···s̄2(k−1)−2
s̄1s̄2···s̄2(k−1)−1

2s̄2s̄4···s̄2k−2
s̄1s̄2···s̄2k−1

= s̄2k−2s̄2k−1

s̄2k−2
= s̄2k−1

(7.120)

ここで，

s̄i ≡ 2 sin
(
iπ

2N

)
(7.121)

よって，規格化素子値 gk は次のように導出できた．

gk = 2 sin
(

(2k − 1)π
2N

)
(k = 1, 2, · · · , N) (7.122)
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　最後の項については，k = N − 1, N のとき，

PN−1(s) =
2s̄2s̄4 · · · s̄2(N−1)−2

s̄1s̄2 · · · s̄2(N−1)−1
s+

2s̄2s̄4 · · · s̄2(N−1)

s̄2
1s̄2 · · · s̄2(N−1)

= 2s̄2N−1s̄2N−2

s̄2N−2
s+ 2s̄2N−1

s̄1
= 2s̄1s+ 2 (7.123)

PN (s) = 2s̄2s̄4 · · · s̄2N−2

s̄1s̄2 · · · s̄2N−1
= 2 (7.124)

また，

gN = s̄2N−1 = s̄1 (7.125)

よって，終端抵抗 rは，

r = PN−1(s)
PN (s) − gNs

= 2s̄1s+ 2
2 − s̄1s = 1 (7.126)
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CHAPTER 8

等リプル特性を有するフィルタ

　チェビシェフフィルタの設計と特性について詳しく解説する．まず，チェビシェフ
多項式を用いてフィルタの特性関数を定義し，通過帯域における等リプル特性を数
学的に導く．次に，この特性を実現するための零点の位置を複素平面上で分析し，そ
れらが楕円上に配置されることを示している．さらに，低域通過フィルタを基本とし
て，周波数変換によって高域通過，帯域通過．および帯域阻止フィルタをどのように
設計できるかを，具体的な正規化素子値の計算式と周波数応答の図を用いて網羅的に
説明する．理想変成器を用いた偶数次フィルタの終端整合についても触れ，理論と実
践の両面からチェビシェフフィルタの実現方法を示していく．

8.1 等リプル（Chebyshev）特性

8.1.1 チェビシェフ多項式を用いた特性関数

特性関数 K(s)を，s = jΩ より，

K(s) = K(jΩ) ≡ εTN (Ω) (8.1)

ここで，TN (Ω)は N 次のチェビシェフ多項式（Chebyshev polynomial）を示し，

TN (Ω) =


(−1)N cosh

(
N cosh−1 |Ω|

)
(Ω < −1)

cos
(
N cos−1 Ω

)
(|Ω| ≤ 1)

cosh
(
N cosh−1 Ω

)
(Ω > 1)

(8.2)
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また，ε は通過域のリプルの大きさを決めるパラメータ（実数）である．これより，

|K(s)|2 = K(s)K(s)∗ = K(s)K(−s) = K(jΩ)K(−jΩ)
= εTN (Ω) · εTN (−Ω) = ε2T 2

N (Ω) (8.3)
|H(s)|2 = 1 + |K(s)|2 = 1 + ε2T 2

N (Ω) (8.4)

ここで，遮断点 Ω = 1のとき，|H|2 は，TN (1) = 1より，

|H|2
∣∣∣∣
Ω=1

= 1 + ε2T 2
N (1) = 1 + ε2 (8.5)

通過域のリプルの最大値は，

|H|max =
√

1 + ε2 (8.6)

デジベル値は，LAr = 10 log10(1 + ε2) [dB]．逆に，εは，

ε =
√

10
LAr

10 − 1 (8.7)

8.1.2 動作伝送関数の因数分解

等リプル特性 H(s)を sに関して因数分解するため，|H(s)|2 = 0の根を求める．s = jΩ
より，Ω = −jsゆえ，

|H(s)|2 = 1 + ε2T 2
N (−js) = 0 (8.8)

T 2
N (−js) = − 1

ε2

TN (−js) = ±
√

−1
ε

= ±j

ε
(8.9)

ここで，TN (Ω) = cos(N cos−1 Ω)ゆえ，

±j

ε
= cos{N cos−1(−js)} (8.10)

いま，

cos−1(−js) ≡ x+ jy (8.11)

とおくと，加法定理および

cos jα = coshα (8.12)
sin jα = j sinhα (8.13)
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より，

±j

ε
= cos{N(x+ jy)}
= cosNx cos jNy − sinNx sin jNy
= cosNx coshNy − j sinNx sinhNy (8.14)

上式の実部より，

cosNx coshNy = 0 (8.15)

coshNy ≥ 1ゆえ，coshNy 6= 0．よって，cosNx = 0が成り立つ．したがって，cosNx = 0
を満たす Nxは，

Nx = π

2 + kπ = (2k + 1)π
2 (k = 0,±1,±2, · · · ) (8.16)

よって，x は，

x = ±(2n+ 1)π
2N (n = 0, 1, 2, · · · , N − 1) (8.17)

このとき，sinNx = ±1．一方，上で示した ± j
ε の虚部より，

±1
ε

= sinNx sinhNy
1
ε

= ± sinhNy (8.18)

よって，y は，

y = ± 1
N

sinh−1 1
ε

(8.19)

ここで，−js = cos(x+ jy)より，零点 sは，

s = j cos(x+ jy)
= j(cosx cosh y − j sin x sinh y)
= j cosx cosh y + sin x sinh y
≡ σn + jωn = sn (8.20)

実現可能な回路を得るためには，複素平面の左半面にある零点 sn を選べばよいので，
<(sn) = σn < 0 ゆえ，

σn = − sin (2n+ 1)π
2N sinh a (8.21)

ωn = cos (2n+ 1)π
2N cosh a (8.22)

ここで，

a = 1
N

sinh−1 1
ε

(8.23)
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8.1.3 動作伝送関数の零点

|H(s)|2 は，

|H(s)|2 = 1 + ε2T 2
N (−js) = 1 + ε2

{
2N−1(−js)N + · · ·

}2

= ε222(N−1)(−1)Ns2N + · · · (8.24)

零点 sn より動作伝送関数 H(s)，さらには反射係数 Γ(s)は，

H(s) = ±ε2N−1(−j)N
N∏

n=1
(s− sn) (8.25)

Γ(s) = K(s)
H(s) = ± TN (Ω)

2N−1(−j)N
N∏

n=1
(s− sn)

(8.26)

また，上で求めた σn，ωn より，

sin2 (2n+ 1)π
2N + cos2 (2n+ 1)π

2N = σ2
n

sinh2 a
+ ω2

n

cosh2 a
= 1 (8.27)

これより，零点 sn は複素平面のだ円（直交するだ円の軸は実軸と虚軸）上にあることがわ
かる．下の図は，N = 2, 3, 4, 5の 0.5dB等リップル特性における sn を各々，プロットした
もので，sn がだ円上にあることが確認できる．

図 8.1. sn の位置（N = 2）
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図 8.2. sn の位置（N = 3）

図 8.3. sn の位置（N = 4）

図 8.4. sn の位置（N = 5）

8.1.4 周波数特性

|H|2 dB，Arg(1/H) deg，1/|Γ|2 dB の周波数特性を示すと次のようになり，N = 2 か
ら，順次，段数 N を増やした特性を追加してプロットしている．
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図 8.5. 0.5dB の等リップル特性の低域通過特性（N = 2）

図 8.6. 0.5dB の等リップル特性の低域通過特性（N = 2, 3）
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図 8.7. 0.5dB の等リップル特性の低域通過特性（N = 2, 3, 4）

図 8.8. 0.5dB の等リップル特性の低域通過特性（N = 2, 3, 4, 5）

リプルを 0.05dB としたときは次のようになり，帯域内はもちろん所定のリプルとなる
が，帯域外は上の図（リプル 0.5dB）に比べて緩やかな特性に変化していることが確認で
きる．
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図 8.9. 0.05dB の等リップル特性の低域通過特性（N = 2, 3, 4, 5）

8.2 等リプル特性の周波数変換

8.2.1 低域通過から高域通過への周波数変換

N = 2, 3, 4, 5 について周波数変換した高域通過の |H|2 dB，Arg(1/H) deg，1/|Γ|2 dB
の周波数特性を示すと次のようになる．
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図 8.10. 0.5dB の等リップル特性の高域通過特性（N = 2, 3, 4, 5）

8.2.2 低域通過から帯域通過への周波数変換

比帯域W = 0.3で周波数変換した帯域通過の |H|2 dB，Arg(1/H) deg，1/|Γ|2 dBの周
波数特性を示すと次のようになり，N = 2から，順次，段数 N を増やした特性を追加して
プロットしている．
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図 8.11. 0.5dB の等リップル特性の帯域通過特性（N = 2, W = 0.3）

図 8.12. 0.5dB の等リップル特性の帯域通過特性（N = 2, 3, W = 0.3）
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図 8.13. 0.5dB の等リップル特性の帯域通過特性（N = 2, 3, 4, W = 0.3）

図 8.14. 0.5dB の等リップル特性の帯域通過特性（N = 2, 3, 4, 5, W = 0.3）

8.2.3 低域通過から帯域阻止への周波数変換

N = 2, 3, 4, 5について周波数変換した帯域阻止の周波数特性を示すと次のようになる．
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図 8.15. 0.5dB の等リップル特性の高域通過特性（N = 2, 3, 4, 5）

8.3 等リプル特性を持つ低域通過梯子型回路の規格化素子値

N 次のチェビシェフ特性を有する梯子型リアクタンス回路を合成すると，規格化素子値
gk は，

g1 = 2u1

η
(8.28)

gk = 4uk−1uk

vk−1gk−1
(k = 2, 3, · · · , N) (8.29)

gN+1 =

 1 (N : 奇数)
coth2 ζ

4 (N : 偶数) (8.30)

ただし，g0 = 1 である．また，gN+1 は終端負荷の抵抗（最終段が直列素子の場合）あるい
はコンダクタンス（最終段が並列素子の場合）を示す．ここで，

ζ = ln
[
coth

(
LAr

17.37

)]
(8.31)

η = sinh
(
ζ

2N

)
(8.32)

uk = sin
(

(2k − 1)π
2N

)
(k = 1, 2, · · · , N) (8.33)

vk = η2 + sin2
(
kπ

N

)
(k = 1, 2, · · · , N) (8.34)
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ただし，LAr はリプルのピーク値 [dB]を示す．

gN
=CN

g1=L1 g3=L3 gN=LN

gN+1
=GN+1

gN+1
=RN+1

g0
=G0

'

' '' ' ' '

''

'
gN-1
=CN-1

g4
=C4

g2
=C2

図 8.16. 入力インピーダンス z+
in により合成した梯子型回路

g2=L2 g4=L4 gN-1=LN-1 gN=LN

gN+1
=GN+1

g0
=R0

gN
=CN

gN-1
=CN-1

g3
=C3

g1
=C1

gN+1
=RN+1

' ' ' '

'''''' '

図 8.17. 入力インピーダンス z−
in により合成した梯子型回路

等リプル（0.04365 dB）を有する低域通過フィルタの規格化素子値 gk を求めると次のよ
うになる．ただし，g0 = 1，終端負荷の素子値は N が奇数のとき gN+1 = 1，N が偶数のと
き gN+1

∣∣∣
LAr=0.04365

= 1.2222．このとき，通過域の反射のピーク値は −20dBである．奇数

表 8.1 等リプル（0.04365 dB）低域通過フィルタの規格化素子値 gk

次数 N g1 g2 g3 g4 g5 g6 g7 g8

2 0.6667 0.5455 – – – – – g3 = 1.2222
3 0.8535 1.1039 0.8535 – – – – g4 = 1.0000
4 0.9333 1.2923 1.5795 0.7636 – – – g5 = 1.2222
5 0.9732 1.3723 1.8032 1.3723 0.9732 – – g6 = 1.0000
6 0.9958 1.4131 1.8950 1.5505 1.7272 0.8148 – g7 = 1.2222
7 1.0097 1.4368 1.9414 1.6216 1.9414 1.4368 1.0097 g8 = 1.0000

次のチェビシェフ特性の場合，梯子型回路の終端負荷は gN+1 = 1であるのに対し，偶数次
の場合，終端負荷は gN+1 6= 1であるが，両者ともに各々の負荷に対して所定の伝送特性が
得られる．当然，偶数次の回路に r = 1の終端負荷を接続しても所定の特性は得られない．
しかしながら，梯子型回路と終端負荷の間に理想変成器（n : 1）を挿入して，梯子型回路か
ら変成器（終端負荷は r = 1）を見た規格化入力インピーダンス（梯子型回路の最終段が並
列素子の場合），あるいは規格化入力アドミタンス（最終段が直列素子の場合）を gN+1 と
すれば，所定の特性を得ることができる．梯子型回路の最終段が並列素子の場合，規格化入
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力インピーダンス zin = gN+1 となるように，

zin = V1

I1
= nV2

−1
n I2

= n2 V2

−I2
= n2 = gN+1 (8.35)

よって，n = √
gN+1 ゆえ，理想変成器の入出力端子の電圧，電流の関係は次のようになる．(

V1
I1

)
=
(
n 0
0 1

n

)(
V2

−I2

)
=
(√

gN+1 0
0 1√

gN+1

)(
V2

−I2

)
(8.36)

梯子型回路の最終段が直列素子の場合，規格化入力アドミタンスが yin = gN+1 となるよ
うに，

1
yin

= V1

I1
= nV2

−1
n I2

= n2 V2

−I2
= n2 = 1

gN+1
(8.37)

よって，n = 1√
gN+1

ゆえ，理想変成器の入出力端子の電圧，電流の関係は次のようになる．

(
V1
I1

)
=
(
n 0
0 1

n

)(
V2

−I2

)
=
( 1√

gN+1
0

0 √
gN+1

)(
V2

−I2

)
(8.38)

これより，N = 2, 3, 4, 5, 6, 7について入力インピーダンス z+
in で合成した回路の特性を求め

ると次のようになる．

図 8.18. 2 段梯子型回路の 0.04365dB（反射=−20dB）等リプル低域通過特性（z+
in）
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図 8.19. 3 段梯子型回路の 0.04365dB（反射=−20dB）等リプル低域通過特性（z+
in）

図 8.20. 4 段梯子型回路の 0.04365dB（反射=−20dB）等リプル低域通過特性（z+
in）
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図 8.21. 5 段梯子型回路の 0.04365dB（反射=−20dB）等リプル低域通過特性（z+
in）

図 8.22. 6 段梯子型回路の 0.04365dB（反射=−20dB）等リプル低域通過特性（z+
in）

160



図 8.23. 7 段梯子型回路の 0.04365dB（反射=−20dB）等リプル低域通過特性（z+
in）

8.4 周波数変換により求めた等リプル特性を持つ高域通過梯
子型回路の規格化素子値

高域通過フィルタは，周波数変換 s = 1
ŝ より，梯子型回路の直列素子の規格化インピーダ

ンス zk，並列素子の規格化アドミタンス yk は（入力の抵抗は 1），

zk = sgk = gk

ŝ
≡ 1
ŝĝk

= 1
ŷk

(8.39)

yk = sgk = gk

ŝ
≡ 1
ŝĝk

= 1
ẑk

(8.40)

よって，高域通過フィルタの規格化素子値 ĝk は，

ĝk = 1
gk

(8.41)

高域通過梯子型回路は双対的な次のような回路となる．
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gN

g1 g3 gN

gN-1g4 r rg2
1

図 8.24. z+
in により合成した原型低域通過回路を周波数変換した高域通過梯子型回路

g2 g4 gN-1 gN

gN gN-1g3 r rg1
1

図 8.25. z−
in により合成した原型低域通過回路を周波数変換した高域通過梯子型回路

等リプル（0.04365 dB）特性を有する高域通過フィルタの規格化素子値 ĝkを求めると次の
ようになる．ただし，入力抵抗 g0 = 1，終端負荷の素子値はN が奇数のとき gN+1 = 1，N が
偶数のとき gN+1

∣∣∣
LAr=0.04365

= 1.2222．このとき，通過域の反射のピーク値は−20dB．これ

表 8.2 等リプル（0.04365 dB）高域通過フィルタの規格化素子値 ĝk

次数 N ĝ1 ĝ2 ĝ3 ĝ4 ĝ5 ĝ6 ĝ7

2 1.5000 1.8333
3 1.1717 0.9059 1.1717
4 1.0715 0.7738 0.6331 1.3097
5 1.0275 0.7287 0.5546 0.7287 1.0275
6 1.0042 0.7076 0.5277 0.6450 0.5790 1.2274
7 0.9903 0.6960 0.5151 0.6167 0.5151 0.6960 0.9903

より，N = 2, 3, 4, 5, 6, 7について入力インピーダンス z+
inで回路合成し，偶数次N = 2, 4, 6

については終端に理想変成器を追加して周波数応答を求めると次のようになる．
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図 8.26. 理想変成器を接続した 2 段梯子型回路の 0.04365dB（反射=−20dB）等リプル高域通過
特性（z+

in）

図 8.27. 3 段梯子型回路の 0.04365dB（反射=−20dB）等リプル高域通過特性（z+
in）
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図 8.28. 理想変成器を接続した 4 段梯子型回路の 0.04365dB（反射=−20dB）等リプル高域通過
特性（z+

in）

図 8.29. 5 段梯子型回路の 0.04365dB（反射=−20dB）等リプル高域通過特性（z+
in）
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図 8.30. 理想変成器を接続した 6 段梯子型回路の 0.04365dB（反射=−20dB）等リプル高域通過
特性（z+

in）

図 8.31. 7 段梯子型回路の 0.04365dB（反射=−20dB）等リプル高域通過特性（z+
in）
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8.5 周波数変換により求めた等リプル特性を持つ帯域通過梯
子型回路の規格化素子値

帯域通過フィルタは，原型低域通過フィルタを周波数変換して，

s = 1
W

(
ŝ+ 1

ŝ

)
(8.42)

これより，直列素子の正規化インピーダンス zk は，

zk = sgk = gk

W

(
ŝ+ 1

ŝ

)
= ŝ

gk

W
+ 1
ŝW

gk

≡ ŝl̂k + 1
ŝĉk

(8.43)

直列接続された規格化インダクタンス l̂k，規格化キャパシタンス ĉk は（直列共振回路），

l̂k = gk

W
≡ ĝk (8.44)

ĉk = W

gk
≡ ĝ′

k (8.45)

また，並列素子の正規化アドミタンス yk は，

yk = sgk = gk

W

(
ŝ+ 1

ŝ

)
= ŝ

gk

W
+ 1
ŝW

gk

≡ ŝĉk + 1
ŝl̂k

(8.46)

並列接続された規格化キャパシタンス ĉk，規格化インダクタンス l̂k は（並列共振回路），

ĉk = gk

W
≡ ĝk (8.47)

l̂k = W

gk
≡ ĝ′

k (8.48)

したがって，帯域通過梯子型回路は双対的な次のような回路となる．

N: odd N: even

g2' g2 g4' g4

g1 g1' g3 g3' gN gN'

gNgN'

gN-1 gN-1'

gN-1gN-1' r r
1

図 8.32. z+
in により合成した原型低域通過回路を周波数変換した帯域通過梯子型回路
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N: odd N: even

g2'g2 g4'g4

g1g1' g3g3' gNgN'

gN gN'

gN-1gN-1'

gN-1 gN-1'

r r
1

図 8.33. z−
in により合成した原型低域通過回路を周波数変換した帯域通過梯子型回路

等リプル（0.04365 dB）帯域（W = 0.3）通過特性を有する帯域通過フィルタの規格化素
子値 ĝk を求めると次のようになる．ただし，入力抵抗 g0 = 1，終端負荷の素子値は N が
奇数のとき gN+1 = 1，N が偶数のとき gN+1

∣∣∣
LAr=0.04365

= 1.2222．このとき，通過域の反
射のピーク値は −20dB．これより，N = 2, 3, 4, 5, 6, 7，比帯域W = 0.3について入力イン

表 8.3 等リプル（0.04365 dB）帯域通過フィルタ（比帯域 W = 0.3）の規格化素子値 ĝk，ĝ′
k

次数 N ĝ1 ĝ2 ĝ3 ĝ4 ĝ5 ĝ6 ĝ7

2 2.2223 1.8182
0.4500 0.5500

3 2.8449 3.6796 2.8449
0.3515 0.2718 0.3515

4 3.1108 4.3078 5.2651 2.5452
0.3215 0.2321 0.1899 0.3929

5 3.2441 4.5743 6.0106 4.5743 3.2441
0.3083 0.2186 0.1664 0.2186 0.3083

6 3.3194 4.7105 6.3167 5.1682 5.7573 2.7158
0.3013 0.2123 0.1583 0.1935 0.1737 0.3682

7 3.3658 4.7894 6.4714 5.4053 6.4714 4.7894 3.3658
0.2971 0.2088 0.1545 0.1850 0.1545 0.2088 0.2971

ピーダンス z+
in で回路合成し，偶数次 N = 2, 4, 6については終端に理想変成器を追加して

周波数応答を求めると次のようになる．
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図 8.34. 理想変成器を接続した 2 段梯子型回路の 0.04365dB（反射=−20dB）等リプル帯域通過
特性（z+

in, W = 0.3）

図 8.35. 3 段梯子型回路の 0.04365dB（反射=−20dB）等リプル帯域通過特性（z+
in, W = 0.3）
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図 8.36. 理想変成器を接続した 4 段梯子型回路の 0.04365dB（反射=−20dB）等リプル帯域通過
特性（z+

in, W = 0.3）

図 8.37. 5 段梯子型回路の 0.04365dB（反射=−20dB）等リプル帯域通過特性（z+
in, W = 0.3）
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図 8.38. 理想変成器を接続した 6 段梯子型回路の 0.04365dB（反射=−20dB）等リプル帯域通過
特性（z+

in, W = 0.3）

図 8.39. 7 段梯子型回路の 0.04365dB（反射=−20dB）等リプル帯域通過特性（z+
in, W = 0.3）
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8.6 周波数変換により求めた等リプル特性を持つ帯域阻止梯
子型回路の規格化素子値

帯域阻止フィルタは，周波数変換より，

s = 1
1

W

(
ŝ+ 1

ŝ

) (8.49)

これより，直列素子の正規化インピーダンス zk は，

zk = sgk = gk

1
W

(
ŝ+ 1

ŝ

) = 1
ŝ 1

W gk
+ 1

ŝW gk

≡ 1
ŝĉk + 1

ŝl̂k

= 1
ŷk

(8.50)

並列接続された規格化キャパシタンス ĉk，規格化インダクタンス l̂k は（並列共振回路），

ĉk = 1
Wgk

≡ ĝk (8.51)

l̂k = Wgk ≡ ĝ′
k (8.52)

また，並列素子の正規化アドミタンス yk は，

yk = sgk = gk

1
W

(
ŝ+ 1

ŝ

) = 1
ŝ 1

W gk
+ 1

ŝW gk

≡ 1
ŝl̂k + 1

ŝĉk

= 1
ẑk

(8.53)

直列接続された規格化キャパシタンス l̂k，規格化インダクタンス ĉk は（直列共振回路），

l̂k = 1
Wgk

≡ ĝk (8.54)

ĉk = Wgk ≡ ĝ′
k (8.55)

したがって，帯域通阻止梯子型回路は双対的な次のような回路となる．

N: odd N: even

g1'

g1

g3'

g3
g2
g2'

g4
g4'

gN-1
gN-1'

gN-1

gN-1'

gN
gN'

gN

gN'

r r
1

図 8.40. z+
in により合成した原型低域通過回路を周波数変換した帯域阻止梯子型回路
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N: odd N: even

g2'

g2

g4'

g4
g1
g1'

g3
g3'

gN
gN'

gN

gN'

gN-1
gN-1'

gN-1

gN-1'

r r
1

図 8.41. z−
in により合成した原型低域通過回路を周波数変換した帯域阻止梯子型回路

等リプル（0.04365 dB）帯域（W = 0.3）素子特性を有する帯域阻止フィルタの規格化素
子値 ĝk を求めると次のようになる．ただし，入力抵抗 g0 = 1，終端負荷の素子値は N が
奇数のとき gN+1 = 1，N が偶数のとき gN+1

∣∣∣
LAr=0.04365

= 1.2222．このとき，通過域の反
射のピーク値は −20dB．これより，N = 2, 3, 4, 5, 6, 7，比帯域W = 0.3について入力イン

表 8.4 等リプル（0.04365 dB）帯域阻止フィルタ（比帯域 W = 0.3）の規格化素子値 ĝk, ĝ′
k

次数 N ĝ1 ĝ2 ĝ3 ĝ4 ĝ5 ĝ6 ĝ7

2 4.9999 6.1110
0.2000 0.1636

3 3.9056 3.0197 3.9056
0.2560 0.3312 0.2560

4 3.5717 2.5793 2.1103 4.3655
0.2800 0.3877 0.4739 0.2291

5 3.4250 2.4291 1.8486 2.4291 3.4250
0.2920 0.4117 0.5410 0.4117 0.2920

6 3.3473 2.3588 1.7590 2.1499 1.9299 4.0912
0.2987 0.4239 0.5685 0.4651 0.5182 0.2444

7 3.3012 2.3199 1.7169 2.0556 1.7169 2.3199 3.3012
0.3029 0.4310 0.5824 0.4865 0.5824 0.4310 0.3029

ピーダンス z+
in で回路合成し，偶数次 N = 2, 4, 6については終端に理想変成器を追加して

周波数応答を求めると次のようになる．
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図 8.42. 理想変成器を接続した 2 段梯子型回路の 0.04365dB（反射=−20dB）等リプル帯域阻止
特性（z+

in, W = 0.3）

図 8.43. 理想変成器を接続した 3 段梯子型回路の 0.04365dB（反射=−20dB）等リプル帯域阻止
特性（z+

in, W = 0.3）
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図 8.44. 理想変成器を接続した 4 段梯子型回路の 0.04365dB（反射=−20dB）等リプル帯域阻止
特性（z+

in, W = 0.3）

図 8.45. 理想変成器を接続した 5 段梯子型回路の 0.04365dB（反射=−20dB）等リプル帯域阻止
特性（z+

in, W = 0.3）
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図 8.46. 理想変成器を接続した 6 段梯子型回路の 0.04365dB（反射=−20dB）等リプル帯域阻止
特性（z+

in, W = 0.3）

図 8.47. 理想変成器を接続した 7 段梯子型回路の 0.04365dB（反射=−20dB）等リプル帯域阻止
特性（z+

in, W = 0.3）
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