2.3 方形TEモードによる放射特性の例

方形TE$_{0n}$モード($m=0$)による遠方界

 TE$_{0n}$モードのとき,$m=0$とおいて, \begin{align} \frac{\VEC{F}_{[0n]} (\theta ,\phi) \Big|_{\Gamma=0}}{\sqrt{Z_w}} &= -\frac{ab\sqrt{ab \epsilon _0 \epsilon _n}}{4} \frac{\lambda _{c,[0n]}}{\lambda} \sin \theta \ \Psi _{0n} (\theta ,\phi) \sqrt{z_{[0n]}} \nonumber \\ &\cdot \left[ \frac{1+ y_{[0n]} \cos \theta}{2} \right. \left\{ \left( \frac{0\pi}{a} \sin \phi \right) ^2 - \left( \frac{n \pi}{b} \cos \phi \right) ^2 \right\} \VEC{a}_\theta \nonumber \\ &\left. + \frac{\cos \theta + y_{[0n]}}{2} k_{c,[0n]}^2 \sin \phi \cos \phi \ \VEC{a}_\phi \right] \end{align} ここで, \begin{align} &k_{c,[0n]} = \frac{n\pi}{b}\\ &\lambda_{c,[0n]} = \frac{2\pi}{k_{c,[0n]}} = 2 \pi \frac{b}{n \pi} = \frac{2b}{n}\\ &\epsilon_0 = 1, \ \ \ \epsilon_{n(\ne 0)} = 2 \end{align} また, \begin{align} &\Psi _{0n} (\theta ,\phi) = \frac{\mbox{sinc} \left( u_x \cos \phi \right)}{u_x \cos \phi} \cdot \frac{\mbox{sinc} \left( u_y \sin \phi + \frac{n\pi}{2} \right)}{u_y \sin \phi - \frac{n\pi}{2}} \ e^{j\frac{(n+1)\pi}{2}} \\ &e^{j\frac{(n+1)\pi}{2}} = e^{j\frac{n\pi}{2}} e^{j\frac{\pi}{2}} = j e^{j\frac{n\pi}{2}} = j \cos \frac{n\pi}{2} -\sin \frac{n\pi}{2} \end{align} ここで, \begin{gather} u_x = \frac{\pi a}{\lambda} \sin \theta \end{gather} より, \begin{align} &\Psi _{0n} (\theta ,\phi) = \frac{\lambda}{\pi a} \frac{\mbox{sinc} \left( u_x \cos \phi \right)}{u_x \cos \phi} \Phi_{y,n} \\ &\Phi_{y,n} \equiv \frac{\mbox{sinc} \left( u_y \sin \phi + \frac{n\pi}{2} \right)}{u_y \sin \phi - \frac{n\pi}{2}} e^{j\frac{(n+1)\pi}{2}} \end{align} これらより, \begin{gather} \frac{\VEC{F}_{[0n]} (\theta ,\phi) \Big|_{\Gamma=0}}{\sqrt{Z_w}} = -\frac{ab\sqrt{ab \cdot 2}}{4} \frac{n\pi}{b} \frac{1}{\lambda} \sin \theta \frac{\lambda}{\pi a} \frac{\mbox{sinc} \left( u_x \cos \phi \right)}{u_x \cos \phi} \Phi_{y,n} \sqrt{z_{[0n]}} \nonumber \\ \cdot \left( \frac{n \pi}{b} \right) ^2 \left[ \frac{1+ y_{[0n]} \cos \theta}{2} (-\cos^2 \phi ) \VEC{a}_\theta + \frac{\cos \theta + y_{[0n]}}{2} \sin \phi \cos \phi \ \VEC{a}_\phi \right] \end{gather} 整理して, \begin{align} \frac{\VEC{F}_{[0n]} (\theta ,\phi) \Big|_{\Gamma=0}}{\sqrt{Z_w}} &= \frac{n \pi \sqrt{ab}}{\sqrt{2}} \mbox{sinc} (u_x \cos \phi) \Phi_{y,n} \sqrt{z_{[0n]}} \nonumber \\ &\cdot \left( \frac{1+y_{[0n]} \cos \theta}{2} \cos \phi \ \VEC{a}_\theta - \frac{y_{[0n]}+\cos \theta}{2} \sin \phi \ \VEC{a}_\phi \right) \end{align} 開口径が十分大きい場合,$z_{[0n]} \simeq 1$,$y_{[0n]} \simeq 1$と近似して, \begin{align} \bar{\VEC{F}}_{[0n]} (\theta ,\phi) &= \frac{n\pi\sqrt{ab}}{\sqrt{2}} \ \frac{1+\cos \theta}{2} \ \mbox{sinc} \left( u_x \cos \phi \right) \nonumber \\ &\cdot \ \frac{\sin \left( u_y \sin \phi + \frac{n\pi}{2} \right)}{(u_y \sin \phi )^2 - \frac{n^2\pi^2}{4}} \ e^{j\frac{(n+1)\pi}{2}} \ \VEC{a}_\xi \end{align} ここで, \begin{gather} \VEC{a}_\xi = \cos \phi \VEC{a}_\theta - \sin \phi \VEC{a}_\phi \end{gather} 正面方向($\theta =0$,$\phi =0$)では, \begin{gather} \bar{\VEC{F}}_{[0n]} (0,0) = \frac{n\pi\sqrt{ab}}{\sqrt{2}} \cdot 1 \cdot 1 \cdot \ \frac{\sin \left( \frac{n\pi}{2} \right)}{- \frac{n^2\pi^2}{4}} \ e^{j\frac{(n+1)\pi}{2}} \ \VEC{a}_x \end{gather} ここで, \begin{eqnarray} \sin \frac{n\pi}{2} e^{j\frac{(n+1)\pi}{2}} &=& \sin \frac{n\pi}{2} \left( j \cos \frac{n\pi}{2} -\sin \frac{n\pi}{2} \right) \nonumber \\ &=& -\left( \sin \frac{n\pi}{2} \right)^2 = -1 (\mbox{odd}), \ 0 (\mbox{even}) \end{eqnarray} より,$n$が偶数の場合,正面でヌルになる.また,$n$が奇数の場合, \begin{align} &\bar{\VEC{F}}_{[0n]} (0,0) = \frac{2\sqrt{2ab}}{n\pi} \VEC{a}_x \\ &G_{[0n]} \Big| _{\theta = 0} = 4\pi \frac{ab}{\lambda ^2} \left| \frac{2\sqrt{2}}{n\pi} \right| ^2 = 4\pi \frac{ab}{\lambda ^2} \cdot \frac{8}{n^2 \pi ^2} \end{align}

方形TE$_{01}$モード($m=0$,$n=1$)による遠方界

 TE$_{01}$モードのとき,$m=0$,$n=1$とおいて, \begin{align} &A_{[01]} = \frac{1}{\pi} \sqrt{\frac{2b}{a}} \\ &\bar{\VEC{F}}_{[01]} (\theta ,\phi) = -\frac{\pi \sqrt{ab}}{\sqrt{2}} \ \frac{1+\cos \theta}{2} \mbox{sinc} \big( u_x \cos \phi \big) \ \frac{\cos \big( u_y \sin \phi \big)}{ \big( u_y \sin \phi \big)^2- \frac{\pi^2}{4}} \ \VEC{a}_\xi \end{align} E面は$\phi = 0$のときで,$\sin \phi = 0$,$\cos \phi = 1$より, \begin{gather} \bar{\VEC{F}}_{[01]} (\theta ,0) = \frac{2\sqrt{2ab}}{\pi} \ \frac{1+\cos \theta }{2} \mbox{sinc} \big( u_x \big) \ \VEC{a}_x \end{gather} 一方,H面は$\phi = \pi /2$のときで,$\sin \phi = 1$,$\cos \phi = 0$より, \begin{gather} \bar{\VEC{F}}_{[01]} (\theta ,\pi /2) = -\frac{\pi \sqrt{ab}}{\sqrt{2}} \ \frac{1+\cos \theta}{2} \frac{\cos \big( u_y \big)}{u_y^2- \frac{\pi ^2}{4}} \ \VEC{a}_x \end{gather}

方形TE$_{m0}$モード($n=0$)による遠方界

 同様にして,TE$_{m0}$モードのとき,$n=0$とおいて, \begin{align} \frac{\VEC{F}_{[m0]} (\theta ,\phi) \Big|_{\Gamma=0}}{\sqrt{Z_w}} &= -\frac{ab\sqrt{ab \epsilon _0 \epsilon _n}}{4} \frac{\lambda _{c,[m0]}}{\lambda} \sin \theta \ \Psi _{m0} (\theta ,\phi) \sqrt{z_{[m0]}} \nonumber \\ &\cdot \left[ \frac{1+ y_{[m0]} \cos \theta}{2} \right. \left\{ \left( \frac{m\pi}{a} \sin \phi \right) ^2 - \left( \frac{0 \pi}{b} \cos \phi \right) ^2 \right\} \VEC{a}_\theta \nonumber \\ &\left. + \frac{\cos \theta + y_{[m0]}}{2} k_{c,[0n]}^2 \sin \phi \cos \phi \ \VEC{a}_\phi \right] \end{align} ここで, \begin{align} &k_{c,[m0]} = \frac{m\pi}{a}\\ &\lambda_{c,[m0]} = \frac{2\pi}{k_{c,[m0]}} = 2 \pi \frac{a}{m \pi} = \frac{2a}{m}\\ &\epsilon_0 = 1, \ \ \ \epsilon_{m(\ne 0)} = 2 \end{align} また, \begin{align} &\Psi _{m0} (\theta ,\phi) = \frac{\mbox{sinc} \left( u_x \cos \phi + \frac{m\pi}{2} \right)}{u_x \cos \phi - \frac{m\pi}{2}} \cdot \frac{\mbox{sinc} \left( u_y \sin \phi \right)}{u_y \sin \phi} \ e^{j\frac{(m+1)\pi}{2}} \end{align} ここで, \begin{gather} u_y = \frac{\pi b}{\lambda} \sin \theta \end{gather} より, \begin{align} &\Psi _{m0} (\theta ,\phi) = \frac{\lambda}{\pi b} \frac{\mbox{sinc} \left( u_y \sin \phi \right)}{u_y \sin \phi} \Phi_{x,n} \\ &\Phi_{x,n} \equiv \frac{\mbox{sinc} \left( u_x \cos \phi + \frac{m\pi}{2} \right)}{u_x \cos \phi - \frac{m\pi}{2}} e^{j\frac{(m+1)\pi}{2}} \end{align} これらより, \begin{gather} \frac{\VEC{F}_{[m0]} (\theta ,\phi) \Big|_{\Gamma=0}}{\sqrt{Z_w}} = -\frac{ab\sqrt{ab \cdot 2}}{4} \frac{m\pi}{a} \frac{1}{\lambda} \sin \theta \frac{\lambda}{\pi b} \frac{\mbox{sinc} \left( u_y \sin \phi \right)}{u_y \sin \phi} \Phi_{x,n} \sqrt{z_{[m0]}} \nonumber \\ \cdot \left( \frac{m \pi}{a} \right) ^2 \left[ \frac{1+ y_{[m0]} \cos \theta}{2} \sin^2 \phi \VEC{a}_\theta + \frac{\cos \theta + y_{[m0]}}{2} \sin \phi \cos \phi \ \VEC{a}_\phi \right] \end{gather} 整理して, \begin{align} \frac{\VEC{F}_{[m0]} (\theta ,\phi) \Big|_{\Gamma=0}}{\sqrt{Z_w}} &= -\frac{m \pi \sqrt{ab}}{\sqrt{2}} \mbox{sinc} (u_y \sin \phi) \Phi_{x,n} \sqrt{z_{[m0]}} \nonumber \\ &\cdot \left( \frac{1+y_{[m0]} \cos \theta}{2} \sin \phi \ \VEC{a}_\theta + \frac{y_{[m0]}+\cos \theta}{2} \cos \phi \ \VEC{a}_\phi \right) \end{align} 開口径が十分大きい場合,$z_{[m0]} \simeq 1$,$y_{[m0]} \simeq 1$と近似して, \begin{align} \bar{\VEC{F}}_{[m0]} (\theta ,\phi) &= -\frac{m\pi\sqrt{ab}}{\sqrt{2}} \ \frac{1+\cos \theta}{2} \ \mbox{sinc} \left( u_y \sin \phi \right) \nonumber \\ &\cdot \ \frac{\sin \left( u_x \cos \phi + \frac{m\pi}{2} \right)}{(u_x \cos \phi )^2 - \frac{m^2\pi^2}{4}} \ e^{j\frac{(m+1)\pi}{2}} \ \VEC{a}_\eta \end{align} ここで, \begin{gather} \VEC{a}_\eta = \sin \phi \VEC{a}_\theta + \cos \phi \VEC{a}_\phi \end{gather} 正面方向($\theta =0$,$\phi =0$)では, $n$が偶数の場合,正面でヌルになる.また,$n$が奇数の場合, \begin{align} &\bar{\VEC{F}}_{[m0]} (0,0) = -\frac{2\sqrt{2ab}}{m\pi} \VEC{a}_y \\ &G_{[m0]} \Big| _{\theta = 0} = 4\pi \frac{ab}{\lambda ^2} \left| \frac{2\sqrt{2}}{m\pi} \right| ^2 = 4\pi \frac{ab}{\lambda ^2} \cdot \frac{8}{m^2 \pi ^2} \end{align}

方形TE$_{10}$モード($m=1$,$n=0$)による遠方界

 TE$_{10}$モードのとき,$m=1$,$n=0$とおいて, \begin{gather} \bar{\VEC{F}}_{[10]} (\theta ,\phi) = -\frac{\pi \sqrt{ab}}{\sqrt{2}} \ \frac{1+\cos \theta}{2} \ \frac{\cos \big( u_x \cos \phi \big)}{\big( u_x \cos \phi \big)^2- \frac{\pi^2}{4}} \mbox{sinc} \big( u_y \sin \phi \big) \ \VEC{a}_\eta \end{gather} E面は$\phi = \pi /2$のときで,$\sin \phi = 1$,$\cos \phi = 0$より, \begin{gather} \bar{\VEC{F}}_{[10]} (\theta ,\pi/2) = \frac{2\sqrt{2 ab}}{\pi} \ \frac{1+\cos \theta }{2} \mbox{sinc} \big( u_y \big) \ \VEC{a}_y \end{gather} 一方,H面は$\phi = 0$のときで,$\sin \phi = 0$,$\cos \phi = 1$より, \begin{gather} \bar{\VEC{F}}_{[10]} (\theta ,0) = -\frac{\pi \sqrt{ab}}{\sqrt{2}} \ \frac{1+\cos \theta}{2} \frac{\cos \big( u_x \big)}{u_x^2- \frac{\pi ^2}{4}} \ \VEC{a}_y \end{gather}

ピーク利得

 TE$_{01}$モードのピーク利得$G_{[01]} \Big| _{\theta = 0}$は, \begin{gather} G_{[01]} \Big| _{\theta = 0} = 4\pi \frac{ab}{\lambda ^2} \left| \frac{2\sqrt{2}}{\pi} \right| ^2 = 4\pi \frac{ab}{\lambda ^2} \cdot \frac{8}{\pi ^2} \end{gather} また, TE$_{10}$モードのピーク利得$G_{[10]} \Big| _{\theta = 0}$は, \begin{gather} G_{[10]} \Big| _{\theta = 0} = 4\pi \frac{ab}{\lambda ^2} \left| \frac{2\sqrt{2}}{\pi} \right| ^2 = 4\pi \frac{ab}{\lambda ^2} \cdot \frac{8}{\pi ^2} = G_{[01]} \Big| _{\theta = 0} \end{gather}