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CHAPTER 1

多層媒質平面波解析の基礎

　多層媒質における平面波の解析，特に電磁波の反射と透過を扱う理論を詳細に解説
する．まず，TE波と TM波に対する電界・磁界の接線成分を，進行波と後退波の重
ね合わせとして定式化する．この解析は，電磁界を伝送線路のアナロジーで扱うため
の基礎となり，電界と磁界の振幅が分布定数線路の電圧と電流に相当する形で表すこ
とができる．さらに，誘電体の境界面における連続条件とスネルの法則を適用し，多
層構造の解析に不可欠な基本行列，散乱行列の要素を導出していく．そして，これら
の行列を用いることで，単層または多層の誘電体板による電磁波の反射係数や透過係
数が計算可能となり，複雑な積層構造における波動現象を効率的に解析できよう．

1.1 平面波の反射波・透過波

1.1.1 波数ベクトル

異なる 2つの媒質の境界面が xy 面となっており，z < 0から

e−jk·r = e−j(kt+kzuz)·r (1.1)

で表される平面波が入射するとき，反射波は，

e−j(kt−kzuz)·r (1.2)

で表される．
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図 1.1. 波数ベクトル

1.1.2 TE波

TE波の接線電界 E
TE
t ，および接線磁界H

TE
t は，

E
TE

t = F+ jkt

ε

(
ut × uz

)
e−jkt·ρe−jkzz + F− jkt

ε

(
ut × uz

)
e−jkt·ρejkzz

= jkt

ε

(
F+e−jkzz + F−ejkzz

)(
ut × uz

)
e−jkt·ρ (1.3)

H
TE

t = F+ jkt

ε
YTEute

−jkt·ρe−jkzz + F− jkt

ε
(−YTE)ute

−jkt·ρejkzz

= jkt

ε
YTE

(
F+e−jkzz − F−ejkzz

)
ute

−jkt·ρ (1.4)

ただし，e−jkzz の項の係数の添字を +，e+jkzz の項の係数の添字を −としている．さて，
jkt

ε

(
F+e−jkzz + F−ejkzz

)
≡ V +

TE
e−jkzz + V −

TE
ejkzz (1.5)

とおくと，

YTE

jkt

ε

(
F+e−jkzz − F−ejkzz

)
= YTE

(
V +

TE
e−jkzz − V −

TE
ejkzz

)
(1.6)

これより，

E
TE

t =
(
V +

TE
e−jkzz + V −

TE
ejkzz

)(
ut × uz

)
e−jkt·ρ ≡ VTE(z)

(
ut × uz

)
e−jkt·ρ (1.7)

H
TE

t = YTE

(
V +

TE
e−jkzz − V −

TE
ejkzz

)
ute

−jkt·ρ ≡ ITE(z)ute
−jkt·ρ (1.8)

ここで，

VTE(z) = V +
TE
e−jkzz + V −

TE
ejkzz (1.9)

ITE(z) = YTE

(
V +

TE
e−jkzz − V −

TE
ejkzz

)
(1.10)
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このとき，TE波の磁界H
TE は，

H
TE = Ywur × E

TE

t+ − Ywur × E
TE

t−

= Ywur ×
(
V +

TE
e−jkzz − V +

TE
ejkzz

)(
ut × uz

)
e−jkt·ρ

= k

kz
ITE(z)ur ×

(
ut × uz

)
e−jkt·ρ (1.11)

1.1.3 TM波

また，TM波の接線電界 E
TM
t ，および接線磁界H

TM
t は，

E
TM

t = A+ jkt

µ
ZTMute

−jkt·ρe−jkzz + A− jkt

µ
(−ZTM)ute

−jkt·ρejkzz

= jkt

µ
ZTM

(
A+e−jkzz − A−ejkzz

)
ute

−jkt·ρ (1.12)

H
TM

t = −A+ jkt

µ

(
ut × uz

)
e−jkt·ρe−jkzz − A− jkt

µ

(
ut × uz

)
e−jkt·ρejkzz

= −jkt

µ

(
A+e−jkzz + A−ejkzz

)(
ut × uz

)
e−jkt·ρ (1.13)

同様にして，

jkt

µ
ZTM

(
A+e−jkzz − A−ejkzz

)
≡ V +

TM
e−jkzz + V −

TM
ejkzz (1.14)

とおくと，

jkt

µ

(
A+e−jkzz + A−ejkzz

)
= YTM

(
V +

TM
e−jkzz − V −

TM
ejkzz

)
(1.15)

これより，

E
TM

t =
(
V +

TM
e−jkzz + V −

TM
ejkzz

)
ute

−jkt·ρ ≡ VTM(z)ute
−jkt·ρ (1.16)

H
TM

t = −YTM

(
V +

TM
e−jkzz − V −

TM
ejkzz

)(
ut × uz

)
e−jkt·ρ ≡ −ITM(z)

(
ut × uz

)
e−jkt·ρ

(1.17)

ここで，

VTM(z) = V +
TM
e−jkzz + V −

TM
ejkzz (1.18)

ITM(z) = YTM

(
V +

TM
e−jkzz − V −

TM
ejkzz

)
(1.19)
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このとき，TM波の電界 E
TM は，

E
TM = −Zwur × H

TM

t+ + Zwur × H
TM

t−

= Zwur × YTM

(
V +

TM
e−jkzz + V +

TM
ejkzz

)(
ut × uz

)
e−jkt·ρ

= k

kz
VTM(z)ur ×

(
ut × uz

)
e−jkt·ρ (1.20)

1.1.4 逆方向の平面波

逆に，z > 0 から ejk·r = ej(kt+kzuz)·r で表される平面波が入射するとき，反射波は
ej(kt−kzuz)·r で表される．この場合，上で求めた結果を，k → −k として，TE波の接線電
界 E

TE
t ，および接線磁界H

TE
t は，

E
TE

t = F−′ −jkt

ε

(
ut × uz

)
ejkt·ρejkzz + F+′ −jkt

ε

(
ut × uz

)
ejkt·ρe−jkzz

= −jkt

ε

(
F+′e−jkzz + F−′ejkzz

)(
ut × uz

)
ejkt·ρ (1.21)

H
TE

t = F−′ −jkt

ε
(−YTE)ute

jkt·ρejkzz + F+′ −jkt

ε
YTEute

jkt·ρe−jkzz

= −jkt

ε
YTE

(
F+′e−jkzz − F−′ejkzz

)
ute

jkt·ρ (1.22)

いま，

−jkt

ε

(
F+′e−jkzz + F−′ejkzz

)
≡ V +

TE
e−jkzz + V −

TE
ejkzz (1.23)

とおくと，

−YTE

jkt

ε

(
F+′e−jkzz − F−′ejkzz

)
= YTE

(
V +

TE
e−jkzz − V −

TE
ejkzz

)
(1.24)

これより，

E
TE

t = VTE(z)
(
ut × uz

)
ejkt·ρ (1.25)

H
TE

t = ITE(z)ute
jkt·ρ (1.26)

また，TM波の接線電界 E
TM
t ，および接線磁界H

TM
t は，

E
TM

t = A−′ −jkt

µ
(−ZTM)ute

jkt·ρejkzz + A−′ −jkt

µ
ZTMute

jkt·ρe−jkzz

= −jkt

µ
ZTM

(
A+′e−jkzz − A−′ejkzz

)
ute

jkt·ρ (1.27)

H
TM

t = −A−′ −jkt

µ

(
ut × uz

)
ejkt·ρejkzz − A+′ −jkt

µ

(
ut × uz

)
ejkt·ρe−jkzz

= jkt

µ

(
A+′e−jkzz + A−′ejkzz

)(
ut × uz

)
ejkt·ρ (1.28)
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同様にして，

−jkt

µ
ZTM

(
A+′e−jkzz − A−′ejkzz

)
≡ V +

TM
e−jkzz + V −

TM
ejkzz (1.29)

とおくと，

−jkt

µ

(
A+′e−jkzz + A−′ejkzz

)
= YTM

(
V +

TM
e−jkzz − V −

TM
ejkzz

)
(1.30)

これより，

E
TM

t = VTM(z)ute
jkt·ρ (1.31)

H
TM

t = −ITM(z)
(
ut × uz

)
ejkt·ρ (1.32)

1.1.5 反射波・透過波のまとめ

z0（上側符号），z < 0（下側符号）の入射波に対する表示式をまとめると次のようになる．

E
TE

t = VTE(z)
(
ut × uz

)
e∓jkt·ρ (1.33)

H
TE

t = ITE(z)ute
∓jkt·ρ (1.34)

E
TM

t = VTM(z)ute
∓jkt·ρ (1.35)

H
TM

t = −ITM(z)
(
ut × uz

)
e∓jkt·ρ (1.36)

上式より，VTE(z)と VTM(z)，ITE(z)と ITM(z)は同じ形の式で表されていることがわかる．
添字を省略すると次のように分布定数線路と同じ形の式となる．

V (z) = V +e−jkzz + V −ejkzz (1.37)

I(z) = I+e−jkzz − I−ejkzz = Y
(
V +e−jkzz − V −ejkzz

)
(1.38)

1.2 基本行列

1.2.1 接線電界および接線磁界の振幅

xy 面（境界面）上の接線電界および接線磁界は，TE波および TM波の入射波（あるい
は透過波）と反射波の和によって表され次のようになる．

Etan =
{
VTE(z)(ut × uz) + VTM(z)ut

}
e∓jkt·ρ (1.39)

Htan =
{
ITE(z)ut − ITM(z)(ut × uz)

}
e∓jkt·ρ (1.40)
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ここで，

VTE(z) = V +
TE
e−jkzz + V −

TE
ejkzz (1.41)

ITE(z) = YTE

(
V +

TE
e−jkzz − V −

TE
ejkzz

)
(1.42)

VTM(z) = V +
TM
e−jkzz + V −

TM
ejkzz (1.43)

ITM(z) = YTM

(
V +

TM
e−jkzz − V −

TM
ejkzz

)
(1.44)

上式より，z = z1，z2に対する TE波の基本行列 [FTE ]，ならびには TM波の基本行列 [FTM ]
は次のようになる．(

VTE(z1)
ITE(z1)

)
= [FTE ]

(
VTE(z2)
ITE(z2)

)
(1.45)(

VTM(z1)
ITM(z1)

)
= [FTM ]

(
VTM(z2)
ITM(z2)

)
(1.46)

ここで，

[F(TE
TM

)] =
 cos kz(z2 − z1) jZ(TE

TM

) sin kz(z2 − z1)
jY(TE

TM

) sin kz(z2 − z1) cos kz(z2 − z1)

 (1.47)

あるいは，z2 = z1 + d のとき，

[F(TE
TM

)] =
 cos kzd jZ(TE

TM

) sin kzd

jY(TE
TM

) sin kzd cos kzd

 (1.48)

1.2.2 接線成分に対する規格化

係数を次のように規格化し，

V
±
TE

≡
√
YTEV

±
TE
, I

±
TE

≡
√
ZTEI

±
TE
, (1.49)

V
±
TM

≡
√
YTMV

±
TM
, I

±
TM

≡
√
ZTMI

±
TM

(1.50)

さらに次のようにおく．

VTE(z) =
√
ZTE

(
V

+
TE
e−jkzz + V

−
TE
ejkzz

)
≡
√
ZTE V TE(z) (1.51)

VTM(z) =
√
ZTM

(
V

+
TM
e−jkzz + V

−
TM
ejkzz

)
≡
√
ZTM V TM(z) (1.52)

ITE(z) =
√
YTE

(
I

+
TE
e−jkzz − I

−
TE
ejkzz

)
≡
√
YTE ITE(z) (1.53)

ITM(z) =
√
YTM

(
I

+
TM
e−jkzz − I

−
TM
ejkzz

)
≡
√
YTM ITM(z) (1.54)
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これより，接線電磁界は，

Etan =
{
V TE(z)

√
ZTE(ut × uz) + V TM(z)

√
ZTMut

}
e∓jkt·ρ (1.55)

Htan =
{
ITE(z)

√
YTEut − ITM(z)

√
YTM(ut × uz)

}
e∓jkt·ρ (1.56)

ただし，TE波，TM波ともに次のような関係がある（TE，TMの添字省略）．

V = V
+
e−jkzz + V

−
ejkzz (1.57)

I = I
+
e−jkzz − I

−
ejkzz =

√
Z
(
I+e−jkzz − I−ejkzz

)
=

√
ZY

(
V +e−jkzz − V −ejkzz

)
=

√
ZY

√
Z
(
V

+
e−jkzz − V

−
ejkzz

)
= V

+
e−jkzz − V

−
ejkzz (1.58)

そして，電磁界の接線成分からなるモード関数を次式で定義する．

ēTE(ρ) =
√
ZTE(ut × uz)e∓jkt·ρ (1.59)

h̄TE(ρ) =
√
YTEute

∓jkt·ρ (1.60)

ēTM(ρ) =
√
ZTMute

∓jkt·ρ (1.61)

h̄TM(ρ) = −
√
YTM(ut × uz)e∓jkt·ρ (1.62)

ここで，

ēTE × h̄∗
TE

=
{√

ZTE(ut × uz)e∓jkt·ρ
}

×
{(√

YTE

)∗
ute

±jkt·ρ
}

=
√
ZTE

(√
YTE

)∗
uz (1.63)

ēTM × h̄∗
TM

=
{√

ZTMute
∓jkt·ρ

}
×
{

−
(√

YTM

)∗
(ut × uz)e±jkt·ρ

}
=
√
ZTM

(√
YTM

)∗
uz (1.64)

ただし，∗は複素共役を示す．このように，TE波，TM波ともに同様の形の式となるので，
添字を省略して，

ē × h̄∗ =
√
Z
(√

Y
)∗

uz (1.65)

いま，Z ≡ |Z|ejϕ とおくと，Y = 1/Z = 1/|Z|e−jϕ．これより，

ē × h̄∗ =
√
Z
(√

Y
)∗

uz =
(
|Z|ejϕ

) 1
2

(
1

|Z|
e−jϕ

) 1
2 ∗

uz = ejϕuz (1.66)

なお，Z が実数のとき，

ēTE × h̄∗
TE

= ēTM × h̄∗
TM

= uz (1.67)
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これより，

Etan = V TE(z)ēTE(ρ) + V TM(z)ēTM(ρ) (1.68)
Htan = ITE(z)h̄TE(ρ) + ITM(z)h̄TM(ρ) (1.69)

ここで，

V TE(z) = V
+
TE
e−jkzz + V

−
TE
ejkzz (1.70)

V TM(z) = V
+
TM
e−jkzz + V

−
TM
ejkzz (1.71)

ITE(z) = V
+
TE
e−jkzz − V

−
TE
ejkzz (1.72)

ITM(z) = V
+
TM
e−jkzz − V

−
TM
ejkzz (1.73)

伝送線路と同様の考え方で，V +
TE
，V −

TE
を用いて TE波に対する散乱行列，また，V +

TM
，V −

TM

を用いて TM波に対する散乱行列を各々定義することができる．

1.3 誘電体境界での解析

1.3.1 接線電界および接線磁界の振幅

次のように 2つの媒質があり，z = d を境界面とする．

z

d d

z=d

z=0z=0

(1)

(2)

z=d

z

(1)

(2)

ut

uz

ut×uz ut×uz

uz

ut

θ1 θ1θ1

θ2 θ2θ2

図 1.2. 入射波・反射波・透過波

z < d（領域 1）での接線電界 E
(1)
tan，接線磁界H

(1)
tan は，

E
(1)
tan =

{
V1TE(z)(ut1 × uz) + V1TM(z)ut1

}
e∓jkt1·ρ (1.74)

H
(1)
tan =

{
I1TE(z)ut1 − I1TM(z)(ut1 × uz)

}
e∓jkt1·ρ (1.75)
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ここで，

V1TE(z) = V +
1TE

e−jkz1z + V −
1TE

ejkz1z (1.76)

I1TE(z) = Y1TE

(
V +

1TE
e−jkz1z − V −

1TE
ejkz1z

)
(1.77)

V1TM(z) = V +
1TM

e−jkz1z + V −
1TM

ejkz1z (1.78)

I1TM(z) = Y1TM

(
V +

1TM
e−jkz1z − V −

1TM
ejkz1z

)
(1.79)

一方，zd（領域 2）での接線電界 E
(2)
tan，接線磁界H

(2)
tan は，

E
(2)
tan =

{
V2TE(z)(ut2 × uz) + V2TM(z)ut2

}
e∓jkt2·ρ (1.80)

H
(2)
tan =

{
I2TE(z)ut2 − I2TM(z)(ut2 × uz)

}
e∓jkt2·ρ (1.81)

ここで，

V2TE(z) = V +
2TE

e−jkz2(z−d) + V −
2TE

ejkz2(z−d) (1.82)

I2TE(z) = Y2TE

(
V +

2TE
e−jkz2(z−d) − V −

2TE
ejkz2(z−d)

)
(1.83)

V2TM(z) = V +
2TM

e−jkz2(z−d) + V −
2TM

ejkz2(z−d) (1.84)

I2TM(z) = Y2TM

(
V +

2TM
e−jkz2(z−d) − V −

2TM
ejkz2(z−d)

)
(1.85)

これより，z = 0 での接線電磁界は，

E
(1)
tan

∣∣∣∣
z=0

=
{(
V +

1TE
+ V −

1TE

)
(ut1 × uz) +

(
V +

1TM
+ V −

1TM

)
ut1

}
e∓jkt1·ρ (1.86)

H
(1)
tan

∣∣∣∣
z=0

=
{
Y1TE

(
V +

1TE
− V −

1TE

)
ut1 − Y1TM

(
V +

1TM
− V −

1TM

)
(ut1 × uz)

}
e∓jkt1·ρ

(1.87)

また，z = d での接線電磁界の連続条件より，

E
(1)
tan

∣∣∣∣
z=d

= E
(2)
tan

∣∣∣∣
z=d

(1.88)

H
(1)
tan

∣∣∣∣
z=d

= H
(2)
tan

∣∣∣∣
z=d

(1.89)

任意の x，y で成り立つためには，

e∓jkt1·ρ = e∓jkt2·ρ (1.90)

でなければならない．よって，

kt1 = kt2 (1.91)
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いま，入射角を (θi, φi) とし，kt1 = kt1ut1，kt2 = kt2ut2 とおくと，kt1 = k1 sin θ1，
kt2 = k2 sin θ2 ゆえ，

k1 sin θ1 = k2 sin θ2 (1.92)

が得られる（スネルの法則）．また，ut1 = ut2 ≡ ut より，ut1 × uz = ut2 × uz（単位ベク
トル）となるので，(

V +
1TE

e−jkz1d + V −
1TE

ejkz1d
)
(ut × uz) +

(
V +

1TM
e−jkz1d + V −

1TM
ejkz1d

)
ut

=
(
V +

2TE
+ V −

2TE

)
(ut × uz) +

(
V +

2TM
+ V −

2TM

)
ut (1.93)

Y1TE

(
V +

1TE
e−jkz1d − V −

1TE
ejkz1d

)
ut − Y1TM

(
V +

1TM
e−jkz1d − V −

1TM
ejkz1d

)
(ut × uz)

= Y2TE

(
V +

2TE
− V −

2TE

)
ut − Y2TM

(
V +

2TM
− V −

2TM

)
(ut × uz) (1.94)

上式の (ut × uz)成分，ut 成分は，

V +
1TE

e−jkz1d + V −
1TE

ejkz1d = V +
2TE

+ V −
2TE

(1.95)
V +

1TM
e−jkz1d + V −

1TM
ejkz1d = V +

2TM
− V −

2TM
(1.96)(

V +
1TE

e−jkz1d − V −
1TE

ejkz1d
)
Y1TE =

(
V +

2TE
− V −

2TE

)
Y2TE (1.97)(

−V +
1TM

e−jkz1d + V −
1TM

ejkz1d
)
Y1TM =

(
−V +

2TM
+ V −

2TM

)
Y2TM (1.98)

これより，TE波，TM波ともに同じ形の式で表され，TE，TMの添字省略すると，

V +
1 e

−jkz1d + V −
1 e

jkz1d = V +
2 + V −

2 (1.99)(
V +

1 e
−jkz1d − V −

1 e
jkz1d

)
Y1 =

(
V +

2 − V −
2

)
Y2 (1.100)

1.3.2 散乱行列

散乱行列の前進波，後進波の定義より，

V +
1 =

√
Z1a1, V −

1 =
√
Z1b1 (1.101)

V +
2 =

√
Z2b2, V −

2 =
√
Z2a2 (1.102)

ゆえ，√
Z1a1e

−jkz1d +
√
Z1b1e

jkz1d =
√
Z2b2 +

√
Z2a2 (1.103)(√

Z1a1e
−jkz1d −

√
Z1b1e

jkz1d
)
Y1 =

(√
Z2b2 −

√
Z2a2

)
Y2 (1.104)

整理して，√
Z1Y2

(
a1e

−jkz1d + b1e
jkz1d

)
= b2 + a2 (1.105)√

Y1Z2
(
a1e

−jkz1d − b1e
jkz1d

)
= b2 − a2 (1.106)
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上式より，b2 を消去すると，(√
Z1Y2 −

√
Y1Z2

)
a1e

−jkz1d +
(√

Z1Y2 +
√
Y1Z2

)
b1e

jkz1d = 2a2

b1 = Y1 − Y2

Y1 + Y2
e−j2kz1da1 + 2

√
Y1Y2

Y1 + Y2
e−jkz1da2 ≡ S11a1 + S12a2 (1.107)

よって，散乱行列要素 S11，S12 は次のようになる．

S11 = Y1 − Y2

Y1 + Y2
e−j2kz1d (1.108)

S12 = 2
√
Y1Y2

Y1 + Y2
e−jkz1d (1.109)

逆に，b1 を消去すると，

2a1e
−jkz1d =

(√
Y1Z2 −

√
Z1Y2

)
a1 +

(√
Y1Z2 +

√
Z1Y2

)
b1

b2 = 2
√
Y1Y2

Y1 + Y2
e−jkz1da1 − Y1 − Y2

Y1 + Y2
a2 ≡ S21a1 + S22a2 (1.110)

よって，散乱行列要素 S21，S22 は，

S21 = 2
√
Y1Y2

Y1 + Y2
e−jkz1d (1.111)

S22 = −Y1 − Y2

Y1 + Y2
(1.112)

したがって，散乱行列 [S]は，

[S] =
(
S11 S12
S21 S22

)
= 1
Y1 + Y2

(
(Y1 − Y2)e−j2kz1d 2

√
Y1Y2e

−jkz1d

2
√
Y1Y2e

−jkz1d −(Y1 − Y2)

)
(1.113)

d = 0 とおき２つの端子面を z = 0 にとると，異なる媒質の境界での散乱行列が得られ，次
のようになる．

[S] =
(
S11 S12
S21 S22

)
= 1
Y1 + Y2

(
(Y1 − Y2) 2

√
Y1Y2

2
√
Y1Y2 −(Y1 − Y2)

)
(1.114)

1.3.3 Rマトリクス

多層構造に対して，伝送線路と同様の縦続接続を行うことができる．上で求めた式より，
a1 を消去すると，

2b1e
jkzd = b2

(√
Y1Z2 −

√
Z1Y2

)
+ a2

(√
Y1Z2 +

√
Z1Y2

)
(1.115)
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よって，b1 は，

b1 =
√
Z1Z2

2 e−jkzd
{

(Y1 + Y2)a2 + (Y1 − Y2)b2

}
≡ R11a2 +R12b2 (1.116)

したがって，Rマトリクスの要素 R11，R12 は，

R11 =
√
Z1Z2

2
(
Y1 + Y2

)
e−jkzd (1.117)

R12 =
√
Z1Z2

2
(
Y1 − Y2

)
e−jkzd (1.118)

逆に，b1 を消去すると，

2a1e
−jkzd = b2

(√
Y1Z2 +

√
Z1Y2

)
+ a2

(√
Y1Z2 −

√
Z1Y2

)
(1.119)

よって，a1 は，

a1 =
√
Z1Z2

2 ejkzd
{

(Y1 − Y2)a2 + (Y1 + Y2)b2

}
≡ R21a2 +R22b2 (1.120)

したがって，Rマトリクスの要素 R21，R22 は，

R21 =
√
Z1Z2

2
(
Y1 − Y2

)
ejkzd (1.121)

R22 =
√
Z1Z2

2
(
Y1 + Y2

)
ejkzd (1.122)

よって，z = 0，d に端子面を定義した Rマトリクスは次のようになる．(
b1
a1

)
= [R]

(
a2
b2

)
(1.123)

ここで，

[R] =
√
Z1Z2

2

(Y1 + Y2
)
e−jkzd

(
Y1 − Y2

)
e−jkzd(

Y1 − Y2
)
ejkzd

(
Y1 + Y2

)
ejkzd

 (1.124)

ただし，R11R22 −R12R21 = 1．いま，

Γ ≡ Z2 − Z1

Z2 + Z1
= Y1 − Y2

Y1 + Y2
(1.125)

とおくと，

1 − Γ2 = 1 −
(
Y1 − Y2

Y1 + Y2

)2
= 4Y1Y2

(Y1 + Y2)2 (1.126)
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これより，

[R] = Y1 + Y2

2
√
Y1Y2

(
e−jkzd Y1−Y2

Y1+Y2
e−jkzd

Y1−Y2
Y1+Y2

ejkzd ejkzd

)
= 1√

1 − Γ2

(
e−jkzd Γe−jkzd

Γejkzd ejkzd

)
(1.127)

多層構造に対しては，Rマトリクスの積を求めて縦続接続できる．そして，縦続接続で得ら
れた Rマトリクスの要素から，散乱行列 [S]を次式により求めることができる．(

b1
b2

)
= [S]

(
a1
a2

)
[S] =

(
S11 S12
S21 S22

)
= 1
R22

(
R12 1
1 −R21

)
(1.128)

1.4 縦続接続

1.4.1 散乱行列

図のような散乱行列
(
b1
b2

)
= [Sa]

(
a1
a2

)
, [Sa] =

S(a)
11 S

(a)
12

S
(a)
21 S

(a)
22

 (1.129)

(
b′

2
b3

)
= [Sb]

(
a′

2
a3

)
, [Sb] =

S(b)
11 S

(b)
12

S
(b)
21 S

(b)
22

 (1.130)

を縦続接続し（接続した端子は，a2 = b′
2，b2 = a′

2），同図中の散乱行列 [S]を求める．

a1

b1

a2

b2

1

1'

2

2'

散乱⾏列

[Sa]

a2'

b2'

a3

b3

3

3'

散乱⾏列

[Sb]

散乱⾏列 [S]

図 1.3. 散乱行列の縦続接続

まず，a2 = b′
2，b2 = a′

2 より，

b1 = S
(a)
11 a1 + S

(a)
12 a2 (1.131)

b2 = S
(a)
21 a1 + S

(a)
22 a2 (1.132)

a2 = S
(b)
11 b2 + S

(b)
12 a3 (1.133)

b3 = S
(b)
21 b2 + S

(b)
22 a3 (1.134)
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上式より，a2，b2 を消去して次式が得られればよい．

b1 = S11a1 + S12a3 (1.135)
b3 = S21a1 + S22a3 (1.136)

そこで，式 (1.132)と式 (1.133)より，b2 を消去すると，

a2 = S
(b)
11

(
S

(a)
21 a1 + S

(a)
22 a2

)
+ S

(b)
12 a3(

1 − S
(b)
11 S

(a)
22

)
a2 = S

(b)
11 S

(a)
21 a1 + S

(b)
12 a3

a2 =
(
1 − S

(b)
11 S

(a)
22

)−1 (
S

(b)
11 S

(a)
21 a1 + S

(b)
12 a3

)
(1.137)

式 (1.131)に代入して，a2 を消去すると，

b1 = S
(a)
11 a1 + S

(a)
12

(
1 − S

(b)
11 S

(a)
22

)−1 (
S

(b)
11 S

(a)
21 a1 + S

(b)
12 a3

)
=
{
S

(a)
11 + S

(a)
12

(
1 − S

(b)
11 S

(a)
22

)−1
S

(b)
11 S

(a)
21

}
a1 +

{
S

(a)
12

(
1 − S

(b)
11 S

(a)
22

)−1
S

(b)
12

}
a3

(1.138)

一方，式 (1.132)と式 (1.133)より，a2 を消去すると，

b2 = S
(a)
21 a1 + S

(a)
22

(
S

(b)
11 b2 + S

(b)
12 a3

)
(
1 − S

(a)
22 S

(b)
11

)
b2 = S

(a)
21 a1 + S

(a)
22 S

(b)
12 a3

b2 =
(
1 − S

(a)
22 S

(b)
11

)−1 (
S

(a)
21 a1 + S

(a)
22 S

(b)
12 a3

)
(1.139)

式 (1.134)に代入して，b2 を消去すると，

b3 = S
(b)
21

(
1 − S

(a)
22 S

(b)
11

)−1 (
S

(a)
21 a1 + S

(a)
22 S

(b)
12 a3

)
+ S

(b)
22 a3

=
{
S

(b)
21

(
1 − S

(a)
22 S

(b)
11

)−1
S

(a)
21

}
a1 +

{
S

(b)
21

(
1 − S

(a)
22 S

(b)
11

)−1
S

(a)
22 S

(b)
12 + S

(b)
22

}
a3

(1.140)

したがって，散乱行列要素 S11，S12，S21，S22 は，

S11 = S
(a)
11 + S

(a)
12

(
1 − S

(b)
11 S

(a)
22

)−1
S

(b)
11 S

(a)
21 (1.141)

S12 = S
(a)
12

(
1 − S

(b)
11 S

(a)
22

)−1
S

(b)
12 (1.142)

S21 = S
(b)
21

(
1 − S

(a)
22 S

(b)
11

)−1
S

(a)
21 (1.143)

S22 = S
(b)
21

(
1 − S

(a)
22 S

(b)
11

)−1
S

(a)
22 S

(b)
12 + S

(b)
22 (1.144)
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1.4.2 縦続接続ポートの波動振幅

式 (1.137)，(1.139)に示した a2，b2 は，2つの散乱行列を縦続接続しているポート 2の
波動振幅であり，縦続接続した両者の散乱行列による多重反射を考慮できる．いま，ポー
ト 1から励振して，ポート 3を整合させたとき，ポート 2の波動振幅 a2，b2 は，(1.137)，
(1.139)より次のようになる．

a2

∣∣∣∣
a3=0

=
(
1 − S

(b)
11 S

(a)
22

)−1
S

(b)
11 S

(a)
21 a1 (1.145)

b2

∣∣∣∣
a3=0

=
(
1 − S

(a)
22 S

(b)
11

)−1
S

(a)
21 a1 (1.146)

逆に，ポート 3から励振して，ポート 1を整合させたときは，

a2

∣∣∣∣
a1=0

=
(
1 − S

(b)
11 S

(a)
22

)−1
S

(b)
12 a3 (1.147)

b2

∣∣∣∣
a1=0

=
(
1 − S

(a)
22 S

(b)
11

)−1
S

(a)
22 S

(b)
12 a3 (1.148)

1.5 接線電磁界の表示式

1.5.1 接線電界の入射波・反射波

z < 0 から平面波が入射したとき，z = 0 での入射電界 E
(1)
i,tan，入射磁界H

(1)
i,tan は，

E
(1)
i,tan

∣∣∣∣
z=0

=
{
V +

1TE

(
ut × uz

)
+ V +

1TM
ut

}
e∓jkt·ρ (1.149)

H
(1)
i,tan

∣∣∣∣
z=0

=
{
Y1TEV

+
1TE

ut + Y1TMV
+

1TM

(
ut × uz

)}
e∓jkt·ρ (1.150)

これに対して，反射電界 E
(1)
r,tan，反射磁界H

(1)
r,tan は，

E
(1)
r,tan

∣∣∣∣
z=0

=
{
V −

1TE

(
ut × uz

)
+ V −

1TM
ut

}
e∓jkt·ρ (1.151)

H
(1)
r,tan

∣∣∣∣
z=0

= −
{
Y1TEV

−
1TE

ut + Y1TMV
−

1TM

(
ut × uz

)}
e∓jkt·ρ (1.152)

接線電界の反射係数 RE+
te （TE波），RE+

tm （TM波）を，次のように定義する．

RE+
te =

V −
1TE

V +
1TE

∣∣∣∣∣
V −

2TE
=0

(1.153)

RE+
tm =

V −
1TM

V +
1TM

∣∣∣∣∣
V −

2TM
=0

(1.154)
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これより，反射波の接線電界，および接線磁界は，

E
(1)
r,tan

∣∣∣∣
z=0

=
{
RE+

te V +
1TE

(
ut × uz

)
+RE+

tm V +
1TM

ut

}
e∓jkt·ρ (1.155)

H
(1)
r,tan

∣∣∣∣
z=0

= −
{
Y1TER

E+
te V +

1TE
ut + Y1TMR

E+
tm V +

1TM

(
ut × uz

)}
e∓jkt·ρ (1.156)

反射波の電界の x成分，y 成分を

E
(1)
r,tan

∣∣∣∣
z=0

≡ Er,xux + Er,yuy (1.157)

とおくと，

Er,x =
{
RE+

te V +
1TE

(
ut × uz

)
· ux +RE+

tm V +
1TM

ut · ux

}
e∓jkt·ρ (1.158)

Er,y =
{
RE+

te V +
1TE

(
ut × uz

)
· uy +RE+

tm V +
1TM

ut · uy

}
e∓jkt·ρ (1.159)

ここで，

ut ≡ cosφiux + sinφiuy (1.160)

とおくと，

Er,x =
{
RE+

te V +
1TE

sinφi +RE+
tm V +

1TM
cosφi

}
e∓jkt·ρ (1.161)

Er,y =
{
RE+

te V +
1TE

(− cosφi) +RE+
tm V +

1TM
sinφi

}
e∓jkt·ρ (1.162)

行列表示すると，(
Er,x

Er,y

)
= e∓jkt·ρ

(
RE+

te sinφi RE+
tm cosφi

−RE+
te cosφi RE+

tm sinφi

)(
V +

1TE

V +
1TM

)

= e∓jkt·ρ
(

sinφi cosφi

− cosφi sinφi

)(
RE+

te 0
0 RE+

tm

)(
V +

1TE

V +
1TM

)
(1.163)

ここで，回転に関する行列 [Φ]の転置 [Φ]t，対角行列 [RE+]を，

[Φ]t ≡
(

sinφi cosφi

− cosφi sinφi

)
(1.164)

[RE+] ≡
(
RE+

te 0
0 RE+

tm

)
(1.165)

とおくと，(
Er,x

Er,y

)
= e∓jkt·ρ[Φ]t[RE+]

(
V +

1TE

V +
1TM

)
(1.166)
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同様に，入射波の電界の x成分，y 成分を

E
(1)
i,tan

∣∣∣∣
z=0

≡ Ei,xux + Ei,yuy (1.167)

とおくと(
Er,x

Er,y

)
= e∓jkt·ρ[Φ]t

(
V +

1TE

V +
1TM

)
≡ e∓jkt·ρ[Φ]t[U ]

(
V +

1TE

V +
1TM

)
(1.168)

ただし，[U ]は単位行列である．

[U ] ≡
(

1 0
0 1

)
(1.169)

これより，入射波と反射波の重ね合わせ，

Eir,x ≡ Ei,x + Er,x (1.170)
Eir,y ≡ Ei,y + Er,y (1.171)

については，(
Eir,x

Eir,y

)
= e∓jkt·ρ[Φ]t

(
[U ] + [RE+]

)(
V +

1TE

V +
1TM

)
(1.172)

さらに，

Ei,x =
{
V +

1TE
sinφi + V +

1TM
cosφi

}
e∓jkt·ρ ≡ V +

1,xe
∓jkt·ρ (1.173)

Ei,y =
{
V +

1TE
(− cosφi) + V +

1TM
sinφi

}
e∓jkt·ρ ≡ V +

1,ye
∓jkt·ρ (1.174)

より V +
1,x，V +

1,y を定義すると，(
V +

1,x

V +
1,y

)
=
(

sinφi cosφi

− cosφi sinφi

)(
V +

1TE

V +
1TM

)
= [Φ]t

(
V +

1TE

V +
1TM

)
(1.175)

逆は，(
V +

1TE

V +
1TM

)
= [Φ]

(
V +

1,x

V +
1,y

)
(1.176)

ここで，

[Φ] ≡
(

sinφi − cosφi

cosφi sinφi

)
(1.177)

したがって，Eir,x，Eir,y は次のようになる．(
Eir,x

Eir,y

)
= e∓jkt·ρ[Φ]t

(
[U ] + [RE+]

)
[Φ]

(
V +

1,x

V +
1,y

)
(1.178)
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1.5.2 接線磁界の入射波・反射波

同様にして，反射波の磁界の x成分，y 成分を

H
(1)
r,tan

∣∣∣∣
z=0

≡ Hr,xux +Hr,yuy (1.179)

とおくと，

Hr,x = −
{
Y1TER

E+
te V +

1TE
ut · ux + Y1TMR

E+
tm V +

1TM

(
ut × uz

)
· ux

}
e∓jkt·ρ

= −
{
Y1TER

E+
te V +

1TE
cosφi + Y1TMR

E+
tm V +

1TM
sinφi

}
e∓jkt·ρ (1.180)

Hr,y = −
{
Y1TER

E+
te V +

1TE
ut · uy + Y1TMR

E+
tm V +

1TM

(
ut × uz

)
· uy

}
e∓jkt·ρ

= −
{
Y1TER

E+
te V +

1TE
sinφi + Y1TMR

E+
tm V +

1TM
(− cosφi)

}
e∓jkt·ρ (1.181)

行列表示して，(
Hr,x

Hr,y

)
= −e∓jkt·ρ

(
Y1TER

E+
te cosφi Y1TMR

E+
tm sinφi

Y1TER
E+
te sinφi −Y1TMR

E+
tm cosφi

)(
V +

1TE

V +
1TM

)

= −e∓jkt·ρ
(

sinφi cosφi

− cosφi sinφi

)(
0 Y1TMR

E+
tm

Y1TER
E+
te 0

)(
V +

1TE

V +
1TM

)

= −e∓jkt·ρ[Φ]t
(

0 Y1TM

Y1TE 0

)(
RE+

te 0
0 RE+

tm

)(
V +

1TE

V +
1TM

)

≡ e∓jkt·ρ[Φ]t[Y ]
(

− [RE+]
)(

V +
1TE

V +
1TM

)
(1.182)

ただし，[Y ]，[RE+]は次のような対角行列である．

[Y ] ≡
(

0 Y1TM

Y1TE 0

)
(1.183)

[RE+] ≡
(
RE+

te 0
0 RE+

tm

)
(1.184)

入射波の磁界の x成分，y 成分を

H
(1)
i,tan

∣∣∣∣
z=0

≡ Hi,xux +Hi,yuy (1.185)

とおくと(
Hi,x

Hi,y

)
= e∓jkt·ρ[Φ]t[Y ][U ]

(
V +

1TE

V +
1TM

)
(1.186)

これより，

Hir,x ≡ Hi,x +Hr,x (1.187)
Hir,y ≡ Hi,y +Hr,y (1.188)
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については，(
Hir,x

Hir,y

)
= e∓jkt·ρ[Φ]t[Y ]

(
[U ] − [RE+]

)(
V +

1TE

V +
1TM

)

= e∓jkt·ρ[Φ]t[Y ]
(

[U ] − [RE+]
)

[Φ]
(
V +

1,x

V +
1,y

)
(1.189)

1.5.3 透過波

自由空間中に多層媒質がある場合を考え，上と同様に z << 0 から平面波が入射したと
き，透過波側の誘電体と自由空間との境界面での接線電磁界の表示式を示す（導出省略）．
まず，透過波の接線電界 Et,tan は，

Et,tan = Et,xux + Et,yuy (1.190)(
Et,x

Et,y

)
= e∓jkt·ρ[Φ]t[TE+][Φ]

(
V +

1,x

V +
1,y

)
(1.191)

ここで，

[Φ] =
(

sinφi − cosφi

cosφi sinφi

)
(1.192)

[TE+] =
(
TE+

te 0
0 TE+

tm

)
(1.193)

ただし，行列 [Φ]t は [Φ]の転置を示す．また，透過波の接線磁界Ht,tan は，

Ht,tan = Ht,xux +Ht,yuy (1.194)(
Ht,x

Ht,y

)
= e∓jkt·ρ[Φ]t[Y ][TE+][Φ]

(
V +

1,x

V +
1,y

)
(1.195)

ここで，

[Y ] =
(

0 Y1TM

Y1TE 0

)
(1.196)

1.6 誘電体板による反射・透過

1.6.1 単層誘電体板

厚み dの誘電体基板の反射・透過は，2つの Rマトリクスの積によって求めることがで
き，TE波，TM波いずれも次のようになる．

[R] = [Rs1][R2] (1.197)
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ここで，

[Rs1] = 1√
1 − Γ2

(
1 Γ
Γ 1

)
(1.198)

[R2] = 1√
1 − Γ2

(
e−jkz2d −Γe−jkz2d

−Γejkz2d ejkz2d

)
(1.199)

また，

Γ = Y1 − Y2

Y1 + Y2
(1.200)

ただし，Y1 は自由空間のアドミタンス，Y2 は誘電体基板のアドミタンス，kz2 は誘電体中
の波数ベクトルの z 成分を示す．よって，

[R] =
(
R11 R12
R21 R22

)

= 1
1 − Γ2

(
1 Γ
Γ 1

)(
e−jkz2d −Γe−jkz2d

−Γejkz2d ejkz2d

)

= 1
1 − Γ2

e−jkz2d − Γ2ejkz2d Γ
(
e−jkz2d + ejkz2d

)
Γ
(
ejkz2d − ejkz2d

)
−Γ2e−jkz2d + ejkz2d

 (1.201)

したがって，散乱行列要 S11，S12，S21，S22 は，

S21 = 1
R22

=

(
1 − Γ2

)
e−jkz2d

1 − Γ2e−j2kz2d
= S12 (1.202)

S11 = R12

R22
=

(
1 − e−j2kz2d

)
Γ

1 − Γ2e−j2kz2d
= S22 (1.203)

接線電界の反射係数 RE±
t ，および接線電界の透過係数 TE±

t は，

RE±
t = RE± = S11 = S22 (1.204)

TE±
t = S21 = S12 (1.205)

ただし，θ1 は自由空間，θ2 は誘電体中の入射角を各々示す．

1.6.2 多層誘電体板

後述する「地導体のある多層誘電体板」と同様にして求めることができ，ここでは省略
する．

1.7 地導体のある誘電体板による反射・透過
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1.7.1 地導体のある単層誘電体板

厚み dの単層誘電体の場合，(
b1
a1

)
= [Rs1][Ru2]

(
a2
b2

)∣∣∣∣∣
a2=−b2

(1.206)

ここで，

[Rs1] = 1√
1 − Γ2

(
1 Γ
Γ 1

)
, Γ = Y1 − Y2

Y1 + Y2
(1.207)

[Ru2] =
(
ejkz2d 0

0 e−jkz2d

)
(1.208)

ただし，[Rs1]は自由空間と誘電体の境界面での Rマトリクス，[Ru2]は誘電体の均一領域
での Rマトリクスを示す．また，Y1 は自由空間のアドミタンス，Y2 は誘電体基板のアドミ
タンス，kz2 は誘電体中の波数ベクトルの z 成分を示す．よって，(

b1
a1

)
= 1√

1 − Γ2

(
1 Γ
Γ 1

)(
ejkz2d 0

0 e−jkz2d

)(
−b2
b2

)

= 1√
1 − Γ2

(
ejkz2d Γe−jkz2d

Γejkz2d e−jkz2d

)(
−b2
b2

)
(1.209)

したがって，反射係数 RE+
t は，

RE+
t = b1

a1

∣∣∣∣∣
a2=−b2

= −ejkz2d + Γe−jkz2d

−Γejkz2d + e−jkz2d

= −(Y1 + Y2)ejkz2d + (Y1 − Y2)e−jkz2d

−(Y1 − Y2)ejkz2d + (Y1 + Y2)e−jkz2d

= −Y1(ejkz2d − e−jkz2d) − Y2(ejkz2d + e−jkz2d)
−Y1(ejkz2d − e−jkz2d) + Y2(ejkz2d + e−jkz2d)

= −Y1j sin kz2d− Y2 cos kz2d

−Y1j sin kz2d+ Y2 cos kz2d

= Y1 sin kz2d− jY2 cos kz2d

Y1 sin kz2d+ jY2 cos kz2d
(1.210)

これより，TE波の電界の反射係数 RE+
te は，

RE+
te = Y1TE sin kz2d− jY2TE cos kz2d

Y1TE sin kz2d+ jY2TE cos kz2d
= kz1 sin kz2d− jkz2 cos kz2d

kz1 sin kz2d+ jkz2 cos kz2d
(1.211)

ただし，

Y1TE = kz1

ωµ
, Y2TE = kz2

ωµ
(1.212)
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また，TM波の電界の反射係数 RE+
tm は，

RE+
tm = Y1TM sin kz2d− jY2TM cos kz2d

Y1TM sin kz2d+ jY2TM cos kz2d
= kz2 sin kz2d− jεrkz1 cos kz2d

kz2 sin kz2d+ jεrkz1 cos kz2d
(1.213)

ただし，

Z1TM = kz1

ωε
, Z2TM = kz2

ωεεr
(1.214)

1.7.2 地導体のある多層誘電体板

N 層誘電体の場合，地導体のある誘電体（厚み d，比誘電率 εr）を除いた (N − 1)層誘
電体の Rマトリクスを [RN−1]とおくと，(

b1
a1

)
= [RN−1][Ru,N ]

(
a2
b2

)∣∣∣∣∣
a2=−b2

(1.215)

ここで，

[RN−1] =
(
R11 R12
R21 R22

)
(1.216)

[Ru,N ] =
(
ejkzd 0

0 e−jkzd

)
(1.217)

ただし，kz は誘電体中の波数ベクトルの z 成分を示す．よって，(
b1
a1

)
=
(
R11 R12
R21 R22

)(
ejkzd 0

0 e−jkzd

)(
−b2
b2

)

=
(
R11e

jkzd R12e
−jkzd

R21e
jkzd R22e

−jkzd

)(
−b2
b2

)
(1.218)

したがって，反射係数 RE+
t は，

RE+
t = b1

a1

∣∣∣∣∣
a2=−b2

= −R11e
jkzd +R12e

−jkzd

−R21ejkzd +R22e−jkzd
= R11 −R12e

−j2kzd

R21 −R22e−j2kzd
(1.219)

いま，(N − 1)層誘電体の散乱行列 [SN−1]を，

[SN−1] =
(
S11 S12
S21 S22

)
(1.220)

とすると，[RN−1]マトリクスは，この散乱行列要素より

[RN−1] =
(
R11 R12
R21 R22

)
= 1
S21

(
−S11S22 + S2

21 S11
−S22 1

)
(1.221)

で表すことができ，これより，

RE+
t = −S11S22 + S2

21 − S11e
−j2kzd

−S22 − e−j2kzd
= S11 − S2

21
S22 + e−j2kzd

(1.222)
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1.8 多層誘電体板中の境界面での反射・透過

多層誘電体基板の z < 0 より平面波が入射したとき，入射電界に対する i番目の境界面で
の電界の係数を求める．境界面でポート 2を定義し，その前後で散乱行列 [Sa]，[Sb]が既知
であるとする．散乱行列の縦続接続を行う際に得られた式より，

a2

a1

∣∣∣∣
a3=0

=
(
1 − S

(b)
11 S

(a)
22

)−1
S

(b)
11 S

(a)
21 (1.223)

よって，ポート 2での反射波の接線電界の係数 R
(i)+
t は次のようになる．

R
(i)+
t =

√
Zia2√
Z1a1

∣∣∣∣∣
a3=0

=
√
Y1Zi

(
1 − S

(b)
11 S

(a)
22

)−1
S

(b)
11 S

(a)
21 (1.224)

また，

b2

a1

∣∣∣∣∣
a3=0

=
(
1 − S

(a)
22 S

(b)
11

)−1
S

(a)
21 (1.225)

これより，透過波の接線電界の係数 T
(i)+
t は次のようになる．

T
(i)+
t =

√
Zi+1b2√
Z1a1

∣∣∣∣∣
a3=0

=
√
Y1Zi+1

(
1 − S

(a)
22 S

(b)
11

)−1
S

(a)
21 (1.226)

したがって，i番目の境界面での接線電界 Etr,tan は，

Etr,tan = Etr,xux + Etr,yuy(
Etr,x

Etr,y

)
= e∓jkt·ρ[Φ]t

(
[TE+] − [RE+]

)
[Φ]

(
V +

1,x

V +
1,y

)
(1.227)

ここで，[TE+]，[RE+]は対角行列である．

[TE+] =
(
T+

te,i 0
0 T+

tm,i

)
(1.228)

[RE+] =
(
R+

te,i 0
0 R+

tm,i

)
(1.229)

(1.230)

また，

T+
te,i =

√
Y1TEZi+1TE

(
1 − S

(a)
22TES

(b)
11TE

)−1
S

(a)
21TE (1.231)

T+
tm,i =

√
Y1TMZi+1TM

(
1 − S

(a)
22TMS

(b)
11TM

)−1
S

(a)
21TM (1.232)

R+
te,i =

√
Y1TEZiTE

(
1 − S

(b)
11TES

(a)
22TE

)−1
S

(b)
11TES

(a)
21TE (1.233)

R+
tm,i =

√
Y1TMZiTM

(
1 − S

(b)
11TMS

(a)
22TM

)−1
S

(b)
11TMS

(a)
21TM (1.234)
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逆に，z0より平面波が入射したとき，

b2

a3

∣∣∣∣∣
a1=0

=
(
1 − S

(a)
22 S

(b)
11

)−1
S

(a)
22 S

(b)
12 (1.235)

より，反射波の接線電界の係数 R
(i)−
t は次のようになる．

R
(i)−
t =

√
Zi+1b2√
Z1a3

∣∣∣∣∣
a1=0

=
√
Y1Zi+1

(
1 − S

(a)
22 S

(b)
11

)−1
S

(a)
22 S

(b)
12 (1.236)

また，

a2

a3

∣∣∣∣
a1=0

=
(
1 − S

(b)
11 S

(a)
22

)−1
S

(b)
12 (1.237)

より，透過波の接線電界の係数 T
(i)−
t は次のようになる．

T
(i)−
t =

√
Zia2√
Z1a3

∣∣∣∣∣
a1=0

=
√
Y1Zi

(
1 − S

(b)
11 S

(a)
22

)−1
S

(b)
12 (1.238)
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CHAPTER 2

スペクトル領域電磁界とグリーン関
数

　電磁界のスペクトル領域解析として，モーメント法 (MoM) による解析法ついて
詳細に解説する．まず，フーリエ変換を用いて電磁界の空間領域表現をスペクトル領
域に変換する基礎理論を示し，マクスウェルの方程式をスペクトル領域で表現する
方法，ベクトルポテンシャルの導入，およびグリーン関数の求め方を説明する．さら
に，マイクロストリップ素子や多層誘電体基板の解析におけるスペクトル領域の基本
行列の適用，および電流源・磁流源に対するダイアディック・グリーン関数の導出を
示していく．

2.1 スペクトル領域の電磁界

直角座標系 (x, y, z)において，xy 面にマイクロストリップ素子がある場合を考え，電磁
界 E(x, y, z)，H(x, y, z) より，空間領域 (x, y)からスペクトル領域 (kx, ky)へのフーリエ
変換 Ẽ(kx, ky, z)，H̃(kx, ky, z) を定義する．

Ẽ(kx, ky, z) =
¨ ∞

−∞
E(x, y, z) e−j(kxx+kyy)dxdy (2.1)

H̃(kx, ky, z) =
¨ ∞

−∞
H(x, y, z) e−j(kxx+kyy)dxdy (2.2)

フーリエ変換対の関係より，

E(x, y, z) = 1
(2π)2

¨ ∞

−∞
Ẽ(kx, ky, z) ej(kxx+kyy)dkxdky (2.3)

H(x, y, z) = 1
(2π)2

¨ ∞

−∞
H̃(kx, ky, z) ej(kxx+kyy)dkxdky (2.4)
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これより，∇ · E は，

∇ · E(x, y, z)

= ∇ ·
[

1
(2π)2

¨ ∞

−∞
Ẽ(kx, ky, z) ej(kxx+kyy)dkxdky

]

= 1
(2π)2

¨ ∞

−∞
∇ ·

{
Ẽ ej(kxx+kyy)

}
dkxdky

= 1
(2π)2

¨ ∞

−∞

(
jkxux + jkyuy + ∂

∂z
uz

)
· Ẽ(kx, ky, z) ej(kxx+kyy)dkxdky (2.5)

フーリエ変換対の関係より，(
jkxux + jkyuy + ∂

∂z
uz

)
· Ẽ =

¨ ∞

−∞
∇ · E(x, y, z) e−j(kxx+kyy)dxdy (2.6)

ここで，

kt ≡ kxux + kyuy (2.7)

とおくと，(
jkt + ∂

∂z
uz

)
· Ẽ(kx, ky, z) =

¨ ∞

−∞
∇ · E(x, y, z) e−j(kxx+kyy)dxdy (2.8)

同様にして，∇ · H のフーリエ変換は，(
jkt + ∂

∂z
uz

)
· H̃(kx, ky, z) =

¨ ∞

−∞
∇ · H(x, y, z) e−j(kxx+kyy)dxdy (2.9)

また，∇ × E，∇ × H のフーリエ変換は（導出省略），(
jkt + ∂

∂z
uz

)
× Ẽ(kx, ky, z) =

¨ ∞

−∞
∇ × E(x, y, z) e−j(kxx+kyy)dxdy (2.10)(

jkt + ∂

∂z
uz

)
× H̃(kx, ky, z) =

¨ ∞

−∞
∇ × H(x, y, z) e−j(kxx+kyy)dxdy (2.11)

さらに，∇2E は，

∇2E(x, y, z) = ∇2Ex(x, y, z)ux + ∇2Ey(x, y, z)uy + ∇2Ez(x, y, z)uz (2.12)
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いま，添え字 x，y，z を i で置き換え，

∇2Ei(x, y, z)

= ∇2
[

1
(2π)2

¨ ∞

−∞
Ẽi(kx, ky, z) ej(kxx+kyy)dkxdky

]

= 1
(2π)2

¨ ∞

−∞
∇2
{
Ẽi e

j(kxx+kyy)
}
dkxdky

= 1
(2π)2

¨ ∞

−∞

(
(jkx)2 + (jky)2 + ∂2

∂z2

)
· Ẽi(kx, ky, z) ej(kxx+kyy)dkxdky

= 1
(2π)2

¨ ∞

−∞

(
−k2

t + ∂2

∂z2

)
Ẽi e

j(kxx+kyy)dkxdky (2.13)

ここで，フーリエ変換対の関係より，(
−k2

t + ∂2

∂z2

)
Ẽi(kx, ky, z) =

¨ ∞

−∞
∇2Ei(x, y, z) e−j(kxx+kyy)dxdy (2.14)

ベクトルでも同様で，(
−k2

t + ∂2

∂z2

)
Ẽ(kx, ky, z) =

¨ ∞

−∞
∇2E(x, y, z) e−j(kxx+kyy)dxdy (2.15)

これより，電磁流がない場合のMaxwellの方程式をフーリエ変換すると，

∇ × E = −jωµH →
(
jkt + ∂

∂z
uz

)
× Ẽ = −jωµH̃ (2.16)

∇ × H = jωεE →
(
jkt + ∂

∂z
uz

)
× H̃ = jωεẼ (2.17)

∇ · E = 0 →
(
jkt + ∂

∂z
uz

)
· Ẽ = 0 (2.18)

∇ · H = 0 →
(
jkt + ∂

∂z
uz

)
· H̃ = 0 (2.19)

また，

(
∇2 + k2

)
E = 0 →

(
−k2

t + ∂2

∂z2 + k2
)

Ẽ =
(
∂2

∂z2 + k2
z

)
Ẽ = 0 (2.20)

(
∇2 + k2

)
H = 0 →

(
−k2

t + ∂2

∂z2 + k2
)

H̃ =
(
∂2

∂z2 + k2
z

)
H̃ = 0 (2.21)

式 (2.16)より，

uz ·
{(

jkt + ∂

∂z
uz

)
× Ẽ

}
= juz · (kt × Ẽ) = −jωµH̃ · uz

kxẼy − kyẼx = −ωµH̃z (2.22)
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また，式 (2.18)より，

jkt · Ẽ = −uz · ∂Ẽ

∂z

kxẼx + kyẼy = j
∂Ẽz

∂z
(2.23)

これより，Ẽx，Ẽy について解くと，

Ẽx = jkx

k2
t

∂Ẽz

∂z
+ ωµky

k2
t

H̃z (2.24)

Ẽy = jky

k2
t

∂Ẽz

∂z
− ωµkx

k2
t

H̃z (2.25)

同様にして，H̃x，H̃y は，

H̃x = jkx

k2
t

∂H̃z

∂z
− ωεky

k2
t

Ẽz (2.26)

H̃y = jky

k2
t

∂H̃z

∂z
− ωεkx

k2
t

Ẽz (2.27)

ただし，

k2
t = k2

x + k2
y (2.28)

ここで，(
∂2

∂z2 + k2
z

)
Ẽz = 0 (2.29)(

∂2

∂z2 + k2
z

)
H̃z = 0 (2.30)

より，Ẽz，H̃z の解としては，e−jkzz，ejkzz あるいは，sin kzz，cos kzz のいずれかを考え
ればよい．

2.2 スペクトル領域グリーン関数の簡単な例

2.2.1 自由空間におけるスペクトル領域スカラー・グリーン関数

直角座標系 (x, y, z)を考え，z 一定の面内において，(x, y)の関数として表される自由空
間のグリーン関数（free-space Green’s function）G0 をフーリエ変換して，スペクトル領域
のグリーン関数（Spectral-domain Green’s function）G̃0 を求める．そこで，

r = xux + yuy + zuz (2.31)
r′ = xu′

x + yu′
y + zu′

z (2.32)
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とし，x̄ ≡ x− x′，ȳ ≡ y − y′ とおくと，フーリエ変換対は次のようになる．

G̃0(kx, ky) =
¨ ∞

−∞
G0(x̄, ȳ)e−j(kxx̄+ky ȳ)dx̄dȳ (2.33)

G0(x̄, ȳ) = 1
(2π)2

¨ ∞

−∞
G̃0(kx, ky)ej(kxx̄+ky ȳ)dkxdky (2.34)

上の第 2式より，スカラー・グリーン関数の満たすべき方程式は，

(∇2 + k2)
(

1
(2π)2

¨ ∞

−∞
G̃0(kx, ky)ej(kxx̄+ky ȳ)dkxdky

)
= −δ(r − r′) (2.35)

これより，左辺の微分を実行して，

1
(2π)2

(
∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 + k2
)

·
¨ ∞

−∞
G̃0(kx, ky)ej(kxx̄+ky ȳ)dkxdky

=
{

(jkx)2 + (jky)2 + ∂2

∂z2 + k2
}
G0

=
(

−k2
x − k2

y + ∂2

∂z2 + k2
)
G0 = −δ(x̄)δ(ȳ)δ(z − z′) (2.36)

ここで，

k2 ≡ k2
x + k2

y + k2
z (2.37)

とおくと，(
∂2

∂z2 + k2
z

)
G0 = −δ(x̄)δ(ȳ)δ(z − z′) (2.38)

両辺をフーリエ変換すると，
¨ ∞

−∞

(
∂2

∂z2 + k2
z

)
G0e

−j(kxx̄+ky ȳ)dx̄dȳ

= −
¨ ∞

−∞
δ(x̄)δ(ȳ)δ(z − z′)e−j(kxx̄+ky ȳ)dx̄dȳ

= −δ(z − z′)
ˆ ∞

−∞
δ(x̄)e−jkxx̄dx̄

ˆ ∞

−∞
δ(ȳ)e−jky ȳdȳ

= −δ(z − z′)e−jkx·0e−jky·0

= −δ(z − z′) (2.39)

したがって，(
d2

dz2 + k2
z

)
G̃0 = −δ(z − z′) (2.40)
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これを解くために，右辺をゼロにしたときの解を用いて，未定係数を C とおき，G̃0 を次の
ようにおく．

G̃0 ≡ Ce−jkz|z−z′| =
{
Ce−jkz(z−z′) (z > z′)
Cejkz(z−z′) (z < z′) (2.41)

z で微分して，

dG̃0

dz
=
{

−jkzCe
−jkz(z−z′) (z > z′)

jkzCe
jkz(z−z′) (z < z′) (2.42)

よって，与式を z′ 近傍で積分すると，
ˆ z′+

z′−

(
d2

dz2 + k2
z

)
G̃0(z)dz = −

ˆ z′+

z′−
δ(z − z′)dz

[
dG̃0

dz

]z′+

z′−
+ k2

z

ˆ z′+

z′−
G̃0dz = −1 (2.43)

上式の第 2項はゼロゆえ，

−jkzC − jkzC = −1 (2.44)

より，

C = 1
j2kz

(2.45)

したがって，自由空間におけるスペクトル領域スカラー・グリーン関数 G̃0 は，

G̃0 = e−jkz|z−z′|

j2kz
(2.46)

2.2.2 スペクトル領域のベクトルポテンシャル

自由空間中において，xy 面上に面電流 Js がある場合を考える．自由空間のスカラー・グ
リーン関数 G0 より，ベクトルポテンシャルAは，

A = µ

ˆ
S

G0(r, r′)Js(r′)dx′dy′ (2.47)

両辺をフーリエ変換すると，
¨ ∞

−∞
Ae−j(kxx+kyy)dxdy =

¨ ∞

−∞

(
µ

ˆ
S

G0(r, r′)Js(r′)dx′dy′
)
e−j(kxx+kyy)dxdy

(2.48)
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いま，x′′ = x− x′，y′′ = y − y′ で変数変換すると（dx′′ = dx，dy′′ = dy），

Ã = µ

ˆ
S

Js(r′) ·
(¨ ∞

−∞
G0(r, r′)e−j{kx(x′+x′′)+ky(y′+y′′)}dx′′dy′′

)
dx′dy′

= µ

¨ ∞

−∞
Js(r′)e−j(kxx′+kyy′)dx′dy′ ·

¨ ∞

−∞
G0(r′′)e−j(kxx′′+kyy′′)dx′′dy′′ (2.49)

ここで，Js，G0 のフーリエ変換を J̃s，G̃0 とすると，

Ã = µG̃0J̃s (2.50)

ただし，

G̃0(kx, ky, z) =
¨ ∞

−∞
G0(x, y, z) e−j(kxx+kyy)dxdy (2.51)

J̃s(kx, ky, z) =
¨ ∞

−∞
Js(x, y, z) e−j(kxx+kyy)dxdy (2.52)

なお，面電流分布 Js は，

Js = Jxux + Jyuy (2.53)

Ãのフーリエ逆変換より，

A(x, y, z) = 1
(2π)2

¨ ∞

−∞
Ã(kx, ky, z) ej(kxx+kyy)dkxdky

= µ

(2π)2

¨ ∞

−∞
G̃0(kx, ky, z)J̃s(kx, ky, z) ej(kxx+kyy)dkxdky (2.54)

2.2.3 自由空間のスペクトル領域ダイアディック・グリーン関数

ベクトルポテンシャルが z 成分をもたず，

AT = Axux + Ayuy (2.55)

で与えられる場合を考える．このとき，

∇ · AT =
(

∇t + uz
∂

∂z

)
· AT = ∇t · AT (2.56)

∇∇ · AT =
(

∇t + uz
∂

∂z

)
∇t · AT (2.57)

これより，電界の xy 面内の分布 ET は，

ET = −jω
(

AT + 1
k2 ∇∇ · AT

)
= −jω

k2

(
k2AT + ∇t∇t · AT

)
(2.58)
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ここで，

∇t∇t · AT = ∇t

(
∂Ax

∂x
+ ∂Ay

∂y

)

= ∂

∂x

(
∂Ax

∂x
+ ∂Ay

∂y

)
ux + ∂

∂y

(
∂Ax

∂x
+ ∂Ay

∂y

)
uy

=
(
∂2Ax

∂x2 + ∂2Ay

∂x∂y

)
ux +

(
∂2Ax

∂y∂x
+ ∂2Ay

∂y2

)
uy (2.59)

より，

ET = −jω

k2

{(
k2Ax + ∂2Ax

∂x2 + ∂2Ay

∂x∂y

)
ux +

(
k2Ay + ∂2Ax

∂y∂x
+ ∂2Ay

∂y2

)
uy

}
≡ Exux + Eyuy (2.60)

したがって，電界の成分 Ex，Ey は，

Ex = −jω

k2

{(
k2 + ∂2

∂x2

)
Ax + ∂2

∂x∂y
Ay

}
(2.61)

Ey = −jω

k2

{
∂2

∂y∂x
Ax +

(
k2 + ∂2

∂y2

)
Ay

}
(2.62)

ここで，

A = µ

(2π)2

¨ ∞

−∞
G̃0J̃s e

j(kxx+kyy)dkxdky (2.63)

より，(
k2 + ∂2

∂x2

)
Ax =

{
k2 + (jkx)2

}
Ax =

(
k2 − k2

x

)
Ax =

(
k2

y + k2
z

)
Ax (2.64)

∂2

∂x∂y
Ay = jkx · jky · Ay = −kxkyAy (2.65)

∂2

∂y∂x
Ax = jky · jkx · Ax = −kykxAx (2.66)(

k2 + ∂2

∂y2

)
Ay =

{
k2 + (jky)2

}
Ay =

(
k2 − k2

y

)
Ay =

(
k2

x + k2
z

)
Ay (2.67)

したがって，

Ex = −jω

k2

{(
k2 − k2

x

)
Ax − kxkyAy

}
(2.68)

Ey = −jω

k2

{
−kxkyAx +

(
k2 − k2

y

)
Ay

}
(2.69)
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両辺をフーリエ変換すると，

Ẽx = −jω

k2

{(
k2 − k2

x

)
Ãx − kxkyÃy

}
(2.70)

Ẽy = −jω

k2

{
−kxkyÃx +

(
k2 − k2

y

)
Ãy

}
(2.71)

先に示したように，

Ãx = µG̃0J̃x (2.72)
Ãy = µG̃0J̃y (2.73)

ゆえ，

Ẽx = −jωµ

k2 G̃0
{(
k2 − k2

x

)
J̃x − kxkyJ̃y

}
(2.74)

Ẽy = −jωµ

k2 G̃0
{
−kxkyJ̃x +

(
k2 − k2

y

)
J̃y

}
(2.75)

ベクトル表示すると，

ẼT = −jωµ

k2 G̃0
[{(

k2 − k2
x

)
J̃x − kxkyJ̃y

}
ux +

{
−kxkyJ̃x +

(
k2 − k2

y

)
J̃y

}
uy

]
≡
(
G̃xxJ̃x + G̃xyJ̃y

)
ux +

(
G̃yxJ̃x + G̃yyJ̃y

)
uy (2.76)

スペクトル領域のダイアディック・グリーン関数
˜̄̄
G0

˜̄̄
G0 = G̃xxuxux + G̃xyuxuy + G̃yxuyux + G̃yyuyuy (2.77)

を用いてスペクトル領域の接線電界 ẼT が次のように表される．

ẼT =
˜̄̄
G0 · J̃s (2.78)

ここで，

G̃xx = −jωµ

k2 G̃0
(
k2 − k2

x

)
(2.79)

G̃xy = G̃yx = jωµ

k2 G̃0kxky (2.80)

G̃yy = −jωµ

k2 G̃0
(
k2 − k2

y

)
(2.81)

2.3 マイクロストリップ素子
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2.3.1 マイクロストリップ素子のスペクトル領域の電磁界

地導体板（z = 0）をつけた誘電体基板（厚み d，大きさは無限）上にストリップ導体の
あるマイクロストリップ素子について考える．まず，z ≥ d の領域 (II)については，半無限
領域ゆえ，次のようにおくことにする．

Ẽz,2 = Ae−jkz,2z (z ≥ d) (2.82)

H̃z,2 = Be−jkz,2z (z ≥ d) (2.83)

一方，0 ≤ z ≤ d の領域 (I)については，誘電体スラブ領域ゆえ，

Ẽz,1 = C cos kz,1z +D sin kz,1z (0 ≤ z ≤ d) (2.84)

H̃z,1 = E sin kz,1z + F cos kz,1z (0 ≤ z ≤ d) (2.85)

ここで，A，B，C，D，E，F は未知係数であり，境界条件によって決める．まず，z = 0
で完全導体ゆえ，

Ex,1(x, y)
∣∣∣
z=0

= Ey,1(x, y)
∣∣∣
z=0

= 0 (2.86)

より，スペクトル領域でも，

Ẽx,1(kx, ky)
∣∣∣
z=0

= Ẽy,1(kx, ky)
∣∣∣
z=0

= 0 (2.87)

ここで，

∂Ẽz,1

∂z
= ∂

∂z

(
C cos kz,1z +D sin kz,1z

)
= −Ckz,1 sin kz,1z +Dkz,1 cos kz,1z (2.88)

より，

Ẽx,1
∣∣∣
z=0

= jkx

k2
t

∂Ẽz,1

∂z

∣∣∣∣∣
z=0

+ ωµky

k2
t

H̃z,1

∣∣∣∣∣
z=0

= jkx

k2
t

Dkz,1 + ωµky

k2
t

F = 0 (2.89)

Ẽy,1
∣∣∣
z=0

= jky

k2
t

∂Ẽz,1

∂z

∣∣∣∣∣
z=0

− ωµkx

k2
t

H̃z,1

∣∣∣∣∣
z=0

= jky

k2
t

Dkz,1 − ωµkx

k2
t

F = 0 (2.90)

よって，

D = F = 0 (2.91)

したがって，

Ẽz,1 = C cos kz,1z (0 ≤ z ≤ d) (2.92)

H̃z,1 = E sin kz,1z (0 ≤ z ≤ d) (2.93)
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また，z = dの連続条件より，電界については，

E(x
y

)
,1(x, y)

∣∣∣∣
z=d

= E(x
y

)
,2(x, y)

∣∣∣∣
z=d

(2.94)

より，

Ẽ(x
y

)
,1(kx, ky)

∣∣∣∣
z=d

= Ẽ(x
y

)
,2(kx, ky)

∣∣∣∣
z=d

(2.95)

これより，電界について求めると，

Ẽx,1
∣∣∣
z=d

= jkx

k2
t

(
− Ckz,1 sin kz,1d

)
+ ωµ1ky

k2
t

· E sin kz,1d

= Ẽx,2
∣∣∣
z=d

= jkx

k2
t

(
− jAkz,2e

−jkz,2d
)

+ ωµ2ky

k2
t

·Be−jkz,2d (2.96)

Ẽy,1
∣∣∣
z=d

= jky

k2
t

(
− Ckz,1 sin kz,1d

)
− ωµ1kx

k2
t

· E sin kz,1d

= Ẽy,2
∣∣∣
z=d

= jky

k2
t

(
− jAkz,2e

−jkz,2d
)

− ωµ2kx

k2
t

·Be−jkz,2d (2.97)

一方，磁界については，z = d の境界の x = x0，y = y0（位置ベクトル r0）に x方向の微
小電流を考え，

uz ×
(
H2 − H1

)∣∣∣∣
z=d

= δ(r − r0)ux (2.98)

ただし，

r0 = x0ux + y0uy + duz (2.99)

これをフーリエ変換すると，
¨ ∞

−∞
uz ×

(
H2(x, y) − H1(x, y)

)∣∣∣∣
z=d

e−j(kxx+kyy)dxdy

=
¨ ∞

−∞
δ(r − r0)ux e

−j(kxx+kyy)dxdy (2.100)

これより，

uz ×
(
H̃2(kx, ky) − H̃1(kx, ky)

)∣∣∣∣
z=d

= uz ×
{(
H̃x,2

∣∣∣
z=d

− H̃x,1
∣∣∣
z=d

)
ux +

(
H̃y,2

∣∣∣
z=d

− H̃y,1
∣∣∣
z=d

)
uy

}
=
(
H̃x,2

∣∣∣
z=d

− H̃x,1
∣∣∣
z=d

)
uy −

(
H̃y,2

∣∣∣
z=d

− H̃y,1
∣∣∣
z=d

)
ux

= uxe
−j(kxx0+kyy0) (2.101)
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よって，

H̃y,2
∣∣∣
z=d

− H̃y,1
∣∣∣
z=d

= −e−j(kxx0+kyy0) (2.102)

H̃x,2
∣∣∣
z=d

− H̃x,1
∣∣∣
z=d

= 0 (2.103)

また，磁界について求めると，

H̃x,1
∣∣∣
z=d

= jkx

k2
t

· Ekz,1 cos kz,1d− ωε1ky

k2
t

· C cos kz,1d

= H̃x,2
∣∣∣
z=d

= jkx

k2
t

(
− jBkz,2e

−jkz,2d
)

− ωε2ky

k2
t

· Ae−jkz,2d (2.104)

H̃y,1
∣∣∣
z=d

= jky

k2
t

· Ekz,1 cos kz,1d+ ωε1kx

k2
t

· C cos kz,1d

= H̃y,2
∣∣∣
z=d

+ e−j(kxx0+kyy0)

= jky

k2
t

(
− jBkz,2e

−jkz,2d
)

+ ωε2kx

k2
t

· Ae−jkz,2d + e−j(kxx0+kyy0) (2.105)

整理すると，

−jkxkz,1C sin kz,1d+ ωµ1kyE sin kz,1d = kxkz,2Ae
−jkz,2d + ωµ2kyBe

−jkz,2d (2.106)
−jkykz,1C sin kz,1d− ωµ1kxE sin kz,1d = kykz,2Ae

−jkz,2d − ωµ2kxBe
−jkz,2d (2.107)

jkxkz,1E cos kz,1d− ωε1kyC cos kz,1d = kxkz,2Be
−jkz,2d − ωε2kyAe

−jkz,2d (2.108)
jkykz,1E cos kz,1d+ ωε1kxC cos kz,1d

= kykz,2Be
−jkz,2d + ωε2kxAe

−jkz,2d + k2
t e

−j(kxx0+kyy0) (2.109)

まず，ky×式 (2.106)−kx×式 (2.107)より，A，C を消去して，

µ1E sin kz,1d = µ2Be
−jkz,2d (2.110)

また，kx×式 (2.108)+ky×式 (2.109)より，A，C を消去して，

jkz,1E cos kz,1d = kz,2Be
−jkz,2d + kye

−j(kxx0+kyy0) (2.111)

これより，B を消去すると E は，

E = −jµ2kye
−j(kxx0+kyy0)

kz,1µ2 cos kz,1d+ jkz,2µ1 sin kz,1d
(2.112)

これより，B は，

B = µ1

µ2
E sin kz,1d e

jkz,2d = −jµ1ky sin kz,1d e
jkz,2d e−j(kxx0+kyy0)

kz,1µ2 cos kz,1d+ jkz,2µ1 sin kz,1d
(2.113)
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いま，µi = µ0µr,i (i = 1, 2)，

Te ≡ kz,1µr,2 cos kz,1d+ jkz,2µr,1 sin kz,1d (2.114)

とおくと，H̃z,1，H̃z,2 は次のようになる．

H̃z,1 = E sin kz,1z = −jµr,2ky sin kz,1z

Te
e−j(kxx0+kyy0) (2.115)

H̃z,2 = Be−jkz,2z = −jµr,1ky sin kz,1d e
−jkz,2(z−d)

Te
e−j(kxx0+kyy0) (2.116)

同様にして，ky×式 (2.106)+kx×式 (2.107)より，B，E を消去して，

−jkz,1C sin kz,1d = kz,2Ae
−jkz,2d (2.117)

また，kx×式 (2.108)−ky×式 (2.109)より，B，E を消去して，

−ωε1C cos kz,1d = −ωε2Ae−jkz,2d − kxe
−j(kxx0+kyy0) (2.118)

これより，Aを消去すると C は，

C = kxkz,2e
−j(kxx0+kyy0)

ω
(
kz,2ε1 cos kz,1d+ jkz,1ε2 sin kz,1d

) (2.119)

よって，Aは，

A = −jkz,1

kz,2
C sin kz,1d e

jkz,2d = −jkxkz,1 sin kz,1d e
jkz,2d e−j(kxx0+kyy0)

ω
(
kz,2ε1 cos kz,1d+ jkz,1ε2 sin kz,1d

) (2.120)

いま，εi = ε0εr,i (i = 1, 2)，

Tm ≡ kz,2εr,1 cos kz,1d+ jkz,1εr,2 sin kz,1d (2.121)

とおくと，Ẽz,1，Ẽz,2 は次のようになる．

Ẽz,1 = C cos kz,1z = kxkz,2 cos kz,1z

ωε0Tm
e−j(kxx0+kyy0) (2.122)

Ẽz,2 = Ae−jkz,2z = −jkxkz,1 sin kz,1d e
−jkz,2(z−d)

ωε0Tm
e−j(kxx0+kyy0) (2.123)

微小電流のかわりに，x成分のみもつ面電流分布 Jx(x′, y′)を考えても同様に，

Ẽz,2 = −jkxkz,1 sin(kz,1d)
ωε0Tm

e−jkz,2(z−d)J̃x(kx, ky) (2.124)

H̃z,2 = −jµr,1ky sin(kz,1d)
Te

e−jkz,2(z−d)J̃x(kx, ky) (2.125)

Ẽz,1 = kxkz,2 cos(kz,1z)
ωε0Tm

J̃x(kx, ky) (2.126)

H̃z,1 = −jµr,2ky sin(kz,1z)
Te

J̃x(kx, ky) (2.127)
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ただし，J̃x(kx, ky)は Jx(x′, y′)のフーリエ変換を示し，次のようになる．

J̃x(kx, ky) =
¨ ∞

−∞
Jx(x′, y′) e−j(kxx′+kyy′)dx′dy′ (2.128)

したがって，z = d におけるスペクトル領域の電界成分 Ẽx，Ẽy，Ẽz は次のようになる．

Ẽx(kx, ky, d) =
{
jkx

k2
t

· (−jkz,2)−jkxkz,1 sin(kz,1d)
ωε0Tm

+ωµ2ky

k2
t

· −jµr,1ky sin(kz,1d)
Te

}
J̃x

= −j
ωε0

· sin(kz,1d)
k2

t

{
k2

xkz,1kz,2

Tm
+
µr,1µr,2k

2
yk

2
0

Te

}
J̃x(kx, ky) (2.129)

Ẽy(kx, ky, d) =
{
jky

k2
t

· (−jkz,2)−jkxkz,1 sin(kz,1d)
ωε0Tm

−ωµ2kx

k2
t

· −jµr,1ky sin(kz,1d)
Te

}
J̃x

= −j
ωε0

· kxky sin(kz,1d)
k2

t

{
kz,1kz,2

Tm
− µr,1µr,2k

2
0

Te

}
J̃x(kx, ky) (2.130)

Ẽz(kx, ky, d) = −j
ωε0

· kxkz,1 sin(kz,1d)
Tm

J̃x(kx, ky) (2.131)

同様にして y 成分のみをもつ面電流分布 Jy(x′, y′)について求めると，

Ẽx(kx, ky, d) = −j
ωε0

· kxky sin(kz,1d)
k2

t

{
kz,1kz,2

Tm
− µr,1µr,2k

2
0

Te

}
J̃y(kx, ky) (2.132)

Ẽy(kx, ky, d) = −j
ωε0

· sin(kz,1d)
k2

t

{
k2

ykz,1kz,2

Tm
+ µr,1µr,2k

2
xk

2
0

Te

}
J̃y(kx, ky) (2.133)

行列表示すると，(
Ẽx

Ẽy

)
=
(
Z̃EJ

xx Z̃EJ
xy

Z̃EJ
yx Z̃EJ

yy

)(
J̃x

J̃y

)
(2.134)

ただし，

Z̃EJ
xx = −j

ωε0
· sin(kz,1d)

k2
t

{
k2

xkz,1kz,2

Tm
+
µr,1µr,2k

2
yk

2
0

Te

}
(2.135)

Z̃EJ
yx = −j

ωε0
· kxky sin(kz,1d)

k2
t

{
kz,1kz,2

Tm
− µr,1µr,2k

2
0

Te

}
= Z̃EJ

xy (2.136)

Z̃EJ
yy = −j

ωε0
· sin(kz,1d)

k2
t

{
k2

ykz,1kz,2

Tm
+ µr,1µr,2k

2
xk

2
0

Te

}
(2.137)
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また，ベクトル表示すると，xy 面内の電界成分 Ẽt(= Ẽxux + Ẽyuy) は，

Ẽt = (Z̃EJ
xx J̃x + Z̃EJ

xy J̃y)ux + (Z̃EJ
yx J̃x + Z̃EJ

yy J̃y)uy

≡
˜̄̄
Z

EJ

· J̃t (2.138)

ここで，

˜̄̄
Z

EJ

= Z̃EJ
xx uxux + Z̃EJ

xy uxuy + Z̃EJ
yx uyux + Z̃EJ

yy uyuy (2.139)
J̃t = J̃xux + J̃yuy (2.140)

2.3.2 マイクロストリップ素子のスペクトル領域の電界型ダイアディッ
ク・グリーン関数の表示式

いま，0 ≤ z ≤ d の領域 (I) が比誘電率 εr,1 ≡ εr の誘電体基板（比透磁率 µr,1 = 1），
z ≥ d の領域 (II)が空気（真空とみなし，εr,2 = 1，µr,2 = 1）のとき，kz,1 ≡ k1，kz,2 ≡ k2，
自由空間波数を k0 とおくと，

k2
0εr = k2

t + k2
1 (2.141)

k2
0 = k2

t + k2
2 (2.142)

k2
t = k2

x + k2
y (2.143)

これより，

Te = kz,1µr,2 cos kz,1d+ jkz,2µr,1 sin kz,1d

= k1 cos k1d+ jk2 sin k1d (2.144)

Tm = kz,2εr,1 cos kz,1d+ jkz,1εr,2 sin kz,1d

= k2ε1 cos k1d+ jk1 sin k1d (2.145)

よって，マトリクス要素 Z̃EJ
xx は，

Z̃EJ
xx = −j

ωε0
· sin k1d

k2
t

(
k2

xk1k2

Tm
+
k2

yk
2
0

Te

)

= −j
ωε0

· sin k1d

k2
t

·
k2

xk1k2Te + k2
yk

2
0Tm

TeTm

= −j
ωε0

· sin k1d

k2
t

·
k2(k2

xk
2
1 + kyk

2
0εr) cos k1d+ k1(k2

xk
2
2 + k2

yk
2
0)j sin k1d

TeTm

= −j
ω

√
ε0µ0

√
µ0

ε0

sin k1d

k2
t

· k2k
2
t (εrk2

0 − k2
x) cos k1d+ k1k

2
t (k2

0 − k2
x)j sin k1d

TeTm

= −jZ0

k0
· k2(εrk2

0 − k2
x) cos k1d+ jk1(k2

0 − k2
x) sin k1d

TeTm
sin k1d (2.146)
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ただし，Z0 は自由空間の波動インピーダンスを示す．また，Z̃EJ
xy ，Z̃EJ

yx は，

Z̃EJ
yx = Z̃EJ

xy = −j
ωε0

· kxky sin k1d

k2
t

(
k1k2

Tm
− k2

0
Te

)

= −j
ωε0

· kxky sin k1d

k2
t

· k1k2Te − k2
0Tm

TeTm

= −j
ω

√
ε0µ0

√
µ0

ε0

kxky sin k1d

k2
t

· k2(k2
1 − k2

0εr) cos k1d+ k1(k2
2 − k2

0)j sin k1d

TeTm

= −j
ωε0

· kxky sin k1d

k2
t

· k2(−k2
t ) cos k1d+ jk1(−k2

t ) sin k1d

TeTm

= jZ0

k0
· kxky(k2 cos k1d+ jk1 sin k1d)

TeTm
sin k1d (2.147)

また，Z̃EJ
yy は，xと y を入れ換えれた式となり，

Z̃EJ
yy = −jZ0

k0
·
k2(εrk2

0 − k2
y) cos k1d+ jk1(k2

0 − k2
y) sin k1d

TeTm
sin k1d (2.148)

2.4 モーメント法

2.4.1 空間領域における解析

マイクロストリップ導体表面の電流分布 Js を，基底関数 fx,n，fy,n により次のように展
開して近似する．

Js ' ux

Nx∑
n=1

Ix,nfx,n(x, y) + uy

Ny∑
n=1

Iy,nfy,n(x, y)

=
Nx∑

n=1
Ix,nfx,n(x, y) +

Ny∑
n=1

Iy,nfy,n(x, y) (2.149)

ただし，Ix,n，Iy,n は未知複素係数を示す．いま，励振電流源を Je とすると，マイクロスト
リップ導体表面での電界の境界条件より，(

E(Je) + E(Js)
)

tan
= 0 (on S) (2.150)

上式に，基底関数 fx,m (n = 1, 2, · · · , Nx)，fy,m (n = 1, 2, · · · , Ny) のスカラ積をとって面
積分すると，

¨
S

E(Je) · f(x
y

)
,mdS = −

¨
S

E(Js) · f(x
y

)
,mdS (on S) (2.151)
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電界 E(Js) は，ベクトル基底関数 fx,n，fy,n による電界の重ね合わせで，

E(Js) '
Nx∑

n=1
Ix,nE(fx,n) +

Ny∑
n=1

Iy,nE(fy,n) (2.152)

のように表すことができ，これより，
¨

S

E(Je) · f(x
y

)
,mdS = −

¨
S

 Nx∑
n=1

Ix,nE(fx,n) +
Ny∑

n=1
Iy,nE(fy,n)

 · f(x
y

)
,mdS

= −
Nx∑

n=1
Ix,n

¨
S

E(fx,n) · f(x
y

)
,mdS

−
Ny∑

n=1
Iy,n

¨
S

E(fy,n) · f(x
y

)
,mdS (2.153)

ここで，

V (x)
m ≡

¨
S

E(Je) · fx,mdS (2.154)

V (y)
m ≡

¨
S

E(Je) · fy,mdS (2.155)

また，

z(xx)
mn ≡ −

¨
S

E(fx,n) · fx,mdS (2.156)

z(xy)
mn ≡ −

¨
S

E(fy,n) · fx,mdS (2.157)

z(yx)
mn ≡ −

¨
S

E(fx,n) · fy,mdS (2.158)

z(yy)
mn ≡ −

¨
S

E(fy,n) · fy,mdS (2.159)

とおくと，

V (x)
m =

Nx∑
n=1

Ix,n z
(xx)
mn +

Ny∑
n=1

Iy,n z
(xy)
mn (m = 1, 2, · · · , Nx) (2.160)

V (y)
m =

Nx∑
n=1

Ix,n z
(yx)
mn +

Ny∑
n=1

Iy,n z
(yy)
mn (m = 1, 2, · · · , Ny) (2.161)

行列表示すると，

V = [Z]I (2.162)

ただし，V，I は (Nx +Ny)列ベクトル，[Z]は (Nx +Ny)次の正方行列である．よって，

I = [Z]−1V = [Y ]V (2.163)
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ただし

[Y ] = [Z]−1 (2.164)

2.4.2 スペクトル領域への変換

電界 E(fx,n)，E(fy,n) のフーリエ変換 Ẽ(fx,n)，Ẽ(fy,n) は，次式で与えられる．

Ẽ(fx,n) =
(
uxZ̃

EJ
xx + uyZ̃

EJ
yx

)
f̃x,n (2.165)

Ẽ(fy,n) =
(
uxZ̃

EJ
xy + uyZ̃

EJ
yy

)
f̃y,n (2.166)

これを逆フーリエ変換すれば，

E(fx,n) = 1
(2π)2

¨ ∞

−∞

(
uxZ̃

EJ
xx + uyZ̃

EJ
yx

)
f̃x,n e

j(kxx+kyy)dkxdky (2.167)

E(fx,n) = 1
(2π)2

¨ ∞

−∞

(
uxZ̃

EJ
xy + uyZ̃

EJ
yy

)
f̃y,n e

j(kxx+kyy)dkxdky (2.168)

こよれり，z(xx)
mn は，

z(xx)
mn = −

¨
S

E(fx,n) · fx,mdS

= −1
(2π)2

¨
S

¨ ∞

−∞

(
uxZ̃

EJ
xx + uyZ̃

EJ
yx

)
f̃x,n e

j(kxx+kyy)dkxdky · fx,mdS

= −1
(2π)2

¨
S

(¨ ∞

−∞
Z̃EJ

xx f̃x,ne
j(kxx+kyy)dkxdky

)
fx,mdS

= −1
(2π)2

¨ ∞

−∞

(¨
S

fx,me
j(kxx+kyy)dS

)
Z̃EJ

xx f̃x,ndkxdky (2.169)

ここで，

f̃(−kx,−ky) =
¨ ∞

−∞
f(x, y)ej(kxx+kyy)dxdy (2.170)

より，

z(xx)
mn = −1

(2π)2

¨ ∞

−∞
f̃x,m(−kx,−ky)Z̃EJ

xx (kx, ky)f̃x,n(kx, ky)dkxdky (2.171)

同様にして，

z(xy)
mn = −1

(2π)2

¨ ∞

−∞
f̃x,m(−kx,−ky)Z̃EJ

xy (kx, ky)f̃y,n(kx, ky)dkxdky (2.172)

z(yx)
mn = −1

(2π)2

¨ ∞

−∞
f̃y,m(−kx,−ky)Z̃EJ

yx (kx, ky)f̃x,n(kx, ky)dkxdky (2.173)

z(yy)
mn = −1

(2π)2

¨ ∞

−∞
f̃y,m(−kx,−ky)Z̃EJ

yy (kx, ky)f̃y,n(kx, ky)dkxdky (2.174)
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基底関数をベクトル表示して，

f̃n =
{
f̃x,nux (x方向電流)
f̃y,nuy (y方向電流) (2.175)

で表せば，マトリクス要素はダイアディックを用いて次のようになる．

zmn = −1
(2π)2

¨ ∞

−∞
f̃m(−kx,−ky) ·

˜̄̄
Z

EJ

(kx, ky) · f̃n(kx, ky)dkxdky (2.176)

2.4.3 マイクロストリップ・ダイポール素子

マイクロストリップ・ダイポール素子について，細線近似同様，線状方向（x方向とする）
に沿う電流成分のみを考え，幅方向（y 方向とする）には分布は一様とみなし，電流分布を
パルス状の基底関数 fu により展開する．

Js(x, y) ' ux

∑
i

Iifi(x)fu(y) (2.177)

線幅をW，座標原点をダイポール中心にとると，

fu(y) =


1
W

(
−W

2 ≤ y ≤ W

2

)
0 (otherwise)

(2.178)

スペクトル領域に変換すると，

f̃u(ky) =
ˆ ∞

−∞
fu(y)e−jkyydy =

ˆ W/2

−W/2

1
W
e−jkyydy = 1

W

[
e−jkyy

−jky

]W/2

−W/2

= 1
−jkyW

(
e−jkyW/2 − ejkyW/2

)
= −j2 sin(kyW/2)

−jkyW
= sin(kyW/2)

kyW/2
(2.179)

ここで，fi は線状方向の分布を表すための基底関数を示し，線状アンテナでは，次に示す区
分的な正弦波状の基底関数（piecewise-sinusoidal (PWS) function）がよく用いられる．

fi(x) =



sin ke(x− xi−1)
sin ke(xi − xi−1) (xi−1 ≤ x ≤ xi)

sin ke(xi+1 − x)
sin ke(xi+1 − xi)

(xi ≤ x ≤ xi+1)

0 (otherwise)

(2.180)

ただし，

ke = k0

√
εr + 1

2 (2.181)
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スペクトル領域への変換については，次のようになる．

f̃i(kx) =
ˆ ∞

−∞
fi(x)e−jkxxdx

=
ˆ xi

xi−1

sin ke(x− xi−1)
sin ke(xi − xi−1) e

−jkxxdx+
ˆ xi+1

xi

sin ke(xi+1 − x)
sin ke(xi+1 − xi)

e−jkxxdx

(2.182)

不定積分の公式（導出省略）ˆ
eax sin bx = eax

a2 + b2

(
a sin bx− b cos bx

)
(2.183)

を用いて求めると（導出省略），

f̃i(kx) = kee
−jkxxi

k2
x − k2

e

{
cos ke(xi − xi−1) − ejkx(xi−xi−1)

sin ke(xi − xi−1)

+cos ke(xi+1 − xi) − e−jkx(xi+1−xi)

sin ke(xi+1 − xi)

}
(2.184)

等間隔（h ≡ xi − xi−1 = xi+1 − xi）に分割した場合，基底関数は

fi(x) =


sin ke(h− |x− xi|)

sin keh
(|x− xi| ≤ h)

0 (otherwise)
(2.185)

となり，スペクトル領域では，

f̃i(kx) =
2ke

(
cos keh− cos kxh

)
(k2

x − k2
e) sin keh

e−jkxxi (2.186)

また，パッチアンテナでは，モードの重ね合わせを行う全領域基底関数（entire-domain
basis function）がよく用いられ，変数分離した 1変数（長さ L）の基底関数は次のように
なる．

fm(x) =

 sin mπ
L

(
x+ L

2

) (
−L

2 ≤ y ≤ L

2

)
0 (otherwise)

(2.187)

これより，スペクトル領域では，

f̃m(kx) =
ˆ ∞

−∞
fm(x)e−jkxxdx =

ˆ L/2

−L/2
sin mπ

L

(
x+ L

2

)
e−jkxxdx

=
2mπ
L(

mπ

L

)2
− k2

x


cos kx

L

2 (m = 1, 3, 5, · · · )

j sin kx
L

2 (m = 2, 4, 6, · · · )
(2.188)

なお，長さ Lにわたって積分する場合，mが偶数次のときは積分がゼロとなるので，奇数
次のみを考えればよい．
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2.4.4 理想的なプローブ給電のパッチアンテナ

相反定理より，

V

(
x
y

)
m =

ˆ
S

E(Je) · f(x
y

)
,mdS

=
ˆ

V

E(f(x
y

)
,m) · JedV (2.189)

点 (xp, yp)に理想的なプローブで給電したとすると，励振電流 Je は，

Je = δ(x− xp)δ(y − yp)uz (2.190)

で表され，プローブの積分範囲 lp を 0 ≤ z ≤ h とすると，

V

(
x
y

)
m =

ˆ
lp

E(f(x
y

)
,m) · δ(x− xp)δ(y − yp)uzdV

=
ˆ h

0
Ez(f(x

y

)
,m)
∣∣∣
(xp,yp)

dz (2.191)

ここで，Ez(f(x
y

)
,m) (0 ≤ z ≤ h) のスペクトル領域の式は，

Ẽz(f(x
y

)
,m) =

k(x
y

)kz,2 cos(kz,1z)

ωε0Tm
f̃(x

y

)
,m (2.192)

逆フーリエ変換して，

Ez(f(x
y

)
,m)
∣∣∣
(xp,yp)

= 1
(2π)2

¨ ∞

−∞

k(x
y

)kz,2 cos(kz,1z)

ωε0Tm
f̃(x

y

)
,me

j(kxxp+kyyp)dkxdky

よって，

V

(
x
y

)
m =

ˆ h

0

1
(2π)2

¨ ∞

−∞

k(x
y

)kz,2 cos(kz,1z)

ωε0Tm
f̃(x

y

)
,me

j(kxxp+kyyp)dkxdkydz

= 1
(2π)2

¨ ∞

−∞

k(x
y

)kz,2

ωε0Tm
f̃(x

y

)
,me

j(kxxp+kyyp)dkxdky

ˆ h

0
cos(kz,1z)dz

= 1
(2π)2

¨ ∞

−∞

k(x
y

)kz,2 sin(kz,1h)

ωε0kz,1Tm
f̃(x

y

)
,me

j(kxxp+kyyp)dkxdky

= 1
(2π)2

¨ ∞

−∞
Z̃EJ

z,
(

x
y

)f̃(x
y

)
,me

j(kxxp+kyyp)dkxdky (2.193)

ここで，

Z̃EJ
z,
(

x
y

) ≡
k(x

y

)kz,2 sin(kz,1h)

ωε0kz,1Tm
(2.194)
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2.5 スペクトル領域のベクトルポテンシャル

2.5.1 スペクトル領域のベクトルポテンシャルによるスペクトル領域の電
磁界

等質・等方性媒質において，電流分布 J による電磁界 E，H は，磁気的ベクトルポテン
シャル A を用いて次式で与えられる．

E = −jω
(

A + 1
k2 ∇∇ · A

)
(2.195)

H = 1
µ

∇ × A (2.196)

ただし，電流は面 S に分布している場合を考え，

A = µ

ˆ
S

G(r, r′)J(r′)dS′ (2.197)

一方，磁流分布 M に対する式は，双対性

A → F , J → M

E → Hf , H → −Ef

ε → µ, µ → ε

より，次のようになる．

Hf = −jω
(

F + 1
k2 ∇∇ · F

)
(2.198)

−Ef = 1
ε
∇ × F (2.199)

ここで，F は電気的ベクトルポテンシャルであり，磁流が面 S に分布している場合を考え，

F = ε

ˆ
S

Gf (r, r′)M(r′)dS′ (2.200)

空間領域のA(x, y) から，フーリエ変換したスペクトル領域の Ã(kx, ky, z) を定義すると，

Ã(kx, ky, z) =
¨ ∞

−∞
A(x, y, z) e−j(kxx+kyy)dxdy (2.201)

フーリエ変換対の関係より，

A(x, y, z) = 1
(2π)2

¨ ∞

−∞
Ã(kx, ky, z) ej(kxx+kyy)dkxdky (2.202)
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これより，

∇ · A(x, y, z)

= ∇ ·
[

1
(2π)2

¨ ∞

−∞
Ã(kx, ky, z) ej(kxx+kyy)dkxdky

]

= 1
(2π)2

¨ ∞

−∞
∇ ·

{
Ã ej(kxx+kyy)

}
dkxdky

= 1
(2π)2

¨ ∞

−∞

(
jkxux + jkyuy + ∂

∂z
uz

)
· Ã(kx, ky, z) ej(kxx+kyy)dkxdky

= 1
(2π)2

¨ ∞

−∞

(
jkt + ∂

∂z
uz

)
· Ã(kx, ky, z) ej(kxx+kyy)dkxdky (2.203)

ここで，kt ≡ kxux + kyuy．さらに，∇∇ · A は，

∇∇ · A(x, y, z)

= ∇
[

1
(2π)2

¨ ∞

−∞

(
jkt + ∂

∂z
uz

)
·Ã(kx, ky, z) ej(kxx+kyy)dkxdky

]
= 1

(2π)2

¨ ∞

−∞
∇
[(
jkt + ∂

∂z
uz

)
·Ã(kx, ky, z) ej(kxx+kyy)

]
dkxdky (2.204)

上式の被積分関数は，

∇
[(
jkt + ∂

∂z
uz

)
· Ã(kx, ky, z) ej(kxx+kyy)

]

= ∇
[(
jkxÃx + jkyÃy + ∂Ãz

∂z

)
ej(kxx+kyy)

]

= ∂

∂z

(
jkxÃx + jkyÃy + ∂Ãz

∂z

)
uze

j(kxx+kyy)

+
(
jkxÃx + jkyÃy + ∂Ãz

∂z

)(
jkxux + jkyuy

)
ej(kxx+kyy)

=
[
uz

(
jkt + ∂

∂z
uz

)
· ∂Ã

∂z
+ jkt

(
jkt + ∂

∂z
uz

)
· Ã

]
ej(kxx+kyy) (2.205)

よって，フーリエ変換対の関係より，

uz

(
jkt + ∂

∂z
uz

)
· ∂Ã

∂z
+ jkt

(
jkt + ∂

∂z
uz

)
· Ã

=
¨ ∞

−∞
∇∇ · A(x, y, z) e−j(kxx+kyy)dxdy (2.206)

また，∇ × A のフーリエ変換は（導出省略），(
jkt + ∂

∂z
uz

)
× Ã =

¨ ∞

−∞
∇ × A(x, y, z) e−j(kxx+kyy)dxdy (2.207)
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これより，電界 E，磁界H をフーリエ変換した式は，

Ẽ = −jω
[
Ã + 1

k2

{
uz

(
jkt + ∂

∂z
uz

)
· ∂Ã

∂z
+jkt

(
jkt + ∂

∂z
uz

)
· Ã

}]
(2.208)

H̃ = 1
µ

(
jkt + ∂

∂z
uz

)
× Ã (2.209)

2.5.2 面電流分布に対するスペクトル領域の電磁界

いま，z 一定の面上に面電流源がある場合を考えると，ベクトルポテンシャル Aの z 成
分 Az はゼロゆえ，スペクトル領域の z 成分 Ãz もゼロである．したがって，このときの電
界 Ẽ は，

Ẽ = −jω
[{

Ã + jkt

k2 (jkt · Ã)
}

+ 1
k2 uz

(
jkt · ∂Ã

∂z

)]
(2.210)

ここで，

uv ≡ kt

|kt|
= kt

kt
(2.211)

uu ≡ uv × uz (2.212)

を定義すると，Ãは，直交する uv に沿う軸 uの成分，および uv に沿う軸 v の成分で次の
ように表すことができる．

Ã =
(
Ã · uv

)
uv +

(
Ã · uu

)
uu ≡ Ãvuv + Ãuuu (2.213)

x

y

z

v

u

Φ

図 2.1. 座標系の定義
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これより，スペクトル領域の電界 Ẽ は，

Ẽ = −jω
[(

1 − k2
t

k2

)
Ãvuv + Ãuuu + jkt

k2
∂Ãv

∂z
uz

]

= −jω
(
k2

z

k2 Ãvuv + Ãuuu + jkt

k2
∂Ãv

∂z
uz

)
≡ Ẽvuv + Ẽuuu + Ẽzuz (2.214)

上式より，Av = 0 のとき Ẽz = 0 ゆえ，TE波であり，スペクトル領域の磁界 H̃ は，

H̃ = 1
µ

(
jkt + ∂

∂z
uz

)
×
(
Ãvuv + Ãuuu

)

= 1
µ

[
jktÃu(uv × uu) + ∂Ãv

∂z
(uz × uv) + ∂Ãu

∂z
(uz × uu)

]

= 1
µ

[
∂Ãu

∂z
uv + ∂Ãv

∂z

(
− uu

)
+ jktÃu

(
− uz

)]
≡ H̃vuv + H̃ ′

u

(
− uu

)
+ H̃zuz (2.215)

上式より，Au = 0 のとき，H̃z = 0 ゆえ，TM波である．いま，

cos Φ ≡ kx

kt
, sin Φ ≡ ky

kt
(2.216)

とおくと，

uv = kt

kt
= kx

kt
ux + ky

kt
uy = cos Φux + sin Φuy (2.217)

uu = uv × uz =
(
kx

kt
ux + ky

kt
uy

)
× uz = −kx

kt
uy + ky

kt
ux = sin Φux − cos Φuy

(2.218)

行列表示すると，(
uu

uv

)
=
(

uu · ux uu · uy

uv · ux uv · uy

)(
ux

uy

)
=
(

sin Φ − cos Φ
cos Φ sin Φ

)(
ux

uy

)
(2.219)

ここで，

[ΦR] ≡
(

uu · ux uu · uy

uv · ux uv · uy

)
=
(

sin Φ − cos Φ
cos Φ sin Φ

)
(2.220)

とおくと，(
uu

uv

)
= [ΦR]

(
ux

uy

)
(2.221)

[ΦR]の転置を [ΦR]t で表すと，逆の関係は次のようになる．(
ux

uy

)
= [ΦR]t

(
uu

uv

)
(2.222)
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2.5.3 磁流分布に対するスペクトル領域の電磁界

電流分布 J によるスペクトル領域の電磁界 Ẽ，H̃

Ẽ = −jω
(
k2

z

k2 Ãvuv + Ãuuu + jkt

k2
∂Ãv

∂z
uz

)
(2.223)

H̃ = 1
µ

[
∂Ãu

∂z
uv + ∂Ãv

∂z
(−uu) + jktÃu(−uz)

]
(2.224)

に対して双対性を適用すると，磁流分布M によるスペクトル領域の電磁界 H̃f，Ẽf が得
られ，次のようになる．

H̃f = −jω
(
k2

z

k2 F̃vuv + F̃uuu + jkt

k2
∂F̃v

∂z
uz

)
≡ H̃f

v uv + H̃f
u uu + H̃f

z uz (2.225)

−Ẽf = 1
ε

[
∂F̃u

∂z
uv + ∂F̃v

∂z

(
− uu

)
+ jktF̃uuz

]
≡ Ẽf ′

v uv + Ẽf ′′
u

(
− uu

)
+ Ẽf

z uz

(2.226)

ただし，スペクトル領域の電気的ベクトルポテンシャル F̃ も，z 軸に直交する成分のみで，

F̃ =
(

F̃ · uv

)
uv +

(
F̃ · uu

)
uu = F̃vuv + F̃uuu (2.227)

これより，

• F̃v = 0 のとき，H̃f
z = 0 ゆえ，F̃ ≡ F̃uuu とおけば TM波が得られる．

• F̃u = 0 のとき，Ẽf
z = 0 ゆえ，F̃ ≡ F̃vuv とおけば TE波が得られる．

2.5.4 スペクトル領域の磁気的・電気的ベクトルポテンシャル

ベクトルポテンシャル A について，(
∇2 + k2

)
A = 0 (2.228)

とするとき，A = Auで与えられれば（uは単位ベクトル），
(
∇2 + k2

)
A = 0 となる．こ

のとき，∇2A は，

∇2A(x, y, z) = ∇2
[

1
(2π)2

¨ ∞

−∞
Ã(kx, ky, z) ej(kxx+kyy)dkxdky

]

= 1
(2π)2

¨ ∞

−∞
∇2
{
Ã ej(kxx+kyy)

}
dkxdky

= 1
(2π)2

¨ ∞

−∞

(
(jkx)2 + (jky)2 + ∂2

∂z2

)
· Ã(kx, ky, z) ej(kxx+kyy)dkxdky

= 1
(2π)2

¨ ∞

−∞

(
−k2

t + ∂2

∂z2

)
Ã ej(kxx+kyy)dkxdky (2.229)
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フーリエ変換対の関係より，(
−k2

t + ∂2

∂z2

)
Ã(kx, ky, z) =

¨ ∞

−∞
∇2A(x, y, z) e−j(kxx+kyy)dxdy (2.230)

したがって，空間領域からスペクトル領域への変換は，(
∇2 + k2

)
A = 0 →

(
−k2

t + ∂2

∂z2 + k2
)
Ã =

(
∂2

∂z2 + k2
z

)
Ã = 0 (2.231)

これより，

Ã = Ã+e−jkzz + Ã−ejkzz (2.232)

同様に，電気的ベクトルポテンシャル F についても，(
∇2 + k2

)
F = 0 (2.233)

とするとき，F = Fu で与えられれば，空間領域からスペクトル領域への変換は，(
∇2 + k2

)
F = 0 →

(
∂2

∂z2 + k2
z

)
F̃ = 0 (2.234)

よって，

F̃ = F̃+e−jkzz + F̃−ejkzz (2.235)

2.6 スペクトル領域の基本行列

2.6.1 スペクトル領域の磁気的ベクトルポテンシャルによるTE波成分

Ãv = 0 のとき，電界の z 成分がゼロゆえ，TE波が得られる．このとき，Ã = Ãuuu と
おくと，(

∂2

∂z2 + k2
z

)
Ãu = 0 (2.236)

よって，

Ãu = Ã+
u e

−jkzz + Ã−
u e

jkzz (2.237)

電磁界の xy 面内の成分は，Ẽu，H̃v のみとなり，

Ẽu(z) = −jωÃu = −jω
(
Ã+

u e
−jkzz + Ã−

u e
jkzz

)
≡ Ẽ+

u e
−jkzz + Ẽ−

u e
jkzz (2.238)

H̃v(z) = 1
µ

∂Ãu

∂z
= 1
µ

∂

∂z

(
Ã+

u e
−jkzz + Ã−

u e
jkzz

)
= −jkz

µ

(
Ã+

u e
−jkzz − Ã−

u e
jkzz

)
= kz

ωµ

(
Ẽ+

u e
−jkzz − Ẽ−

u e
jkzz

)
= YTE

(
Ẽ+

u e
−jkzz − Ẽ−

u e
jkzz

)
(2.239)
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ここで，γ ≡ jkz とおくと

YTE ≡ kz

ωµ
= γ

jωµ
= 1
ZTE

(2.240)

2.6.2 スペクトル領域の磁気的ベクトルポテンシャルによるTM波成分

Ãu = 0 のとき，磁界の z 成分がゼロゆえ，TM波が得られる．このとき，Ã = Ãvuv と
おくと，(

∂2

∂z2 + k2
z

)
Ãv = 0 (2.241)

よって，

Ãv = Ã+
v e

−jkzz + Ã−
v e

jkzz (2.242)

電磁界の xy 面内の成分は，Ẽv，H̃ ′
u のみとなり，

Ẽv(z) = −jωk
2
z

k2 Ãv = −jωk
2
z

k2

(
Ã+

v e
−jkzz + Ã−

v e
jkzz

)
≡ Ẽ+

v e
−jkzz + Ẽ−

v e
jkzz (2.243)

H̃ ′
u(z) = 1

µ

∂Ãv

∂z
= 1
µ

∂

∂z

(
Ã+

v e
−jkzz + Ã−

v e
jkzz

)
= −jkz

µ

(
Ã+

v e
−jkzz − Ã−

v e
jkzz

)
= k2

ωµkz

(
Ẽ+

v e
−jkzz − Ẽ−

v e
jkzz

)
= YTM

(
Ẽ+

v e
−jkzz − Ẽ−

v e
jkzz

)
(2.244)

ただし，

YTM ≡ k2

ωµkz
= ω2εµ

ωµkz
= ωε

kz
= jωε

γ
= 1
ZTM

(2.245)

2.6.3 スペクトル領域の電気的ベクトルポテンシャルによるTM波成分

F̃v = 0 のとき，磁界の z 成分がゼロゆえ TM波が得られる．このとき，F̃ = F̃uuu とお
くと，(

∂2

∂z2 + k2
z

)
F̃u = 0 (2.246)

よって，

F̃u = F̃+
u e

−jkzz + F̃−
u e

jkzz (2.247)
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電磁界の xy 面内の成分は，H̃f
u，Ẽf ′

v のみとなり，

H̃f
u (z) = −jωF̃u = −jω

(
F̃+

u e
−jkzz + F̃−

u e
jkzz

)
≡ H̃f+

u e−jkzz + H̃f−
u ejkzz (2.248)

Ẽf ′
v (z) = 1

ε

∂F̃u

∂z
= 1
ε

∂

∂z

(
F̃+

u e
−jkzz + F̃−

u e
jkzz

)
= −jkz

ε

(
F̃+

u e
−jkzz − F̃−

u e
jkzz

)
= kz

ωε

(
H̃f+

u e−jkzz − H̃f−
u ejkzz

)
= ZTM

(
H̃f+

u e−jkzz − H̃f−
u ejkzz

)
(2.249)

ここで，γ ≡ jkz とおくと

ZTM ≡ kz

ωε
= γ

jωε
= 1
YTM

(2.250)

電界の係数を基準にして表すと，

Ẽf ′
v (z) ≡ Ẽf+

v e−jkzz + Ẽf−
v ejkzz (2.251)

H̃f
u (z) = YTM

(
Ẽf+

v e−jkzz − Ẽf−
v ejkzz

)
(2.252)

2.6.4 スペクトル領域の電気的ベクトルポテンシャルによるTE波成分

F̃u = 0 のとき，電界の z 成分がゼロゆえ TE波が得られる．このとき，F̃ = F̃vuv とお
くと，(

∂2

∂z2 + k2
z

)
F̃v = 0 (2.253)

よって，

F̃v = F̃+
v e

−jkzz + F̃−
v e

jkzz (2.254)

電磁界の xy 面内の成分は，H̃f
v，Ẽf ′′

u のみとなり，

H̃f
v (z) = −jωk

2
z

k2 F̃v = −jωk
2
z

k2

(
F̃+

v e
−jkzz + F̃−

v e
jkzz

)
≡ H̃f+

v e−jkzz + H̃f−
v ejkzz (2.255)

Ẽf ′′
u (z) = 1

ε

∂F̃v

∂z
= 1
ε

∂

∂z

(
F̃+

v e
−jkzz + F̃−

v e
jkzz

)
= −jkz

ε

(
F̃+

v e
−jkzz − F̃−

v e
jkzz

)
= k2

ωεkz

(
H̃f+

v e−jkzz − H̃f−
v ejkzz

)
= ZTE

(
H̃f+

v e−jkzz − H̃f−
v ejkzz

)
(2.256)

ただし，

ZTE ≡ k2

ωεkz
= ω2εµ

ωεkz
= ωµ

kz
= jωµ

γ
= 1
YTE

(2.257)

53



電界の係数を基準にして表すと，

Ẽf ′′
u (z) ≡ Ẽf+

u e−jkzz + Ẽf−
u ejkzz (2.258)

H̃f
v (z) = YTE

(
Ẽf+

u e−jkzz − Ẽf−
u ejkzz

)
(2.259)

2.6.5 基本行列

境界面に接する電磁界は，Ãより，

Ẽtan = Ẽv(z)uv + Ẽu(z)uu (2.260)

H̃tan = H̃v(z)uv + H̃ ′
u(z)

(
− uu

)
(2.261)

また，F̃ より，

H̃f
tan = H̃f

v (z)uv + H̃f
u (z)uu (2.262)

−Ẽf
tan = Ẽf ′

v (z)uv + Ẽf ′′
u (z)

(
− uu

)
(2.263)

で表され，各成分は先に示したように，

• Ã から得られる TE波成分 Ẽu(z)，H̃v(z)，YTE = 1/ZTE，Ẽ+
u，Ẽ−

u

• Ã から得られる TM波成分 Ẽv(z)，H̃ ′
u(z)，YTM = 1/ZTM，Ẽ+

v ，Ẽ−
v

• F̃ から得られる TM波成分 Ẽf ′
v (z)，H̃f

u (z)，YTM = 1/ZTM，Ẽf+
v ，Ẽf−

v

• F̃ から得られる TE波成分 Ẽf ′′
u (z)，H̃f

v (z)，YTE = 1/ZTE，Ẽf+
u ，Ẽf−

u

これらを，

Ẽ(z), H̃(z), Y = 1/Z, Ẽ+, Ẽ−

でまとめて表すと，次のようになる．

Ẽ(z) = Ẽ+e−jkzz + Ẽ−ejkzz (2.264)

H̃(z) = Y
(
Ẽ+e−jkzz − Ẽ−ejkzz) (2.265)

いま，z = 0 のとき，

Ẽ(0) = Ẽ+ + Ẽ− (2.266)

H̃(0) = Y
(
Ẽ+ − Ẽ−

)
(2.267)

また，z = d のとき，

Ẽ(d) = Ẽ+e−jkzd + Ẽ−ejkzd (2.268)

H̃(d) = Y
(
Ẽ+e−jkzd − Ẽ−ejkzd) (2.269)
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これより，Ẽ+，Ẽ− を消去すれば，スペクトル領域の電磁界成分に対する基本行列 [F ] を
定義することができ，次のようになる．(

Ẽ(0)
H̃(0)

)
= [F ]

(
Ẽ(d)
H̃(d)

)
, [F ] =

(
cos kzd jZ sin kzd

jY sin kzd cos kzd

)
(2.270)

あるいは，(
Ẽ(−d)
H̃(−d)

)
= [F ]

(
Ẽ(0)
H̃(0)

)
(2.271)

逆行列を考えると，(
Ẽ(d)
H̃(d)

)
= [F ]−1

(
Ẽ(0)
H̃(0)

)
, [F ]−1 =

(
cos kzd −jZ sin kzd

−jY sin kzd cos kzd

)
(2.272)

あるいは，(
Ẽ(0)
H̃(0)

)
= [F ]−1

(
Ẽ(−d)
H̃(−d)

)
(2.273)

これより，N 層の誘電体に対する基本行列は，次のようにして求められる．(
Ẽ(0)
H̃(0)

)
= [F1][F2] · · · [FN ]

(
Ẽ(d)
H̃(d)

)
(2.274)

ここで，

[Fi] =
(

cos kz,idi jZi sin kz,idi

jYi sin kz,idi cos kz,idi

)
(i = 1, 2, · · · , N) (2.275)

ただし，添字 i は，i 番目の誘電体に対するパラメータを示す．

2.7 スペクトル領域の境界条件

2.7.1 面電流源がある場合のスペクトル領域の連続条件

媒質 i+ 1，i の境界面 S（xy 面）に面電流源 J がある場合，

uz ×
(

Hi+1 − Hi

)
= J on S (2.276)

これをフーリエ変換すると，
¨ ∞

−∞
uz ×

(
Hi+1(x, y) − Hi(x, y)

)
e−j(kxx+kyy)dxdy

=
¨ ∞

−∞
J e−j(kxx+kyy)dxdy (on S) (2.277)
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これより，面電流源がある場合のスペクトル領域の磁界の連続条件は，

uz ×
(

H̃i+1 − H̃i

)
= J̃ (on S) (2.278)

ここで，

H̃j = H̃v,juv + H̃ ′
u,j

(
− uu

)
(j = i, i+ 1) (2.279)

とおくと，uz = uu × uv より，

uz ×
[
H̃v,i+1uv + H̃ ′

u,i+1

(
− uu

)
− H̃v,iuv − H̃ ′

u,i

(
− uu

)]
= −H̃v,i+1uu − H̃ ′

u,i+1uv + H̃v,iuu + H̃ ′
u,iuv

= J̃vuv + J̃uuu (on S) (2.280)

よって，

H̃v,i+1 − H̃v,i = −J̃u (on S) (2.281)

H̃ ′
u,i+1 − H̃ ′

u,i = −J̃v (on S) (2.282)

2.7.2 面磁流源がある場合のスペクトル領域の連続条件

導体面 S上に面磁流源がある場合の境界条件は，

uz × (−Ẽf ) = M̃ (on S) (2.283)

より，

uz ×
[
Ẽf ′

v uv + Ẽf ′′
u

(
− uu

)]
= −Ẽf ′

v uu − Ẽf ′′
u uv

= M̃vuv + M̃uuu (2.284)

よって，

Ẽf ′
v = −M̃u (on S) (2.285)

Ẽf ′′
u = −M̃v (on S) (2.286)

2.8 多層誘電体基板中に面電流源がある場合

図のように誘電体（厚み d1 の多層誘電体基板）と誘電体（厚み d2 の多層誘電体基板）の
境界面（z = 0）に面電流源がある場合を考える．そして，領域 (2)の基本行列が次のよう
に与えられているものとする．(

Ẽ2(0)
H̃2(0)

)
=
[
F (+)

] (Ẽ2(d2)
H̃2(d2)

)
,

[
F (+)

]
=
F (+)

11 F
(+)
12

F
(+)
21 F

(+)
22

 (2.287)
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Yin

J

(+)

Yin(–)z=–d1

z=d2
z=0

(1)

(2)
(3)

(0)

図 2.2. 多層誘電体基板中に面電流源がある場合

逆は，
(
Ẽ2(d2)
H̃2(d2)

)
=
[
F (+)

]−1
(
Ẽ2(0)
H̃2(0)

)
,

[
F (+)

]−1
=
F (+)′

11 F
(+)′
12

F
(+)′
21 F

(+)′
22

 (2.288)

このとき，z = d2 の接線電磁界の連続条件より，

Ẽ2(d2) = Ẽ3(d2) (2.289)

H̃2(d2) = H̃3(d2) (2.290)

また，領域 (3)（z ≥ d2）では，後進波が存在しないことから，

H̃3(d2) = Y3Ẽ3(d2) (2.291)

これより，z = 0において z ≥ 0の誘電体を見た入力アドミタンス Y
(+)

in は，

Y
(+)

in = H̃2(0)
Ẽ2(0)

= F
(+)
21 Ẽ2(d2) + F

(+)
22 H̃2(d2)

F
(+)
11 Ẽ2(d2) + F

(+)
12 H̃2(d2)

= F
(+)
21 Ẽ3(d2) + F

(+)
22 H̃3(d2)

F
(+)
11 Ẽ3(d2) + F

(+)
12 H̃3(d2)

= F
(+)
21 Ẽ3(d2) + F

(+)
22 Y3Ẽ3(d2)

F
(+)
11 Ẽ3(d2) + F

(+)
12 Y3Ẽ3(d2)

= F
(+)
21 + F

(+)
22 Y3

F
(+)
11 + F

(+)
12 Y3

(2.292)

同様に，領域 (1)の基本行列が次のように与えられているものとする．
(
Ẽ1(−d1)
H̃1(−d1)

)
=
[
F (−)

] (Ẽ1(0)
H̃1(0)

)
,

[
F (−)

]
=
F (−)

11 F
(−)
12

F
(−)
21 F

(−)
22

 (2.293)

逆は，
(
Ẽ1(0)
H̃1(0)

)
=
[
F (−)

]−1
(
Ẽ1(−d1)
H̃1(−d1)

)
,

[
F (−)

]−1
=
F (−)′

11 F
(−)′
12

F
(−)′
21 F

(−)′
22

 (2.294)

このとき，z = −d1 の接線電磁界の連続条件より，

Ẽ1(−d1) = Ẽ0(−d1) (2.295)

H̃1(−d1) = H̃0(−d1) (2.296)
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また，領域 (0)（z ≤ −d1）では，前進波が存在しないことから，

H̃0(−d1) = −Y0Ẽ0(−d1) (2.297)

これより，z = 0において z ≤ 0の誘電体を見た入力アドミタンス Y
(−)

in は，

Y
(−)

in = −H̃1(0)
Ẽ1(0)

= −F
(−)′
21 Ẽ0(−d1) + F

(−)′
22 H̃0(−d1)

F
(−)′
11 Ẽ0(−d1) + F

(−)′
12 H̃0(−d1)

= −F
(−)′
21 Ẽ1(−d1) + F

(−)′
22 H̃1(−d1)

F
(−)′
11 Ẽ1(−d1) + F

(−)′
12 H̃1(−d1)

= −F
(−)′
21 Ẽ1(−d1) − F

(−)′
22 Y0Ẽ1(−d1)

F
(−)′
11 Ẽ1(−d1) − F

(−)′
12 Y0Ẽ1(−d1)

= −F
(−)′
21 − F

(−)′
22 Y0

F
(−)′
11 − F

(−)′
12 Y0

(2.298)

そして，z = 0 におけるスペクトル領域の電流を J̃ とすると，z = 0 の電磁界の連続条件
より，

Ẽ2(0) − Ẽ1(0) = 0 (2.299)

H̃2(0) − H̃1(0) = −J̃ (2.300)

これより，

Y
(+)

in Ẽ2(0) + Y
(−)

in Ẽ2(0) = −J̃ (2.301)

よって，

Ẽ2(0) = Ẽ1(0) = −J̃
Y

(+)
in + Y

(−)
in

≡ Z̃(0)J̃ (2.302)

ただし，

Z̃(0) = − 1
Y

(+)
in + Y

(−)
in

(2.303)

Y
(+)

in = F
(+)
21 + F

(+)
22 Y3

F
(+)
11 + F

(+)
12 Y3

(2.304)

Y
(−)

in = −F
(−)′
21 − F

(−)′
22 Y0

F
(−)′
11 − F

(−)′
12 Y0

(2.305)

また，

H̃2(0) = Y
(+)

in Ẽ2(0) = − Y
(+)

in J̃

Y
(+)

in + Y
(−)

in

(2.306)

H̃1(0) = H̃2(0) + J̃ = − Y
(+)

in J̃

Y
(+)

in + Y
(−)

in

+ J̃ = − Y
(−)

in J̃

Y
(+)

in + Y
(−)

in

(2.307)
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z = d2 の誘電体と空気の境界面では，

Ẽ2(d2) = F
(+)′
11 Ẽ2(0) + F

(+)′
12 H̃2(0) = F

(+)′
11 Ẽ2(0) + F

(+)′
12 Y

(+)
in Ẽ2(0)

=
(
F

(+)′
11 + F

(+)′
12 Y

(+)
in

)
Z̃(0)J̃ ≡ YtransZ̃

(0)J̃ ≡ Z̃(d2)J̃ (2.308)

H̃2(d2) = Y3Ẽ2(d2) = Y3Z̃
(d2)J̃ ≡ P̃ (d2)J̃ (2.309)

ここで，

Ytrans ≡ F
(+)′
11 + F

(+)′
12 Y

(+)
in (2.310)

したがって，

Z̃(d2) = YtransZ̃
(0) = − Ytrans

Y
(+)

in + Y
(−)

in

(2.311)

P̃ (d2) = Y3Z̃
(d2) (2.312)

2.9 地導体板付き多層誘電体基板中に面電流源がある場合

厚み d1 の多層誘電体基板の片面に地導体板を付け（z = −d1），この基板と厚み d2 の多
層誘電体基板との境界面（z = 0）に電流源がある場合を考える．ここでも同様に，領域 (1)，
(2)の基本行列が各々与えられているものとする．z = 0 において z ≥ 0 の誘電体を見た入
力アドミタンス Y

(+)
in は，

Y
(+)

in = F
(+)
21 + F

(+)
22 Y3

F
(+)
11 + F

(+)
12 Y3

(2.313)

一方，地導体板が完全導体のとき，z = −d1 の電界の接線成分はゼロゆえ，

Ẽ1(−d1) = 0 (2.314)

z=–d1

z=d2
z=0

J
Yin(+)

Yin(–)
(1)

(2)
(3)

図 2.3. 地導体板付き多層誘電体基板中に面電流源がある場合
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これより，z = 0 において z ≤ 0 の誘電体を見た入力アドミタンス Y
(−)

in は，

Y
(−)

in = −H̃1(0)
Ẽ1(0)

= −F
(−)′
21 Ẽ1(−d1) + F

(−)′
22 H̃1(−d1)

F
(−)′
11 Ẽ1(−d1) + F

(−)′
12 H̃1(−d1)

= −F
(−)′
22 H̃1(−d1)
F

(−)′
12 H̃1(−d1)

= −F
(−)′
22

F
(−)′
12

(2.315)

z = 0 でのスペクトル領域の電流を J̃ とすると，z = 0 の電磁界の連続条件より，

Ẽ2(0) − Ẽ1(0) = 0 (2.316)

H̃2(0) − H̃1(0) = −J̃ (2.317)

これより，

Y
(+)

in Ẽ2(0) + Y
(−)

in Ẽ2(0) = −J̃ (2.318)

よって，

Ẽ2(0) = Ẽ1(0) = −J̃
Y

(+)
in + Y

(−)
in

≡ Z̃(0)J̃ (2.319)

ただし，

Z̃(0) = − 1
Y

(+)
in + Y

(−)
in

(2.320)

Y
(+)

in = F
(+)
21 + F

(+)
22 Y3

F
(+)
11 + F

(+)
12 Y3

(2.321)

Y
(−)

in = −F
(−)′
22

F
(−)′
12

(2.322)

また，

H̃2(0) = Y
(+)

in Ẽ2(0) = − Y
(+)

in J̃

Y
(+)

in + Y
(−)

in

(2.323)

H̃1(0) = H̃2(0) + J̃ = − Y
(+)

in J̃

Y
(+)

in + Y
(−)

in

+ J̃ = − Y
(−)

in J̃

Y
(+)

in + Y
(−)

in

(2.324)

z = d2 の誘電体と空気の境界面では，

Ẽ2(d2) = F
(+)′
11 Ẽ2(0) + F

(+)′
12 H̃2(0) = F

(+)′
11 Ẽ2(0) + F

(+)′
12 Y

(+)
in Ẽ2(0)

=
(
F

(+)′
11 + F

(+)′
12 Y

(+)
in

)
Z̃(0)J̃ ≡ YtransZ̃

(0)J̃ ≡ Z̃(d2)J̃ (2.325)
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ここで，

Ytrans ≡ F
(+)′
11 + F

(+)′
12 Y

(+)
in (2.326)

これより，

H̃2(d2) = Y3Ẽ2(d2) = Y3Z̃
(d2)J̃ ≡ P̃ (d2)J̃ (2.327)

したがって，

Z̃(d2) = YtransZ̃
(0) = − Ytrans

Y
(+)

in + Y
(−)

in

(2.328)

P̃ (d2) = Y3Z̃
(d2) (2.329)

　一方，z = −d1 の地導体面上では，

Ẽ1(−d1) = 0 (2.330)

また，

H̃1(−d1) = F
(−)
21 Ẽ1(0) + F

(−)
22 H̃1(0) = F

(−)
21 Ẽ1(0) + F

(−)
22

(
−Y (−)

in Ẽ1(0)
)

=
(
F

(−)
21 − F

(−)
22 Y

(−)
in

)
Ẽ1(0) = −F

(−)
21 − F

(−)
22 Y

(−)
in

Y
(+)

in + Y
(−)

in

J̃ ≡ P̃ (−d1)J̃ (2.331)

ここで，

P̃ (−d1) = −F (−)
21 + F

(−)
22 Y

(−)
in

Y
(+)

in + Y
(−)

in

(2.332)

2.10 多層誘電体基板の地導体面に磁流源がある場合

z = 0 の境界条件より，

Ẽ1(0) = −M̃ (2.333)

このとき，

H̃1(0) = Y
(+)

in Ẽ1(0) = −Y (+)
in M̃ ≡ Ỹ (0)M̃ (2.334)

ここで，

Ỹ (0) = −Y (+)
in = −F

(+)
21 + F

(+)
22 Y2

F
(+)
11 + F

(+)
12 Y2

(2.335)
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(1)
(2)

z=d2
z=0

Yin(+)

Ground Plane

M

図 2.4. 多層誘電体基板の地導体面に磁流源がある場合

また，

H̃1(d1) = F
(+)′
21 Ẽ1(0) + F

(+)′
22 H̃1(0) = F

(+)′
21

(
−M̃

)
+ F

(+)′
22

(
−M̃Y

(+)
in

)
= −

(
F

(+)′
21 + F

(+)′
22 Y

(+)
in

)
M̃ ≡ Ỹ (d1)M̃ (2.336)

Ẽ1(d1) = Ẽ2(d1) = Z2H̃2(d1) = Z2H̃1(d1) = Z2Ỹ
(d1)M̃ ≡ Q̃(d1)M̃ (2.337)

ここで，

Ỹ (d1) = −
(
F

(+)′
21 + F

(+)′
22 Y

(+)
in

)
(2.338)

Q̃(d1) = Z2Ỹ
(d1) = −Z2

(
F

(+)′
21 + F

(+)′
22 Y

(+)
in

)
(2.339)

2.11 面電流源に対するグリーン関数

2.11.1 スペクトル領域の電界型ダイアディック・グリーン関数

境界面に接する電界のベクトル Ẽtan は，

Ẽtan = Ẽuuu + Ẽvuv = Z̃(z)
T E
J̃uuu + Z̃(z)

T M
J̃vuv (2.340)

(2.341)

成分を行列表示すると，(
Ẽtan · uu

Ẽtan · uv

)
=
(
Ẽu

Ẽv

)
=
(
Z̃(z)

T E
0

0 Z̃(z)
T M

)(
J̃u

J̃v

)
(2.342)

x，y 成分を求めると，(
Ẽx

Ẽy

)
=
(Ẽvuv + Ẽuuu

)
· ux(

Ẽvuv + Ẽuuu

)
· uy

 =
(

uu · ux uv · ux

uu · uy uv · uy

)(
Ẽu

Ẽv

)

= [Φ]t
(
Z̃(z)

T E
0

0 Z̃(z)
T M

)(
J̃u

J̃v

)
= [Φ]t

(
Z̃(z)

T E
0

0 Z̃(z)
T M

)(J̃xux + J̃yuy

)
· uu(

J̃xux + J̃yuy

)
· uv


= [Φ]t

(
Z̃(z)

T E
0

0 Z̃(z)
T M

)(
ux · uu uy · uu

ux · uv uy · uv

)(
J̃x

J̃y

)

= [Φ]t
(
Z̃(z)

T E
0

0 Z̃(z)
T M

)
[Φ]

(
J̃x

J̃y

)
(2.343)
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ここで，(
Ẽx

Ẽy

)
=
(
G̃

EJ

xx G̃
EJ

xy

G̃
EJ

yx G̃
EJ

yy

)(
J̃x

J̃y

)
(2.344)

とおくと，(
G̃

EJ

xx G̃
EJ

xy

G̃
EJ

yx G̃
EJ

yy

)
= [Φ]t

(
Z̃(z)

T E
0

0 Z̃(z)
T M

)
[Φ]

=
(

sin Φ cos Φ
− cos Φ sin Φ

)(
Z̃(z)

T E
0

0 Z̃(z)
T M

)(
sin Φ − cos Φ
cos Φ sin Φ

)

=
Z̃(z)

T E
sin2 Φ + Z̃(z)

T M
cos2 Φ

(
Z̃(z)

T M
− Z̃(z)

T E

)
sin Φ cos Φ(

Z̃(z)
T M

− Z̃(z)
T E

)
sin Φ cos Φ Z̃(z)

T E
cos2 Φ + Z̃(z)

T M
sin2 Φ

 (2.345)

これより，

˜̄̄
G

EJ

T = G̃
EJ

xxuxux + G̃
EJ

xy uxuy + G̃
EJ

yx uyux + G̃
EJ

yy uyuy (2.346)

とおくと，Ẽtan は，

Ẽtan =
(
G̃

EJ

xx J̃x + G̃
EJ

xy J̃y

)
ux +

(
G̃

EJ

yx J̃x + G̃
EJ

yy J̃y

)
uy =

˜̄̄
GT

EJ · J̃ (2.347)

ただし，

G̃
EJ

xx = Z̃(z)
T E

sin2 Φ + Z̃(z)
T M

cos2 Φ = 1
k2

t

(
k2

yZ̃
(z)
T E

+ k2
xZ̃

(z)
T M

)
(2.348)

G̃
EJ

xy = G̃
EJ

yx =
(
Z̃(z)

T M
− Z̃(z)

T E

)
sin Φ cos Φ = kxky

k2
t

(
Z̃(z)

T M
− Z̃(z)

T E

)
(2.349)

G̃
EJ

yy = Z̃(z)
T E

cos2 Φ + Z̃(z)
T M

sin2 Φ = 1
k2

t

(
k2

xZ̃
(z)
T E

+ k2
yZ̃

(z)
T M

)
(2.350)

2.11.2 スペクトル領域の磁界型ダイアディック・グリーン関数

同様にして，境界面に接する磁界のベクトル H̃tan が，

H̃tan = H̃ ′
u

(
− uu

)
+ H̃vuv = P̃ (z)

T M
J̃v

(
− uu

)
+ P̃ (z)

T E
J̃uuv (2.351)

で与えられている場合を考える．成分を行列表示すると，(
H̃tan · uu

H̃tan · uv

)
=
(

−H̃ ′
u

H̃v

)
=
(

0 −P̃ (z)
T M

P̃ (z)
T E

0

)(
J̃u

J̃v

)
(2.352)
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x，y 成分を求めると，(
H̃x

H̃y

)
=
(H̃vuv − H̃ ′

uuu

)
· ux(

H̃vuv − H̃ ′
uuu

)
· uy

 =
(

uu · ux uv · ux

uu · uy uv · uy

)(
−H̃ ′

u

H̃v

)

= [Φ]t
(

0 −P̃ (z)
T M

P̃ (z)
T E

0

)(
J̃v

J̃u

)
= [Φ]t

(
0 −P̃ (z)

T M

P̃ (z)
T E

0

)
[Φ]

(
J̃x

J̃y

)

=
(
G̃

HJ

xx G̃
HJ

xy

G̃
HJ

yx G̃
HJ

yy

)(
J̃x

J̃y

)
(2.353)

したがって，(
G̃

HJ

xx G̃
HJ

xy

G̃
HJ

yx G̃
HJ

yy

)
= [Φ]t

(
0 −P̃ (z)

T M

P̃ (z)
T E

0

)
[Φ]

=
(

sin Φ cos Φ
− cos Φ sin Φ

)(
0 −P̃ (z)

T M

P̃ (z)
T E

0

)(
sin Φ − cos Φ
cos Φ sin Φ

)

=
(P̃ (z)

T E
− P̃ (z)

T M

)
sin Φ cos Φ −P̃ (z)

T E
cos2 Φ − P̃ (z)

T M
sin2 Φ

P̃ (z)
T E

sin2 Φ + P̃ (z)
T M

cos2 Φ
(
P̃ (z)

T M
− P̃ (z)

T E

)
sin Φ cos Φ

 (2.354)

よって，H̃tan =
˜̄̄
GT

HJ · J̃ とおいて，
˜̄̄
GT を定義すると，

˜̄̄̃
G

HJ

T = G̃
HJ

xx uxux + G̃
HJ

xy uxuy + G̃
HJ

yx uyux + G̃
HJ

yy uyuy (2.355)

各成分は次のようになる．

G̃
HJ

xx = −G̃HJ

yy =
(
P̃ (z)

T E
− P̃ (z)

T M

)
sin Φ cos Φ = kxky

k2
t

(
P̃ (z)

T E
− P̃ (z)

T M

)
(2.356)

G̃
HJ

xy = −P̃ (z)
T E

cos2 Φ − P̃ (z)
T M

sin2 Φ = − 1
k2

t

(
k2

xP̃
(z)
T E

+ k2
yP̃

(z)
T M

)
(2.357)

G̃
HJ

yx = P̃ (z)
T E

sin2 Φ + P̃ (z)
T M

cos2 Φ = 1
k2

t

(
k2

yP̃
(z)
T E

+ k2
xP̃

(z)
T M

)
(2.358)

2.12 面磁流源に対するグリーン関数

2.12.1 スペクトル領域の磁界型ダイアディック・グリーン関数

先に示した境界面に接する電界のベクトル Ẽtan は，

Ẽtan = Ẽvuv + Ẽuuu = Z(z)
T M
J̃vuv + Z(z)

T E
J̃uuu (2.359)

成分を行列表示すると，(
Ẽu

Ẽv

)
=
(
Z(z)

T E
0

0 Z(z)
T M

)(
J̃u

J̃v

)
(2.360)
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双対性より，

H̃f
tan = H̃f

u uu + H̃f
v uv = Ỹ (z)

T M
M̃uuu + Ỹ (z)

T E
M̃vuv (2.361)

成分を行列表示すると，(
H̃f

tan · uu

H̃f
tan · uv

)
=
(
H̃f

u

H̃f
v

)
=
(
Ỹ (z)

T M
0

0 Ỹ (z)
T E

)(
M̃u

M̃v

)
(2.362)

これより，スペクトル領域のグリーン関数を求めると，(
G̃

HM

xx G̃
HM

xy

G̃
HM

yx G̃
HM

yy

)
= [Φ]t

(
Ỹ (z)

T M
0

0 Ỹ (z)
T E

)
[Φ]

=
(

sin Φ cos Φ
− cos Φ sin Φ

)(
Ỹ (z)

T M
0

0 Ỹ (z)
T E

)(
sin Φ − cos Φ
cos Φ sin Φ

)

=
 Ỹ (z)

T M
sin2 Φ + Ỹ (z)

T E
cos2 Φ

(
Ỹ (z)

T E
− Ỹ (z)

T M

)
sin Φ cos Φ(

Ỹ (z)
T E

− Ỹ (z)
T M

)
sin Φ cos Φ Ỹ (z)

T M
cos2 Φ + Ỹ (z)

T E
sin2 Φ

 (2.363)

よって，H̃f
tan =

˜̄̄
G

HM

T · M̃ より，
˜̄̄
GT を定義して，

˜̄̄
G

HM

T = G̃
HM

xx uxux + G̃
HM

xy uxuy + G̃
HM

yx uyux + G̃
HM

yy uyuy (2.364)

ここで，

G̃
HM

xx = Ỹ (z)
T M

sin2 Φ + Ỹ (z)
T E

cos2 Φ = 1
k2

t

(
k2

yỸ
(z)

T M
+ k2

xỸ
(z)

T E

)
(2.365)

G̃
HM

xy = G̃
HM

yx =
(
Ỹ (z)

T E
− Ỹ (z)

T M

)
sin Φ cos Φ = kxky

k2
t

(
Ỹ (z)

T E
− Ỹ (z)

T M

)
(2.366)

G̃
HM

yy = Ỹ (z)
T M

cos2 Φ + Ỹ (z)
T E

sin2 Φ = 1
k2

t

(
k2

xỸ
(z)

T M
+ k2

yỸ
(z)

T E

)
(2.367)

2.12.2 スペクトル領域の電界型ダイアディック・グリーン関数

同様に，先に示した境界面に接する磁界のベクトル H̃tan は，

H̃tan = H̃ ′
v(−uv) + H̃uuu = −P (z)

T E
J̃uuv + P (z)

T M
J̃vuu (2.368)

成分を行列表示すると，(
H̃u

−H̃ ′
v

)
=
(

0 P (z)
T M

−P (z)
T E

0

)(
J̃u

J̃v

)
(2.369)

双対性より，

−Ẽf
tan = Ẽf ′′

u

(
− uu

)
+ Ẽf ′

v uv = Q̃(z)
T E
M̃v

(
− uu

)
+ Q̃(z)

T M
M̃uuv (2.370)
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成分を行列表示すると，(
Ẽf

tan · uu

Ẽf
tan · uv

)
= −

(
−Ẽf ′′

u

Ẽf ′
v

)
= −

(
0 −Q̃(z)

T E

Q̃(z)
T M

0

)(
M̃u

M̃v

)
(2.371)

これより，スペクトル領域のグリーン関数を求めると，(
G̃

EM

xx G̃
EM

xy

G̃
EM

yx G̃
EM

yy

)
= −[Φ]t

(
0 −Q̃(z)

T E

Q̃(z)
T M

0

)
[Φ]

= −
(

sin Φ cos Φ
− cos Φ sin Φ

)(
0 −Q̃(z)

T E

Q̃(z)
T M

0

)(
sin Φ − cos Φ
cos Φ sin Φ

)

=
 (

Q̃(z)
T E

− Q̃(z)
T M

)
sin Φ cos Φ Q̃(z)

T M
cos2 Φ + Q̃(z)

T E
sin2 Φ

−Q̃(z)
T M

sin2 Φ − Q̃(z)
T E

cos2 Φ
(
Q̃(z)

T M
− Q̃(z)

T E

)
sin Φ cos Φ

 (2.372)

よって，Ẽf
tan =

˜̄̄
G

EM

T · M̃ より，
˜̄̄
G

EM

T を定義して，

˜̄̄̃
GT

EM = G̃
EM

xx uxux + G̃
EM

xy uxuy + G̃
EM

yx uyux + G̃
EM

yy uyuy (2.373)

ここで，

G̃
EM

xx = −G̃EM

yy =
(
Q̃(z)

T E
− Q̃(z)

T M

)
sin Φ cos Φ = kxky

k2
t

(
Q̃(z)

T E
− Q̃(z)

T M

)
(2.374)

G̃
EM

xy = Q̃(z)
T M

cos2 Φ + Q̃(z)
T E

sin2 Φ = 1
k2

t

(
k2

xQ̃
(z)
T M

+ k2
yQ̃

(z)
T E

)
(2.375)

G̃
EM

yx = −Q̃(z)
T M

sin2 Φ − Q̃(z)
T E

cos2 Φ = − 1
k2

t

(
k2

yQ̃
(z)
T M

+ k2
xQ̃

(z)
T E

)
(2.376)

2.13 自由空間中の電流素子のスペクトル領域グリーン関数の
導出

誘電体基板がなく，自由空間中の xy 面上に電流源がある場合を考える．

Z̃(0) = − 1
Y0 + Y0

= − 1
2Y0

(2.377)

これより，

Z(0)
T E

= − 1
2Y0T E

= − 1
2 kz0

ωµ0

= −ωµ0

2kz0
(2.378)

Z(0)
T M

= − 1
2Y0T M

= − 1
2ωε0

kz0

= − kz0

2ωε0
(2.379)
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よって，

G̃
EJ

xx = 1
k2

t

(
k2

yZ̃
(0)
T E

+ k2
xZ̃

(0)
T M

)
= 1
k2

t

{
k2

y

(
−ωµ0

2kz0

)
+ k2

x

(
− kz0

2ωε0

)}

= −
k2

0k
2
y + k2

z0k
2
x

2ωε0k2
t kz0

(2.380)

ここで，

k2
0k

2
y + kz0k

2
x = k2

0

(
k2

t − k2
x

)
+
(
k2

0 − k2
t

)
k2

x = k2
t

(
k2

0 − k2
x

)
(2.381)

より，

G̃
EJ

xx = −k2
0 − k2

x

2ωε0kz0
= k2

0 − k2
x

jωε0

1
j2kz0

= −jωµ0

k2
0

1
j2kz0

(
k2

0 − k2
x

)
(2.382)

また，

G̃
EJ

xy = G̃
EJ

yx = kxky

k2
t

(
Z̃(z)

T M
− Z̃(z)

T E

)
= kxky

k2
t

(
− kz0

2ωε0
+ ωµ0

2kz0

)
=
kxky

(
− k2

z0 + k2
0

)
2ωε0k2

t kz0

= kxky

2ωε0kz0
= −kxky

jωε0

1
j2kz0

= jωµ0

k2
0

1
j2kz0

kxky (2.383)

G̃
EJ

yy = 1
k2

t

(
k2

xZ̃
(z)
T E

+ k2
yZ̃

(z)
T M

)
= −

k2
0 − k2

y

2ωε0kz0
=
k2

0 − k2
y

jωε0

1
j2kz0

= −jωµ0

k2
0

1
j2kz0

(
k2

0 − k2
y

)
(2.384)

2.14 マイクロストリップ素子のスペクトル領域グリーン関数
の導出

2.14.1 地導体板付き単層誘電体基板の表面に面電流源がある場合

マイクロストリップ素子として，厚み dの単層誘電体基板（比誘電率 εr）の片面に地導
体板を付け（z = −d），誘電体と空気の境界面（z = 0）に電流源がある場合を考える．こ
のとき，−d ≤ z ≤ 0の誘電体を領域 (1)として，スペクトル領域の電界および磁界は，

Ẽ1(z) = Ẽ+
1 e

−jkz1z + Ẽ−
1 e

jkz1z (2.385)

H̃1(z) = Y1
(
Ẽ+

1 e
−jkz1z − Ẽ−

1 e
jkz1z) (2.386)
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z=–d

z=0
Yin(+)

Yin(–)
J

Ground Plane
(1)

(2)

図 2.5. 地導体板付き単層誘電体基板の表面に面電流源がある場合

また，z ≥ 0 の自由空間を領域 (2)として，電界および磁界は，

Ẽ2(z) = Ẽ+
2 e

−jkz2z (2.387)

H̃2(z) = Y2Ẽ
+
2 e

−jkz2z (2.388)

地導体板が完全導体のとき，z = −d の電界の接線成分はゼロゆえ，

Ẽ1(−d) = Ẽ+
1 e

jkz1d + Ẽ−
1 e

−jkz1d = 0 (2.389)

よって，

Ẽ+
1 = −Ẽ−

1 e
−j2kz1d (2.390)

これより，

Ẽ1(z) = −Ẽ−
1 e

−j2kz1de−jkz1z + Ẽ−
1 e

jkz1z = Ẽ−
1 e

−jkz1z
(

− e−jkz1(z+d) + ejkz1(z+d)
)

= Ẽ−
1 e

−jkz1z(j2) sin kz1(z + d) ≡ C1 sin kz1(z + d) (2.391)

また，

H̃1(z) = Y1

(
− Ẽ−

1 e
−j2kz1de−jkzz − Ẽ−

1 e
jkz1z

)
= Y1Ẽ

−
1 e

−jkz1z
(

− e−jkz1(z+d) − ejkz1(z+d)
)

= Y1Ẽ
−
1 e

−jkz1z(−2) cos kz1(z + d) = jY1C1 cos kz1(z + d) (2.392)

誘電体と空気の境界（z = 0）において，z ≥ 0 自由空間を見た入力アドミタンス Y
(+)

in は，

Y
(+)

in = H̃2(0)
Ẽ2(0)

= Y2Ẽ
−
2

Ẽ−
2

= Y2 (2.393)

一方，誘電体と空気の境界（z = 0）において，z ≤ 0 の誘電体を見た入力アドミタンス
Y

(−)
in は，z = −d での電磁界の連続条件を考慮すると，

Y
(−)

in = −H̃1(0)
Ẽ1(0)

= −−Ẽ1(−d)jY1 sin kz1d+ H̃1(−d) cos kz1d

Ẽ1(−d) cos kz1d− H̃1(−d)jZ1 sin kz1d

= cos kz1d

jZ1 sin kz1d
= −jY1 cot kz1d (2.394)
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2.14.2 スペクトル領域の電界型ダイアディック・グリーン関数

z = 0 におけるスペクトル領域の電流を J̃ とすると，z = 0 の電磁界の連続条件より，

Ẽ2(0) − Ẽ1(0) = 0 (2.395)

H̃2(0) − H̃1(0) = −J̃ (2.396)

これより，

Y
(+)

in Ẽ2(0) + Y
(−)

in Ẽ2(0) = −J̃ (2.397)

よって，

Ẽ2(0) = Ẽ1(0) = − J̃

Y
(+)

in + Y
(−)

in

≡ Z̃(0)J̃ (2.398)

ただし，

Z̃(0) = − 1
Y

(+)
in + Y

(−)
in

= − 1
Y2 − jY1 cot kz1d

(2.399)

これより，

Z(0)
T E

= − 1
Y2T E

− jY1T E
cot kz1d

= − 1
kz2

ωµ2
− j

kz1

ωµ1
cot kz1d

(2.400)

ここで，µ2 = µ1 = µ0 より，

Z̃(0)
T E

= − ωµ0 sin kz1d

kz2 sin kz1d− jkz1 cos kz1d
= − jωµ0 sin kz1d

kz1 cos kz1d+ jkz2 sin kz1d

= −jωµ0 sin kz1d

Te
(2.401)

ただし，

Te ≡ kz1 cos kz1d+ jkz2 sin kz1d (2.402)

また，

Z̃(0)
T M

= − 1
Y2T M

− jY1T M
cot kz1d

= − 1
ωε2
kz2

− j ωε1
kz1

cot kz1d
(2.403)

ここで，ε2 = ε0，ε1 = εrε0 より，

Z̃(0)
T M

= −kz1kz2

ωε0
· sin kz1d

kz1 sin kz1d− jkz2εr cos kz1d

= −kz1kz2

ωε0
· j sin kz1d

kz2εr cos kz1d+ jkz1 sin kz1d
= −jkz1kz2 sin kz1d

ωε0Tm
(2.404)
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ただし，

Tm ≡ kz2εr cos kz1d+ jkz1 sin kz1d (2.405)

よって，ダイアディック・グリーン関数の成分 G̃
EJ

xx は，

G̃
EJ

xx = 1
k2

t

(
k2

yZ̃
(0)
T E

+ k2
xZ̃

(0)
T M

)
= 1
k2

t

(
−k2

y

jωµ0 sin kz1d

Te
− k2

x

jkz1kz2 sin kz1d

ωε0Tm

)

= − j

ωε0

sin kz1d

k2
t

(
k2

yk
2
0

Te
+ k2

xkz1kz2

Tm

)
= −j
ωε0

· sin kz1d

k2
t

·
k2

yk
2
0Tm + k2

xkz1kz2Te

TeTm

= −j
ωε0

sin kz1d

k2
t

kz2(k2
xk

2
z1 + kyk

2
0εr) cos kz1d+ kz1(k2

xk
2
z2 + k2

yk
2
0)j sin kz1d

TeTm

(2.406)

ここで，

k2
xk

2
z1 + k2

yk
2
0εr = k2

x

(
k2

0εr − k2
t

)
+
(
k2

t − k2
x

)
k2

0εr = k2
t

(
− k2

x + k2
0εr
)

(2.407)

k2
xk

2
z2 + k2

yk
2
0 = k2

x

(
k2

0 − k2
t

)
+
(
k2

t − k2
x

)
k2

0 = k2
t

(
− k2

x + k2
0

)
(2.408)

1
ωε0

= 1
ω

√
ε0µ0

√
µ0

ε0
= Z0

k0
(2.409)

これより，

G̃
EJ

xx = −jZ0

k0

sin kz1d

k2
t

kz2k
2
t (εrk2

0 − k2
x) cos kz1d+ kz1k

2
t (k2

0 − k2
x)j sin kz1d

TeTm

= −jZ0

k0

kz2(εrk2
0 − k2

x) cos kz1d+ jkz1(k2
0 − k2

x) sin kz1d

TeTm
sin kz1d (2.410)

また，

G̃
EJ

xy = G̃
EJ

yx = kxky

k2
t

(
Z̃(0)

T M
− Z̃(0)

T E

)
= kxky

k2
t

(
−jkz1kz2 sin kz1d

ωε0Tm
+ jωµ0 sin kz1d

Te

)

= − j

ωε0

kxky sin kz1d

k2
t

(
kz1kz2

Tm
− k2

0
Te

)
= −j
ωε0

· kxky sin kz1d

k2
t

· kz1kz2Te − k2
0Tm

TeTm

= −j
ωε0

· kxky sin kz1d

k2
t

· kz2(k2
z1 − k2

0εr) cos kz1d+ kz1(k2
z2 − k2

0)j sin kz1d

TeTm

= −j
ωε0

· kxky sin kz1d

k2
t

· kz2(−k2
t ) cos kz1d+ jkz1(−k2

t ) sin kz1d

TeTm

= jZ0

k0
· kxky(kz2 cos kz1d+ jkz1 sin kz1d)

TeTm
sin kz1d (2.411)
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G̃
EJ

xx の計算と同様にして，

G̃
EJ

yy = 1
k2

t

(
k2

xZ̃
(0)
T E

+ k2
yZ̃

(0)
T M

)
= 1
k2

t

(
−k2

x

jωµ0 sin kz1d

Te
− k2

y

jkz1kz2 sin kz1d

ωε0Tm

)

= − j

ωε0

sin kz1d

k2
t

(
k2

xk
2
0

Te
+
k2

ykz1kz2

Tm

)

= −jZ0

k0

kz2(εrk2
0 − k2

y) cos kz1d+ jkz1(k2
0 − k2

y) sin kz1d

TeTm
sin kz1d (2.412)

2.14.3 スペクトル領域の磁界型ダイアディック・グリーン関数

一方，z = −d の地導体面上では，

Ẽ1(−d) = 0 (2.413)

また，

H̃1(−d) = Ẽ1(0)jY1 sin kz1d+ H̃1(0) cos kz1d

= Ẽ1(0)jY1 sin kz1d− Y
(−)

in Ẽ1(0) cos kz1d

= − J̃

Y
(+)

in + Y
(−)

in

(
jY1 sin kz1d− Y

(+)
in cos kz1d

)

= − J̃

Y2 − jY1 cot kz1d

(
jY1 sin kz1d+ jY1 cot kz1d cos kz1d

)

= − jY1J̃

Y2 sin kz1d− jY1 cos kz1d
= Y1J̃

Y1 cos kz1d+ jY2 sin kz1d
≡ P̃ (−d)J̃

(2.414)

ここで，

P̃ (−d) = Y1

Y1 cos kz1d+ jY2 sin kz1d
(2.415)

これより（µ2 = µ1 = µ0），

P̃ (−d)
T E

= Y1T E

Y1T E
cos kz,1d+ jY2T E

sin kz,1d
=

kz1

ωµ1
kz1

ωµ1
cos kz1d+ j

kz2

ωµ2
sin kz1d

= kz1

kz1 cos kz1d+ jkz2 sin kz1d
= kz1

Te
(2.416)
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また（ε2 = ε0，ε1 = εrε0），

P̃ (−d)
T M

= Y1T M

Y1T M
cos kz1d+ jY2T M

sin kz1d
=

ωε1
kz1

ωε1
kz1

cos kz1d+ j
ωε2
kz2

sin kz1d

= kz2εr
kz2εr cos kz1d+ jkz1 sin kz1d

= kz2εr
Tm

(2.417)

よって，磁界型ダイアディック・グリーン関数の各成分は，

G̃
HJ

xx = −G̃HJ

yy = kxky

k2
t

(
P̃ (−d)

T E
− P̃ (−d)

T M

)
= kxky

k2
t

(
kz1

Te
− kz2εr

Tm

)

= kxky

k2
t

· kz1Tm − εrkz2Te

TeTm

= kxky

k2
t

kz1(kz2εr cos kz1d+ jkz1 sin kz1d) − εrk2(k1 cos k1d+ jk2 sin k1d)
TeTm

= kxky

k2
t

(jk2
z1 − jεrk

2
z2) sin kz1d

TeTm

= jkxky

k2
t

{(k2
0εr − k2

t ) − εr(k2
0 − k2

t )} sin kz1d

TeTm

= jkxky(εr − 1) sin kz1d

TeTm
(2.418)

また，

G̃
HJ

xy = − 1
k2

t

(
k2

xP̃
(−d)
T E

+ k2
yP̃

(−d)
T M

)
= − 1

k2
t

(
k2

xkz1

Te
+
εrk

2
ykz2

Tm

)

= − 1
k2

t

{
(k2

t − k2
y)kz1

Te
+
εrk

2
ykz2

Tm

}
= kz1

Te
−
k2

y

k2
t

(
kz1

Te
− εrkz2

Tm

)

= kz1

Te
−
jk2

y(εr − 1) sin kz1d

TeTm
(2.419)

同様にして，

G̃
HJ

yx = 1
k2

t

(
k2

yP̃
(−d)
T E

+ k2
xP̃

(−d)
T M

)
= 1
k2

t

(
k2

ykz1

Te
+ εrk

2
xkz2

Tm

)

= 1
k2

t

{
(k2

t − k2
x)kz1

Te
+ εrk

2
xkz2

Tm

}
= −kz1

Te
+ k2

x

k2
t

(
kz1

Te
− εrkz2

Tm

)

= −kz1

Te
+ jk2

x(εr − 1) sin kz1d

TeTm
(2.420)

2.15 スロット素子のスペクトル領域グリーン関数の導出
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2.15.1 単層誘電体基板の地導体面に磁流源がある場合

誘電体基板（厚さ d，比誘電率 εr）の地導体に設けたスロット素子を考える．z = 0の境
界条件より，

Ẽ1(0) = −M̃ (2.421)

z=d

z=0
Yin(+)M(1)

(2)

Ground Plane

図 2.6. 単層誘電体基板の地導体面に磁流源がある場合

このとき，

H̃1(0) = Y
(+)

in Ẽ1(0) = −Y (+)
in M̃ ≡ Ỹ (0)M̃ (2.422)

ここで，

Ỹ (0) = −Y (+)
in = −Y1

Y2 + jY1 tan kz1d

Y1 + jY2 tan kz1d
= −Y1

Y2 cos kz1d+ jY1 sin kz1d

Y1 cos kz1d+ jY2 sin kz1d
(2.423)

2.15.2 スペクトル領域の磁界型ダイアディック・グリーン関数

これより，

Ỹ (0)
T E

= −Y1T E

Y2T E
cos kz1d+ jY1T E

sin kz1d

Y1T E
cos kz1d+ jY2T E

sin kz1d
= − kz1

ωµ1
·

kz2

ωµ2
cos kz1d+ j

kz1

ωµ1
sin kz1d

kz1

ωµ1
cos kz1d+ j

kz2

ωµ2
sin kz1d

= − jkz1

ωµ0Te

(
− jkz2 cos kz1d+ kz1 sin kz1d

)
(2.424)

また，

Ỹ (0)
T M

= −Y1T M

Y2T M
cos kz1d+ jY1T M

sin kz1d

Y1T M
cos kz1d+ jY2T M

sin kz1d
= −ωε1

kz1
·

ωε2
kz2

cos kz1d+ j
ωε1
kz1

sin kz1d

ωε1
kz1

cos kz1d+ j
ωε2
kz2

sin kz1d

= −jωε0εr
kz1Tm

(
− jkz1 cos kz1d+ kz2εr sin kz1d

)
(2.425)
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よって，磁界型ダイアディック・グリーン関数の各成分は，

G̃
HM

xx = 1
k2

t

(
k2

yỸ
(0)

T M
+ k2

xỸ
(0)

T E

)

= −
jωε0εrk

2
y

k2
t kz1Tm

(
kz2εr sin kz1d− jkz1 cos kz1d

)
− jkz1k

2
x

ωµ0k2
t Te

(
kz1 sin kz1d− jkz2 cos kz1d

)
(2.426)

G̃
HM

xy = G̃
HM

yx = kxky

k2
t

(
Ỹ (0)

T E
− Ỹ (0)

T M

)
= kxky

k2
t

{
jωε0εr
kz1Tm

(
kz2εr sin kz1d− jkz1 cos kz1d

)
− jkz1

ωµ0Te

(
kz1 sin kz1d− jkz2 cos kz1d

)}
(2.427)

G̃
HM

yy = 1
k2

t

(
k2

xỸ
(0)

T M
+ k2

yỸ
(0)

T E

)

= −jωε0εrk
2
x

k2
t kz1Tm

(
kz2εr sin kz1d− jkz1 cos kz1d

)
−

jkz1k
2
y

ωµ0k2
t Te

(
kz1 sin kz1d− jkz2 cos kz1d

)
(2.428)

2.15.3 スペクトル領域の電界型ダイアディック・グリーン関数

また，

H̃1(d) = −Ẽ1(0)jY1 sin kz1d+ H̃1(0) cos kz1d

= −
(

− jY1 sin kz1d+ Y
(+)

in cos kz1d
)
M̃ ≡ Ỹ (d)M̃ (2.429)

Ẽ1(d) = Z2H̃1(d) = Z2Ỹ
(d)M̃ ≡ Q̃(d)M̃ (2.430)

ここで，

Ỹ (d) = jY1 sin kz,1d− Y
(+)

in cos kz1d =
j Y1

Y
(+)

in

sin kz1d− cos kz1d

Y (+)
in

= −Y2

Y2 cos kz1d+ jY1 sin kz1d
Y

(+)
in

= −Y2

Y2 cos kz1d+ jY1 sin kz1d
Y1
Y2 cos kz1d+ jY1 sin kz1d

Y1 cos kz1d+ jY2 sin kz1d

= −Y1Y2

Y1 cos kz1d+ jY2 sin kz1d
(2.431)

また，

Q̃(d) = Z2Ỹ
(d) = − Y1

Y1 cos kz1d+ jY2 sin kz1d
= −P̃ (−d) (2.432)
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これより，

Q̃(d)
T E

= −P̃ (−d)
T E

= −kz1

Te
(2.433)

Q̃(d)
T M

= −P̃ (−d)
T M

= −kz2εr
Tm

(2.434)

よって，電界型ダイアディック・グリーン関数の各成分は，

G̃
EM

xx = −G̃EM

yy = kxky

k2
t

(
Q̃(d)

T E
− Q̃(d)

T M

)
= kxky

k2
t

(
−kz1

Te
+ kz2εr

Tm

)

= −jkxky(εr − 1) sin kz1d

TeTm
= −G̃HJ

xx = G̃
HJ

yy (2.435)

G̃
EM

xy = 1
k2

t

(
k2

xQ̃
(d)
T M

+ k2
yQ̃

(d)
T E

)
= − 1

k2
t

(
εrk

2
xkz2

Tm
+
k2

ykz1

Te

)

= kz1

Te
− jk2

x(εr − 1) sin kz1d

TeTm
= −G̃HJ

yx (2.436)

G̃
EM

yx = − 1
k2

t

(
k2

yQ̃
(d)
T M

+ k2
xQ̃

(d)
T E

)
= 1
k2

t

(
εrk

2
ykz2

Tm
+ k2

xkz1

Te

)

= −kz1

Te
+
jk2

y(εr − 1) sin kz1d

TeTm
= −G̃HJ

xy (2.437)
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CHAPTER 3

周期境界条件とフロケモード展開

　周期境界条件のもとで電磁界問題を解析するためのフロケモード展開という手法
について詳述する．まず，四角配列と三角配列における電磁界の周期性を定式化し，
Floquetの定理を用いて解をフーリエ級数展開することで，電磁界が離散的な波数を
持つ「フロケモード」の重ね合わせとして表現されることを示す．さらに，これらの
スカラーモードから TE波と TM波のベクトル・フロケモード関数を導出し，これ
らが伝搬モードとエバネッセントモードの両方を含む完全な基底として機能するこ
とを説明する．そして，このモード展開を用いれば，面電流・面磁流分布や散乱電磁
界の表現式、そして周期グリーン関数をスペクトル領域で定義する方法が体系的に得
られことを明らかにしていく．

3.1 四角配列の周期境界条件

x方向の周期構造（周期 dx）に起因する電磁界の周期性を，位相を考慮して表すと，

fx(x+ dx) = fx(x)ejΦx (3.1)

無限アレーにおいて共相励振した場合や，周波数選択膜に平面波を入射させた場合などがこ
れに対応する．いま，

gx(x) ≡ fx(x)e−j(Φx/dx)x (3.2)

とおくと，

gx(x+ dx) = fx(x+ dx)e−j(Φx/dx)(x+dx) = fx(x)ejΦxe−j(Φx/dx)xe−jΦx

= fx(x)e−j(Φx/dx)x

= gx(x) (3.3)
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より，gx(x)は周期 dx の周期関数であることがわかる．よって，gx(x)をフーリエ級数で展
開すると，

gx(x) =
∞∑

m=−∞
cme

j(2πm/dx)x (3.4)

これより，fx(x)は，

fx(x) = gx(x)ej(Φx/dx)x =
∞∑

m=−∞
cme

j{(2πm+Φx)/dx}x (3.5)

いま，fx(x)が(
d2

dx2 + k2
x

)
fx = 0 (3.6)

を満たすとき，ejkxx を解にもつことから，kx は次のようになる．

kx = 2πm+ Φx

dx
≡ kxm (3.7)

同様にして，y 方向の周期を dy とすると，(
d2

dy2 + k2
y

)
fy = 0 (3.8)

fy(y + dy) = fy(y)ejΦy (3.9)

より，

ky = 2πn+ Φy

dy
≡ kyn (3.10)

ただし，m，nは整数である．したがって，(
∇2 + k2

)
f = 0 (3.11)

を周期境界条件

f(x+ dx, y, z) = f(x, y, z)ejΦx (3.12)
f(x, y + dy, z) = f(x, y, z)ejΦy (3.13)

のもとで解くことができる．f(x, y, z)が変数分離形で，

f(x, y, z) = fx(x)fy(y)fz(z), (3.14)

で表されるものとすると，(
d2

dx2 + k2
x

)
fx = 0,

(
d2

dy2 + k2
y

)
fy = 0,

(
d2

dz2 + k2
z

)
fz = 0 (3.15)
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ここで，

k2 = k2
x + k2

y + k2
z (3.16)

周期境界条件より，

fx(x+ dx) = fx(x)ejΦx (3.17)
fy(y + dy) = fy(y)ejΦy (3.18)

このとき，フロケの定理より，解は次のようになる．

ejkxmxejkynye±jkzmnz (3.19)

ただし，

kxm = 2πm+ Φx

dx
(3.20)

kyn = 2πn+ Φy

dy
(3.21)

ここで，

k2 = k2
xm + k2

yn + k2
zmn (3.22)

また，

kmn = kxmux + kynuy + kzmnuz (3.23)
r = xux + yuy + zuz (3.24)

3.2 三角配列の周期境界条件

三角配列（skewed grid array）の周期を d1，d2 とし，d1 を x軸方向に沿う周期とする．
一方，周期 d2 の方向を x軸から角度 α傾けて定義すると，このとき，周期境界条件は次の
ようになる．

f(ρ + d1u1) = f(ρ)ejΦ1 (3.25)
f(ρ + d2u2) = f(ρ)ejΦ2 (3.26)

ここで，

ρ = xux + yuy (3.27)
u1 = ux (3.28)
u2 = cosαux + sinαuy (3.29)
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このとき，

ρ + d1u1 = (x+ d1)ux + yuy (3.30)
ρ + d2u2 = (x+ d2 cosα)ux + (y + d2 sinα)uy (3.31)

これより，周期境界条件は，

fx(x+ d1) = fx(x)ejΦ1 (3.32)
fx(x+ d2 cosα)fy(y + d2 sinα) = fx(x)fy(y)ejΦ2 (3.33)

式 (3.32)より kx は，

kx = 2πm+ Φ1

d1
≡ kxm (m = · · · ,−1, 0, 1, · · · ) (3.34)

また，式 (3.33)より，

ejkx(x+d2 cos α)ejky(y+d2 sin α) = ejkxxejkyyejΦ2 (3.35)

上式の位相項は，

kx(x+ d2 cosα) + ky(y + d2 sinα) = kxx+ kyy + Φ2 + 2πn
kxd2 cosα + kyd2 sinα = Φ2 + 2πn (3.36)

よって，

ky = Φ2 + 2πn− kxd2 cosα
d2 sinα =

Φ2 + 2πn− 2πm+ Φ1

d1
d2 cosα

d2 sinα (3.37)

いま，

Φy ≡ Φ2 − d2

d1
Φ1 cosα (3.38)

とおくと，

ky = 2πn+ Φy

d2 sinα − 2πm
d1

cotα ≡ kymn (3.39)

x方向の周期 dx，y 方向の周期 dy 等は，

Φx ≡ Φ1 (3.40)
dx ≡ d1 (3.41)
dy ≡ d2 sinα (3.42)

また，

Φy ≡ Φ2 − dy

dx
Φ1 cotα (3.43)
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したがって，周期境界条件 (3.26)のもとで，スカラヘルムホルツ方程式の周期解は，

ejkxmxejkymnye±jkzmnz (m,n = · · · ,−1, 0, 1, · · · ) (3.44)

ここで，

kxm = 2πm+ Φx

dx
(3.45)

kymn = 2πn+ Φy

dy
− 2πm

dx
cotα (3.46)

k2 = k2
xm + k2

ymn + k2
zmn (3.47)

これを，Floquet’s Harmonics という．

3.3 ベクトル・フロケモード関数

3.3.1 TE波

ベクトルポテンシャル

ψ(r)uz = Ψ(x, y)Z(z)uz (3.48)

が周期境界条件（xy 面）を満たしているとき，Ψ(x, y) はスカラー・フロケモード Ψmn に
よって与えられ，次式を満足する．(

∇2
t + k2

tmn

)
Ψmn = 0 (3.49)

四角配列のとき，TE波の Ψf
mn は，(

∇2
t + k2

tmn

)
Ψf

mn = 0 (3.50)

より，

Ψf
mn = Af

mne
∓jktmn·ρ (3.51)

ktmn = kxmux + kynuy (3.52)
ρ = xux + yuy (3.53)

kxm = 2πm+ Φx

dx
(3.54)

kyn = 2πn+ Φy

dy
(3.55)

k2 = k2
xm + k2

yn + k2
zmn (3.56)
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これより，TE波のモード関数 h[mn] は，

h[mn] = −∇tΨf
mn = −Af

mn∇te
∓jktmn·ρ = −Af

mn(∓ktmn)e∓jktmn·ρ

≡ ktmnA
f ′
mne

∓jktmn·ρ ≡ ktmnΨf ′
mn = ktmnutmnΨf ′

mn (3.57)

また，e[mn] は，

e[mn] = Z[mn]h[mn] × uz = ktmnZ[mn]utmn × uzΨf ′
mn (3.58)

ここで，TE波のインピーダンス Z[mn] は，

Z[mn] = ωµ

kzmn
(3.59)

これより，(
e[mn] × h∗

[mn]

)
· uz = k2

tmnZ[mn]

{(
utmn × uz

)
× utmn

}
· uzΨf ′

mnΨf ′∗
mn

= k2
tmnZ[mn]

∣∣∣Ψf ′
mn

∣∣∣2 (3.60)

また，
ˆ dy

0

ˆ dx

0
Ψf ′

mnΨf ′∗
m′n′dxdy =

∣∣∣Af ′
mn

∣∣∣2dxdyδmm′δnn′ (3.61)

よって，

1
dxdy

ˆ dy

0

ˆ dx

0

(
e[mn] × h∗

[m′n′]

)
· uzdxdy

=
ktmnktm′n′Z[mn]

dxdy

{(
utmn × uz

)
× utmn

}
· uz ·

ˆ dy

0

ˆ dx

0
Ψf ′

mnΨf ′∗
m′n′dxdy

= k2
tmnZ[mn]

∣∣∣Af ′
mn

∣∣∣2δmm′δnn′ (3.62)

いま，m = m′，n = n′ が伝搬モードのとき，

1
dxdy

ˆ dy

0

ˆ dx

0

(
e[mn] × h∗

[m′n′]

)
· uzdxdy ≡ δmm′δnn′ (3.63)

で規格化すると，係数 Af ′
mn は，

Af ′
mn = 1∣∣∣ktmn

∣∣∣√Z[mn]
(3.64)

エバネッセントモードに対しても同じ規格化係数を用いることにすると，

h[mn] = ktmn∣∣∣ktmn

∣∣∣√Z[mn]
e∓jktmn·ρ =

√
Y[mn]utmne

∓jktmn·ρ (3.65)

e[mn] = Z[mn]h[mn] × uz =
√
Z[mn]

(
utmn × uz

)
e∓jktmn·ρ (3.66)

82



3.3.2 TM波

同様にして，TM波については，(
∇2

t + k2
tmn

)
Ψa

mn = 0 (3.67)

より，

Ψa
mn = Aa

mne
∓jktmn·ρ (3.68)

TM波のモード関数 e(mn) は，

e(mn) = −∇tΨa
mn = −Aa

mn∇te
∓jktmn·ρ = −Aa

mn(∓ktmn)e∓jktmn·ρ

≡ ktmnA
a′
mne

∓jktmn·ρ ≡ ktmnΨa′
mn = ktmnutmnΨa′

mn (3.69)

これより，h(mn) は，

h(mn) = −Y(mn)e(mn) × uz = −ktmnY(mn)utmn × uzΨa′
mn (3.70)

ここで，TM波のアドミタンス Y(mn) は，

Y(mn) = ωε

kzmn
(3.71)

これより，(
e(mn) × h∗

(mn)

)
· uz = −k2

tmnY
∗

(mn)

{(
utmn × uz

)
× utmn

}
· uzΨa′

mnΨa′∗
mn

= k2
tmnY

∗
(mn)

∣∣∣Ψa′
mn

∣∣∣2 (3.72)

また，
ˆ dy

0

ˆ dx

0
Ψa′

mnΨa′∗
m′n′dxdy =

∣∣∣Aa′
mn

∣∣∣2dxdyδmm′δnn′ (3.73)

よって，

1
dxdy

ˆ dy

0

ˆ dx

0

(
e(mn) × h∗

(m′n′)

)
· uzdxdy

= −
ktmnktm′n′Y ∗

(mn)

dxdy

{(
utmn × uz

)
× utmn

}
· uz ·

ˆ dy

0

ˆ dx

0
Ψa′

mnΨa′∗
m′n′dxdy

= k2
tmnY

∗
(mn)

∣∣∣Aa′
mn

∣∣∣2δmm′δnn′ (3.74)

同様に，m = m′，n = n′ が伝搬モードのとき，

1
dxdy

ˆ dy

0

ˆ dx

0

(
e(mn) × h∗

(m′n′)

)
· uzdxdy ≡ δmm′δnn′ (3.75)
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係数 Aa′
mn は，

Aa′
mn = 1∣∣∣ktmn

∣∣∣√Y(mn)
(3.76)

したがって，

e(mn) = ktmn∣∣∣ktmn

∣∣∣√Y(mn)
e∓jktmn·ρ =

√
Z(mn)utmne

∓jktmn·ρ (3.77)

h(mn) = −Y(mn)e(mn) × uz = −
√
Y(mn)

(
utmn × uz

)
e∓jktmn·ρ (3.78)

3.4 フロケモード展開

3.4.1 接線電磁界のフロケモードによる展開

ベクトル・フロケモード関数を用いて接線電磁界を次のように展開する．

Etan =
∑
m,n

{
V [mn](z)e[mn] + V (mn)(z)e(mn)

}
(3.79)

Htan =
∑
m,n

{
I [mn](z)h[mn] + I(mn)(z)h(mn)

}
(3.80)

ここで，

V [mn](z) = V
+
[mn]e

−jkzmnz + V
−
[mn]e

jkzmnz (3.81)

V (mn)(z) = V
+
(mn)e

−jkzmnz + V
−
(mn)e

jkzmnz (3.82)

I [mn](z) = V
+
[mn]e

−jkzmnz − V
−
[mn]e

jkzmnz (3.83)

I(mn)(z) = V
+
(mn)e

−jkzmnz − V
−
(mn)e

jkzmnz (3.84)

いま，

V
±
[mn] ≡

√
Y[mn]V

±
[mn] (3.85)

V
±
(mn) ≡

√
Y(mn)V

±
(mn) (3.86)

I
±
[mn] ≡

√
Z[mn]I

±
[mn] (3.87)

I
±
(mn) ≡

√
Z(mn)I

±
(mn) (3.88)
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とおくと，

V [mn](z) =
√
Y[mn]

(
V +

[mn]e
−jkzmnz + V −

[mn]e
jkzmnz

)
≡
√
Y[mn]V[mn](z) (3.89)

V (mn)(z) =
√
Y(mn)

(
V +

(mn)e
−jkzmnz + V −

(mn)e
jkzmnz

)
≡
√
Y(mn)V(mn)(z) (3.90)

I [mn](z) =
√
Y[mn]

(
V +

[mn]e
−jkzmnz − V −

[mn]e
jkzmnz

)
≡
√
Z[mn]I[mn](z) (3.91)

I(mn)(z) =
√
Y(mn)

(
V +

(mn)e
−jkzmnz − V −

(mn)e
jkzmnz

)
≡
√
Z(mn)I(mn)(z) (3.92)

ここで，

I[mn](z) = Y[mn]

(
V +

[mn]e
−jkzmnz − V −

[mn]e
jkzmnz

)
(3.93)

I(mn)(z) = Y(mn)

(
V +

(mn)e
−jkzmnz − V −

(mn)e
jkzmnz

)
(3.94)

よって，

Etan =
∑
m,n

{√
Y[mn]V[mn](z)e[mn] +

√
Y(mn)V(mn)(z)e(mn)

}
=
∑
m,n

{
V[mn] (utmn × uz) + V(mn)utmn

}
ejktmn·ρ (3.95)

Htan =
∑
m,n

{√
Z[mn]I[mn](z)h[mn] +

√
Z(mn)I(mn)(z)h(mn)

}
=
∑
m,n

{
I[mn]utmn − I(mn) (utmn × uz)

}
ejktmn·ρ (3.96)

3.4.2 面電磁流分布のフロケモードによる展開

入射波の波数の x成分および y 成分を kinc
x ，kinc

y とおき，周期境界条件を満足するよう
面電流分布 Js をフロケモードで展開すると，

Js(x′, y′) =
∞∑

m=−∞

∞∑
n=−∞

cmne
j(kxmnx′+kymny′) (3.97)

ただし，

kxmn = 2πm
dx

+ kinc
x (3.98)

kymn = 2πn
dy

− 2πm
dx

cotα + kinc
y (3.99)

これより，係数 cmn は，

cmn = 1
dxdy

¨
S

Js(x′, y′)e−j(kxmnx′+kymny′)dx′dy′ (3.100)
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ここで，

J̃s(kxmn, kymn) ≡
¨

S

Js(x′, y′)e−j(kxmnx′+kymny′)dx′dy′ (3.101)

とおく．これより，

cmn = 1
dxdy

J̃s(kxmn, kymn) (3.102)

したがって，

Js(x′, y′) = 1
dxdy

∞∑
m=−∞

∞∑
n=−∞

J̃s(kxmn, kymn)ej(kxmnx′+kymny′) (3.103)

同様にして，面磁流分布Ms をフロケモードで展開すると，

Ms(x′, y′) = 1
dxdy

∞∑
m=−∞

∞∑
n=−∞

M̃s(kxmn, kymn)ej(kxmnx′+kymny′) (3.104)

3.4.3 散乱電磁界の表示式

面電流源によるスペクトル領域散乱電界 Ẽtan は，

Ẽtan(kx, ky, z)

=
˜̄̄
G

EJ

T (kx, ky, z − z′) · J̃s(kx, ky, z
′)

=
(¨ ∞

−∞

¯̄GEJ

T (r, r′)e−j(kxx̄+ky ȳ)dx̄dȳ

)
·
(¨ ∞

−∞
Js(r′)e−j(kxx′+kyy′)dx′dy′

)

=
¨ ∞

−∞

¨ ∞

−∞

¯̄GEJ

T (r, r′) · Js(r′)e−j{kx(x̄+x′)+ky(ȳ+y′)}dx′dy′dx̄dȳ (3.105)

ここで，x̄ = x− x′，ȳ = y − y′ とおくと，dx̄ = dx，dȳ = dy より，

Ẽtan(kx, ky, z) =
¨ ∞

−∞

(¨ ∞

−∞

¯̄GEJ

T (r, r′) · Js(r′)dx′dy′
)
e−j(kxx+kyy)dxdy (3.106)

これより，Etan(r)は，

Etan(r) =
¨ ∞

−∞

¯̄GEJ

T (r, r′) · Js(r′)dx′dy′ (3.107)

フロケモードで展開した電流分布を代入して，

Etan =
¨ ∞

−∞

¯̄GEJ

T (r, r′) ·
∞∑

m=−∞

∞∑
n=−∞

J̃s(kxmn, kymn)
dxdy

ej(kxmnx′+kymny′)dx′dy′

= 1
dxdy

∞∑
m=−∞

∞∑
n=−∞

(¨ ∞

−∞

¯̄GT (r, r′)ej(kxmnx′+kymny′)dx′dy′
)

· J̃s(kxmn, kymn)

(3.108)
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ここで，x′ = x− x̄，y′ = y − ȳ，dx′ = dx̄，dy′ = dȳ より，

Etan(r) = 1
dxdy

∞∑
m=−∞

∞∑
n=−∞

(¨ ∞

−∞

¯̄GEJ

T (r, r′)e−j(kxmnx̄+kymnȳ)dx̄dȳ

)

· J̃s(kxmn, kymn)ej(kxmnx+kymny) (3.109)

スペクトル領域のグリーン関数
˜̄̄
G

EJ

T (kxmn, kymn)より，

Etan = 1
dxdy

∞∑
m=−∞

∞∑
n=−∞

˜̄̄
G

EJ

T (kxmn, kymn) · J̃s(kxmn, kymn)ej(kxmnx+kymny) (3.110)

ここで，

J̃s(kxmn, kymn) =
¨

S

Js(x′, y′)e−j(kxmnx′+kymny′)dx′dy′ (3.111)

ただし，

kxmn = 2πm
dx

+ kinc
x (3.112)

kymn = 2πn
dy

− 2πm
dx

cotα + kinc
y (3.113)

同様にして，散乱磁界Htan(r)は，

Htan = 1
dxdy

∞∑
m=−∞

∞∑
n=−∞

˜̄̄
G

HJ

T (kxmn, kymn)J̃s(kxmn, kymn)ej(kxmnx+kymny) (3.114)

また，面磁流源によるスペクトル領域の散乱電磁界は，

Hf
tan = 1

dxdy

∞∑
m=−∞

∞∑
n=−∞

˜̄̄
G

HM

T (kxmn, kymn)M̃s(kxmn, kymn)ej(kxmnx+kymny) (3.115)

Ef
tan = 1

dxdy

∞∑
m=−∞

∞∑
n=−∞

˜̄̄
G

EM

T (kxmn, kymn)M̃s(kxmn, kymn)ej(kxmnx+kymny) (3.116)

3.5 周期グリーン関数

電磁流分布をデルタ関数 δ(x− x′, y − y′) におくと，周期境界条件を満たしたグリーン関
数が得られる．デルタ関数のフーリエ変換は，

¨ ∞

−∞
δ(x− x′, y − y′)e−j(kxmnx+kymny)dxdy = e−j(kxmnx′+kymny′) (3.117)
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まず，x方向の微小電流源について考えると，

Gp
xxux +Gp

yxuy

= 1
dxdy

∞∑
m=−∞

∞∑
n=−∞

˜̄̄
GT (kxmn, kymn) · e−j(kxmnx′+kymny′)uxe

j(kxmnx+kymny)

= 1
dxdy

∞∑
m=−∞

∞∑
n=−∞

(
G̃mn

xx ux + G̃mn
yx uy

)
e

j

{
kxmn(x−x′)+kymn(y−y′)

}
(3.118)

同様にして，y 方向の微小電流源については，

Gp
xyux +Gp

yyuy

= 1
dxdy

∞∑
m=−∞

∞∑
n=−∞

(
G̃mn

xy ux + G̃mn
yy uy

)
e

j

{
kxmn(x−x′)+kymn(y−y′)

}
(3.119)

したがって，周期境界条件を満たすダイアディック・グリーン関数 ¯̄Gp は，

¯̄Gp = Gp
xxuxux +Gp

yxuyux +Gp
xyuxuy +Gp

yyuyuy

= 1
dxdy

∞∑
m=−∞

∞∑
n=−∞

˜̄̄
GT (kxmn, kymn)ej

{
kxmn(x−x′)+kymn(y−y′)

}
(3.120)

ただし，

˜̄̄
GT (kxmn, kymn) = G̃mn

xx uxux + G̃mn
yx uyux + G̃mn

xy uxuy + G̃mn
yy uyuy (3.121)

これより，散乱波の接線電磁界は，単位セル内の電磁流源を用いて次のように表される．

Et(r) = ¯̄GEJ
p (r, r′) · Js(r) (3.122)

Ht(r) = ¯̄GHJ
p (r, r′) · Js(r) (3.123)

Et(r) = ¯̄GEM
p (r, r′) · Ms(r) (3.124)

Ht(r) = ¯̄GHM
p (r, r′) · Ms(r) (3.125)
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CHAPTER 4

スペクトル領域MoMとFSSの解析

　周期的な電磁構造を解析するための方法として，周期境界条件を用いたスペクト
ル領域モーメント法（Method of Moments in the Spectral Domain with Periodic
Boundary Conditions）について詳述する．まず，自立型周波数選択面（FSS）の散
乱電界を導出し，次に，導体パッチアレーの電流分布を基底関数で展開し、境界条件
を適用して連立方程式を導く．さらに，マイクロストリップ・リフレクト無限アレー
や誘電体基板中に装荷した FSS の解析，反射係数および透過係数の計算法を示し，
最後に Roof-top型部分領域基底関数を用いた高速化アルゴリズム，およびスロット
結合パッチアレー FSSのガラーキン法による解析を詳細に説明する．

4.1 自立型FSS（Frequency Selective Surface）

4.1.1 導体パッチアレーよる散乱電界

導体パッチアレー上の電流分布による散乱電界（接線成分）Es,tan は，

Es,tan(ρ) = 1
dxdy

∑
m,n

˜̄̄
G

EJ

T (ktmn) · J̃s(ktmn)ejktmn·ρ (4.1)

ここで，

ktmn = kxmnux + kymnuy (4.2)
ρ = xux + yuy (4.3)
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スペクトル領域のグリーン関数
˜̄̄
G

EJ

T は，

˜̄̄
G

EJ

T (ktmn) = G̃
EJ

xx(ktmn)uxux + G̃
EJ

xy (ktmn)uxuy

+ G̃
EJ

yx (ktmn)uyux + G̃
EJ

yy (ktmn)uyuy

≡ G̃mn
xx uxux + G̃mn

xy uxuy + G̃mn
yx uyux + G̃mn

yy uyuy (4.4)
(4.5)

また，スペクトル領域の電流 J̃s は，

J̃s(ktmn) =
ˆ

S

Js(ρ′)e−jktmn·ρ′
dS′ ≡ J̃mn

x ux + J̃mn
y uy (4.6)

4.1.2 導体パッチアレーを誘電体で支持しないFSS

素子を誘電体で支持しない場合，次の自由空間のグリーン関数を用いればよい．

G̃
EJ

xx(ktmn) = −ωµ

k2
1

2kzmn

(
k2 − k2

xmn

)
(4.7)

G̃
EJ

xy (ktmn) = G̃
EJ

yx (ktmn)

= ωµ

k2
1

2kzmn
kxmnkymn (4.8)

G̃
EJ

yy (ktmn) = −ωµ

k2
1

2kzmn

(
k2 − k2

ymn

)
(4.9)

導体素子上の境界条件より，

Ei,tan + Es,tan = ZsJs (on S) (4.10)

よって，

−Ei,tan(ρ) = 1
dxdy

∑
m,n

˜̄̄
G

EJ

T (ktmn) · J̃s(ktmn)ejktmn·ρ − ZsJs(ρ) (4.11)

成分を行列表示すると，

−
(
Ei,x(ρ)
Ei,y(ρ)

)
= 1
dxdy

∑
m,n

(
G̃mn

xx G̃mn
xy

G̃mn
yx G̃mn

yy

)(
J̃mn

x

J̃mn
y

)
ejktmn·ρ − Zs

(
Jx(ρ)
Jy(ρ)

)
(4.12)

いま，電流分布 Js(ρ)を，基底関数 Bxpq(ρ)，Bypq(ρ) を用いて，

Js(ρ) =
∑
p,q

(
IxpqBxpq(ρ)ux + IypqBypq(ρ)uy

)
(4.13)
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で展開すると，スペクトル領域の J̃s(ktmn)は，

J̃s(ktmn) =
∑
p,q

(
IxpqB̃xpq(ktmn)ux + IypqB̃ypq(ktmn)uy

)

≡
∑
p,q

(
IxpqB̃

mn
xpqux + IypqB̃

mn
ypquy

)
(4.14)

ここで，スペクトル領域の基底関数は，フロケモードの次数 m，n に対応して次のように
なる．

B̃(x
y

)
pq(ktmn) =

ˆ
S

B(x
y

)
pq(ρ

′)e−jktmn·ρ′
dS′ ≡ B̃mn(

x
y

)
pq

(4.15)

これより，散乱電界 Es,tan(ρ)は，

Es,tan = 1
dxdy

∑
m,n

(
G̃mn

xx uxux + G̃mn
xy uxuy + G̃mn

yx uyux + G̃mn
yy uyuy

)

·
∑
p,q

(
IxpqB̃

mn
xpqux + IypqB̃

mn
ypquy

)
ejktmn·ρ

= 1
dxdy

[∑
p,q

Ixpq

{∑
m,n

(
G̃mn

xx ux + G̃mn
yx uy

)
B̃mn

xpqe
jktmn·ρ

}

+
∑
p,q

Iypq

{∑
m,n

(
G̃mn

xy ux + G̃mn
yy uy

)
B̃mn

ypqe
jktmn·ρ

}]
(4.16)

よって，

−Ei,tan = 1
dxdy

[∑
p,q

Ixpq

{∑
m,n

(
G̃mn

xx ux + G̃mn
yx uy

)
B̃mn

xpqe
jktmn·ρ

}

+
∑
p,q

Iypq

{∑
m,n

(
G̃mn

xy ux + G̃mn
yy uy

)
B̃mn

ypqe
jktmn·ρ

}]

− Zs

∑
p,q

(
IxpqBxpq(ρ)ux + IypqBypq(ρ)uy

)
(4.17)

成分表示すると，

−Ei,x = 1
dxdy

∑
p,q

Ixpq

∑
m,n

G̃mn
xx B̃

mn
xpqe

jktmn·ρ

+ 1
dxdy

∑
p,q

Iypq

∑
m,n

G̃mn
xy B̃

mn
ypqe

jktmn·ρ − Zs

∑
p,q

IxpqBxpq(ρ) (4.18)

−Ei,y = 1
dxdy

∑
p,q

Ixpq

∑
m,n

G̃mn
yx B̃

mn
xpqe

jktmn·ρ

+ 1
dxdy

∑
p,q

Iypq

∑
m,n

G̃mn
yy B̃

mn
ypqe

jktmn·ρ − Zs

∑
p,q

IypqBypq(ρ) (4.19)
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両辺に試行関数 Txkl(ρ)ux の複素共役 T ∗
xkl(ρ)ux でスカラー積をとって積分すると，

−
ˆ

S

T ∗
xklux · Ei,tandS = −

ˆ
S

T ∗
xklEi,xdS

= 1
dxdy

∑
p,q

Ixpq

∑
m,n

G̃mn
xx B̃

mn
xpq

ˆ
S

T ∗
xkle

jktmn·ρdS

+ 1
dxdy

∑
p,q

Iypq

∑
m,n

G̃mn
xy B̃

mn
ypq

ˆ
S

T ∗
xkle

jktmn·ρdS − Zs

∑
p,q

Ixpq

ˆ
S

T ∗
xklBxpqdS (4.20)

ここで，

T̃xkl(ktmn) ≡
ˆ

S

Txkl(ρ)e−jktmn·ρdS ≡ T̃mn
xkl (4.21)

T̃ykl(ktmn) ≡
ˆ

S

Tykl(ρ)e−jktmn·ρdS ≡ T̃mn
ykl (4.22)

とおくと，

T̃mn∗
xkl =

ˆ
S

T ∗
xkl(ρ)ejktmn·ρdS (4.23)

T̃mn∗
ykl =

ˆ
S

T ∗
ykl(ρ)ejktmn·ρdS (4.24)

これより，

−
ˆ

S

T ∗
xklEi,xdS = 1

dxdy

∑
p,q

Ixpq

∑
m,n

T̃mn∗
xkl G̃

mn
xx B̃

mn
xpq

+ 1
dxdy

∑
p,q

Iypq

∑
m,n

T̃mn∗
xkl G̃

mn
xy B̃

mn
ypq − Zs

∑
p,q

Ixpq

ˆ
S

T ∗
xklBxpqdS

(4.25)

同様にして，両辺に試行関数 Tykl(ρ)uy の複素共役 T ∗
ykl(ρ)uy でスカラー積をとって積分す

ると（導出省略），

−
ˆ

S

T ∗
yklEi,ydS = 1

dxdy

∑
p,q

Ixpq

∑
m,n

T̃mn∗
ykl G̃mn

yx B̃
mn
xpq

+ 1
dxdy

∑
p,q

Iypq

∑
m,n

T̃mn∗
ykl G̃mn

yy B̃
mn
ypq − Zs

∑
p,q

Iypq

ˆ
S

T ∗
yklBypqdS

(4.26)

行列表示すると，

(
Vx

Vy

)
=


[
Zxx

] [
Zxy

]
[
Zyx

] [
Zyy

]

(

Ix

Iy

)
(4.27)
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ただし，行列
[
Zxx

]
，
[
Zxy

]
，
[
Zyx

]
，
[
Zyy

]
の各々の要素 zxx

kl,pq，z
xy
kl,pq，z

yx
kl,pq，z

yy
kl,pq は，次

のようになる．

zxx
kl,pq = 1

dxdy

∑
m,n

T̃mn∗
xkl G̃

mn
xx B̃

mn
xpq − Zs

ˆ
S

T ∗
xklBxpqdS (4.28)

zxy
kl,pq = 1

dxdy

∑
m,n

T̃mn∗
xkl G̃

mn
xy B̃

mn
ypq (4.29)

zyx
kl,pq = 1

dxdy

∑
m,n

T̃mn∗
ykl G̃mn

yx B̃
mn
xpq (4.30)

zyy
kl,pq = 1

dxdy

∑
m,n

T̃mn∗
ykl G̃mn

yy B̃
mn
ypq − Zs

ˆ
S

T ∗
yklBypqdS (4.31)

また，列ベクトル Vx，Vy の各々の要素 vxkl，vykl は，

vxkl = −
ˆ

S

T ∗
xklEi,xdS (4.32)

vykl = −
ˆ

S

T ∗
yklEi,ydS (4.33)

いま，入射電界 Ei,tan を

Ei,tan

∣∣∣∣
S

= Ei,x(x, y)ux + Ei,y(x, y)uy =
(
V +

1xux + V +
1yuy

)
ejkt·ρ (4.34)

とおくと，

v(x
y

)
kl = −

ˆ
S

T ∗(
x
y

)
kl
Ei,
(

x
y

)dS = −V +
1
(

x
y

) ˆ
S

T ∗(
x
y

)
kl
ejkt·ρdS (4.35)

ここで，

T̃(x
y

)
kl ≡

ˆ
S

T(x
y

)
kle

−jkt·ρdS (4.36)

とおくと，

vxkl = −V +
1xT̃

∗
xkl (4.37)

vykl = −V +
1y T̃

∗
ykl (4.38)

行列表示して，(
vxkl

vykl

)
= −

(
T̃ ∗

xkl 0
0 T̃ ∗

ykl

)(
V +

1x

V +
1y

)
= −

(
T̃ ∗

xkl 0
0 T̃ ∗

ykl

)(
sinφi cosφi

− cosφi sinφi

)(
V +

1TE
V +

1TM

)

= −
(
T̃ ∗

xkl sinφi T̃ ∗
xkl cosφi

−T̃ ∗
ykl cosφi T̃ ∗

ykl sinφi

)(
V +

1TE
V +

1TM

)
≡ −

(
T̃ ∗

xu,kl T̃ ∗
xt,kl

T̃ ∗
yu,kl T̃ ∗

yt,kl

)(
V +

1TE
V +

1TM

)
(4.39)
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ここで，(
T̃ ∗

xu,kl T̃ ∗
xt,kl

T̃ ∗
yu,kl T̃ ∗

yt,kl

)
≡
(
T̃ ∗

xkl sinφi T̃ ∗
xkl cosφi

−T̃ ∗
ykl cosφi T̃ ∗

ykl sinφi

)
(4.40)

これより，列ベクトル Vx，Vy は，

(
Vx

Vy

)
= −


[
T̃ ∗

x

]t
0

0
[
T̃ ∗

y

]t

(
V +

1x

V +
1y

)
= −


[
T̃ ∗

xu

]t [
T̃ ∗

xt

]t
[
T̃ ∗

yu

]t [
T̃ ∗

yt

]t

(
V +

1TE
V +

1TM

)
(4.41)

ただし，列ベクトル
[
T̃ ∗

x

]t
，
[
T̃ ∗

y

]t
の各々の要素は T̃ ∗

xkl，T̃ ∗
ykl，列ベクトル

[
T̃ ∗

xu

]t
，
[
T̃ ∗

xt

]t
[
T̃ ∗

yu

]t
，
[
T̃ ∗

yt

]t
の各々の要素は T̃ ∗

xu,kl，T̃ ∗
xt,kl，T̃ ∗

yu,kl，T̃ ∗
yt,kl である．

4.2 マイクロストリップ・リフレクト無限アレー

地導体のある誘電体基板で支持するマイクロストリップパッチの無限アレーでは，グリー
ン関数は次式で与えられる．

G̃
EJ

xx = −jZ0

k0

k(air)
zmn (εrk2

0 − k2
xmn) cos kzmnd+ jkzmn(k2

0 − k2
xmn) sin kzmnd

T
(mn)
e T

(mn)
m

sin kzmnd

(4.42)

G̃
EJ

xy = G̃
EJ

yx = jZ0

k0
·
kxmnkymn

(
k(air)

zmn cos kzmnd+ jkzmn sin kzmnd
)

T
(mn)
e T

(mn)
m

sin kzmnd (4.43)

G̃
EJ

yy = −jZ0

k0

k(air)
zmn (εrk2

0 − k2
ymn) cos kzmnd+ jkzmn(k2

0 − k2
ymn) sin kzmnd

T
(mn)
e T

(mn)
m

sin kzmnd

(4.44)

ここで，

T (mn)
e = kzmn cos kzmnd+ jk(air)

zmn sin kzmnd (4.45)
T (mn)

m = k(air)
zmn εr cos kzmnd+ jkzmn sin kzmnd (4.46)

導体素子上の境界条件より，

Ei,tan + Er,tan + Es,tan = ZsJs (on S) (4.47)

ただし，Ei,tan は入射電界，Er,tan は導体素子がない場合の反射電界を示し，

Ei,tan

∣∣∣∣
S

= Ei,x(x, y)ux + Ei,y(x, y)uy =
(
V +

1xux + V +
1yuy

)
ejkt·ρ (4.48)

Er,tan

∣∣∣∣
S

= Er,x(x, y)ux + Er,y(x, y)uy =
(
V −

1xux + V −
1yuy

)
ejkt·ρ (4.49)
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このとき，列ベクトル Vx，Vy の各々の要素 vxkl，vykl は，

v(x
y

)
kl = −

ˆ
S

T ∗(
x
y

)
kl

(
Ei,
(

x
y

) + Er,
(

x
y

)) dS = −
(
V +

1
(

x
y

) + V −
1
(

x
y

))ˆ
S

T ∗(
x
y

)
kl
ejkt·ρdS

= −
(
V +

1
(

x
y

) + V −
1
(

x
y

)) T̃ ∗(
x
y

)
kl

(4.50)

行列表示して，(
vxkl

vykl

)
= −

(
T̃ ∗

xkl 0
0 T̃ ∗

ykl

){(
V +

1x

V +
1y

)
+
(
V −

1x

V −
1y

)}

= −
(
T̃ ∗

xu,kl T̃ ∗
xt,kl

T̃ ∗
yu,kl T̃ ∗

yt,kl

){(
V +

1TE
V +

1TM

)
+
(
V −

1TE
V −

1TM

)}

= −
(
T̃ ∗

xu,kl T̃ ∗
xt,kl

T̃ ∗
yu,kl T̃ ∗

yt,kl

){(
V +

1TE
V +

1TM

)
+
(
RE+

te 0
0 RE+

tm

)(
V +

1TE
V +

1TM

)}

= −
(
T̃ ∗

xu,kl T̃ ∗
xt,kl

T̃ ∗
yu,kl T̃ ∗

yt,kl

){
[U ] + [RE+]d

}(
V +

1TE
V +

1TM

)
(4.51)

ここで，(
T̃ ∗

xu,kl T̃ ∗
xt,kl

T̃ ∗
yu,kl T̃ ∗

yt,kl

)
≡
(
T̃ ∗

xkl sinφi T̃ ∗
xkl cosφi

−T̃ ∗
ykl cosφi T̃ ∗

ykl sinφi

)
(4.52)

また，

[U ] ≡
(

1 0
0 1

)
(4.53)

[RE+]d ≡
(
RE+

te 0
0 RE+

tm

)
(4.54)

ここで，

RE+
te = k(air)

z sin kzd+ jkz cos kzd

k
(air)
z sin kzd− jkz cos kzd

(4.55)

RE+
tm = kz sin kzd+ jεrk

(air)
z cos kzd

kz sin kzd− jεrk
(air)
z cos kzd

(4.56)

これより，列ベクトル
[
Vx

]
，
[
Vy

]
は，


[
Vx

]
[
Vy

]
 = −


[
T̃ ∗

xu

]t [
T̃ ∗

xt

]t
[
T̃ ∗

yu

]t [
T̃ ∗

yt

]t

{

[U ] + [RE+]d
}(

V +
1TE

V +
1TM

)
(4.57)

ただし，列ベクトル
[
T̃ ∗

xu

]t
，
[
T̃ ∗

xt

]t
，
[
T̃ ∗

yu

]t
，
[
T̃ ∗

yt

]t
の各々の要素は T̃ ∗

xu,kl，T̃ ∗
xt,kl，T̃ ∗

yu,kl，

T̃ ∗
yt,kl である．
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4.3 導体素子を誘電体基板中に装荷したFSS

導体素子がない場合の透過電界 Et,tan，反射電界 Er,tan は，導体素子のある境界面 i 上
で，次のようになる．

Et,tan

∣∣∣∣
S

= Et,x(x, y)ux + Et,y(x, y)uy =
(
V +

ix ux + V +
iy uy

)
ejkt·ρ (4.58)

Er,tan

∣∣∣∣
S

= Er,x(x, y)ux + Er,y(x, y)uy =
(
V −

ix ux + V −
iy uy

)
ejkt·ρ (4.59)

このとき，列ベクトル
[
Vx

]
，
[
Vy

]
の各々の要素 vxkl，vykl は，

v(x
y

)
kl = −

(
V +

i
(

x
y

) + V −
i
(

x
y

)) T̃ ∗(
x
y

)
kl

(4.60)

行列表示して，(
vxkl

vykl

)
= −

(
T̃ ∗

xkl 0
0 T̃ ∗

ykl

){(
V +

ix

V +
iy

)
+
(
V −

ix

V −
iy

)}

= −
(
T̃ ∗

xu,kl T̃ ∗
xt,kl

T̃ ∗
yu,kl T̃ ∗

yt,kl

){(
V +

iTE
V +

iTM

)
+
(
V −

iTE
V −

iTM

)}
(4.61)

ここで，

[TE+]d ≡
(
TE+

te 0
0 TE+

tm

)
(4.62)

[RE+]d ≡
(
RE+

te 0
0 RE+

tm

)
(4.63)

より，(
vxkl

vykl

)
= −

(
T̃ ∗

xu,kl T̃ ∗
xt,kl

T̃ ∗
yu,kl T̃ ∗

yt,kl

){
[TE+]d + [RE+]d

}(
V +

1TE
V +

1TM

)
(4.64)

これより，列ベクトル
[
Vx

]
，
[
Vy

]
は，


[
Vx

]
[
Vy

]
 = −


[
T̃ ∗

xu

]t [
T̃ ∗

xt

]t
[
T̃ ∗

yu

]t [
T̃ ∗

yt

]t

{

[TE+]d + [RE+]d
}(

V +
1TE

V +
1TM

)
(4.65)

いま，基底関数をベクトル fi(ρ)で定義すると，面電流分布 Js(ρ)は，

Js(ρ) =
∑
p,q

(
IxpqBxpq(ρ)ux + IypqBypq(ρ)uy

)
=
∑

i

Iifi(ρ) (4.66)
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フーリエ変換して，

J̃s(ktmn) =
∑
p,q

(
IxpqB̃xpq(ktmn)ux + IypqB̃ypq(ktmn)uy

)
=
∑

i

Iif̃i(ktmn) (4.67)

あるいは，

J̃s(ktmn) =
∑
p,q

(
Ixpqf̃

mn
xpq ux + Iypqf̃

mn
ypq uy

)
=
∑

i

Iif̃mn
i (4.68)

そして，試行関数も fj(ρ)にとると，マトリクス方程式の行列
[
Zxx

]
，
[
Zxy

]
，
[
Zyx

]
，
[
Zyy

]
の各々の要素 zxx

kl,pq，z
xy
kl,pq，z

yx
kl,pq，z

yy
kl,pq は次のようになる．

zxx
kl,pq = 1

dxdy

∑
m,n

f̃mn∗
xkl G̃

mn
xx f̃

mn
xpq − Zs

ˆ
S

f∗
xklfxpqdS (4.69)

zxy
kl,pq = 1

dxdy

∑
m,n

f̃mn∗
xkl G̃

mn
xy f̃

mn
ypq (4.70)

zyx
kl,pq = 1

dxdy

∑
m,n

f̃mn∗
ykl G̃

mn
yx f̃

mn
xpq (4.71)

zyy
kl,pq = 1

dxdy

∑
m,n

f̃mn∗
ykl G̃

mn
yy f̃

mn
ypq − Zs

ˆ
S

f∗
yklfypqdS (4.72)

また，列ベクトル Vx，Vy は，

(
Vx

Vy

)
= −


[
f̃∗

xu

]t [
f̃∗

xt

]t
[
f̃∗

yu

]t [
f̃∗

yt

]t

{

[TE+]d + [RE+]d
}(

V +
1TE

V +
1TM

)
(4.73)

いま，

V ≡
(

Vx

Vy

)
,

[
Z
]

≡


[
Zxx

] [
Zxy

]
[
Zyx

] [
Zyy

]
 , I ≡

(
Ix

Iy

)
(4.74)

とおくと，

V =
[
Z
]
I (4.75)

このとき，行列
[
Z
]
の要素 zij は次のようになる．

zij = 1
dxdy

∑
m,n

f̃∗
j (ktmn) ·

˜̄̄
G

EJ

T (ktmn) · f̃i(ktmn) − Zs

ˆ
S

f∗
j (ρ) · fi(ρ)dS (4.76)
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4.4 反射係数

入射波側の自由空間と誘電体の境界面（z = 0）での入射平面波の横断面内電界E
(1)
i,tan を，

E
(1)
i,tan

∣∣∣∣
z=0

=
{
V −

1TE

(
ut × uz

)
+ V −

1TM
ut

}
ejkt·ρ = Ei,xux + Ei,yuy (4.77)

とする．入射角を (θi, φi)とすると，入射波の波数ベクトル kinc は，

kinc = kinc
x ux + kinc

y uy + kzuz = kt + kzuz = ktut + kzuz

= k(sin θi cosφiux + sin θi sinφiuy + cos θiuz) (4.78)

このとき，導体素子による散乱波の接線電界 Es,tan は，

Es,tan

∣∣∣∣
z=0

= 1
dxdy

∑
m,n

˜̄̄
G

(di)EJ

T (ktmn) · J̃s(ktmn)ejktmn·ρ (4.79)

ここで，

ktmn = ktmnutmn = kxmux + kynuy (4.80)

kxm = 2πm
dx

+ kinc
x (4.81)

kyn = 2πn
dy

+ kinc
y (4.82)

kzmn =
√
k2 − k2

xm − k2
yn (4.83)

また，導体素子がない場合の反射波の接線電界 Er,tan は，

Er,tan

∣∣∣∣
z=0

=
{
RE−

te V −
1TE

(ut × uz) +RE−
tm V −

1TM
ut

}
ejkt·ρ (4.84)

境界面での全反射波 E
(FSS)
r,tan は上の両電界からなり，これをフロケモードで展開すると，

E
(FSS)
r,tan = Er,tan

∣∣∣∣
z=0

+ Es,tan

∣∣∣∣
z=0

=
∑
m,n

{
V +

[mn] (utmn × uz) + V +
(mn)utmn

}
ejktmn·ρ (4.85)

反射係数を求めるため，両者を等しくおき，両辺に ψ∗
00(ρ) = e−jkt00·ρ を乗じて，単位セル

（面 S）にわたって次のように積分する．ˆ
S

[∑
m,n

{
V +

[mn] (utmn × uz) + V +
(mn)utmn

}
ejktmn·ρ

]
e−jkt00·ρdS

=
ˆ

S

[{
RE−

te V −
1TE

(ut × uz) +RE−
tm V −

1TM
ut

}
ejkt·ρ

]
e−jkt00·ρdS

+
ˆ

S

[ 1
dxdy

∑
m,n

˜̄̄
G

(di)EJ

T (ktmn) · J̃s(ktmn)ejktmn·ρ
]
e−jkt00·ρdS (4.86)
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ここで，kt00 = kt ゆえ，
ˆ

S

ejktmn·ρe−jkt00·ρdS =
ˆ

S

e
j

(
2πm
dx

x+ 2πn
dy

y

)
dS = dxdyδm0δn0 (4.87)

より，u
(00)
t = ut，kz00 = kz を考慮して，{
V +

[00] (ut × uz) + V +
(00)ut

}
=
{
RE−

te V −
1TE

(ut × uz) +RE−
tm V −

1TM
ut

}
+ 1
dxdy

˜̄̄
G

(di)EJ

T (kt) · J̃s(kt) (4.88)

これより，(ut × uz)成分，ut 成分は，

V +
[00] = RE−

te V −
1TE

+ 1
dxdy

(ut × uz) ·
˜̄̄
G

(di)EJ

T (kt) · J̃s(kt) (4.89)

V +
(00) = RE−

tm V −
1TM

+ 1
dxdy

ut ·
˜̄̄
G

(di)EJ

T (kt) · J̃s(kt) (4.90)

したがって，主偏波成分の反射係数 R
TE→TE
[00] （TE波），RTM→TM

(00) （TM波）は，

R
TE→TE
[00] =

V +
[00]

V −
1TE

= RE−
te + 1

dxdy
(ut × uz) ·

˜̄̄
G

(di)EJ

T · J̃s

∣∣∣∣∣
V −

1TE
=1,V −

1TM
=0

(4.91)

R
TM→TM
(00) =

V +
(00)

V −
1TM

= RE−
tm + 1

dxdy
ut ·

˜̄̄
G

(di)EJ

T · J̃s

∣∣∣∣∣
V −

1TE
=0,V −

1TM
=1

(4.92)

また，交差偏波成分の反射係数 R
TE→TM
(00) ，RTM→TE

[00] は，

R
TE→TM
(00) =

V +
(00)

V −
1TE

= 1
dxdy

ut ·
˜̄̄
G

(di)EJ

T · J̃s

∣∣∣∣∣
V −

1TE
=1,V −

1TM
=0

(4.93)

R
TM→TE
[00] =

V +
[00]

V −
1TM

= 1
dxdy

(ut × uz) ·
˜̄̄
G

(di)EJ

T · J̃s

∣∣∣∣
V −

1TE
=0,V −

1TM
=1

(4.94)

4.5 透過係数

透過波側の自由空間と誘電体の境界面を z = 0 にとると，導体素子がない場合の透過波
の接線電界 Et,tan は，

Et,tan

∣∣∣∣
z=0

=
{
TE−

te V −
1TE

(ut × uz) + TE−
tm V −

1TM
ut

}
ejkt·ρ (4.95)

また，導体素子による散乱波の接線電界 Es,tan は，

Es,tan

∣∣∣∣
z=0

= 1
dxdy

∑
m,n

˜̄̄
G

(do)EJ

T (ktmn) · J̃s(ktmn)ejktmn·ρ (4.96)
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この境界面での全透過波 E
(FSS)
t,tan を，反射波と同様に次のようにフロケモードで展開する．

E
(FSS)
t,tan = Et,tan

∣∣∣∣
z=0

+ Es,tan

∣∣∣∣
z=0

=
∑
m,n

{
V −

[mn] (utmn × uz) + V −
(mn)utmn

}
ejktmn·ρ (4.97)

透過係数を求めるため，両者を等しくおき，両辺に ψ∗
00(ρ) = e−jkt00·ρ を乗じ，単位セル S

にわたり積分して，
ˆ

S

[∑
m,n

{
V −

[mn] (utmn × uz) + V −
(mn)utmn

}
ejktmn·ρ

]
e−jkt00·ρdS

=
ˆ

S

[{
TE−

te V −
1TE

(ut × uz) + TE−
tm V −

1TM
ut

}
ejkt·ρ

]
e−jkt00·ρdS

+
ˆ

S

[ 1
dxdy

∑
m,n

˜̄̄
G

(do)EJ

T (ktmn) · J̃s(ktmn)ejktmn·ρ
]
e−jkt00·ρdS (4.98)

直交性より，{
V −

[00] (ut × uz) + V −
(00)ut

}
=
{
TE−

te V −
1TE

(ut × uz) + TE−
tm V −

1TM
ut

}
+ 1
dxdy

˜̄̄
G

(do)EJ

T (kt) · J̃s(kt) (4.99)

これより，(ut × uz)成分，ut 成分は，

V −
[00] = TE−

te V −
1TE

+ 1
dxdy

(ut × uz) ·
˜̄̄
G

(do)EJ

T (kt) · J̃s(kt) (4.100)

V −
(00) = TE−

tm V −
1TM

+ 1
dxdy

ut ·
˜̄̄
G

(do)EJ

T (kt) · J̃s(kt) (4.101)

したがって，主偏波成分の透過係数 T
TE→TE
[00] （TE波），T TM→TM

(00) （TM波）は，

T
TE→TE
[00] =

V −
[00]

V −
1TE

= TE−
te + 1

dxdy
(uz × ut) ·

˜̄̄
G

(do)EJ

T · J̃s

∣∣∣∣∣
V −

1TE
=1,V −

1TM
=0

(4.102)

T
TM→TM
(00) =

V −
(00)

V −
1TM

= TE−
tm + 1

dxdy
ut ·

˜̄̄
G

(do)EJ

T · J̃s

∣∣∣∣∣
V −

1TE
=0,V −

1TM
=1

(4.103)

また，交差偏波成分の透過係数 T
TE→TM
(00) ，T TM→TE

[00] は，

T
TE→TM
(00) =

V −
(00)

V −
1TE

= 1
dxdy

ut ·
˜̄̄
G

(do)EJ

T · J̃s

∣∣∣∣∣
V −

1TE
=1,V −

1TM
=0

(4.104)

T
TM→TE
[00] =

V −
[00]

V −
1TM

= 1
dxdy

(uz × ut) ·
˜̄̄
G

(do)EJ

T · J̃s

∣∣∣∣∣
V −

1TE
=0,V −

1TM
=1

(4.105)
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ここで，

˜̄̄
G

EJ

T (kt) · J̃s(kt)

=
(
ux uy

)(G̃xx G̃xy

G̃yx G̃yy

)(
J̃x

J̃y

)

=
(
ut × uz ut

)(sinφi − cosφi

cosφi sinφi

)(
G̃xx G̃xy

G̃yx G̃yy

)(
J̃x

J̃y

)

=
(
ut × uz ut

)(Z̃TE 0
0 Z̃TM

)(
sinφi − cosφi

cosφi sinφi

)(
J̃x

J̃y

)

=
(
ut × uz ut

)( Z̃TE sinφi −Z̃TE sin cosi

Z̃TM cosφi Z̃TM sinφi

)
∑
p,q

B̃xpqIxpq∑
p,q

B̃ypqIypq



=
(
ut × uz ut

)
Z̃TE

{
sinφi

∑
p,q

B̃xpqIxpq − cosφi

∑
p,q

B̃ypqIypq

}
Z̃TM

{
cosφi

∑
p,q

B̃xpqIxpq + sinφi

∑
p,q

B̃ypqIypq

}
 (4.106)

これより，

(ut × uz) ·
˜̄̄
G

EJ

T (kt) · J̃s(kt) = Z̃TE

{
sinφi

∑
p,q

B̃xpqIxpq − cosφi

∑
p,q

B̃ypqIypq

}
(4.107)

ut ·
˜̄̄
G

EJ

T (kt) · J̃s(kt) = Z̃TM

{
cosφi

∑
p,q

B̃xpqIxpq + sinφi

∑
p,q

B̃ypqIypq

}
(4.108)

4.6 周期構造の多モード散乱行列

周期的導体素子にフロケモードで展開した電界が入射したときの散乱行列を求めていく．
境界面 z = 0 においてフロケモードに対応する多端子対散乱行列（縦続接続に使用するた
め，モード数は少なくてよい）を定義するため，入射波側の接線電界 E

(1)
tan はフロケモード

m′，n′ によって次のように展開される．

E
(1)
tan

∣∣∣∣
z=0

=
∑

m′,n′

(
a1[m′n′]e1[m′n′] + a1(m′n′)e1(m′n′)

)

+
∑

m′,n′

(
b1[m′n′]e1[m′n′] + b1(m′n′)e1(m′n′)

)
(4.109)

ただし，a1[m′n′]，a1(m′n′) は各々 TE波，TM波に対する入射波のフロケモード m′，n′ の
ルート電力，b1[m′n′]，b1(m′n′) は各々 TE波，TM波に対する反射波のフロケモードm′，n′

のルート電力を示す．また，e1[m′n′]，e1(m′n′)は，TE波，TM波に対する電界のフロケモー
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ド関数を示し，次式で与えられる．

e1[m′n′] =
√
Z1[m′n′](utm′n′ × uz)ejktm′n′ ·ρ (4.110)

e1(m′n′) =
√
Z1(m′n′)utm′n′ejktm′n′ ·ρ (4.111)

行列形式では，

E
(1)
tan

∣∣∣∣
z=0

=
(
[e′

1TE
]t [e′

1TM
]t
){(a1TE

a1TM

)
+
(

b1TE
b1TM

)}
= [e′

1]t
{

a1 + b1

}
(4.112)

ここで，

[e′
1]t ≡

(
[e′

1TE
]t [e′

1TM
]t
)

(4.113)

また，

a1 ≡
(

a1TE
a1TM

)
(4.114)

b1 ≡
(

b1TE
b1TM

)
(4.115)

ただし，[e′
1TE

]t，[e′
1TM

]t は各々 et
1[m′n′]，et

1(m′n′) を要素とする行ベクトルを示す．また，
a1TE，a1TM は各々 a1[m′n′]，a1(m′n′) を要素とする列ベクトル，b1TE，b1TM は各々 b1[m′n′]，
b1(m′n′) を要素とする列ベクトルを示す．モーメント法より求められる結果を基に，フロケ
モードで接線電界を展開すると，

E
(1)
tan

∣∣∣∣
z=0

=
∑

m′,n′

(
a1[m′n′]e1[m′n′] + a1(m′n′)e1(m′n′)

)
+ E

(1)
s,tan

∣∣∣∣
z=0

+
∑

m′,n′

(
R+

[m′n′]a1[m′n′]e1[m′n′] +R+
(m′n′)a1(m′n′)e1(m′n′)

)

≡
(
[e′

1TE
] [e′

1TM
]
)

(
a1TE
a1TM

)
+
[R+

TE
]d 0

0 [R+
TM

]d

(a1TE
a1TM

)
+
∑

m′,n′

(
Es[m′n′] + Es(m′n′)

)
(4.116)

ただし，[R+
TE

]d，[R+
TM

]d は，各々 R+
[m′n′]（TE波），R+

(m′n′)（TM波）を対角要素とする対
角行列を示し，

R+
[m′n′] =

Y1[m′n′] − Y2[m′n′]

Y1[m′n′] + Y2[m′n′]
= k1zm′n′ − k2zm′n′

k1zm′n′ + k2zm′n′
(4.117)

R+
(m′n′) =

Z2(m′n′) − Z1(m′n′)

Z2(m′n′) + Z1(m′n′)
= k2zm′n′ − n2k1zm′n′

k2zm′n′ + n2k1zm′n′
(4.118)
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ここで，

n2 ≡ k2
2
k2

1
(4.119)

いま，µ1 = µ2，ε1 = ε0εr1，ε2 = ε0εr2 のとき，

n2 = εr2

εr1
=

|εr2|
(
1 − j tan δ2

)
|εr1|

(
1 − j tan δ1

) (4.120)

フロケモードの散乱波については，

Es[m′n′] + Es(m′n′)

= 1
dxdy

˜̄̄
G

(di)EJ

T (ktm′n′) · J̃s(ktm′n′)ejktm′n′ ·ρ

= 1
dxdy

(
ux uy

)(G̃m′n′

xx G̃m′n′

xy

G̃m′n′

yx G̃m′n′

yy

)(
J̃m′n′

x

J̃m′n′

y

)
ejktm′n′ ·ρ

= 1
dxdy

(
utm′n′ × uz utm′n′

)((utm′n′ × uz) · ux (utm′n′ × uz) · uy

utm′n′ · ux utm′n′ · uy

)

·
(
G̃m′n′

xx G̃m′n′

xy

G̃m′n′

yx G̃m′n′

yx

)(
J̃m′n′

x

J̃m′n′

y

)
ejktm′n′ ·ρ

= 1
dxdy

(
e1[m′n′] e1(m′n′)

)√Y1[m′n′] 0
0

√
Y1(m′n′)

(G̃m′n′

ux G̃m′n′

uy

G̃m′n′

tx G̃m′n′

ty

)(
J̃m′n′

x

J̃m′n′

y

)
(4.121)

ここで，

˜̄̄
G

(di)EJ

T = G̃m′n′

xx uxux + G̃m′n′

xy uxuy + G̃m′n′

yx uyux + G̃m′n′

yy uyuy

≡ G̃m′n′

ux uum′n′ux + G̃m′n′

uy uum′n′uy

+ G̃m′n′

tx utm′n′ux + G̃m′n′

ty utm′n′uy (4.122)
uum′n′ ≡ utm′n′ × uz (4.123)

これより，散乱波は，

E
(1)
s,tan

∣∣∣∣
z=0

=
∑

m′,n′

(
Es[m′n′] + Es(m′n′)

)

= 1
dxdy

∑
m′,n′

(
e1[m′n′] e1(m′n′)

)√Y1[m′n′] 0
0

√
Y1(m′n′)


·
(
G̃m′n′

ux G̃m′n′

uy

G̃m′n′

tx G̃m′n′

ty

)(
J̃m′n′

x

J̃m′n′

y

)
(4.124)
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さらに，m′，n′ に対して行列として扱うと，

E
(1)
s,tan

∣∣∣∣
z=0

= 1
dxdy

(
[e′

1TE
]t [e′

1TM
]t
)[√Y1TE

]
d

0
0

[√
Y1TM

]
d



[
G̃ux

] [
G̃uy

]
[
G̃tx

] [
G̃ty

]
(J̃x

J̃y

)

≡ 1
dxdy

[e′
1]t
[√
Y1
]

d

[
G̃ut,xy

] (J̃x

J̃y

)
(4.125)

ここで，

[√
Y1
]

d
≡

[√Y1TE

]
d

0
0

[√
Y1TM

]
d

 (4.126)

[
G̃ut,xy

]
≡


[
G̃ux

] [
G̃uy

]
[
G̃tx

] [
G̃ty

]
 (4.127)

ただし，
[√
Y1TE

]
d
，
[√
Y1TM

]
d
は各々

√
Y1[m′n′]，

√
Y1(m′n′) を対角要素とする対角行列，[

G̃ux

]
，
[
G̃uy

]
，
[
G̃tx

]
，
[
G̃ty

]
は各々 G̃m′n′

ux ，G̃m′n′

uy ，G̃m′n′

tx ，G̃m′n′

ty を要素とする行列を示
す．また，J̃x，J̃y は各々 J̃m′n′

x ，J̃m′n′

y を要素とする列ベクトルを示し，次のように基底関
数で展開される．(

J̃x

J̃y

)
=
[
B̃
] (

Ix

Iy

)
(4.128)

ここで，

[
B̃
]

=


[
B̃x

]
0

0
[
B̃y

]
 (4.129)

ただし，
[
B̃x

]
，
[
B̃y

]
は各々基底関数 B̃m′n′

xpq ，B̃m′n′

ypq を要素とする行列を示す．また，Ix，Iy

は Ixpq，Iypq を要素とする列ベクトルを示し，(
Ix

Iy

)
=
[
Z
]−1

(
Vx

Vy

)
(4.130)

ここで，

[
Z
]

=


[
Zxx

] [
Zxy

]
[
Zyx

] [
Zyy

]
 (4.131)
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そして，Vx，Vy は次式で求められる．

(
Vx

Vy

)
= −


[
T̃ ∗

xu

]t [
T̃ ∗

xt

]t
[
T̃ ∗

yu

]t [
T̃ ∗

yt

]t

{

[U ] + [R+]d
}(

V +
1TE

V +
1TM

)

= −
[
T̃ ∗

xy,ut]t
{

[U ] + [R+]d
}

[
√
Z1]da1 (4.132)

ここで，

[
T̃ ∗

xy,ut]t ≡


[
T̃ ∗

xu

]t [
T̃ ∗

xt

]t
[
T̃ ∗

yu

]t [
T̃ ∗

yt

]t
 (4.133)

[
√
Z1]d ≡

[
√
Z1TE ]d 0
0 [

√
Z1TM ]d

 (4.134)

ただし，[U ]は単位行列を示す．また，[
√
Z1TE ]d，[

√
Z1TM ]d は各々

√
Z1[m′n′]，

√
Z1(m′n′) を

対角要素とする対角行列を示す．いま，

[
Z ′
]

=


[
Z ′

xx

] [
Z ′

xy

]
[
Z ′

yx

] [
Z ′

yy

]
 ≡ dxdy

[
Z
]

(4.135)

とおくと，行列
[
Z ′

xx

]
，
[
Z ′

xy

]
，
[
Z ′

yx

]
，
[
Z ′

yy

]
の各々の要素 zxx′

kl,pq，z
xy′
kl,pq，z

yx′
kl,pq，z

yy′
kl,pq は

次のようになる．

zxx′
kl,pq =

∑
m,n

T̃mn∗
xkl G̃

mn
xx B̃

mn
xpq − dxdyZs

ˆ
S

T ∗
xklBxpqdS (4.136)

zxy′
kl,pq =

∑
m,n

T̃mn∗
xkl G̃

mn
xy B̃

mn
ypq (4.137)

zyx′
kl,pq =

∑
m,n

T̃mn∗
ykl G̃mn

yx B̃
mn
xpq (4.138)

zyy′
kl,pq =

∑
m,n

T̃mn∗
ykl G̃mn

yy B̃
mn
ypq − dxdyZs

ˆ
S

T ∗
yklBypqdS (4.139)

また，

[
T̃Z∗]t ≡

[
T̃ ∗

xy,ut]t[
√
Z1]d ≡


[
T̃Z∗

xu

]t [
T̃Z∗

xt

]t[
T̃Z∗

yu

]t [
T̃Z∗

yt

]t
 (4.140)
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とおいたときの行列
[
T̃Z∗

xu

]t
，
[
T̃Z∗

xt

]t
，
[
T̃Z∗

yu

]t
，
[
T̃Z∗

yt

]t
の要素 t̃xu∗

kl,m′n′， t̃xt∗
kl,m′n′， t̃yu∗

kl,m′n′，

t̃yt∗
kl,m′n′ は各々次のようになる．

t̃xu∗
kl,m′n′ = T̃m′n′∗

xkl

√
Z1[m′n′] sinφm′n′ (4.141)

t̃xt∗
kl,m′n′ = T̃m′n′∗

xkl

√
Z1(m′n′) sinφm′n′ (4.142)

t̃yu∗
kl,m′n′ = −T̃m′n′∗

ykl

√
Z1[m′n′] cosφm′n′ (4.143)

t̃yt∗
kl,m′n′ = T̃m′n′∗

ykl

√
Z1(m′n′) cosφm′n′ (4.144)

また，

[
G̃Y B

]
≡
[√
Y1
]

d

[
G̃ut,xy

]
d

[
B̃
]

≡


[
G̃Y B

ux

] [
G̃Y B

uy

]
[
G̃Y B

tx

] [
G̃Y B

ty

]
 (4.145)

とおいたときの行列
[
G̃Y B

ux

]
，
[
G̃Y B

uy

]
，
[
G̃Y B

tx

]
，
[
G̃Y B

ty

]
の要素 g̃ux

m′n′,kl，g̃
uy
m′n′,kl，g̃tx

m′n′,kl，

g̃ty
m′n′,kl は各々次のようになる．

g̃ux
m′n′,kl =

√
Y1[m′n′]

(
G̃m′n′

xx sinφm′n′ + G̃m′n′

yx cosφm′n′

)
B̃m′n′

xkl (4.146)

g̃uy
m′n′,kl =

√
Y1[m′n′]

(
G̃m′n′

xy sinφm′n′ + G̃m′n′

yy cosφm′n′

)
B̃m′n′

ykl (4.147)

g̃tx
m′n′,kl =

√
Y1(m′n′)

(
−G̃m′n′

xx cosφm′n′ + G̃m′n′

yx sinφm′n′

)
B̃m′n′

xkl (4.148)

g̃ty
m′n′,kl =

√
Y1(m′n′)

(
−G̃m′n′

xy cosφm′n′ + G̃m′n′

yy sinφm′n′

)
B̃m′n′

ykl (4.149)

さらに，

[
S0
]

≡ −
[√
Y1
]

d

[
G̃ut,xy

]
d

[
B̃
][
Z ′
]−1[

T̃ ∗
xy,ut]t[

√
Z1]d =

[
G̃Y B

][
Z ′
]−1[

T̃Z∗]t (4.150)

とおくと，

E
(1)
s,tan

∣∣∣∣
z=0

= −[e′
1]t
[√
Y1
]

d

[
G̃ut,xy

]
d

[
B̃
][
Z ′
]−1[

T̃ ∗
xy,ut]t

{
[U ] + [R+]d

}
[
√
Z1]da1

= [e′
1]
[
S0
]{

[U ] + [R+]d
}

a1 (4.151)

よって，

[e′
1]
{

a1 + b1

}
= [e′

1]
{

a1 + [R+]da1

}
+ [e′

1]
[
S0
]{

[U ] + [R+]d
}

a1

a1 + b1 =
{

a1 + [R+]da1

}
+
[
S0
]{

[U ] + [R+]d
}

a1

b1 =
(

[R+]d +
[
S0
]{

[U ] + [R+]d
})

a1 ≡ [S11]a1 (4.152)
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したがって，[S11] は次のようになる．

[S11] = [R+]d +
[
S0
](

[U ] + [R+]d
)

(4.153)

同様にして，[S22] は（導出省略），

[S22] = [R−]d +
[
S0
](

[U ] + [R−]d
)

(4.154)

ここで，

[R−]d =
[R−

TE
]d 0

0 [R−
TM

]d

 (4.155)

ただし，[R−
TE

]d，[R−
TM

]d は，各々 R−
[m′n′]（TE波），R−

(m′n′)（TM波）を対角要素とする対
角行列を示し，

R−
[m′n′] =

Y2[m′n′] − Y1[m′n′]

Y2[m′n′] + Y1[m′n′]
= −R+

[m′n′] (4.156)

R−
(m′n′) =

Z2(m′n′) − Z1(m′n′)

Z2(m′n′) + Z1(m′n′)
= −R+

(m′n′) (4.157)

よって，

[R−]d = −[R+]d (4.158)

したがって，[S22] は，

[S22] = −[R+]d +
[
S0
](

[U ] − [R+]d
)

(4.159)

また，[S21] は（導出省略），

[S21] = [T+]d +
[
S0
]
[T+]d (4.160)

ここで，

[T+]d =
(

[T+
TE

]d 0
0 [T+

TM
]d

)
(4.161)

ただし，[T+
TE

]d，[T+
TM

]d は，各々 T+
[m′n′]（TE波），T+

(m′n′)（TM波）を対角要素とする対角
行列を示し，

T+
[m′n′] =

Y1[m′n′]

Y2[m′n′] + Y1[m′n′]
= 1 +R+

[m′n′] (4.162)

T+
(m′n′) =

Y1(m′n′)

Y2(m′n′) + Y1(m′n′)
= 1 +R+

(m′n′) (4.163)
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よって，

[T+]d = [U ] + [R+]d (4.164)

したがって，[S21] は，

[S21] =
(

[U ] + [R+]d
)

+
[
S0
](

[U ] + [R+]d
)

=
(

[U ] + [S0]
)(

[U ] + [R+]d
)

(4.165)

同様にして，[S12] は，

[S12] =
(

[U ] + [S0]
)(

[U ] − [R+]d
)

(4.166)

これより，散乱行列 [S]は，

[S] =
(

[S11] [S12]
[S21] [S22]

)

=


[
[R+]d +

[
S0
](

[U ] + [R+]d
)] [(

[U ] + [S0]
)(

[U ] − [R+]d
)]

[(
[U ] + [S0]

)(
[U ] + [R+]d

)] [
−[R+]d +

[
S0
](

[U ] − [R+]d
)]
 (4.167)

4.7 Roof-top型部分領域基底関数による高速化

四角配列された FSSを対象とし，電流分布を roof-top型部分領域基底関数で展開する．

Bxpq(x, y) = Λp+ 1
2
(x)Ξq(y) (4.168)

Bypq(x, y) = Ξp(x)Λq+ 1
2
(y) (4.169)

ここで，Λp(x)は三角形を表す関数によって定義され，

Λp(x) =



1
∆x

{
x− (p− 1)∆x

} (
(p− 1)∆x ≤ x ≤ p∆x

)
− 1

∆x
{
x− (p+ 1)∆x

} (
p∆x ≤ x ≤ (p+ 1)∆x

)
0 (otherwise)

(4.170)

あるいは，

Λp(x) =


1 − |x− p∆x|

∆x
(
|x− p∆x| ≤ ∆x

)
0

(
|x− p∆x| > ∆x

) (4.171)
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Λq(y)も同様である．また，Ξp(x)は方形を表す関数で，

Ξp(x) =


1

(
|x− p∆x| ≤ ∆x

2

)

0
(

|x− p∆x| > ∆x
2

) (4.172)

Ξq(y)も同様である．これより，B̃mn
xpq，B̃mn

ypq は，

B̃mn
xpq =

ˆ
S

Bxpq(x, y)e−jktmn·ρdS

=
ˆ (p+3/2)∆x

(p−1/2)∆x

Λp+ 1
2
(x)e−jkxmnxdx

ˆ (q+1/2)∆y

(q−1/2)∆y

Ξq(y)e−jkymnydy (4.173)

ここで，x′ ≡ x− (p+ 1/2)∆x，y′ ≡ y − q∆y とおくと，

B̃mn
xpq =

{ˆ 0

−∆x

(
1 + x′

∆x

)
e−jkxmx′

dx′ +
ˆ ∆x

0

(
1 − x′

∆x

)
e−jkxmx′

dx′
}

·
(ˆ ∆y/2

−∆y/2
e−jkyny′

dy′
)
e−j(kxmp∆x+kynq∆y)e−jkxm

∆x
2

= ∆x
(

sin(kxm∆x/2)
kxm∆x/2

)2

· ∆y sin(kyn∆y/2)
kyn∆y/2 · e−j(kxmp∆x+kynq∆y)e−jkxm

∆x
2

= ∆x∆y sinc2
(
kxm

∆x
2

)
sinc

(
kyn

∆y
2

)
· e−j(kxmp∆x+kynq∆y)e−jkxm

∆x
2

≡ B̃mn
x e−j(kxmp∆x+kynq∆y)e−jkxm

∆x
2 (4.174)

B̃mn
ypq = ∆x∆y sinc

(
kxm

∆x
2

)
sinc2

(
kyn

∆y
2

)
· e−j(kxmp∆x+kynq∆y)e−jkyn

∆y
2

≡ B̃mn
y e−j(kxmp∆x+kynq∆y)e−jkyn

∆y
2 (4.175)

試行関数 Txkl，Tykl を，基底関数と同じ関数にとると，T̃mn
xkl，T̃mn

ykl は，

T̃mn
xkl = ∆x∆y sinc2

(
kxm

∆x
2

)
sinc

(
kyn

∆y
2

)
· e−j(kxmk∆x+kynl∆y)e−jkxm

∆x
2

≡ T̃mn
x e−j(kxmk∆x+kynl∆y)e−jkxm

∆x
2 (4.176)

T̃mn
ykl = ∆x∆y sinc

(
kxm

∆x
2

)
sinc2

(
kyn

∆y
2

)
· e−j(kxmk∆x+kynl∆y)e−jkyn

∆y
2

≡ T̃mn
y e−j(kxmk∆x+kynl∆y)e−jkyn

∆y
2 (4.177)
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ただし，

B̃mn
x = T̃mn

x = ∆x∆y sinc2
(
kxm

∆x
2

)
sinc

(
kyn

∆y
2

)
(4.178)

B̃mn
y = T̃mn

y = ∆x∆y sinc
(
kxm

∆x
2

)
sinc2

(
kyn

∆y
2

)
(4.179)

これより，T̃mn∗
xkl B̃

mn
xpq は，

T̃mn∗
xkl B̃

mn
xpq = T̃mn∗

x B̃mn
x · ej(kxm(k−p)∆x+kyn(l−q)∆y) (4.180)

ここで，単位セル内の x方向および y 方向のメッシュの数をMp，Nq とすると，

dx = Mp∆x (4.181)
dy = Nq∆y (4.182)

また，

p̄ ≡ k − p (4.183)
q̄ ≡ l − q (4.184)

とおくと

kxm(k − p)∆x =
(2πm
dx

+ kinc
x

)
p̄∆x =

(
2πm
Mp

+ kinc
x ∆x

)
p̄ (4.185)

kyn(l − q)∆y =
(

2πn
dy

+ kinc
y

)
q̄∆y =

(
2πn
Nq

+ kinc
y ∆y

)
q̄ (4.186)

より，

T̃mn∗
xkl B̃

mn
xpq = T̃mn∗

x B̃mn
x e

j2π

(
mp̄
Mp

+ nq̄
Nq

)
W ∗

p̄q̄ (4.187)

ただし，

Wp̄q̄ ≡ e−j(kinc
x p̄∆x+kinc

y q̄∆y) (4.188)

同様にして，T̃mn∗
xkl B̃

mn
ypq，T̃mn∗

ykl B̃mn
xpq，T̃mn∗

ykl B̃mn
ypq は，

T̃mn∗
xkl B̃

mn
ypq = T̃mn∗

x B̃mn
y ejkxm

∆x
2 e−jkyn

∆y
2 e

j2π

(
mp̄
Mp

+ nq̄
Nq

)
W ∗

p̄q̄ (4.189)

T̃mn∗
ykl B̃mn

xpq = T̃mn∗
y B̃mn

x e−jkxm
∆x
2 ejkyn

∆y
2 e

j2π

(
mp̄
Mp

+ nq̄
Nq

)
W ∗

p̄q̄ (4.190)

また，

T̃mn∗
ykl B̃mn

ypq = T̃mn∗
y B̃mn

y e
j2π

(
mp̄
Mp

+ nq̄
Nq

)
W ∗

p̄q̄ (4.191)
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いま，簡単のため，導体損がない場合を考えると，行列要素 zxx
kl,pq は，

zxx
kl,pq = 1

dxdy

∑
m,n

T̃mn∗
xkl G̃

mn
xx B̃

mn
xpq = 1

dxdy

∑
m,n

T̃mn∗
x G̃mn

xx B̃
mn
x e

j2π

(
mp̄
Mp

+ nq̄
Nq

)
W ∗

p̄q̄ (4.192)

ここで，整数m′，n′ を

m′ = −Mp

2 ,−Mp

2 + 1, · · · , Mp

2 − 1 (4.193)

n′ = −Nq

2 ,−Nq

2 + 1, · · · , Nq

2 − 1 (4.194)

で新たに定義し，

m ≡ m′ + rMp (4.195)
n ≡ n′ + sNq (4.196)

とおくと（r，sは整数），

e
j2π

(
mp̄
Mp

+ nq̄
Nq

)
= e

j2π

(
(m′+rMp)p̄

Mp
+ (n′+sNq)q̄

Nq

)
= e

j2π

(
m′p̄
Mp

+ n′q̄
Nq

)
ej2π(rp̄+sq̄)

= e
j2π

(
m′p̄
Mp

+ n′q̄
Nq

)
(4.197)

これより，行列要素 zxx
kl,pq は，

zxx
kl,pq =

W ∗
p̄q̄

dxdy

∑
m,n

T̃mn∗
x G̃mn

xx B̃
mn
x e

j2π

(
m′p̄
Mp

+ n′q̄
Nq

)

=
W ∗

p̄q̄

dxdy

∑
m′,n′

(∑
r,s

T̃mn∗
x G̃mn

xx B̃
mn
x

)
e

j2π

(
m′p̄
Mp

+ n′q̄
Nq

)
(4.198)

ここで，

g̃xx
m′n′ ≡ 1

∆x∆y
∑

r

∑
s

T̃mn∗
x G̃mn

xx B̃
mn
x (4.199)

とおくと，

zxx
kl,pq = W ∗

p̄q̄

1
MpNq

Mp
2 −1∑

m′=− Mp
2

Nq
2 −1∑

n′=− Nq
2

g̃xx
m′n′e

j2π

(
m′p̄
Mp

+ n′q̄
Nq

)
= W ∗

p̄q̄ FFT−1
p̄q̄

[
g̃xx

m′n′

]
(4.200)

同様にして，zxy
kl,pq は，

zxy
kl,pq =

W ∗
p̄q̄

dxdy

∑
m,n

T̃mn∗
x G̃mn

xy B̃
mn
y e

j2π

(
m′p̄
Mp

+ n′q̄
Nq

)
ej
(
kxm

∆x
2 −kyn

∆y
2

)
(4.201)

111



ここで，

g̃xy
m′n′ ≡ 1

∆x∆y
∑

r

∑
s

T̃mn∗
x G̃mn

xy B̃
mn
y ej

(
kxm

∆x
2 −kyn

∆y
2

)
(4.202)

とおくと，

zxy
kl,pq = W ∗

p̄q̄

1
MpNq

Mp
2 −1∑

m′=− Mp
2

Nq
2 −1∑

n′=− Nq
2

g̃xy
m′n′e

j2π

(
m′p̄
Mp

+ n′q̄
Nq

)
= W ∗

p̄q̄ FFT−1
p̄q̄

[
g̃xy

m′n′

]
(4.203)

また，zyx
kl,pq は，

zyx
kl,pq =

W ∗
p̄q̄

dxdy

∑
m,n

T̃mn∗
y G̃mn

yx B̃
mn
x e

j2π

(
m′p̄
Mp

+ n′q̄
Nq

)
ej
(
−kxm

∆x
2 +kyn

∆y
2

)
(4.204)

ここで，

g̃yx
m′n′ ≡ 1

∆x∆y
∑

r

∑
s

T̃mn∗
y G̃mn

yx B̃
mn
x ej

(
−kxm

∆x
2 +kyn

∆y
2

)
(4.205)

とおくと，

zyx
kl,pq = W ∗

p̄q̄

1
MpNq

Mp
2 −1∑

m′=− Mp
2

Nq
2 −1∑

n′=− Nq
2

g̃yx
m′n′e

j2π

(
m′p̄
Mp

+ n′q̄
Nq

)
= W ∗

p̄q̄ FFT−1
p̄q̄

[
g̃yx

m′n′

]
(4.206)

そして，zyy
kl,pq は，

zyy
kl,pq =

W ∗
p̄q̄

dxdy

∑
m,n

T̃mn∗
y G̃mn

yy B̃
mn
y e

j2π

(
m′p̄
Mp

+ n′q̄
Nq

)
(4.207)

ここで，

g̃yy
m′n′ ≡ 1

∆x∆y
∑

r

∑
s

T̃mn∗
y G̃mn

yy B̃
mn
y (4.208)

とおくと，

zyy
kl,pq = W ∗

p̄q̄

1
MpNq

Mp
2 −1∑

m′=− Mp
2

Nq
2 −1∑

n′=− Nq
2

g̃yy
m′n′e

j2π

(
m′p̄
Mp

+ n′q̄
Nq

)
= W ∗

p̄q̄ FFT−1
p̄q̄

[
g̃yy

m′n′

]
(4.209)
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よって，

vxkl =
Mp

2 −1∑
p=− Mp

2

Nq
2 −1∑

q=− Nq
2

(
zxx

kl,pqIxpq + zxy
kl,pqIypq

)

=
Mp

2 −1∑
p=− Mp

2

Nq
2 −1∑

q=− Nq
2

W ∗
p̄q̄

(
FFT−1

p̄q̄

[
g̃xx

m′n′

]
Ixpq + FFT−1

p̄q̄

[
g̃xy

m′n′

]
Iypq

)
(4.210)

vykl =
Mp

2 −1∑
p=− Mp

2

Nq
2 −1∑

q=− Nq
2

(
zyx

kl,pqIxpq + zyy
kl,pqIypq

)

=
Mp

2 −1∑
p=− Mp

2

Nq
2 −1∑

q=− Nq
2

W ∗
p̄q̄

(
FFT−1

p̄q̄

[
g̃yx

m′n′

]
Ixpq + FFT−1

p̄q̄

[
g̃yy

m′n′

]
Iypq

)
(4.211)

成分を行列表示すると，

(
vxkl

vykl

)
=

Mp
2 −1∑

p=− Mp
2

Nq
2 −1∑

q=− Nq
2

W ∗
p̄q̄

{
FFT−1

p̄q̄

(
g̃xx

m′n′ g̃xy
m′n′

g̃yx
m′n′ g̃yy

m′n′

)}(
Ixpq

Iypq

)
(4.212)

ここで，k，lは，

k = −Mp

2 ,−Mp

2 + 1, · · · , Mp

2 − 1 (4.213)

l = −Nq

2 ,−Nq

2 + 1, · · · , Nq

2 − 1 (4.214)

これより，電流分布の未知係数 Ixpq，Iypq は次式より求めることができる．

(
Ix

Iy

)
=


[
Zxx

] [
Zxy

]
[
Zyx

] [
Zyy

]


−1 (
Vx

Vy

)
(4.215)

また，p̄ = k − p，q̄ = l − q より，

W ∗
p̄q̄ = ej

(
kinc

x p̄∆x+kinc
y q̄∆y

)
= ej

(
kinc

x k∆x+kinc
y l∆y

)
e−j

(
kinc

x p∆x+kinc
y q∆y

)
= W ∗

klWpq (4.216)

そして，

m′p̄

Mp
+ n′q̄

Nq
=
(
m′k

Mp
+ n′l

Nq

)
−
(
m′p

Mp
+ n′q

Nq

)
(4.217)
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これより，

∑
p,q

zkl,pqIxpq =
∑
p,q

W ∗
p̄q̄

1
MpNq

∑
m′,n′

g̃xx
m′n′e

j2π

(
m′p̄
Mp

+ n′q̄
Nq

)
Ixpq

=
∑
p,q

W ∗
klWpq

1
MpNq

∑
m′,n′

g̃xx
m′n′e

j2π

(
m′k
Mp

+ n′l
Nq

)
e

−j2π

(
m′p
Mp

+ n′q
Nq

)
Ixpq

= W ∗
kl

MpNq

∑
m′,n′

g̃xx
m′n′

(∑
p,q

WpqIxpqe
−j2π

(
m′p
Mp

+ n′q
Nq

))
e

j2π

(
m′k
Mp

+ n′l
Nq

)
(4.218)

上式の ( )は，FFTで計算でき，次のようになる．

∑
p,q

zkl,pqIxpq = W ∗
kl

MpNq

∑
m′,n′

g̃xx
m′n′

(
FFTm′n′

[
WpqIxpq

])
e

j2π

(
m′k
Mp

+ n′l
Nq

)

= W ∗
kl FFT−1

k,l

[
g̃xx

m′n′

(
FFTm′n′

[
WpqIxpq

])]
(4.219)

したがって，

vxkl = W ∗
kl FFT−1

k,l

[
g̃xx

m′n′

(
FFTm′n′

[
WpqIxpq

])
+g̃xy

m′n′

(
FFTm′n′

[
WpqIypq

])]
(4.220)

vykl = W ∗
kl FFT−1

k,l

[
g̃yx

m′n′

(
FFTm′n′

[
WpqIxpq

])
+g̃yy

m′n′

(
FFTm′n′

[
WpqIypq

])]
(4.221)

成分を行列表示すると，(
vxkl

vykl

)
= W ∗

k,l FFT−1
k,l

[(
g̃xx

m′n′ g̃xy
m′n′

g̃yx
m′n′ g̃yy

m′n′

)
FFTm′n′

{
Wpq

(
Ixpq

Iypq

)}]
(4.222)

ここで，k，lは，

k = −Mp

2 ,−Mp

2 + 1, · · · , Mp

2 − 1 (4.223)

l = −Nq

2 ,−Nq

2 + 1, · · · , Nq

2 − 1 (4.224)

また，導体損を考慮すると，

Fxp̄q̄ ≡
ˆ

S

T ∗
xklBxpqdS = δlq



2
3∆x∆y (p̄ = 0)

1
6∆x∆y (|p̄| = 1)

0 (otherwise)

(4.225)
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Fyp̄q̄ ≡
ˆ

S

T ∗
yklBypqdS = δkp



2
3∆x∆y (q̄ = 0)

1
6∆x∆y (|q̄| = 1)

0 (otherwise)

(4.226)

これより，

vxkl =
∑
p,q

{(
W ∗

p̄q̄FFT−1
p̄q̄

[
g̃xx

m′n′

]
− ZsFxp̄q̄

)
Ixpq +W ∗

p̄q̄FFT−1
p̄q̄

[
g̃xy

m′n′

]
Iypq

}
(4.227)

vykl =
∑
p,q

{
W ∗

p̄q̄FFT−1
p̄q̄

[
g̃yx

m′n′

]
Ixpq +

(
W ∗

p̄q̄FFT−1
p̄q̄

[
g̃yy

m′n′

]
− ZsFyp̄q̄

)
Iypq

}
(4.228)

成分を行列表示すると，

(
vxkl

vykl

)
=

Mp
2 −1∑

p=− Mp
2

Nq
2 −1∑

q=− Nq
2

{
W ∗

p̄q̄ FFT−1
p̄q̄

(
g̃xx

m′n′ g̃xy
m′n′

g̃yx
m′n′ g̃yy

m′n′

)
−Zs

(
Fxp̄q̄ 0

0 Fyp̄q̄

)}(
Ixpq

Iypq

)

(4.229)

また，(
vxkl

vykl

)
= W ∗

k,l FFT−1
k,l

[(
g̃xx

m′n′ g̃xy
m′n′

g̃yx
m′n′ g̃yy

m′n′

)
FFTm′n′

{
Wpq

(
Ixpq

Iypq

)}]

− Zs

(
Fxp̄q̄ 0

0 Fyp̄q̄

)(
Ixpq

Iypq

)
(4.230)

4.8 スロット結合パッチアレーFSS

z = dおよび z = −dの両面にパッチアレー（パッチ領域を面 S1，面 S2 とする），z = 0
にスロット（スロット領域を面 S3 とする）を設けた地導体板からなる周波数選択板（FSS）
を考える．このとき，0 < z < d に比誘電率 ε1，−d < z < 0 に比誘電率 ε1 の誘電体基板で
各々パッチを支持するものとする．いま，FSSに平面波（電界Ei，磁界Hi）を入射させる
と，パッチ上に電流，スロットに磁流が誘起される．等価定理より，パッチのかわりに誘電
体基板上に等価電流源，スロットのかわりに地導体板上に等価磁流源を考え，生じる散乱電
磁界を Es，Hs とする．また，入射波によって生じる誘電体基板および地導体板による反
射波を Er，Hr とすると，一般に，全電界 E および全磁界H は，

E = Ei + Er + Es (4.231)
H = Hi + Hr + Hs (4.232)
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ただし，FSSの透過波E′，H ′ については，入射波および反射波の寄与がないことから，散
乱波 E′

s，H ′
s のみで次のようになる．

E′ = E′
s (4.233)

H ′ = H ′
s (4.234)

また，境界条件は，境界面の接線成分を添え字 tanで表すと，

Etan = 0 (on S1) (4.235)
Htan = H ′

tan (on S3) (4.236)
E′

tan = 0 (on S2) (4.237)

これより，

Ei,tan
∣∣∣
S1

+ Er,tan
∣∣∣
S1

+ Es,tan
∣∣∣
S1

= 0 (on S1) (4.238)

Hi,tan
∣∣∣
S3

+ Hr,tan
∣∣∣
S3

+ Hs,tan
∣∣∣
S3

= H ′
s,tan

∣∣∣
S3

(on S3) (4.239)

E′
s,tan

∣∣∣
S2

= 0 (on S2) (4.240)

散乱電界 Es,tan
∣∣∣
S1
は，パッチ領域の面 S1 の等価電流源 Js1 およびスロット領域の面 S3 上

の等価磁流源Ms より，

Es,tan

∣∣∣∣
S1

= Es,tan(Js1)
∣∣∣∣
S1

+ Es,tan(Ms)
∣∣∣∣
S1

(4.241)

ここで，

Es,tan(Js1)
∣∣∣∣
S1

= 1
dxdy

∑
m,n

˜̄̄
G

EJ(0)

T (ktmn) · J̃s1(ktmn)ejktmn·ρ (4.242)

˜̄̄
G

EJ(0)

T (ktmn) = G̃
EJ

xxuxux + G̃
EJ

xy uxuy + G̃
EJ

yx uyux + G̃
EJ

yy uyuy (4.243)

グリーン関数は先に示したとおりであるので，ここでは省略する．また，

Es,tan(Ms)
∣∣∣∣
S1

= 1
dxdy

∑
m,n

˜̄̄
G

EM(d)

T (ktmn) · M̃s(ktmn)ejktmn·ρ (4.244)

グリーン関数は，

˜̄̄
G

EM(d)

T (ktmn) = G̃
EM

xx uxux + G̃
EM

xy uxuy + G̃
EM

yx uyux + G̃
EM

yy uyuy (4.245)
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ここで，

G̃
EM

xx = −G̃EM

yy

= −jkxmnkymn(εr − 1) sin kzmnd

T
(mn)
e T

(mn)
m

(4.246)

G̃
EM

xy = kzmn

T
(mn)
e

− jk2
xmn(εr − 1) sin kzmnd

T
(mn)
e T

(mn)
m

(4.247)

G̃
EM

yx = − kzmn

T
(mn)
e

+
jk2

ymn(εr − 1) sin kzmnd

T
(mn)
e T

(mn)
m

(4.248)

ただし，

T (mn)
e = kzmn cos kzmnd+ jk(air)

zmn sin kzmnd (4.249)
T (mn)

m = k(air)
zmn εr cos kzmnd+ jkzmn sin kzmnd (4.250)

逆に，散乱電界 E′
s,tan

∣∣∣
S2
は，パッチ領域の面 S2 の等価電流源 Js2 およびスロット領域の

面 S3 下の等価磁流源 −Ms より，

E′
s,tan

∣∣∣∣
S2

= Es,tan(Js2)
∣∣∣∣
S2

+ Es,tan(−Ms)
∣∣∣∣
S2

(4.251)

ここで，

Es,tan(Js2)
∣∣∣∣
S2

= 1
dxdy

∑
m,n

˜̄̄
G

EJ(0)

T (ktmn) · J̃s2(ktmn)ejktmn·ρ (4.252)

Es,tan(−Ms)
∣∣∣∣
S2

= 1
dxdy

∑
m,n

˜̄̄
G

EM(d)

T (ktmn) ·
(
−M̃s(ktmn)

)
ejktmn·ρ (4.253)

また，散乱磁界Hs,tan
∣∣∣
S3
（z = 0+）は，パッチ領域の面 S1 の等価電流源 Js1 およびスロッ

ト領域の面 S3 上の等価磁流源Ms より，

Hs,tan

∣∣∣∣
S3

= Hs,tan(Js1)
∣∣∣∣
S3

+ Hs,tan(Ms)
∣∣∣∣
S3

(4.254)

ここで，

Hs,tan(Js1)
∣∣∣∣
S3

= 1
dxdy

∑
m,n

˜̄̄
G

HJ(d)

T (ktmn) · J̃s1(ktmn)ejktmn·ρ (4.255)

グリーン関数は，

˜̄̄
G

HJ(d)

T (ktmn) = G̃
HJ

xx uxux + G̃
HJ

xy uxuy + G̃
HJ

yx uyux + G̃
HJ

yy uyuy (4.256)
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ここで，

G̃
HJ

xx = −G̃HJ

yy

= jkxmnkymn(εr − 1) sin kzmnd

T
(mn)
e T

(mn)
m

= −G̃EM

xx

= G̃
EM

yy (4.257)

G̃
HJ

xy = kzmn

T
(mn)
e

−
jk2

ymn(εr − 1) sin kzmnd

T
(mn)
e T

(mn)
m

= −G̃EM

yx (4.258)

G̃
HJ

yx = − kzmn

T
(mn)
e

+ jk2
xmn(εr − 1) sin kzmnd

T
(mn)
e T

(mn)
m

= −G̃EM

xy (4.259)

また，

Hs,tan(Ms)
∣∣∣∣
S3

= 1
dxdy

∑
m,n

˜̄̄
G

HM(0)

T (ktmn) · M̃s(ktmn)ejktmn·ρ (4.260)

グリーン関数は，

˜̄̄
G

HM(0)

T (ktmn) = G̃
HM

xx uxux + G̃
HM

xy uxuy + G̃
HM

yx uyux + G̃
HM

yy uyuy (4.261)

ここで，

G̃
HM

xx = −
jωε0εrk

2
ymn

k2
tmnkzmnT

(mn)
m

(
k(air)

zmn εr sin kzmnd− jkzmn cos kzmnd
)

− jkzmnk
2
xmn

ωµ0k2
tmnT

(mn)
e

(
kzmn sin kzmnd− jk(air)

zmn cos kzmnd
)

(4.262)

G̃
HM

xy = kxmnkymn

k2
tmn

{
jωε0εr

kzmnT
(mn)
m

(
k(air)

zmn εr sin kzmnd− jkzmn cos kzmnd
)

− jkzmn

ωµ0T
(mn)
e

(
kzmn sin kzmnd− jk(air)

zmn cos kzmnd
)}

= G̃
HM

yx (4.263)

G̃
HM

yy = − jωε0εrk
2
xmn

k2
tmnkzmnT

(mn)
m

(
k(air)

zmn εr sin kzmnd− jkzmn cos kzmnd
)

−
jkzmnk

2
ymn

ωµ0k2
tmnT

(mn)
e

(
kzmn sin kzmnd− jk(air)

zmn cos kzmnd
)

(4.264)
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散乱磁界H ′
s,tan

∣∣∣
S3
（z = 0−）は，パッチ領域の面 S2 の等価電流源 Js2 およびスロット領

域の面 S3 下の等価磁流源 −Ms より，

H ′
s,tan

∣∣∣∣
S3

= Hs,tan(Js2)
∣∣∣∣
S3

+ Hs,tan(−Ms)
∣∣∣∣
S3

(4.265)

ここで，

Hs,tan(Js2)
∣∣∣∣
S3

= 1
dxdy

∑
m,n

˜̄̄
G

HJ(d)

T (ktmn) · J̃s2(ktmn)ejktmn·ρ (4.266)

Hs,tan(−Ms)
∣∣∣∣
S3

= 1
dxdy

∑
m,n

˜̄̄
G

HM(0)

T (ktmn) ·
(
−M̃s(ktmn)

)
ejktmn·ρ (4.267)

4.8.1 ガラーキン法

電流 Js1(x, y)，Js2(x, y)，磁流Ms(x, y) を，基底関数 fJ1
i ，fJ2

i ，fM
i を用いて次のよ

うに展開する．

Js1(x, y) =
∑

i

I1,if
J1
i (x, y) (4.268)

Js2(x, y) =
∑

i

I2,if
J2
i (x, y) (4.269)

Ms(x, y) =
∑

i

I3,if
M
i (x, y) (4.270)

パッチ S1 上の境界条件の式の両辺に，そのパッチの電流に関わる基底関数 fJ1∗
j を乗じて

面 S1 にわたって積分すると，ˆ
S1

fJ1∗
j · Ei,tandS1 +

ˆ
S1

fJ1∗
j · Er,tandS1 +

ˆ
S1

fJ1∗
j · Es,tandS1 = 0 (4.271)

上式の第 1項は，
ˆ

S1

fJ1∗
j · Ei,tandS1 =

ˆ
S1

fJ1∗
j · Ei,0

∣∣∣
S1
ejk(kxx+kyy)dS1

=
ˆ

S1

fJ1∗
j (x, y)ej(kxx+kyy)dS1 · Ei,0

∣∣∣
S1

= f̃J1∗
j (kx, ky) · Ei,0

∣∣∣
S1

(4.272)

また，第 2項は，
ˆ

S1

fJ1∗
j · Er,tandS1 =

ˆ
S1

fJ1∗
j · Er,0

∣∣∣
S1
ejk(kxx+kyy)dS1

=
ˆ

S1

fJ1∗
j (x, y)ej(kxx+kyy)dS1 · Er,0

∣∣∣
S1

= f̃J1∗
j (kx, ky) · Er,0

∣∣∣
S1

(4.273)
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いま，

V1,j ≡ −f̃J1∗
j (kx, ky) ·

(
Ei,0

∣∣∣
S1

+ Er,0
∣∣∣
S1

)
(4.274)

とおくと，

V1,j =
ˆ

S1

fJ1∗
j · Es,tandS1

=
ˆ

S1

fJ1∗
j ·

(
Es,tan(Js1)

∣∣∣
S1

+ Es,tan(Ms)
∣∣∣
S1

)
dS1

=
ˆ

S1

fJ1∗
j ·

∑
i

I1,iEs,tan(fJ1
i )dS1 +

ˆ
S1

fJ1∗
j ·

∑
i

I3,iEs,tan(fM
i )dS1

=
∑

i

I1,i

ˆ
S1

fJ1∗
j · Es,tan(fJ1

i )dS1 +
∑

i

I3,i

ˆ
S1

fJ1∗
j · Es,tan(fM

i )dS1

≡
∑

i

I1,i z
11
ji +

∑
i

I3,i z
13
ji (4.275)

ここで，

z11
ji =

ˆ
S1

fJ1∗
j · Es,tan(fJ1

i )dS1 (4.276)

z13
ji =

ˆ
S1

fJ1
j · Es,tan(fM

i )dS1 (4.277)

次に，スロット S3 上の境界条件の式の両辺に，そのスロットの磁流に関わる基底関数
fM

j を乗じて面 S3 にわたって積分すると，
ˆ

S3

fM∗
j · Hi,tandS3 +

ˆ
S3

fM∗
j · Hr,tandS3 +

ˆ
S3

fM∗
j · Hs,tandS3

=
ˆ

S3

fM∗
j · H ′

s,tandS3 (4.278)

上式の第 1項は，
ˆ

S3

fM∗
j · Hi,tandS3 =

ˆ
S3

fM∗
j · Hi,0

∣∣∣
S3
ejk(kxx+kyy)dS3

=
ˆ

S3

fM∗
j (x, y)ej(kxx+kyy)dS3 · Hi,0

∣∣∣
S3

= f̃M∗
j (kx, ky) · Hi,0

∣∣∣
S3

(4.279)

また，第 2項は，同様にして，
ˆ

S3

fM∗
j · Hr,tandS3 = f̃M∗

j (kx, ky) · Hr,0
∣∣∣
S3

(4.280)
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いま，

V3,j ≡ −f̃M∗
j (kx, ky) ·

(
Hi,0

∣∣∣
S3

+ Hr,0
∣∣∣
S3

)
(4.281)

とおくと，

V3,j =
ˆ

S3

fM∗
j · Hs,tandS3 −

ˆ
S3

fM∗
j · H ′

s,tandS3

=
ˆ

S3

fM∗
j ·

(
Hs,tan(Js1)

∣∣∣
S3

+ Hs,tan(Ms)
∣∣∣
S3

)
dS3

−
ˆ

S3

fM∗
j ·

(
Hs,tan(Js2)

∣∣∣
S3

+ Hs,tan(−Ms)
∣∣∣
S3

)
dS3

=
ˆ

S3

fM∗
j · Hs,tan(Js1)dS3 −

ˆ
S3

fM∗
j · Hs,tan(Js2)dS3 + 2

ˆ
S3

fM∗
j · Hs,tan(Ms)dS3

=
ˆ

S3

fM∗
j ·

∑
i

I1,iHs,tan(fJ1
i )dS3 −

ˆ
S3

fM∗
j ·

∑
i

I2,iHs,tan(fJ2
i )dS3

+ 2
ˆ

S3

fM∗
j ·

∑
i

I3,iHs,tan(fM
i )dS3

=
∑

i

I1,i

(ˆ
S3

fM∗
j · Hs,tan(fJ1

i )dS3

)
+
∑

i

I2,i

(
−
ˆ

S3

fM∗
j · Hs,tan(fJ2

i )dS3

)

+
∑

i

I3,i

(
2
ˆ

S3

fM∗
j · Hs,tan(fM

i )dS3

)
≡
∑

i

I1,iz
31
ji +

∑
i

I2,iz
32
ji +

∑
i

I3,iz
33
ji (4.282)

ここで，

z31
ji =

ˆ
S3

fM∗
j · Hs,tan(fJ1

i )dS3 (4.283)

z32
ji = −

ˆ
S3

fM∗
j · Hs,tan(fJ2

i )dS3 (4.284)

z33
ji = 2

ˆ
S3

fM∗
j · Hs,tan(fM

i )dS3 (4.285)

パッチ S2 上の境界条件の式の両辺に，そのパッチの電流に関わる基底関数 f2,j を乗じて
面 S2 にわたって積分すると，

ˆ
S2

E′
s,tan · f2,jdS2 = 0 (4.286)
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同様に V2,j ≡ 0を定義し，

V2,j = −
ˆ

S2

fJ2∗
j ·

(
Es,tan(Js2)

∣∣∣
S2

+ Es,tan(−Ms)
∣∣∣
S2

)
dS2

= −
ˆ

S2

fJ2∗
j · Es,tan(Js2)dS2 +

ˆ
S2

fJ2∗
j · Es,tan(Ms)dS2

= −
ˆ

S2

fJ2∗
j ·

∑
i

I2,iEs,tan(fJ2
i )dS2 +

ˆ
S2

fJ2∗
j ·

∑
i

I3,iEs,tan(fM
i )dS2

=
∑

i

I2,i

(
−
ˆ

S2

fJ2∗
j · Es,tan(fJ2

i )dS2

)
+
∑

i

I3,i

(ˆ
S2

fJ2∗
j · Es,tan(fM

i )dS2

)
≡
∑

i

I2,iz
22
ji +

∑
i

I3,iz
23
ji (4.287)

ここで，

z22
ji = −

ˆ
S2

fJ2∗
j · Es,tan(fJ2

i )dS2 (4.288)

z23
ji =

ˆ
S2

fJ2∗
j · Es,tan(fM

i )dS2 (4.289)

積分を実行して，グリーン関数を用いて表すと，

z11
ji = 1

dxdy

∑
m,n

f̃J1∗
j (ktmn) ·

˜̄̄
G

EJ(0)

T (ktmn) · f̃J1
i (ktmn) (4.290)

z12
ji = 0 (4.291)
z21

ji = 0 (4.292)

z13
ji = 1

dxdy

∑
m,n

f̃J1∗
j (ktmn) ·

˜̄̄
G

EM(d)

T (ktmn) · f̃M
i (ktmn) (4.293)

z22
ji = − 1

dxdy

∑
m,n

f̃J2∗
j (ktmn) ·

˜̄̄
G

EJ(0)

T (ktmn) · f̃J2
i (ktmn) (4.294)

z23
ji = 1

dxdy

∑
m,n

f̃J2∗
j (ktmn) ·

˜̄̄
G

EM(d)

T (ktmn) · f̃M
i (ktmn) (4.295)

z31
ji = 1

dxdy

∑
m,n

f̃M∗
j (ktmn) ·

˜̄̄
G

HJ(d)

T (ktmn) · f̃J1
i (ktmn) (4.296)

z32
ji = − 1

dxdy

∑
m,n

f̃M∗
j (ktmn) ·

˜̄̄
G

HJ(d)

T (ktmn) · f̃J2
i (ktmn) (4.297)

z33
ji = 2

dxdy

∑
m,n

f̃M∗
j (ktmn) ·

˜̄̄
G

HM(0)

T (ktmn) · f̃M
i (ktmn) (4.298)
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行列表示式は，

V1
V2
V3

 =



[
Z11

] [
Z12

] [
Z13

]
[
Z21

] [
Z22

] [
Z23

]
[
Z31

] [
Z32

] [
Z33

]


I1

I2
I3

 (4.299)

ただし，

z12
ji = z21

ji = 0 (4.300)

したがって，次式を解けば電磁流分布を求めることができる．

I1
I2
I3

 =



[
Z11

] [
Z12

] [
Z13

]
[
Z21

] [
Z22

] [
Z23

]
[
Z31

] [
Z32

] [
Z33

]



−1V1
V2
V3

 (4.301)
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