2.4 方形TE$_{mn}$モードによるフレネル領域の放射界

 積分項が $t_x \ne 0$ のとき, \begin{gather} I_{s1} \equiv \int_{-1}^1 \sin \frac{m\pi}{2} \big( \bar{x} +1 \big) e^{j\bar{x} u_x \cos \phi} e^{-j 2\pi t_x \bar{x}^2} d\bar{x} \\ I_{c1} \equiv \int_{-1}^1 \cos \frac{m\pi}{2} \big( \bar{x} +1 \big) e^{j\bar{x} u_x \cos \phi} e^{-j 2\pi t_x \bar{x}^2} d\bar{x} \end{gather} また, $t_y \ne 0$ のとき, \begin{gather} I_{s2} \equiv \int_{-1}^1 \sin \frac{n\pi}{2} \big( \bar{y} +1 \big) e^{j\bar{y} u_y \cos \phi} e^{-j 2\pi t_y \bar{y}^2} d\bar{y} \\ I_{c2} \equiv \int_{-1}^1 \cos \frac{n\pi}{2} \big( \bar{y} +1 \big) e^{j\bar{y} u_y \sin \phi} e^{-j 2\pi t_y \bar{y}^2} d\bar{y} \end{gather} 上式は,次の不定積分が計算できればよい. \begin{gather} I_{s} = \int \sin B(v+1) e^{Av} e^{-j\frac{\pi}{2}Cv^2} dv \\ I_{c} = \int \cos B(v+1) e^{Av} e^{-j\frac{\pi}{2}Cv^2} dv \end{gather}

フレネル積分

 フレネル積分$S(x)$,$C(x)$は, \begin{gather} S(x) = \int_0^x \sin \left( \frac{\pi}{2} t^2 \right) dt = \sqrt{\frac{2}{\pi}} \int_0^{\sqrt{\frac{\pi}{2}}x} \sin (t^2) dt\\ C(x) = \int_0^x \cos \left( \frac{\pi}{2} t^2 \right) dt = \sqrt{\frac{2}{\pi}} \int_0^{\sqrt{\frac{\pi}{2}}x} \cos (t^2) dt \end{gather}
フレネル積分$S(x)$,$C(x)$の計算例
$\displaystyle{\int_0^x e^{j\frac{\pi}{2}t^2} dt = C(x) + j S(x)}$(Cornuのらせん)
不定積分を変形して, \begin{eqnarray} I_{s} &=& \int \sin B(v+1) e^{Av} e^{-j\frac{\pi}{2}Cv^2} dv \nonumber \\ &=& \frac{1}{j2} \int \Big( e^{jB(v+1)} - e^{-jB(v+1)} \Big) e^{Av} e^{-j\frac{\pi}{2}Cv^2} dv \nonumber \\ &=& \frac{e^{jB}}{j2} \int e^{(A+jB)v} e^{-j\frac{\pi}{2}Cv^2} dv - \frac{e^{-jB}}{j2} \int e^{(A-jB)v} e^{-j\frac{\pi}{2}Cv^2} dv \\ I_{c} &=& \int \cos B(v+1) e^{Av} e^{-j\frac{\pi}{2}Cv^2} dv \nonumber \\ &=& \frac{1}{2} \int \Big( e^{jB(v+1)} + e^{-jB(v+1)} \Big) e^{Av} e^{-j\frac{\pi}{2}Cv^2} dv \nonumber \\ &=& \frac{e^{jB}}{2} \int e^{(A+jB)v} e^{-j\frac{\pi}{2}Cv^2} dv + \frac{e^{-jB}}{2} \int e^{(A-jB)v} e^{-j\frac{\pi}{2}Cv^2} dv \end{eqnarray} いま,$jA_i \equiv A\pm jB \ (i=1,2)$とおくと, \begin{gather} I_{s} = \frac{e^{jB}}{j2} \int e^{jA_1 v} e^{-j\frac{\pi}{2}Cv^2} dv - \frac{e^{-jB}}{j2} \int e^{jA_2 v} e^{-j\frac{\pi}{2}Cv^2} dv \\ I_{c} = \frac{e^{jB}}{2} \int e^{jA_1 v} e^{-j\frac{\pi}{2}Cv^2} dv + \frac{e^{-jB}}{2} \int e^{jA_2 v} e^{-j\frac{\pi}{2}Cv^2} dv \end{gather} 積分項をまとめると, \begin{gather} \int e^{jA_i v} e^{-j\frac{\pi}{2}Cv^2} dv = \int e^{j(A_i v - \frac{\pi}{2}Cv^2)} dv \equiv \int e^{j \Theta_i(v)} dv \end{gather} 位相項$\Theta_i(v)$を変形して, \begin{eqnarray} \Theta_i(v) &=& A_i v - \frac{\pi}{2}Cv^2 \nonumber \\ &=& -\frac{\pi}{2} \left( C v^2 - \frac{2}{\pi} A_i v \right) \nonumber \\ &=& -\frac{\pi}{2} \left\{ \left( \sqrt{C} v - \frac{A_i}{\pi \sqrt{C}} \right)^2 - \frac{A_i^2}{\pi^2 C} \right\} \nonumber \\ &=& -\frac{\pi}{2} \left( \sqrt{C} v - \frac{A_i}{\pi \sqrt{C}} \right)^2 + \frac{A_i^2}{2\pi C} \end{eqnarray} ここで, \begin{gather} t_i(v) \equiv \sqrt{C} v - \frac{A_i}{\pi \sqrt{C}} \end{gather} とおくと, \begin{gather} dt_i = \sqrt{C} dv \end{gather} 積分範囲は, \begin{gather} t_i(\mp 1) = \mp \sqrt{C} - \frac{A_i}{\pi \sqrt{C}} \equiv t_{i \mp} \end{gather} これより積分項は, \begin{eqnarray} \int_{-1}^1 e^{j \Theta_i(v)} dv &=& \int_{t_{i-}}^{t_{i+}} e^{-j\frac{\pi}{2} t_i^2}e^{j\frac{A_i^2}{2 \pi C}} \frac{dt_i}{\sqrt{C}} \nonumber \\ &=& \frac{e^{j\frac{A_i^2}{2 \pi C}}}{\sqrt{C}} \int_{t_{i-}}^{t_{i+}} e^{-j\frac{\pi}{2} t_i^2} dt_i \end{eqnarray} よって, \begin{eqnarray} \int_{t_{i-}}^{t_{i+}} e^{-j\frac{\pi}{2}t_i^2} dt_i &=& \int_{t_{i-}}^{t_{i+}} \cos \left( \frac{\pi}{2} t_i^2 \right) dt_i - j \int_{t_{i-}}^{t_{i+}} \sin \left( \frac{\pi}{2} t_i^2 \right) dt_i \nonumber \\ &=& C(t_{i+}) - C(t_{i-}) -j \big\{ S(t_{i+}) - S(t_{i-}) \big\} \end{eqnarray} いま, \begin{gather} v \to \bar{x}, \ \ \ \ \ A \to j u_x \cos \phi, \ \ \ \ \ B \to \frac{m \pi}{2}, \ \ \ \ \ C \to 4 t_x \nonumber \end{gather} とすると($jA_i \equiv A\pm jB \ (i=1,2)$), \begin{eqnarray} t_{1 \mp} &=& \mp \sqrt{C} - \frac{A_1}{\pi \sqrt{C}} \nonumber \\ &=& \mp \sqrt{C} - \frac{-j A + B}{\pi \sqrt{C}} \nonumber \\ &=& \mp 2 \sqrt{t_x} - \frac{u_x \cos \phi + \frac{m \pi}{2}}{2\pi \sqrt{t_x}} \\ t_{2 \mp} &=& \mp \sqrt{C} - \frac{A_2}{\pi \sqrt{C}} \nonumber \\ &=& \mp \sqrt{C} - \frac{-j A - B}{\pi \sqrt{C}} \nonumber \\ &=& \mp 2 \sqrt{t_x} - \frac{u_x \cos \phi - \frac{m \pi}{2}}{2\pi \sqrt{t_x}} \end{eqnarray} このとき, \begin{eqnarray} \frac{e^{j\frac{A_1^2}{2 \pi C}}}{\sqrt{C}} &=& \frac{1}{2\sqrt{t_x}} e^{j\frac{(u_x \cos \phi + \frac{m \pi}{2})^2}{8\pi t_x}} \\ \frac{e^{j\frac{A_2^2}{2 \pi C}}}{\sqrt{C}} &=& \frac{1}{2\sqrt{t_x}} e^{j\frac{(u_x \cos \phi - \frac{m \pi}{2})^2}{8\pi t_x}} \end{eqnarray} 同様にして, \begin{gather} v \to \bar{y}, \ \ \ \ \ A \to j u_y \sin \phi, \ \ \ \ \ B \to \frac{n \pi}{2}, \ \ \ \ \ C \to 4 t_y \nonumber \end{gather} として, \begin{eqnarray} t'_{1 \mp} &=& \mp 2 \sqrt{t_y} - \frac{u_y \sin \phi + \frac{n \pi}{2}}{2\pi \sqrt{t_y}} \\ t'_{2 \mp} &=& \mp 2 \sqrt{t_y} - \frac{u_y \sin \phi - \frac{n \pi}{2}}{2\pi \sqrt{t_y}} \end{eqnarray} このとき, \begin{eqnarray} \frac{e^{j\frac{A_1^2}{2 \pi C}}}{\sqrt{C}} &=& \frac{1}{2\sqrt{t_y}} e^{j\frac{(u_y \sin \phi + \frac{n \pi}{2})^2}{8\pi t_y}} \\ \frac{e^{j\frac{A_2^2}{2 \pi C}}}{\sqrt{C}} &=& \frac{1}{2\sqrt{t_y}} e^{j\frac{(u_y \sin \phi - \frac{n \pi}{2})^2}{8\pi t_y}} \end{eqnarray} よって, \begin{eqnarray} I_{s1} &=& \frac{e^{jB}}{j2} \int_{-1}^1 e^{j\Theta_1 \bar{x}} d\bar{x} - \frac{e^{-jB}}{j2} \int_{-1}^1 e^{j\Theta_2 \bar{x}} d\bar{x} \nonumber \\ &=& \frac{1}{j4 \sqrt{t_x}} \left( e^{j\frac{m\pi}{2}} e^{j\frac{(u_x \cos \phi + \frac{m \pi}{2})^2}{8\pi t_x}} \int_{t_{1-}}^{t_{1+}} e^{-j\frac{\pi}{2} t^2} dt \right. \nonumber \\ &&\left. - e^{-j\frac{m\pi}{2}} e^{j\frac{(u_x \cos \phi - \frac{m \pi}{2})^2}{8\pi t_x}} \int_{t_{2-}}^{t_{2+}} e^{-j\frac{\pi}{2} t^2} dt \right) \nonumber \\ &=& \frac{1}{j4 \sqrt{t_x}} \nonumber \\ &&\cdot \left( e^{j\frac{m\pi}{2}} e^{j\frac{(u_x \cos \phi + \frac{m \pi}{2})^2}{8\pi t_x}} \Big[ C(t_{1+}) - C(t_{1-}) - j \big\{ S(t_{1+}) - S(t_{1-}) \big\} \Big] \right. \nonumber \\ &&\left. - e^{-j\frac{m\pi}{2}} e^{j\frac{(u_x \cos \phi - \frac{m \pi}{2})^2}{8\pi t_x}} \Big[ C(t_{2+}) - C(t_{2-}) - j \big\{ S(t_{2+}) - S(t_{2-}) \big\} \Big] \right) \\ I_{c1} &=& \frac{e^{jB}}{2} \int_{-1}^1 e^{j\Theta_1 \bar{x}} d\bar{x} + \frac{e^{jB}}{2} \int_{-1}^1 e^{j\Theta_2 \bar{x}} d\bar{x} \nonumber \\ &=& \frac{1}{4 \sqrt{t_x}} \nonumber \\ &&\cdot \left( e^{j\frac{m\pi}{2}} e^{j\frac{(u_x \cos \phi + \frac{m \pi}{2})^2}{8\pi t_x}} \Big[ C(t_{1+}) - C(t_{1-}) - j \big\{ S(t_{1+}) - S(t_{1-}) \big\} \Big] \right. \nonumber \\ &&\left. + e^{-j\frac{m\pi}{2}} e^{j\frac{(u_x \cos \phi - \frac{m \pi}{2})^2}{8\pi t_x}} \Big[ C(t_{2+}) - C(t_{2-}) - j \big\{ S(t_{2+}) - S(t_{2-}) \big\} \Big] \right) \end{eqnarray} 同様にして, \begin{eqnarray} I_{s2} &=& \frac{1}{j4 \sqrt{t_y}} \nonumber \\ &&\cdot \left( e^{j\frac{n\pi}{2}} e^{j\frac{(u_y \sin \phi + \frac{n \pi}{2})^2}{8\pi t_y}} \Big[ C(t'_{1+}) - C(t'_{1-}) - j \big\{ S(t'_{1+}) - S(t'_{1-}) \big\} \Big] \right. \nonumber \\ &&\left. - e^{-j\frac{n\pi}{2}} e^{j\frac{(u_y \cos \phi - \frac{n \pi}{2})^2}{8\pi t_y}} \Big[ C(t'_{2+}) - C(t'_{2-}) - j \big\{ S(t'_{2+}) - S(t'_{2-}) \big\} \Big] \right) \\ I_{c2} &=& \frac{1}{4 \sqrt{t_y}} \nonumber \\ &&\cdot \left( e^{j\frac{n\pi}{2}} e^{j\frac{(u_y \sin \phi + \frac{n \pi}{2})^2}{8\pi t_y}} \Big[ C(t'_{1+}) - C(t'_{1-}) - j \big\{ S(t'_{1+}) - S(t'_{1-}) \big\} \Big] \right. \nonumber \\ &&\left. + e^{-j\frac{n\pi}{2}} e^{j\frac{(u_y \sin \phi - \frac{n \pi}{2})^2}{8\pi t_y}} \Big[ C(t'_{2+}) - C(t'_{2-}) - j \big\{ S(t'_{2+}) - S(t'_{2-}) \big\} \Big] \right) \end{eqnarray} ここで, \begin{eqnarray} \bar{\VEC{F}}_{[mn]} &=& \frac{1+\cos \theta}{2} \Big( \bar{N}_{x[mn]} \VEC{a}_\xi + \bar{N}_{y[mn]} \VEC{a}_\eta \Big) \nonumber \\ &=& A_{[mn]} \frac{ab}{4} \frac{1+\cos \theta}{2} \left( \frac{n \pi}{b} I_{c1} I_{s2} \VEC{a}_\xi + \frac{m \pi}{a} I_{s1} I_{c2} \VEC{a}_\eta \right) \end{eqnarray} また, \begin{eqnarray} \bar{N}_{x[mn]} &=& A_{[mn]} \frac{n\pi a}{4} I_{c1} I_{s2} \\ \bar{N}_{y[mn]} &=& -A_{[mn]} \frac{m\pi b}{4} I_{s1} I_{c2} \end{eqnarray}