2.2 方形導波管のTE$_{mn}$モードによる遠方放射界

方形導波管のTE$_{mn}$モード関数

 方形導波管のTE$_{mn}$モードの電界のモード関数$\VEC{e}_{[mn]}$は, \begin{eqnarray} \VEC{e}_{[mn]} &=& A_{[mn]} \left[ \frac{n\pi}{b} \cos \left( \frac{m\pi x}{a} \right) \sin \left( \frac{n\pi y}{b} \right) \VEC{a}_x \right. \nonumber \\ && \left. -\frac{m\pi}{a} \sin \left( \frac{m\pi x}{a} \right) \cos \left( \frac{n\pi y}{b} \right) \VEC{a}_y \right] \nonumber \\ &=& A_{[mn]} \left[ \frac{n\pi}{b} \cos \frac{m\pi}{2} \big( \bar{x} +1 \big) \sin \frac{n\pi}{2} \big( \bar{y}+1 \big) \VEC{a}_x \right. \nonumber \\ && \left. -\frac{m\pi}{a} \sin \frac{m\pi}{2} \big( \bar{x} +1 \big) \cos \frac{n\pi}{2} \big( \bar{y} +1 \big) \VEC{a}_y \right] \end{eqnarray} ここで, \begin{eqnarray} x &=& x'+ \frac{a}{2} = \frac{a}{2} (\bar{x}+1), \ \ \ \ \ x'= \frac{a}{2} \bar{x} \\ y &=& y'+ \frac{b}{2} = \frac{b}{2} (\bar{y}+1), \ \ \ \ \ y'= \frac{b}{2} \bar{y} \end{eqnarray} また,TE$_{mn}$モードの正規化係数$A_{[mn]}$は, \begin{eqnarray} A_{[mn]} &=& \frac{1}{\pi} \sqrt{\frac{ab\epsilon _m \epsilon _n}{(mb)^2+(na)^2}} = \sqrt{\frac{\displaystyle{\frac{\epsilon _m \epsilon _n}{ab}}}{\displaystyle{(\frac{m\pi}{a})^2+(\frac{n\pi}{b})^2}}} \nonumber \\ &=& \sqrt{\frac{\epsilon _m \epsilon _n}{ab}} \frac{1}{k_{c,[mn]}} \end{eqnarray}

遠方放射電界

 方形導波管のTE$_{mn}$モードによる遠方界は, \begin{eqnarray} \bar{N}_{x[mn]} &=& A_{[mn]} \frac{n\pi}{b} \frac{ab}{4} I_{c1} I_{s2} \nonumber \\ &=& \sqrt{\frac{\epsilon_m \epsilon_n}{ab}} \frac{1}{k_{c,[mn]}} \frac{n\pi}{b} \frac{ab}{4} I_{c1} I_{s2} \nonumber \\ &=& \sqrt{ab} \frac{\sqrt{\epsilon_m \epsilon_n}\frac{n\pi}{b}}{4k_{c,[mn]}} I_{c1} I_{s2} \\ \bar{N}_{y[mn]} &=& -A_{[mn]} \frac{m\pi}{a} \frac{ab}{4} I_{s1} I_{c2} \nonumber \\ &=& -\sqrt{ab} \frac{\sqrt{\epsilon_m \epsilon_n}\frac{m\pi}{a}}{4k_{c,[mn]}} I_{s1} I_{c2} \end{eqnarray} ここで,$\bar{x}$ に関する積分項は, \begin{eqnarray} I_{s1} &\equiv& \int_{-1}^1 \sin \frac{m\pi}{2} \big( \bar{x} +1 \big) e^{j\bar{x} u_x \cos \phi} d\bar{x} \\ I_{c1} &\equiv& \int_{-1}^1 \cos \frac{m\pi}{2} \big( \bar{x} +1 \big) e^{j\bar{x} u_x \cos \phi} d\bar{x} \end{eqnarray} 同様にして,$\bar{y}$ に関する積分項は, \begin{eqnarray} I_{s2} &\equiv& \int_{-1}^1 \sin \frac{n\pi}{2} \big( \bar{y} +1 \big) e^{j\bar{y} u_y \cos \phi} d\bar{y} \\ I_{c2} &\equiv& \int_{-1}^1 \cos \frac{n\pi}{2} \big( \bar{y} +1 \big) e^{j\bar{y} u_y \sin \phi} d\bar{y} \end{eqnarray} これらの不定積分は,次のような式が計算できればよい. \begin{gather} I_{s} = \int \sin (Bv) e^{Av} dv \\ I_{c} = \int \cos (Bv) e^{Av} dv \end{gather} 上の不定積分を実行すると, \begin{eqnarray} \int e^{Av} \sin Bv \ dv &=& \int e^{Axv} \frac{1}{j2} \big( e^{jBv} - e^{-jBv} \big) dv \nonumber \\ &=& \frac{-j}{2} \left( \int e^{(A + jB)v} dv - \int e^{(\bar{a} - j\bar{b})v} dv \right) \nonumber \\ &=& \frac{-j}{2} \left( \frac{e^{(A + jB)v}}{A + jB} - \frac{e^{(A - jB)v}}{A- jB} \right) \nonumber \\ &=& \frac{-j e^{Av}}{2} \frac{(A- jB)e^{jBv} - (A+ jB)e^{- jBv}}{(A + jB)(A - jB)} \nonumber \\ &=& \frac{e^{Av}}{\bar{A}^2+\bar{B}^2} \Big( A\sin Bv - B \cos Bv \Big) \label{eq:eaxsinbx} \end{eqnarray} $A \pm jB =0$ のとき, \begin{eqnarray} \int e^{Ax} \sin Bx \ dx &=& \frac{-j}{2} \left( \pm \int dx \mp \int e^{(A \mp jB)x} dx \right) \nonumber \\ &=& \frac{\mp j}{2} \left( x - \frac{e^{(A \mp jB)x}}{A \mp jB} \right) \end{eqnarray} あるいは,不定積分した式\eqref{eq:eaxsinbx}より,$A \pm jB =0$ のとき, \begin{eqnarray} \int e^{Av} \sin Bv \ dv &=& \frac{-j}{2} \left( \frac{e^{(A + jB)v}}{(A + jB)v}v - \frac{e^{(A - jB)v}}{(A- jB)v}v \right) \nonumber \\ &=& \frac{\mp j}{2} \left( v - \frac{e^{(A \mp jB)v}}{A \mp jB} \right) \end{eqnarray} 同様にして, \begin{eqnarray} \int e^{Av} \cos Bv \ dv &=& \int e^{Av} \frac{1}{2} \big( e^{jBv} + e^{-jBx} \big) dv \nonumber \\ &=& \frac{1}{2} \left( \int e^{(A + jB)v} dv + \int e^{(A - jB)v} dv \right) \nonumber \\ &=& \frac{1}{2} \left( \frac{e^{(A + jB)v}}{A + jB} + \frac{e^{(A - jB)v}}{A- jB} \right) \nonumber \\ &=& \frac{e^{Av}}{2} \frac{(A- jB)e^{jBv} + (A+ jB)e^{- jBv}}{(A + jB)(A - jB)} \nonumber \\ &=& \frac{e^{Av}}{A^2+B^2} \Big( A \cos Bv + B \sin Bv \Big) \label{eq:eaxcosbx} \end{eqnarray} $A \pm jB = 0$のとき, \begin{eqnarray} \int e^{Av} \cos Bv \ dv &=& \frac{1}{2} \left( \int dv + \int e^{(A \mp jB)v} dv \right) \nonumber \\ &=& \frac{1}{2} \left( v + \frac{e^{(A \mp jB)v}}{\bar{a}\mp jB} \right) \end{eqnarray} あるいは,不定積分した式(\ref{eq:eaxcosbx})より,$A \pm jB =0$のとき, \begin{eqnarray} \int e^{Av} \cos Bv \ dv &=& \frac{1}{2} \left( \frac{e^{(A + jB)v}}{(A + jB)v}v + \frac{e^{(A - jB)v}}{(A- jB)v}v \right) \nonumber \\ &=& \frac{1}{2} \left( v + \frac{e^{(A \mp jB)v}}{A \mp jB} \right) \end{eqnarray} これより,$v=\bar{x}+1$とおくと,$dv = d\bar{x}$ゆえ, \begin{align} &\int e^{A(\bar{x}+1)} \sin B(\bar{x}+1) \ d\bar{x} \nonumber \\ &= \frac{e^{A(\bar{x}+1)}}{A^2+B^2} \Big\{ A \sin B(\bar{x}+1) - B \cos B(\bar{x}+1) \Big\} \\ &\int e^{A(\bar{x}+1)} \cos B(\bar{x}+1) \ d\bar{x} \nonumber \\ &= \frac{e^{A(\bar{x}+1)}}{A^2+B^2} \Big\{ A \cos B(\bar{x}+1) + B \sin B(\bar{x}+1) \Big\} \end{align} よって, \begin{gather} \int e^{A\bar{x}} \sin B(\bar{x}+1) \ d\bar{x} = \frac{e^{A\bar{x}}}{A^2+B^2} \Big\{ A \sin B(\bar{x}+1) - B \cos B(\bar{x}+1) \Big\} \\ \int e^{A\bar{x}} \cos B(\bar{x}+1) \ d\bar{x} = \frac{e^{A\bar{x}}}{A^2+B^2} \Big\{ A \cos B(\bar{x}+1) + B \sin B(\bar{x}+1) \Big\} \end{gather} 同様にして,$v=\bar{y}+1$とおくと,$dv = d\bar{y}$ゆえ, \begin{gather} \int e^{A\bar{y}} \sin B(\bar{y}+1) \ d\bar{y} = \frac{e^{A\bar{y}}}{A^2+B^2} \Big\{ A \sin B(\bar{y}+1) - B \cos B(\bar{y}+1) \Big\} \\ \int e^{A\bar{y}} \cos B(\bar{y}+1) \ d\bar{y} = \frac{e^{A\bar{x}}}{A^2+B^2} \Big\{ A \cos B(\bar{y}+1) + B \sin B(\bar{y}+1) \Big\} \end{gather} 定積分$I_{c1}$については, \begin{gather} A \to ju_x \cos \phi, \ \ \ \ \ B \to \frac{m\pi}{2} \nonumber \end{gather} とすると, \begin{eqnarray} I_{c1} &=& \left[ \frac{e^{j\bar{x} u_x \cos \phi}}{(ju_x \cos \phi)^2+(\frac{m\pi}{2})^2} \right. \nonumber \\ &&\left. \cdot \left\{ (ju_x \cos \phi ) \cos \frac{m\pi}{2} (\bar{x}+1) + \frac{m\pi}{2} \sin \frac{m\pi}{2} (\bar{x}+1) \right\} \right]_{-1}^1 \nonumber \\ &=& \frac{ju_x \cos \phi}{-(u_x \cos \phi)^2+(\frac{m\pi}{2})^2} \Big( e^{ju_x \cos \phi} \cos m\pi -e^{-ju_x \cos \phi} \cos 0 \Big) \nonumber \\ &=& \frac{ju_x \cos \phi}{-(u_x \cos \phi)^2+(\frac{m\pi}{2})^2} \Big( e^{j(u_x \cos \phi + m\pi )} -e^{-ju_x \cos \phi} \Big) \nonumber \\ &=& \frac{2u_x \cos \phi \sin \left( u_x \cos \phi + \frac{m\pi}{2} \right)}{ (u_x \cos \phi)^2-(\frac{m\pi}{2})^2} \ e^{j\frac{m\pi}{2}} \end{eqnarray} 同様にして,$A \to ju_y \sin \phi $,$B \to \frac{n\pi}{2}$とおけば, $I_{c2}$は次のようになる. \begin{gather} I_{c2} = \frac{2u_y \sin \phi \sin \left( u_y \sin \phi + \frac{n\pi}{2} \right)}{ (u_y \sin \phi)^2-(\frac{n\pi}{2})^2} \ e^{j\frac{n\pi}{2}} \end{gather} また,$I_{s1}$については, \begin{eqnarray} I_{s1} &=& \left[ \frac{e^{j\bar{x} u_x \cos \phi}}{(ju_x \cos \phi)^2+(\frac{m\pi}{2})^2} \right. \nonumber \\ &&\left. \cdot \left\{ (ju_x \cos \phi ) \sin \frac{m\pi}{2}(\bar{x}+1) - \frac{m\pi}{2} \cos \frac{m\pi}{2}(\bar{x}+1) \right\} \right]_{-1}^1 \nonumber \\ &=& \frac{-\frac{m\pi}{2}}{-(u_x \cos \phi)^2+(\frac{m\pi}{2})^2} \Big( e^{ju_x \cos \phi} \cos m\pi -e^{-ju_x \cos \phi} \cos 0 \Big) \nonumber \\ &=& \frac{\frac{m\pi}{2}}{(u_x \cos \phi)^2-(\frac{m\pi}{2})^2} \Big( e^{j(u_x \cos \phi + m\pi)} - e^{-ju_x \cos \phi} \Big) \nonumber \\ &=& \frac{\frac{m\pi}{2} \ e^{j\frac{m\pi}{2}}}{(u_x \cos \phi)^2-(\frac{m\pi}{2})^2} j2 \sin \left( u_x \cos \phi + \frac{m\pi}{2} \right) \nonumber \\ &=& \frac{jm\pi \sin \left( u_x \cos \phi + \frac{m\pi}{2} \right)}{ (u_x \cos \phi)^2-(\frac{m\pi}{2})^2} \ e^{j\frac{m\pi}{2}} \end{eqnarray} 同様にして, $\bar{a} \to ju_y \sin \phi $,$\bar{b} \to \frac{n\pi}{2}$とおけば, $I_{s2}$は次のようになる. \begin{gather} I_{s2} = \frac{jn\pi \sin \left( u_y \sin \phi + \frac{n\pi}{2} \right)}{ (u_y \sin \phi)^2-(\frac{n\pi}{2})^2} \ e^{j\frac{n\pi}{2}} \end{gather} よって, \begin{eqnarray} I_{c1} I_{s2} &=& 2u_x \cos \phi \cdot jn\pi \ e^{j\frac{(m+n)\pi}{2}} \nonumber \\ &&\cdot \frac{\sin \left( u_x \cos \phi + \frac{m\pi}{2} \right)}{(u_x \cos \phi)^2-(\frac{m\pi}{2})^2} \cdot \frac{\sin \left( u_y \sin \phi + \frac{n\pi}{2} \right)}{(u_y \sin \phi)^2-(\frac{n\pi}{2})^2} \end{eqnarray} ここで, \begin{eqnarray} \Psi _{mn} (\theta ,\phi) &\equiv& \frac{\sin \left( u_x \cos \phi + \frac{m\pi}{2} \right)}{(u_x \cos \phi)^2-(\frac{m\pi}{2})^2} \cdot \frac{\sin \left( u_y \sin \phi + \frac{n\pi}{2} \right)}{(u_y \sin \phi)^2-(\frac{n\pi}{2})^2} \ j e^{j\frac{(m+n)\pi}{2}} \nonumber \\ &=& \frac{\mbox{sinc} \left( u_x \cos \phi + \frac{m\pi}{2} \right)}{u_x \cos \phi - \frac{m\pi}{2}} \cdot \frac{\mbox{sinc} \left( u_y \sin \phi + \frac{n\pi}{2} \right)}{u_y \sin \phi - \frac{n\pi}{2}} \ e^{j\frac{(m+n+1)\pi}{2}} \end{eqnarray} とおくと, \begin{gather} I_{c1} I_{s2} = 2n \pi u_x \cos \phi \cdot \Psi _{mn} (\theta ,\phi) \end{gather} 同様にして, \begin{gather} I_{s1} I_{c2} = 2m \pi u_y \sin \phi \cdot \Psi _{mn} (\theta ,\phi) \end{gather} $u_x \cos \phi + \frac{m \pi}{2}=0$ のとき, \begin{eqnarray} \frac{\sin \left( u_x \cos \phi + \frac{m\pi}{2} \right)}{(u_x \cos \phi)^2-(\frac{m\pi}{2})^2} &=& \frac{\sin \left( u_x \cos \phi + \frac{m\pi}{2} \right)}{(u_x \cos \phi + \frac{m\pi}{2})(u_x \cos \phi - \frac{m\pi}{2})} \nonumber \\ &=& \frac{1}{u_x \cos \phi - \frac{m\pi}{2}} \end{eqnarray} また, $u_x \cos \phi - \frac{m \pi}{2}=0$ のとき,三角関数の積和公式 \begin{gather} 2 \sin \alpha \cos \beta = \sin (\alpha + \beta) + \sin (\alpha - \beta) \\ 2 \cos \alpha \sin \beta = \sin (\alpha + \beta) - \sin (\alpha - \beta) \end{gather} より, \begin{align} &\frac{\sin \left( u_x \cos \phi + \frac{m\pi}{2} \right)}{(u_x \cos \phi)^2-(\frac{m\pi}{2})^2} \nonumber \\ &= \frac{2 \cos (u_x \cos \phi) \sin (\frac{m\pi}{2}) + \sin \left( u_x \cos \phi - \frac{m\pi}{2} \right)}{(u_x \cos \phi + \frac{m\pi}{2})(u_x \cos \phi - \frac{m\pi}{2})} \end{align} ロピタルの定理より,上式は, \begin{align} &\frac{-2 \sin (u_x \cos \phi) \sin (\frac{m\pi}{2})}{2 u_x \cos \phi} + \frac{1}{u_x \cos \phi + \frac{m\pi}{2}} \nonumber \\ &= -\mbox{sinc} (u_x \cos \phi) \sin \left( \frac{m\pi}{2} \right) + \frac{1}{u_x \cos \phi + \frac{m\pi}{2}} \end{align} 同様にして,$u_y \sin \phi + \frac{n \pi}{2}=0$ のとき, \begin{align} &\frac{\sin \left( u_y \sin \phi + \frac{n\pi}{2} \right)}{(u_y \sin \phi)^2-(\frac{n\pi}{2})^2} \nonumber \\ &= \frac{\sin \left( u_y \sin \phi + \frac{n\pi}{2} \right)}{(u_y \sin \phi + \frac{n\pi}{2})(u_y \sin \phi - \frac{n\pi}{2})} = \frac{1}{u_y \sin \phi - \frac{n\pi}{2}} \end{align} また, $u_y \sin \phi - \frac{n \pi}{2}=0$のとき,三角関数の積和公式より \begin{gather} \frac{\sin \left( u_y \sin \phi + \frac{n\pi}{2} \right)}{(u_y \sin \phi)^2-(\frac{n\pi}{2})^2} = \frac{2 \cos (u_y \sin \phi) \sin (\frac{n\pi}{2}) + \sin \left( u_y \sin \phi - \frac{n\pi}{2} \right)}{(u_y \sin \phi + \frac{n\pi}{2})(u_y \sin \phi - \frac{n\pi}{2})} \end{gather} ロピタルの定理より,上式は, \begin{align} &\frac{-2 \sin (u_y \sin \phi) \sin (\frac{n\pi}{2})}{2 u_y \sin \phi} + \frac{1}{u_y \sin \phi + \frac{n\pi}{2}} \nonumber \\ &= -\mbox{sinc} (u_y \sin \phi) \sin \left( \frac{n\pi}{2} \right) + \frac{1}{u_y \sin \phi + \frac{n\pi}{2}} \end{align} これより, \begin{eqnarray} \bar{N}_{x[mn]} &=& A_{[mn]} \frac{n\pi a}{4} I_{c1} I_{s2} \nonumber \\ &=& A_{[mn]} \frac{n^2 \pi ^2 au_x}{2} \cos \phi \ \Psi _{mn} (\theta ,\phi) \\ \bar{N}_{y[mn]} &=& -A_{[mn]} \frac{m\pi b}{4} I_{s1} I_{c2} \nonumber \\ &=& -A_{[mn]} \frac{m^2 \pi ^2 bu_y}{2} \sin \phi \ \Psi _{mn} (\theta ,\phi) \end{eqnarray} よって, \begin{eqnarray} &&\bar{N}_{x[mn]} \cos \phi + \bar{N}_{y[mn]} \sin \phi \nonumber \\ &=& A_{[mn]} \left( \frac{n^2 \pi ^2 a u_x}{2} \cos ^2 \phi - \frac{m^2 \pi ^2 b u_y}{2} \sin ^2 \phi \right) \Psi _{mn} (\theta ,\phi) \nonumber \\ &=& -A_{[mn]} \frac{\pi a^2 b^2}{2\lambda} \sin \theta \left\{ \left( \frac{m\pi}{a} \sin \phi \right) ^2 - \left( \frac{n \pi}{b} \cos \phi \right) ^2 \right\} \Psi _{mn} (\theta ,\phi) \end{eqnarray} また, \begin{eqnarray} &&-\bar{N}_{x[mn]} \sin \phi + \bar{N}_{y[mn]} \cos \phi \nonumber \\ &=& A_{[mn]} \left( -\frac{n^2 \pi ^2 a u_x}{2} \cos \phi \sin \phi - \frac{m^2 \pi ^2 b u_y}{2} \sin \phi \cos \phi \right) \Psi _{mn} (\theta ,\phi) \nonumber \\ &=& -A_{[mn]} \frac{\pi a^2 b^2}{2\lambda} \sin \theta \sin \phi \cos \phi \left\{ \left( \frac{m\pi}{a} \right) ^2 + \left( \frac{n \pi}{b} \right) ^2 \right\} \Psi _{mn} (\theta ,\phi) \nonumber \\ &=& -A_{[mn]} \frac{\pi a^2 b^2 k_{c,[mn]}^2}{2\lambda} \sin \theta \sin \phi \cos \phi \ \Psi _{mn} (\theta ,\phi) \end{eqnarray} よって,方形導波管のTE$_{mn}$モードによる遠方放射電界$\VEC{E}_{p[mn]}$は, \begin{gather} \VEC{E}_{p[mn]} = \frac{j}{\lambda} \ \frac{e^{-jkr}}{r} \VEC{F}_{[mn]} (\theta ,\phi) \end{gather} ここで, \begin{eqnarray} \VEC{F}_{[mn]} (\theta ,\phi) &=& -A_{[mn]} \frac{\pi (ab)^2}{4\lambda} \sin \theta \ \Psi _{mn} (\theta ,\phi) \sqrt{Z_{[mn]}} \nonumber \\ &&\cdot \left[ \left\{ 1+\frac{\beta _{[mn]}}{k} \cos \theta +\Gamma \left( 1 - \frac{\beta _{[mn]}}{k} \cos \theta \right) \right\} \right. \nonumber \\ &&\cdot \left\{ \left( \frac{m\pi}{a} \sin \phi \right) ^2 - \left( \frac{n \pi}{b} \cos \phi \right) ^2 \right\} \VEC{a}_\theta \nonumber \\ &&\left. + \left\{ \cos \theta +\frac{\beta _{[mn]}}{k} + \Gamma \left( \cos \theta - \frac{\beta _{[mn]}}{k} \right) \right\} \right. \nonumber \\ &&\left. \cdot k_{c,[mn]}^2 \sin \phi \cos \phi \ \VEC{a}_\phi \right] \end{eqnarray} 反射を無視すると,$\Gamma=0$ とおき, \begin{eqnarray} \VEC{F}_{[mn]} (\theta ,\phi) \Big|_{\Gamma=0} &=& -A_{[mn]} \frac{\pi (ab)^2}{4\lambda} \sin \theta \ \Psi _{mn} (\theta ,\phi) \sqrt{Z_{[mn]}} \nonumber \\ &&\cdot \left[ \left( 1+\frac{\beta _{[mn]}}{k} \cos \theta \right) \right. \left\{ \left( \frac{m\pi}{a} \sin \phi \right) ^2 - \left( \frac{n \pi}{b} \cos \phi \right) ^2 \right\} \VEC{a}_\theta \nonumber \\ &&\left. + \left( \cos \theta +\frac{\beta _{[mn]}}{k} \right) k_{c,[mn]}^2 \sin \phi \cos \phi \ \VEC{a}_\phi \right] \end{eqnarray} さらに,低次のモードについて開口径が十分大きい場合,$Z_{[mn]} \simeq Z_w$,$\beta _{[mn]} \simeq k$より, \begin{eqnarray} \VEC{E}_{p[mn]} &=& \frac{j}{\lambda} \ \frac{e^{-jkr}}{r} \VEC{F}_{[mn]} (\theta ,\phi) \nonumber \\ &\simeq& \frac{j}{\lambda} \ \frac{e^{-jkr}}{r} \sqrt{Z_w} \frac{\VEC{F}_{[mn]} (\theta ,\phi) \Big|_{\Gamma=0}}{\sqrt{Z_w}} \nonumber \\ &\simeq& \frac{j}{\lambda} \ \frac{e^{-jkr}}{r} \sqrt{Z_w} \bar{\VEC{F}}_{[mn]} (\theta ,\phi) \end{eqnarray} ここで, \begin{eqnarray} \frac{\VEC{F}_{[mn]} (\theta ,\phi) \Big|_{\Gamma=0}}{\sqrt{Z_w}} &=& -A_{[mn]} \frac{\pi (ab)^2}{4\lambda} \sin \theta \ \Psi _{mn} (\theta ,\phi) \sqrt{\frac{Z_{[mn]}}{Z_w}} \nonumber \\ &&\cdot \left[ \left( 1+\frac{Z_w}{Z_{[mn]}} \cos \theta \right) \right. \left\{ \left( \frac{m\pi}{a} \sin \phi \right) ^2 - \left( \frac{n \pi}{b} \cos \phi \right) ^2 \right\} \VEC{a}_\theta \nonumber \\ &&\left. + \left( \cos \theta +\frac{Z_w}{Z_{[mn]}} \right) k_{c,[mn]}^2 \sin \phi \cos \phi \ \VEC{a}_\phi \right] \nonumber \\ &=& -A_{[mn]} \frac{\pi (ab)^2}{4\lambda} \sin \theta \ \Psi _{mn} (\theta ,\phi) \sqrt{\frac{k}{\beta_{[mn]}}} \nonumber \\ &&\cdot \left[ \left( 1+\frac{\beta _{[mn]}}{k} \cos \theta \right) \right. \left\{ \left( \frac{m\pi}{a} \sin \phi \right) ^2 - \left( \frac{n \pi}{b} \cos \phi \right) ^2 \right\} \VEC{a}_\theta \nonumber \\ &&\left. + \left( \cos \theta +\frac{\beta _{[mn]}}{k} \right) k_{c,[mn]}^2 \sin \phi \cos \phi \ \VEC{a}_\phi \right] \end{eqnarray} あるいは,自由空間の波動インピーダンス$Z_w$で規格化したモードの特性インピーダンス$z_{[mn]}$,規格化特性アドミタンス$y_{[mn]}$を, \begin{gather} z_{[mn]} \equiv \frac{Z_{[mn]}}{Z_w} \equiv \frac{1}{y_{[mn]}} \end{gather} とおくと, \begin{eqnarray} \frac{\VEC{F}_{[mn]} (\theta ,\phi) \Big|_{\Gamma=0}}{\sqrt{Z_w}} &=& -A_{[mn]} \frac{\pi (ab)^2}{4\lambda} \sin \theta \ \Psi _{mn} (\theta ,\phi) \sqrt{z_{[mn]}} \nonumber \\ &&\cdot \left[ \left( 1+ y_{[mn]} \cos \theta \right) \right. \left\{ \left( \frac{m\pi}{a} \sin \phi \right) ^2 - \left( \frac{n \pi}{b} \cos \phi \right) ^2 \right\} \VEC{a}_\theta \nonumber \\ &&\left. + \left( \cos \theta + y_{[mn]} \right) k_{c,[mn]}^2 \sin \phi \cos \phi \ \VEC{a}_\phi \right] \end{eqnarray} ここで,TE$_{mn}$モード関数の正規化係数$A_{[mn]}$は, \begin{align} A_{[mn]} &= \frac{1}{\pi} \sqrt{\frac{ab \epsilon_m \epsilon_n}{(mb)^2 + (na)^2}} = \sqrt{\frac{\epsilon_m \epsilon_n}{ab}} \frac{1}{k_{c,[mn]}} \nonumber \\ &= \sqrt{\frac{\epsilon_m \epsilon_n}{ab}} \frac{\lambda_{c,[mn]}}{2 \pi} = \frac{\sqrt{\epsilon_m \epsilon_n}}{2} \frac{\lambda_{c,[mn]}}{\pi \sqrt{ab}} \end{align} これより, \begin{eqnarray} \frac{\VEC{F}_{[mn]} (\theta ,\phi) \Big|_{\Gamma=0}}{\sqrt{Z_w}} &=& -\frac{ab\sqrt{ab \epsilon _m \epsilon _n}}{4} \frac{\lambda _{c,[mn]}}{\lambda} \sin \theta \ \Psi _{mn} (\theta ,\phi) \sqrt{z_{[mn]}} \nonumber \\ &&\cdot \left[ \frac{1+ y_{[mn]} \cos \theta}{2} \right. \left\{ \left( \frac{m\pi}{a} \sin \phi \right) ^2 - \left( \frac{n \pi}{b} \cos \phi \right) ^2 \right\} \VEC{a}_\theta \nonumber \\ &&\left. + \frac{\cos \theta + y_{[mn]}}{2} k_{c,[mn]}^2 \sin \phi \cos \phi \ \VEC{a}_\phi \right] \end{eqnarray} また,$\beta _{[mn]} \simeq k$ より, \begin{eqnarray} \bar{\VEC{F}}_{[mn]} (\theta ,\phi) &=& -A_{[mn]} \frac{\pi (ab)^2}{4\lambda} \sin \theta \big( 1+\cos \theta \big) \ \Psi _{mn} (\theta ,\phi) \nonumber \\ &&\cdot \left[ \left\{ \left( \frac{m\pi}{a} \sin \phi \right) ^2 - \left( \frac{n \pi}{b} \cos \phi \right) ^2 \right\} \VEC{a}_\theta \right. \nonumber \\ &&\left. + \left\{ \left( \frac{m\pi}{a} \right) ^2 + \left( \frac{n \pi}{b} \right) ^2 \right\} \sin \phi \cos \phi \ \VEC{a}_\phi \right] \end{eqnarray} 次の直交する単位ベクトル \begin{eqnarray} \VEC{a}_\theta &=& \cos \phi \VEC{a}_\xi + \sin \phi \VEC{a}_\eta \\ \VEC{a}_\phi &=& -\sin \phi \VEC{a}_\xi + \cos \phi \VEC{a}_\eta \end{eqnarray} を用いると, \begin{eqnarray} \bar{\VEC{F}}_{[mn]} (\theta ,\phi) &=& -A_{[mn]} \frac{\pi (ab)^2}{4\lambda} \sin \theta \big( 1+\cos \theta \big) \ \Psi _{mn} (\theta ,\phi) \nonumber \\ &&\cdot \left[ \left\{ \left( \frac{m\pi}{a} \right) ^2 \sin ^2\phi - \left( \frac{n \pi}{b} \right) ^2 \cos^2 \phi \right\} \big( \cos \phi \VEC{a}_\xi + \sin \phi \VEC{a}_\eta \big) \right. \nonumber \\ &&\left. + \left\{ \left( \frac{m\pi}{a} \right) ^2 + \left( \frac{n \pi}{b} \right) ^2 \right\} \sin \phi \cos \phi \ \big( -\sin \phi \VEC{a}_\xi + \cos \phi \VEC{a}_\eta \big) \right] \nonumber \\ &=& -A_{[mn]} \frac{\pi (ab)^2}{2\lambda} \ \frac{1+\cos \theta}{2} \sin \theta \ \Psi _{mn} (\theta ,\phi) \nonumber \\ &&\cdot \left\{ -\left( \frac{n\pi}{b} \right)^2 \cos \phi \ \VEC{a}_\xi + \left( \frac{m\pi}{a} \right)^2 \sin \phi \ \VEC{a}_\eta \right\} \nonumber \\ &=& \frac{ab\sqrt{ab \epsilon _m \epsilon _n}}{4} \frac{\lambda _{c,[mn]}}{\lambda} \ \frac{1+\cos \theta}{2} \sin \theta \ \Psi _{mn} (\theta ,\phi) \nonumber \\ &&\cdot \left\{ \left( \frac{n\pi}{b} \right)^2 \cos \phi \ \VEC{a}_\xi - \left( \frac{m\pi}{a} \right)^2 \sin \phi \ \VEC{a}_\eta \right\} \end{eqnarray}