円錐ホーンのユニバーサルパターン
モジュールのインポート
import numpy as np
import scipy as sp
from scipy.integrate import quad
from scipy.special import jv, yv# ベッセル関数
from scipy.special import jn_zeros, jnp_zeros, jnjnp_zeros, jnyn_zeros# ベッセル関数の零点
import matplotlib.pyplot as plt
import scienceplots
#Warning : As of version 2.0.0, you need to add import scienceplots before setting the style (plt.style.use('science')).
plt.style.use(['science', 'notebook'])
ユーザ関数
可変長引数**kwargsより,複数のキーワード引数を辞書として受け取って積分変数以外の変数を引数とし,
可変長引数*argsより,複数の引数をタプルとして受け取るように改良した被積分関数が複素数の場合の数値積分の関数を,
def complex_quadrature2(func, a, b, *args, **kwargs):
def real_func(x, *args):
return np.real(func(x, *args))
def imag_func(x, *args):
return np.imag(func(x, *args))
real_integral = quad(real_func, a, b, *args, **kwargs)
imag_integral = quad(imag_func, a, b, *args, **kwargs)
return (real_integral[0] + 1j*imag_integral[0], real_integral[1:], imag_integral[1:])
電磁界の複素係数から絶対値,デジベル[dB],偏角[deg]の計算は,
def dbdeg(z):
q = 180.0/np.pi
amp = np.abs(z)
db = 20.0*np.log10(amp)
rad = np.angle(z)
rad = np.unwrap(rad)
deg = rad*q
return amp,db,deg
モード関数の正規化係数は,
def func_Amn(imode,m, kai):
if m==0:
em = 1
else:
em = 2
if imode==1:
A = np.abs(jv(m,kai))
A = A*np.sqrt(kai**2-m**2)
else:
A = np.abs(jv(m+1,kai))*kai
return np.sqrt(em/np.pi)/A
ユニバーサルパターンを求めるための積分項の被積分関数は,
def func_Ii(r, t, u, mpm1, kai):
return jv(mpm1, kai*r)*jv(mpm1, u*r) * np.exp(-1j*2*np.pi*t*r**2) * r
ユニバーサルパターンは,
def func_N(t, u, phi, imode, kai):
f0 = complex_quadrature2(func_Ii, 0, 1, args=(t, u, 0, kai))
f2 = complex_quadrature2(func_Ii, 0, 1, args=(t, u, 2, kai))
return -imode*f2[0]*np.sin(2*phi), f0[0]+imode*f2[0]*np.cos(2*phi)
遮断特性の計算
TE$_{1n}$モードに対する計算を行い,基本TE$_{11}$モードのみ出力すると,
m=1
kai_TE = jnp_zeros(m ,1) # J_m'(x)=0 for TEmn-mode
kai_TE[0]
1.8411837813406593
同様にして,TM$_{1n}$モードに対する計算を行い,TM$_{11}$モードのみ出力すると,
kai_TM = jn_zeros(m ,1 )# J_m(x)=0 for TMmn-mode
kai_TM[0]
3.8317059702075125
数値積分を実行して,
complex_quadrature2(func_Ii, 0, 1, args=(0, 0, 0, kai_TE[0]))
((0.3160277807019953+0j), (3.5086131855654486e-15,), (0.0,))
tパラメータを,
ttt = np.linspace(0.0, 0.7, 15)
ttt
array([0. , 0.05, 0.1 , 0.15, 0.2 , 0.25, 0.3 , 0.35, 0.4 , 0.45, 0.5 ,
0.55, 0.6 , 0.65, 0.7 ])
基本TE$_{11}$モードの開口面振幅分布による利得低下量を数値積分より求めると,
tmp, eta_0 = func_N(0, 0, 0.0, 1, kai[0])
Amn = func_Amn(1,1, kai)
eta = np.abs(Amn*kai*eta_0)**2*np.pi
10*np.log10(eta) # 開口面振幅分布(TE11モード)によ利得低下量
array([-0.77360222])
あるいは,解析的に求めた式より求め,上の計算値との一致を確認しよう.
10*np.log10(2/(kai**2-1)) # 開口面振幅分布(TE11モード)によ利得低下量
array([-0.77360222])
基本TE$_{11}$モードの開口面振幅分布のもとで,位相分布による利得低下量を求めると,
eta_db = np.empty(len(ttt))
print(f"{'t':>8s} {'eta(t)':>10s}")
for j,t in enumerate(ttt):
tmp, eta = func_N(t, 0, 0.0, 1, kai[0])
eta_db[j] = 20*np.log10(np.abs(eta/eta_0))
print(f"{t:8.2f} {eta_db[j]:10.5f}")
t eta(t)
0.00 0.00000
0.05 -0.03286
0.10 -0.13167
0.15 -0.29718
0.20 -0.53064
0.25 -0.83388
0.30 -1.20930
0.35 -1.66000
0.40 -2.18984
0.45 -2.80353
0.50 -3.50674
0.55 -4.30616
0.60 -5.20945
0.65 -6.22495
0.70 -7.36062
プロットして,
fig = plt.figure() # グラフ領域の作成
plt.grid(color = "gray", linestyle="--")
plt.plot(ttt, eta_db)
plt.xlim(0.0, 0.7) # x軸範囲の設定
plt.ylim(-10.0, 0.0) # y軸範囲の設定
plt.xlabel(r"$t$") # y軸のラベル設定
plt.ylabel("Gain loss [dB]") # x軸のラベル設定
fig.savefig('p3_ap_s3_1.pdf')
ユニバーサルパターンの変数 $t$,$u$ パラメータは,
tt = np.linspace(0.001, 1.0, 6)
uu = np.linspace(0.0, 20.0, 401)
E面パターンを求めて,
q = 180.0/np.pi
phi = 90.0/q # E面
ff_E = np.empty((len(tt),len(uu)), dtype=complex)
for j,t in enumerate(tt):
tmp, f0 = func_N(t, 0, phi, 1, kai[0])
for i,u in enumerate(uu):
tmp, ff_E[j,i] = func_N(t, u, phi, 1, kai[0])
ff_E[j,i] = ff_E[j,i]/f0
amp_E, db_E, deg_E = dbdeg(ff_E)
E面のユニバーサルパターンをプロットすると,
fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(12, 4)) # グラフ領域の作成,nrows=縦に並べる数,ncols=横に並べる数
for j,t in enumerate(tt):
ax[0].plot(uu/np.pi, db_E[j,:], label=r"$t=$"+f"{t:.1f}")
ax[0].set_ylim(-50.0, 10.0) # y軸範囲の設定
ax[0].set_ylabel("Relative power [dB]") # x軸のラベル設定
ax[0].legend(ncol=1, loc='lower left', fancybox=False, frameon = True, fontsize=10)
for j,t in enumerate(tt):
ax[1].plot(uu/np.pi, deg_E[j,:], label=r"$t=$"+f"{t:.1f}")
ax[1].set_ylim(0.0, 900.0) # y軸範囲の設定
ax[1].set_ylabel("Relative phase [deg]") # x軸のラベル設定
ax[1].set_yticks(np.arange(0, 900, step=180))
ax[1].legend(ncol=1, loc='lower right', fancybox=False, frameon = True, fontsize=10)
[i.grid(color = "gray", linestyle="--") for i in ax]
[i.set_xlim([0, 5.0]) for i in ax] # 横軸の範囲指定
[i.set_xlabel(r"$u/\pi$ with $u = \frac{\pi D}{\lambda} \sin \theta$") for i in ax] # 横軸のラベル設定
fig.tight_layout()
fig.savefig('p3_ap_s3_2.pdf')
plt.show()
同様にして,H面パターンを求めて,
phi = 0.0/q # H面
ff_H = np.empty((len(tt),len(uu)), dtype=complex)
for j,t in enumerate(tt):
tmp, f0 = func_N(t, 0, phi, 1, kai[0])
for i,u in enumerate(uu):
tmp, ff_H[j,i] = func_N(t, u, phi, 1, kai[0])
ff_H[j,i] = ff_H[j,i]/f0
amp_H, db_H, deg_H = dbdeg(ff_H)
H面のユニバーサルパターンをプロットすると,
fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(12, 4)) # グラフ領域の作成,nrows=縦に並べる数,ncols=横に並べる数
for j,t in enumerate(tt):
ax[0].plot(uu/np.pi, db_H[j,:], label=r"$t=$"+f"{t:.1f}")
ax[0].set_ylim(-50.0, 10.0) # y軸範囲の設定
ax[0].set_ylabel("Relative power [dB]") # x軸のラベル設定
ax[0].legend(ncol=1, loc='lower left', fancybox=False, frameon = True, fontsize=10)
for j,t in enumerate(tt):
ax[1].plot(uu/np.pi, deg_H[j,:], label=r"$t=$"+f"{t:.1f}")
ax[1].set_ylim(0.0, 900.0) # y軸範囲の設定
ax[1].set_ylabel("Relative phase [deg]") # x軸のラベル設定
ax[1].set_yticks(np.arange(0, 900, step=180))
ax[1].legend(ncol=1, loc='lower right', fancybox=False, frameon = True, fontsize=10)
[i.grid(color = "gray", linestyle="--") for i in ax]
[i.set_xlim([0, 5.0]) for i in ax] # 横軸の範囲指定
[i.set_xlabel(r"$u/\pi$ with $u = \frac{\pi D}{\lambda} \sin \theta$") for i in ax] # 横軸のラベル設定
fig.tight_layout()
fig.savefig('p3_ap_s3_3.pdf')
plt.show()
また,45$^\circ$ 面パターンを求めて,
phi = 45.0/q # X-pol.
ff_C = np.empty((len(tt),len(uu)), dtype=complex)
ff_X = np.empty((len(tt),len(uu)), dtype=complex)
for j,t in enumerate(tt):
tmp, f0 = func_N(t, 0, phi, 1, kai[0])
for i,u in enumerate(uu):
ff_X[j,i], ff_C[j,i] = func_N(t, u, phi, 1, kai[0])
ff_X[j,i], ff_C[j,i] = ff_X[j,i]/f0, ff_C[j,i]/f0
amp_C, db_C, deg_C = dbdeg(ff_C)
amp_X, db_X, deg_X = dbdeg(ff_X)
deg_X[2:5,:] = deg_X[2:5,:]+360.0
45$^\circ$ 面の交差偏波成分のユニバーサルパターンをプロットして,
fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(12, 4)) # グラフ領域の作成,nrows=縦に並べる数,ncols=横に並べる数
for j,t in enumerate(tt):
ax[0].plot(uu/np.pi, db_X[j,:], label=r"$t=$"+f"{t:.1f}")
ax[0].set_ylim(-50.0, 5.0) # y軸範囲の設定
ax[0].set_ylabel("Relative power [dB]") # x軸のラベル設定
ax[0].legend(ncol=1, loc='lower left', fancybox=False, frameon = True, fontsize=10)
for j,t in enumerate(tt):
ax[1].plot(uu/np.pi, deg_X[j,:], label=r"$t=$"+f"{t:.1f}")
ax[1].set_ylim(-180.0, 720.0) # y軸範囲の設定
ax[1].set_ylabel("Relative phase [deg]") # x軸のラベル設定
ax[1].set_yticks(np.arange(-180, 720, step=180))
ax[1].legend(ncol=1, loc='lower right', fancybox=False, frameon = True, fontsize=10)
[i.grid(color = "gray", linestyle="--") for i in ax]
[i.set_xlim([0, 5.0]) for i in ax] # 横軸の範囲指定
[i.set_xlabel(r"$u/\pi$ with $u = \frac{\pi D}{\lambda} \sin \theta$") for i in ax] # 横軸のラベル設定
fig.tight_layout()
fig.savefig('p3_ap_s3_4.pdf')
plt.show()
計算値を出力すると,
for j,t in enumerate(tt):
print(f"{'u':>8s} {'ampE[dB]':>8s} {'phE[deg]':>8s} {'ampH[dB]':>8s} {'phH[deg]':>8s} {'ampX[dB]':>8s} {'phX[deg]':>8s} {'t':>8s}")
for i in range(0,len(uu),10):
print(f"{uu[i]:8.2f} {db_E[j,i]:8.3f} {deg_E[j,i]:8.3f} {db_H[j,i]:8.3f} {deg_H[j,i]:8.3f} {db_X[j,i]:8.3f} {deg_X[j,i]:8.3f} {tt[j]:8.2f}")
u ampE[dB] phE[deg] ampH[dB] phH[deg] ampX[dB] phX[deg] t
0.00 0.000 0.000 0.000 0.000 -inf 180.000 0.00
0.50 -0.273 0.002 -0.174 0.001 -45.134 179.882 0.00
1.00 -1.109 0.010 -0.702 0.004 -33.496 179.883 0.00
1.50 -2.570 0.025 -1.599 0.010 -27.135 179.884 0.00
2.00 -4.781 0.051 -2.895 0.019 -23.110 179.887 0.00
2.50 -8.009 0.101 -4.641 0.033 -20.520 179.890 0.00
3.00 -12.916 0.211 -6.919 0.053 -18.984 179.895 0.00
3.50 -22.102 0.656 -9.872 0.086 -18.329 179.901 0.00
4.00 -29.621 178.472 -13.780 0.142 -18.501 179.910 0.00
4.50 -19.769 179.564 -19.311 0.266 -19.537 179.924 0.00
5.00 -17.652 179.731 -29.077 0.752 -21.608 179.947 0.00
5.50 -18.120 179.811 -37.110 178.385 -25.176 179.992 0.00
6.00 -20.703 179.882 -27.764 179.573 -31.815 180.128 0.00
6.50 -26.496 180.010 -26.106 179.758 -59.240 354.300 0.00
7.00 -57.406 186.849 -26.993 179.853 -33.277 359.636 0.00
7.50 -28.858 359.600 -29.938 179.939 -29.381 359.759 0.00
8.00 -24.633 359.730 -35.961 180.102 -28.568 359.809 0.00
8.50 -23.841 359.784 -60.281 184.010 -29.732 359.847 0.00
9.00 -25.270 359.828 -39.766 359.532 -33.104 359.896 0.00
9.50 -29.383 359.891 -35.670 359.720 -41.166 360.051 0.00
10.00 -41.215 360.217 -35.107 359.797 -47.062 539.385 0.00
10.50 -36.467 539.582 -36.750 359.857 -36.607 539.717 0.00
11.00 -29.858 539.729 -40.971 359.943 -33.747 539.775 0.00
11.50 -28.020 539.774 -51.990 360.332 -33.508 539.807 0.00
12.00 -28.580 539.806 -49.904 539.457 -35.380 539.839 0.00
12.50 -31.542 539.845 -42.972 539.704 -40.276 539.896 0.00
13.00 -39.317 539.958 -41.217 539.774 -59.471 540.714 0.00
13.50 -44.979 719.485 -41.892 539.821 -43.299 719.682 0.00
14.00 -34.400 719.724 -44.903 539.876 -38.153 719.759 0.00
14.50 -31.476 719.768 -52.280 540.025 -36.739 719.790 0.00
15.00 -31.262 719.794 -61.375 719.192 -37.558 719.814 0.00
15.50 -33.321 719.821 -49.280 719.688 -40.848 719.847 0.00
16.00 -38.939 719.879 -46.293 719.760 -49.824 719.968 0.00
16.50 -63.111 898.285 -46.120 719.801 -50.992 899.613 0.00
17.00 -38.793 899.716 -48.188 719.841 -42.278 899.747 0.00
17.50 -34.574 899.764 -53.559 719.921 -39.669 899.780 0.00
18.00 -33.602 899.787 -84.186 724.230 -39.597 899.800 0.00
18.50 -34.888 899.808 -55.269 899.667 -41.782 899.823 0.00
19.00 -39.073 899.843 -50.796 899.751 -47.701 899.875 0.00
19.50 -53.387 900.109 -49.797 899.788 -65.226 1079.161 0.00
20.00 -43.500 1079.699 -51.063 899.820 -46.483 1079.735 0.00
u ampE[dB] phE[deg] ampH[dB] phH[deg] ampX[dB] phX[deg] t
0.00 0.000 0.000 0.000 0.000 -inf 180.000 0.20
0.50 -0.266 0.496 -0.173 0.220 -44.871 156.030 0.20
1.00 -1.077 2.080 -0.698 0.899 -33.237 156.213 0.20
1.50 -2.472 5.087 -1.587 2.108 -26.880 156.530 0.20
2.00 -4.520 10.281 -2.866 3.978 -22.863 157.005 0.20
2.50 -7.294 19.343 -4.573 6.755 -20.281 157.675 0.20
3.00 -10.713 35.910 -6.762 10.880 -18.756 158.603 0.20
3.50 -13.819 64.863 -9.503 17.202 -18.115 159.895 0.20
4.00 -14.732 99.043 -12.850 27.429 -18.300 161.745 0.20
4.50 -14.348 122.823 -16.667 44.887 -19.343 164.536 0.20
5.00 -14.512 137.397 -20.039 73.079 -21.388 169.153 0.20
5.50 -15.828 148.322 -21.516 105.168 -24.756 178.100 0.20
6.00 -18.600 160.052 -21.871 128.741 -29.873 200.806 0.20
6.50 -23.309 180.682 -22.640 144.417 -33.047 259.246 0.20
7.00 -28.046 235.270 -24.404 157.033 -29.764 300.408 0.20
7.50 -25.267 288.361 -27.414 171.112 -27.623 315.448 0.20
8.00 -22.791 307.643 -31.800 194.358 -27.332 323.581 0.20
8.50 -22.438 317.661 -35.543 240.916 -28.692 330.439 0.20
9.00 -23.981 326.032 -34.505 286.365 -32.007 339.881 0.20
9.50 -27.833 338.019 -33.081 308.393 -38.430 365.247 0.20
10.00 -35.207 376.391 -33.234 321.201 -40.650 451.006 0.20
10.50 -33.360 462.972 -35.043 332.309 -34.984 485.101 0.20
11.00 -28.563 485.983 -38.794 347.770 -32.669 495.456 0.20
11.50 -27.006 494.786 -44.544 385.699 -32.595 501.643 0.20
12.00 -27.636 501.082 -44.406 453.994 -34.500 507.804 0.20
12.50 -30.520 508.738 -40.963 482.783 -39.138 518.954 0.20
13.00 -37.236 528.712 -39.808 495.275 -48.316 575.915 0.20
13.50 -40.716 631.551 -40.634 504.314 -41.630 658.066 0.20
14.00 -33.307 664.872 -43.498 514.991 -37.203 671.854 0.20
14.50 -30.629 673.422 -49.243 538.699 -35.935 677.825 0.20
15.00 -30.471 678.612 -52.828 617.198 -36.794 682.586 0.20
15.50 -32.507 684.043 -47.506 659.194 -40.022 689.135 0.20
16.00 -37.810 695.068 -45.127 672.206 -47.900 710.574 0.20
16.50 -47.754 779.096 -45.095 680.062 -48.628 826.966 0.20
17.00 -37.753 843.150 -47.125 688.022 -41.388 849.386 0.20
17.50 -33.809 852.465 -51.933 702.626 -38.931 855.688 0.20
18.00 -32.890 857.109 -59.524 766.707 -38.898 859.775 0.20
18.50 -34.173 861.309 -53.482 835.140 -41.070 864.336 0.20
19.00 -38.245 868.180 -49.759 850.090 -46.741 874.477 0.20
19.50 -49.210 906.038 -48.904 857.409 -56.756 973.958 0.20
20.00 -42.388 1019.981 -50.173 863.791 -45.591 1026.821 0.20
u ampE[dB] phE[deg] ampH[dB] phH[deg] ampX[dB] phX[deg] t
0.00 0.000 -0.000 0.000 -0.000 -inf 180.000 0.40
0.50 -0.241 1.043 -0.170 0.474 -44.023 130.363 0.40
1.00 -0.960 4.335 -0.681 1.941 -32.398 130.727 0.40
1.50 -2.136 10.388 -1.539 4.536 -26.055 131.361 0.40
2.00 -3.685 20.078 -2.748 8.518 -22.060 132.313 0.40
2.50 -5.387 34.366 -4.308 14.305 -19.507 133.661 0.40
3.00 -6.835 53.055 -6.190 22.527 -18.019 135.537 0.40
3.50 -7.707 73.304 -8.302 33.984 -17.421 138.169 0.40
4.00 -8.187 91.492 -10.433 49.273 -17.651 141.966 0.40
4.50 -8.772 106.598 -12.274 67.809 -18.720 147.735 0.40
5.00 -9.845 119.902 -13.651 87.236 -20.681 157.224 0.40
5.50 -11.623 133.669 -14.749 105.106 -23.475 174.426 0.40
6.00 -14.169 151.259 -15.936 120.869 -26.071 205.591 0.40
6.50 -17.064 177.813 -17.500 135.642 -26.140 243.003 0.40
7.00 -18.689 214.117 -19.575 151.404 -24.764 267.979 0.40
7.50 -18.366 245.850 -22.102 170.821 -24.024 282.911 0.40
8.00 -17.935 266.710 -24.614 196.510 -24.409 294.063 0.40
8.50 -18.462 281.850 -26.218 226.798 -26.041 305.526 0.40
9.00 -20.258 296.450 -26.790 254.137 -29.077 322.426 0.40
9.50 -23.496 316.900 -27.276 275.253 -32.969 356.685 0.40
10.00 -27.235 356.396 -28.391 292.712 -33.298 408.446 0.40
10.50 -26.891 407.552 -30.405 310.472 -30.844 439.011 0.40
11.00 -24.678 435.728 -33.271 333.742 -29.583 454.386 0.40
11.50 -23.868 451.018 -35.976 368.663 -29.908 465.284 0.40
12.00 -24.721 462.993 -36.486 408.239 -31.883 476.903 0.40
12.50 -27.409 477.489 -35.767 436.358 -35.867 496.922 0.40
13.00 -32.208 507.377 -35.722 455.117 -40.246 549.104 0.40
13.50 -33.885 573.356 -36.894 470.954 -37.343 604.305 0.40
14.00 -30.011 611.439 -39.424 489.611 -34.354 625.148 0.40
14.50 -27.997 626.862 -42.986 520.488 -33.479 636.100 0.40
15.00 -28.016 636.984 -44.530 569.358 -34.453 645.317 0.40
15.50 -29.995 647.629 -42.820 606.336 -37.510 657.943 0.40
16.00 -34.527 667.306 -41.647 626.532 -43.330 690.659 0.40
16.50 -39.563 731.909 -41.976 640.857 -43.538 768.667 0.40
17.00 -34.668 787.770 -43.914 655.692 -38.699 799.516 0.40
17.50 -31.441 804.533 -47.589 679.339 -36.655 811.197 0.40
18.00 -30.682 813.636 -50.969 729.121 -36.743 819.189 0.40
18.50 -31.963 821.961 -48.926 778.500 -38.876 828.170 0.40
19.00 -35.723 835.080 -46.646 801.353 -43.906 846.765 0.40
19.50 -42.870 881.160 -46.165 814.878 -49.264 922.003 0.40
20.00 -39.201 962.346 -47.451 827.104 -42.920 974.407 0.40
u ampE[dB] phE[deg] ampH[dB] phH[deg] ampX[dB] phX[deg] t
0.00 0.000 -0.000 0.000 -0.000 -inf 180.000 0.60
0.50 -0.177 1.706 -0.156 0.825 -42.350 99.974 0.60
1.00 -0.672 6.932 -0.621 3.363 -30.741 100.515 0.60
1.50 -1.368 15.858 -1.376 7.790 -24.427 101.459 0.60
2.00 -2.068 28.284 -2.382 14.385 -20.473 102.884 0.60
2.50 -2.569 43.048 -3.565 23.440 -17.977 104.918 0.60
3.00 -2.834 58.213 -4.803 35.063 -16.562 107.780 0.60
3.50 -3.033 72.312 -5.953 48.860 -16.054 111.850 0.60
4.00 -3.413 85.136 -6.924 63.811 -16.380 117.822 0.60
4.50 -4.157 97.451 -7.752 78.719 -17.508 127.034 0.60
5.00 -5.361 110.571 -8.577 92.910 -19.317 142.059 0.60
5.50 -7.006 126.248 -9.558 106.495 -21.193 166.416 0.60
6.00 -8.859 146.431 -10.802 120.167 -21.756 197.769 0.60
6.50 -10.362 171.516 -12.340 134.950 -20.880 224.287 0.60
7.00 -11.050 197.635 -14.097 151.971 -19.981 242.392 0.60
7.50 -11.267 220.000 -15.861 171.962 -19.811 255.866 0.60
8.00 -11.704 238.194 -17.342 194.275 -20.562 268.356 0.60
8.50 -12.781 254.646 -18.429 216.667 -22.274 283.266 0.60
9.00 -14.652 272.740 -19.345 237.218 -24.749 305.509 0.60
9.50 -17.124 297.132 -20.432 255.931 -26.724 339.940 0.60
10.00 -19.072 331.411 -21.917 274.321 -26.422 376.251 0.60
10.50 -19.146 366.719 -23.825 294.664 -25.250 400.807 0.60
11.00 -18.491 392.132 -25.888 319.315 -24.827 417.139 0.60
11.50 -18.516 410.222 -27.476 348.338 -25.555 430.924 0.60
12.00 -19.675 426.334 -28.210 377.046 -27.554 446.909 0.60
12.50 -22.100 446.018 -28.609 401.185 -30.694 472.641 0.60
13.00 -25.297 478.534 -29.367 421.461 -32.797 517.060 0.60
13.50 -26.207 525.915 -30.821 441.017 -31.290 557.628 0.60
14.00 -24.425 560.236 -32.967 463.906 -29.573 579.883 0.60
14.50 -23.288 579.733 -35.212 494.447 -29.211 594.194 0.60
15.00 -23.606 594.095 -36.226 530.569 -30.352 607.251 0.60
15.50 -25.520 609.449 -35.970 561.210 -33.151 625.089 0.60
16.00 -29.133 634.721 -35.845 583.631 -37.138 661.563 0.60
16.50 -31.943 686.656 -36.601 602.252 -37.071 718.346 0.60
17.00 -29.471 733.202 -38.428 622.097 -34.080 749.628 0.60
17.50 -27.183 754.690 -41.083 649.582 -32.612 765.178 0.60
18.00 -26.696 767.850 -42.941 689.672 -32.891 776.702 0.60
18.50 -27.986 780.144 -42.359 728.119 -34.969 789.835 0.60
19.00 -31.308 798.515 -41.344 753.361 -39.167 814.531 0.60
19.50 -35.982 843.707 -41.349 771.369 -42.164 875.262 0.60
20.00 -34.042 905.958 -42.667 788.456 -38.362 921.633 0.60
u ampE[dB] phE[deg] ampH[dB] phH[deg] ampX[dB] phX[deg] t
0.00 0.000 0.000 0.000 0.000 -inf 180.000 0.80
0.50 0.008 2.380 -0.097 1.360 -39.396 57.559 0.80
1.00 0.085 9.116 -0.368 5.436 -27.814 58.250 0.80
1.50 0.324 18.968 -0.750 12.163 -21.548 59.465 0.80
2.00 0.740 30.160 -1.155 21.265 -17.664 61.312 0.80
2.50 1.207 41.239 -1.497 32.123 -15.267 63.984 0.80
3.00 1.541 51.674 -1.748 43.861 -13.983 67.815 0.80
3.50 1.592 61.727 -1.954 55.678 -13.644 73.405 0.80
4.00 1.274 72.100 -2.212 67.173 -14.170 81.893 0.80
4.50 0.566 83.725 -2.619 78.398 -15.445 95.453 0.80
5.00 -0.469 97.683 -3.243 89.730 -17.009 117.405 0.80
5.50 -1.644 114.892 -4.110 101.726 -17.635 147.606 0.80
6.00 -2.647 135.226 -5.195 114.999 -16.718 175.877 0.80
6.50 -3.244 156.677 -6.419 130.064 -15.450 195.987 0.80
7.00 -3.554 176.676 -7.649 147.052 -14.740 210.672 0.80
7.50 -3.930 194.382 -8.755 165.426 -14.831 223.538 0.80
8.00 -4.668 210.785 -9.703 184.119 -15.737 237.496 0.80
8.50 -5.899 227.787 -10.589 202.248 -17.325 255.701 0.80
9.00 -7.556 247.777 -11.573 219.711 -19.025 281.475 0.80
9.50 -9.240 272.834 -12.774 237.171 -19.680 313.046 0.80
10.00 -10.254 301.654 -14.215 255.726 -19.115 340.813 0.80
10.50 -10.454 328.529 -15.785 276.460 -18.498 361.141 0.80
11.00 -10.535 350.375 -17.239 299.648 -18.573 377.204 0.80
11.50 -11.127 368.883 -18.353 323.939 -19.563 392.837 0.80
12.00 -12.490 387.399 -19.180 347.170 -21.457 412.215 0.80
12.50 -14.575 410.194 -20.017 368.432 -23.709 440.817 0.80
13.00 -16.641 441.801 -21.140 388.612 -24.593 478.364 0.80
13.50 -17.196 478.425 -22.651 409.635 -23.681 510.080 0.80
14.00 -16.534 507.681 -24.405 433.695 -22.821 531.291 0.80
14.50 -16.202 528.449 -25.941 461.704 -22.934 547.412 0.80
15.00 -16.871 545.797 -26.806 490.906 -24.229 563.496 0.80
15.50 -18.713 564.915 -27.203 517.046 -26.694 585.384 0.80
16.00 -21.473 593.077 -27.742 539.382 -29.293 621.877 0.80
16.50 -23.129 636.020 -28.820 560.206 -29.084 666.000 0.80
17.00 -21.941 674.678 -30.511 582.892 -27.309 694.899 0.80
17.50 -20.593 698.171 -32.450 611.038 -26.444 712.656 0.80
18.00 -20.469 714.614 -33.687 644.737 -26.960 727.112 0.80
18.50 -21.792 730.512 -33.779 676.555 -28.963 743.939 0.80
19.00 -24.627 752.929 -33.642 701.618 -32.306 772.479 0.80
19.50 -27.716 794.933 -34.109 722.298 -33.990 823.011 0.80
20.00 -26.715 844.767 -35.462 742.899 -31.651 863.158 0.80
u ampE[dB] phE[deg] ampH[dB] phH[deg] ampX[dB] phX[deg] t
0.00 0.000 -0.000 0.000 -0.000 -inf -180.000 1.00
0.50 0.358 0.599 0.113 1.157 -36.301 -18.195 1.00
1.00 1.285 2.264 0.434 4.389 -24.759 -17.433 1.00
1.50 2.458 4.778 0.904 9.123 -18.562 -16.085 1.00
2.00 3.574 8.075 1.432 14.751 -14.784 -14.011 1.00
2.50 4.438 12.281 1.918 20.870 -12.541 -10.959 1.00
3.00 4.947 17.681 2.273 27.348 -11.479 -6.458 1.00
3.50 5.069 24.699 2.434 34.265 -11.457 0.415 1.00
4.00 4.830 33.891 2.367 41.843 -12.414 11.601 1.00
4.50 4.323 45.850 2.061 50.385 -14.108 31.118 1.00
5.00 3.732 60.879 1.537 60.221 -15.302 63.167 1.00
5.50 3.284 78.376 0.846 71.644 -14.267 97.884 1.00
6.00 3.095 96.654 0.066 84.777 -12.247 121.784 1.00
6.50 3.056 114.021 -0.712 99.433 -10.773 137.664 1.00
7.00 2.927 129.966 -1.425 115.066 -10.169 150.566 1.00
7.50 2.511 145.140 -2.080 130.997 -10.406 163.718 1.00
8.00 1.722 160.799 -2.747 146.787 -11.347 179.816 1.00
8.50 0.603 178.437 -3.514 162.448 -12.615 201.559 1.00
9.00 -0.626 199.281 -4.445 178.396 -13.400 229.265 1.00
9.50 -1.594 223.068 -5.542 195.255 -13.142 257.100 1.00
10.00 -2.083 247.213 -6.738 213.579 -12.445 279.504 1.00
10.50 -2.322 269.040 -7.906 233.490 -12.100 297.150 1.00
11.00 -2.731 288.301 -8.931 254.386 -12.448 313.024 1.00
11.50 -3.591 306.641 -9.806 275.222 -13.542 330.264 1.00
12.00 -4.966 326.520 -10.655 295.310 -15.174 352.363 1.00
12.50 -6.621 350.638 -11.631 314.817 -16.571 381.755 1.00
13.00 -7.904 379.821 -12.825 334.623 -16.745 413.679 1.00
13.50 -8.271 409.556 -14.202 355.880 -16.118 439.705 1.00
14.00 -8.179 434.556 -15.583 379.346 -15.778 459.388 1.00
14.50 -8.407 455.012 -16.720 404.470 -16.236 476.427 1.00
15.00 -9.354 474.070 -17.535 429.352 -17.608 494.849 1.00
15.50 -11.076 495.740 -18.235 452.492 -19.666 519.565 1.00
16.00 -13.117 524.725 -19.112 474.111 -21.248 554.339 1.00
16.50 -14.128 561.035 -20.332 495.755 -20.957 590.249 1.00
17.00 -13.635 593.492 -21.839 519.463 -19.937 616.208 1.00
17.50 -13.056 616.971 -23.304 546.602 -19.593 634.860 1.00
18.00 -13.322 635.602 -24.272 575.817 -20.339 651.547 1.00
18.50 -14.688 654.445 -24.717 603.337 -22.236 671.449 1.00
19.00 -17.048 679.621 -25.124 627.355 -24.790 701.988 1.00
19.50 -19.104 718.000 -25.930 649.272 -25.694 744.965 1.00
20.00 -18.626 759.140 -27.285 671.944 -24.232 779.713 1.00
前のページに戻る
「目次」のページに戻る