3.4 フレネル領域

 フレネル領域(距離$r$),あるいは円すいホーン(開口径$D$,軸長$L$)に対しては, \begin{gather} t=\frac{D^2}{8\lambda} \left( \frac{1}{r} + \frac{1}{L}\right) \end{gather} を導入して,積分項は, \begin{gather} I_{m \pm 1,n} \equiv \int_0^1 J_{m \pm 1} \left( \bar{\chi}_{mn} \bar{\rho} \right) J_{m \pm 1} (u \bar{\rho}) e^{-j 2\pi t \bar{\rho}^2} \bar{\rho} d\bar{\rho} \end{gather} このとき, \begin{gather} \bar{\VEC{F}}_{mn} = \frac{1+\cos \theta}{2} \Big( \bar{N}_x \VEC{a}_\xi + \bar{N}_y \VEC{a}_\eta \Big) \end{gather} ここで, \begin{eqnarray} \bar{N}_x &=& j^{m-1} A_{mn} \pi a\bar{\chi}_{mn} \left\{ I_{m-1,n} \ \begin{matrix} \cos \\ \sin \end{matrix} (m-1) \phi - \ell I_{m+1,n} \ \begin{matrix} \cos \\ \sin \end{matrix} (m+1) \phi \right\} \\ \bar{N}_y &=& -j^{m-1} A_{mn} \pi a\bar{\chi}_{mn} \nonumber \\ &&\cdot \left\{ I_{m-1,n} \ \begin{matrix} \sin \\ -\cos \end{matrix} (m-1) \phi + \ell I_{m+1,n} \ \begin{matrix} \sin \\ -\cos \end{matrix} (m+1) \phi \right\} \end{eqnarray} これより, \begin{eqnarray} &&\bar{N}_x \cos \phi + \bar{N}_y \sin \phi \nonumber \\ &=& j^{m-1} A_{mn} \pi a\bar{\chi}_{mn} \nonumber \\ &&\cdot \left[ \left\{ I_{m-1,n} \ \begin{matrix} \cos \\ \sin \end{matrix} (m-1) \phi - \ell I_{m+1,n} \ \begin{matrix} \cos \\ \sin \end{matrix} (m+1) \phi \right\} \cos \phi \right. \nonumber \\ &&\left. - \left\{ I_{m-1,n} \ \begin{matrix} \sin \\ -\cos \end{matrix} (m-1) \phi + \ell I_{m+1,n} \ \begin{matrix} \sin \\ -\cos \end{matrix} (m+1) \phi \right\} \sin \phi \right] \end{eqnarray} 上式の$[ \ \ ]$の中は, \begin{eqnarray} &&I_{m-1,n} \left\{ \begin{matrix} \cos \\ \sin \end{matrix} (m-1) \phi \cos \phi - \begin{matrix} \sin \\ -\cos \end{matrix} (m-1) \phi \sin \phi \right\} \nonumber \\ &&- \ell I_{m+1,n} \left\{ \begin{matrix} \cos \\ \sin \end{matrix} (m+1) \phi \cos \phi + \begin{matrix} \sin \\ -\cos \end{matrix} (m+1) \phi \sin \phi \right\} \nonumber \\ &=& I_{m-1,n} \ \begin{matrix} \cos \\ \sin \end{matrix} m \phi - \ell I_{m+1,n} \ \begin{matrix} \cos \\ \sin \end{matrix} m \phi \nonumber \\ &=& \Big( I_{m-1,n} - \ell I_{m+1,n} \Big) \begin{matrix} \cos \\ \sin \end{matrix} m \phi \end{eqnarray} また, \begin{eqnarray} &&-\bar{N}_x \sin \phi + \bar{N}_y \cos \phi \nonumber \\ &=& j^{m-1} A_{mn} \pi a\bar{\chi}_{mn} \nonumber \\ &&\cdot \left[ -\left\{ I_{m-1,n} \ \begin{matrix} \cos \\ \sin \end{matrix} (m-1) \phi - \ell I_{m+1,n} \ \begin{matrix} \cos \\ \sin \end{matrix} (m+1) \phi \right\} \sin \phi \right. \nonumber \\ &&\left. - \left\{ I_{m-1,n} \ \begin{matrix} \sin \\ -\cos \end{matrix} (m-1) \phi + \ell I_{m+1,n} \ \begin{matrix} \sin \\ -\cos \end{matrix} (m+1) \phi \right\} \cos \phi \right] \end{eqnarray} 上式の$[ \ \ ]$の中は, \begin{eqnarray} &&-I_{m-1,n} \left( \begin{matrix} \cos \\ \sin \end{matrix} (m-1) \phi \sin \phi + \begin{matrix} \sin \\ -\cos \end{matrix} (m-1) \phi \cos \phi \right) \nonumber \\ &&- \ell I_{m+1,n} \left( - \begin{matrix} \cos \\ \sin \end{matrix} (m+1) \phi \sin \phi + \begin{matrix} \sin \\ -\cos \end{matrix} (m+1) \phi \cos \phi \right) \nonumber \\ &=& -I_{m-1,n} \ \begin{matrix} \sin \\ -\cos \end{matrix} m \phi - \ell I_{m+1,n} \ \begin{matrix} \sin \\ -\cos \end{matrix} m \phi \nonumber \\ &=& -\Big( I_{m-1,n} + \ell I_{m+1,n} \Big) \begin{matrix} \sin \\ -\cos \end{matrix} m \phi \end{eqnarray} したがって, \begin{align} &\bar{N}_x \cos \phi + \bar{N}_y \sin \phi = j^{m-1} A_{mn} \pi a\bar{\chi}_{mn} \Big( I_{m-1,n} - \ell I_{m+1,n} \Big) \begin{matrix} \cos \\ \sin \end{matrix} m \phi \\ &-\bar{N}_x \sin \phi + \bar{N}_y \cos \phi = -j^{m-1} A_{mn} \pi a\bar{\chi}_{mn} \Big( I_{m-1,n} + \ell I_{m+1,n} \Big) \begin{matrix} \sin \\ -\cos \end{matrix} m \phi \end{align} 上式の積分項を計算するため,ベッセル関数の不定積分公式 \begin{align} &\int z J_{\nu }(\alpha z) J_{\nu }(\beta z) dz \nonumber \\ &= \frac{z}{\alpha ^2 - \beta ^2} \left\{ \beta J_{\nu }(\alpha z) J_{\nu }'(\beta z) - \alpha J_{\nu }'(\alpha z) J_{\nu }(\beta z) \right\} \ \ \ \ \ (\alpha \neq \beta ) \end{align} を次のように変形する. \begin{eqnarray} &&\int \Big\{ J_{\nu -1}(\alpha z) J_{\nu -1}(\beta z) \pm J_{\nu +1}(\alpha z) J_{\nu +1}(\beta z) \Big\} z \ dz \nonumber \\ &=& \frac{z}{\alpha ^2 - \beta ^2} \Big\{ \beta J_{\nu -1}(\alpha z) J_{\nu -1}'(\beta z) - \alpha J_{\nu -1}'(\alpha z) J_{\nu -1}(\beta z) \nonumber \\ &&\pm \beta J_{\nu +1}(\alpha z) J_{\nu +1}'(\beta z) \mp \alpha J_{\nu +1}'(\alpha z) J_{\nu +1}(\beta z) \Big\} \nonumber \\ &=& \frac{z}{\alpha ^2 - \beta ^2} \left[ \beta J_{\nu -1}(\alpha z) \left\{ \frac{\nu -1}{\beta z} J_{\nu -1}(\beta z) - J_{\nu }(\beta z) \right\} \right. \nonumber \\ &&- \alpha \left\{ \frac{\nu -1}{\alpha z} J_{\nu -1}(\alpha z) - J_{\nu }(\alpha z) \right\} J_{\nu -1}(\beta z) \nonumber \\ &&\pm \beta J_{\nu +1}(\alpha z) \left\{ J_{\nu }(\beta z) - \frac{\nu +1}{\beta z} J_{\nu +1}(\beta z) \right\} \nonumber \\ &&\left. \mp \alpha \left\{ J_{\nu }(\alpha z) - \frac{\nu +1}{\alpha z} J_{\nu +1}(\alpha z) \right\} J_{\nu +1}(\beta z) \right] \nonumber \\ &=& \frac{z}{\alpha ^2 - \beta ^2} \Big\{ - \beta J_{\nu -1}(\alpha z) J_{\nu }(\beta z) + \alpha J_{\nu }(\alpha z) J_{\nu -1}(\beta z) \nonumber \\ &&\pm \beta J_{\nu +1}(\alpha z) J_{\nu }(\beta z) \mp \alpha J_{\nu }(\alpha z) J_{\nu +1}(\beta z) \Big\} \nonumber \\ &=& \frac{z}{\alpha ^2 - \beta ^2} \Big[ \alpha J_{\nu }(\alpha z) \big\{ J_{\nu -1}(\beta z) \mp J_{\nu +1}(\beta z) \big\} \nonumber \\ &&- \beta \big\{ J_{\nu -1}(\alpha z) \mp J_{\nu +1}(\alpha z) \big\} J_{\nu }(\beta z) \Big] \end{eqnarray} 上側符号については, \begin{align} &\int \Big\{ J_{\nu -1}(\alpha z) J_{\nu -1}(\beta z) + J_{\nu +1}(\alpha z) J_{\nu +1}(\beta z) \Big\} z \ dz \nonumber \\ &= \frac{2z}{\alpha ^2 - \beta ^2} \Big\{ \alpha J_{\nu }(\alpha z) J_{\nu }'(\beta z) - \beta J_{\nu }'(\alpha z) J_{\nu }(\beta z) \Big\} \end{align} 一方,下側符号については, \begin{align} &\int \Big\{ J_{\nu -1}(\alpha z) J_{\nu -1}(\beta z) - J_{\nu +1}(\alpha z) J_{\nu +1}(\beta z) \Big\} z \ dz \nonumber \\ &= \frac{z}{\alpha ^2 - \beta ^2} \Big\{ \alpha J_{\nu }(\alpha z) \frac{2\nu}{\beta z} J_{\nu }(\beta z) - \beta \frac{2\nu}{\alpha z} J_{\nu }(\alpha z) J_{\nu }(\beta z) \Big\} \nonumber \\ &= \frac{2\nu}{\alpha \beta} J_{\nu }(\alpha z) J_{\nu }(\beta z) \end{align} したがって,定積分は, \begin{eqnarray} &&I_{m-1,n} + I_{m+1,n} \nonumber \\ &=& \int_0^1 \Big( J_{m-1} \left( \bar{\chi}_{mn} \bar{\rho} \right) J_{m-1} (u \bar{\rho}) + J_{m+1} \left( \bar{\chi}_{mn} \bar{\rho} \right) J_{m+1} (u \bar{\rho}) \Big) \bar{\rho} d\bar{\rho} \nonumber \\ &=& \frac{2}{\bar{\chi}_{mn}^2 - u^2} \Big[ \bar{\rho} \big\{ \bar{\chi}_{mn} J_m (\bar{\chi}_{mn} \bar{\rho}) J_m'(u \bar{\rho}) - u J_m'(\bar{\chi}_{mn} \bar{\rho}) J_m (u \bar{\rho}) \big\} \Big]_0^1 \nonumber \\ &=& \frac{2}{\bar{\chi}_{mn}^2 - u^2} \Big\{ \bar{\chi}_{mn} J_m (\bar{\chi}_{mn}) J_m'(u) - u J_m'(\bar{\chi}_{mn}) J_m (u) \Big\} \end{eqnarray} また, \begin{eqnarray} &&I_{m-1,n} - I_{m+1,n} \nonumber \\ &=& \int_0^1 \Big( J_{m-1} \left( \bar{\chi}_{mn} \bar{\rho} \right) J_{m-1} (u \bar{\rho}) - J_{m+1} \left( \bar{\chi}_{mn} \bar{\rho} \right) J_{m+1} (u \bar{\rho}) \Big) \bar{\rho} d\bar{\rho} \nonumber \\ &=& \frac{2m}{\bar{\chi}_{mn} u} \Big[ J_m (\bar{\chi}_{mn} \bar{\rho}) J_m(u \bar{\rho}) \Big]_0^1 \nonumber \\ &=& \frac{2m}{\bar{\chi}_{mn} u} J_m (\bar{\chi}_{mn}) J_m(u) \end{eqnarray} TE$_{mn}$モードのとき, $\bar{\chi}_{mn} = \chi_{mn}'$,$J_m'(\chi_{mn}') = 0$,$\ell=1$ より, \begin{eqnarray} I_{m-1,n} -\ell I_{m+1,n} &=& I_{m-1,n} - I_{m+1,n} \nonumber \\ &=& \frac{2m}{\chi_{mn}'u} J_m (\chi_{mn}') J_m(u) \\ I_{m-1,n} +\ell I_{m+1,n} &=& I_{m-1,n} + I_{m+1,n} \nonumber \\ &=& \frac{2\chi_{mn}'}{\chi_{mn}^{\prime 2} - u^2} J_m (\chi_{mn}') J_m'(u) \end{eqnarray} これより, \begin{align} &\bar{N}_x^{\TE} \cos \phi + \bar{N}_y^{\TE} \sin \phi = j^{m-1} A_{[mn]} \pi a \frac{2m}{u} J_m (\chi_{mn}') J_m(u) \ \begin{matrix} \cos \\ \sin \end{matrix} m \phi \\ &-\bar{N}_x^{\TE} \sin \phi + \bar{N}_y^{\TE} \cos \phi \nonumber \\ &= -j^{m-1} A_{[mn]} \pi a \frac{2}{1-\left( \frac{u}{\chi_{mn}'} \right)^2} J_m (\chi_{mn}') J_m'(u) \ \begin{matrix} \sin \\ -\cos \end{matrix} m \phi \end{align} よって, \begin{gather} \VEC{E}_{p[mn]} = \frac{j}{\lambda} \ \frac{e^{-jkr}}{r} \VEC{F}_{[mn]} (\theta ,\phi) \end{gather} ここで, \begin{eqnarray} \VEC{F}_{[mn]} (\theta ,\phi) &=& j^{m-1} A_{[mn]} \pi a J_m(\chi _{mn}') \sqrt{Z_{[mn]}}\frac{1}{2} \nonumber \\ &&\cdot \left[ \left\{ 1+\frac{\beta _{[mn]}}{k} \cos \theta +\Gamma \left( 1 - \frac{\beta _{[mn]}}{k} \cos \theta \right) \right\} \right. \nonumber \\ && \cdot \frac{2m}{u} J_m(u) \ \begin{matrix} \cos \\ \sin \end{matrix} m \phi \VEC{a}_\theta \nonumber \\ &&- \left\{ \cos \theta +\frac{\beta _{[mn]}}{k} + \Gamma \left( \cos \theta - \frac{\beta _{[mn]}}{k} \right) \right\} \nonumber \\ &&\frac{2J_m'(u)}{1-\left( \frac{u}{\chi_{mn}'} \right)^2} \left. \cdot \begin{matrix} \sin \\ -\cos \end{matrix} m \phi \ \VEC{a}_\phi \right] \end{eqnarray}

TMモード

 一方,TM$_{mn}$モードのとき, $\bar{\chi}_{mn} = \chi_{mn}$,$J_m(\chi_{mn}) = 0$,$\ell =-1$ より, \begin{align} &I_{m-1,n} -\ell I_{m+1,n} = I_{m-1,n} + I_{m+1,n} = - \frac{2u}{\chi_{mn}^2 - u^2} J_m' (\chi_{mn}) J_m(u) \\ &I_{m-1,n} +\ell I_{m+1,n} = I_{m-1,n} - I_{m+1,n} = 0 \end{align} また, \begin{align} &\bar{N}_x^{\TM} \cos \phi + \bar{N}_y^{\TM} \sin \phi \nonumber \\ &= -j^{m-1} A_{(mn)} \pi a \chi_{mn} \frac{\frac{2u}{\chi_{mn}^2}}{1-\left( \frac{u}{\chi_{mn}} \right)^2} J_m' (\chi_{mn}) J_m(u) \ \begin{matrix} \cos \\ \sin \end{matrix} m \phi \\ &-\bar{N}_x^{\TM} \sin \phi + \bar{N}_y^{\TM} \cos \phi = 0 \end{align} よって, \begin{gather} \VEC{E}_{p(mn)} = \frac{j}{\lambda} \ \frac{e^{-jkr}}{r} \VEC{F}_{(mn)} (\theta ,\phi) \end{gather} ここで, \begin{eqnarray} \VEC{F}_{(mn)} (\theta ,\phi) &=& -j^{m-1} A_{(mn)} \pi a J_m' (\chi_{mn}) \frac{\frac{2u}{\chi_{mn}}}{1-\left( \frac{u}{\chi_{mn}} \right)^2} J_m(u) \ \begin{matrix} \cos \\ \sin \end{matrix} m \phi \sqrt{Z_{(mn)}} \nonumber \\ &&\cdot \frac{1}{2} \left\{ 1+\frac{k}{\beta _{(mn)}} \cos \theta +\Gamma \left( 1 - \frac{k}{\beta _{(mn)}} \cos \theta \right) \right\} \VEC{a}_\theta \nonumber \end{eqnarray}