3.3 フラウンホーファ領域

 円形導波管モードによる放射界を計算するため, \begin{eqnarray} \bar{N}_x &=& a^2 \frac{A_{mn} \bar{\chi}_{mn}}{2a} \int_0^{2\pi} \int_0^1 \Big\{ J_{m-1} \left( \bar{\chi}_{mn} \bar{\rho} \right) \begin{matrix} \cos \\ \sin \end{matrix} (m-1) \phi' \nonumber \\ &&+ \ell J_{m+1} \left( \bar{\chi}_{mn} \bar{\rho} \right) \begin{matrix} \cos \\ \sin \end{matrix} (m+1) \phi' \Big\} e^{ju \bar{\rho} \cos (\phi - \phi')} \bar{\rho} d\bar{\rho} d\phi' \\ \bar{N}_y &=& a^2 \frac{A_{mn} \bar{\chi}_{mn}}{2a} \int_0^{2\pi} \int_0^1 \Big\{ -J_{m-1} \left( \bar{\chi}_{mn} \bar{\rho} \right) \begin{matrix} \sin \\ -\cos \end{matrix} (m-1) \phi' \nonumber \\ &&+ \ell J_{m+1} \left( \bar{\chi}_{mn} \bar{\rho} \right) \begin{matrix} \sin \\ -\cos \end{matrix} (m+1) \phi' \Big\} e^{ju \bar{\rho} \cos (\phi - \phi')} \bar{\rho} d\bar{\rho} d\phi' \end{eqnarray} における積分 \begin{eqnarray} I_{Nx1} &=& \int_0^{2\pi} \int_0^1 J_{m-1} \left( \bar{\chi}_{mn} \bar{\rho} \right) \begin{matrix} \cos \\ \sin \end{matrix} (m-1) \phi' e^{ju \bar{\rho} \cos (\phi - \phi')} \bar{\rho} d\bar{\rho} d\phi' \\ I_{Nx2} &=& \int_0^{2\pi} \int_0^1 J_{m+1} \left( \bar{\chi}_{mn} \bar{\rho} \right) \begin{matrix} \cos \\ \sin \end{matrix} (m+1) \phi' e^{ju \bar{\rho} \cos (\phi - \phi')} \bar{\rho} d\bar{\rho} d\phi' \\ I_{Ny1} &=& \int_0^{2\pi} \int_0^1 -J_{m-1} \left( \bar{\chi}_{mn} \bar{\rho} \right) \begin{matrix} \sin \\ -\cos \end{matrix} (m-1) \phi' e^{ju \bar{\rho} \cos (\phi - \phi')} \bar{\rho} d\bar{\rho} d\phi' \\ I_{Ny2} &=& \int_0^{2\pi} \int_0^1 J_{m+1} \left( \bar{\chi}_{mn} \bar{\rho} \right) \begin{matrix} \sin \\ -\cos \end{matrix} (m+1) \phi' e^{ju \bar{\rho} \cos (\phi - \phi')} \bar{\rho} d\bar{\rho} d\phi' \end{eqnarray} を,ベッセル - フーリエ級数(Bessel-Fourier series) \begin{gather} e^{j\lambda \rho \cos (\phi - \phi')} = J_0 (\lambda \rho) + \sum_{n=1}^\infty 2j^n J_n(\lambda \rho ) \cos n(\phi - \phi') \end{gather} を用いて積分する.
 まず,$\bar{N}_x$の第1項の積分$I_{Nx1}$は, \begin{eqnarray} I_{Nx1} &=& \int_0^{2\pi} \hspace{-2mm} \int_0^1 J_{m-1} \left( \bar{\chi}_{mn} \bar{\rho} \right) \begin{matrix} \cos \\ \sin \end{matrix} (m-1) \phi' \nonumber \\ &&\cdot \left\{ J_0 (u \bar{\rho}) + \sum_{n'=1}^\infty 2j^{n'} J_{n'} (u \bar{\rho} ) \cos n' (\phi - \phi') \right\} \bar{\rho} d\bar{\rho} d\phi' \nonumber \\ &=& \int_0^1 J_{m-1} \left( \bar{\chi}_{mn} \bar{\rho} \right) J_0 (u \bar{\rho}) \bar{\rho} d\bar{\rho} \int _0^{2\pi} \begin{matrix} \cos \\ \sin \end{matrix} (m-1) \phi' d\phi' \nonumber \\ &&+ \sum_{n'=1}^\infty 2j^{n'} \int_0^1 J_{m-1} \left( \bar{\chi}_{mn} \bar{\rho} \right) J_{n'} (u \bar{\rho}) \bar{\rho} d\bar{\rho} \nonumber \\ &&\cdot \int _0^{2\pi} \begin{matrix} \cos \\ \sin \end{matrix} (m-1) \phi' \cos n' (\phi - \phi') d\phi' \end{eqnarray} ここで, \begin{align} &\int _0^{2\pi} \cos (m \mp 1) \phi' d\phi' = 2\pi \delta _{m,\pm 1} \\ &\int _0^{2\pi} \sin (m \mp 1) \phi' d\phi' = 0 \end{align} また, \begin{eqnarray} &&\cos (m \mp 1) \phi' \cos n' (\phi - \phi') \nonumber \\ &=& \frac{1}{2} \Big[ \cos \Big( (m \mp 1) \phi' + n' (\phi - \phi') \Big) + \cos \Big( (m \mp 1) \phi' - n' (\phi - \phi') \Big) \Big] \nonumber \\ &=& \frac{1}{2} \Big[ \cos \Big( (m \mp 1-n') \phi' + n' \phi \Big) + \cos \Big( (m \mp 1+n') \phi' - n' \phi \Big) \Big] \nonumber \\ &=& \frac{1}{2} \Big[ \cos (m \mp 1-n') \phi' \cos n' \phi - \sin (m \mp 1-n') \phi' \sin n' \phi \nonumber \\ &&+ \cos (m \mp 1+n') \phi' \cos n' \phi + \sin (m \mp 1+n') \phi' \sin n' \phi \Big] \end{eqnarray} これを積分すると,$1 \leq n'=m \mp 1$,$-m \pm 1$($m=0,1,2, \cdots$)のとき値をもち,このとき, \begin{eqnarray} \int _0^{2\pi} \cos (m \mp 1) \phi' \cos n' (\phi - \phi') d\phi' &=& \frac{1}{2} \cos n' \phi \int _0^{2\pi} d\phi' \nonumber \\ &=& \pi \cos n' \phi \end{eqnarray} 上側符号では,$m=0$ のとき $n' = -m+1 = 1$, $m=1$ のとき $n' \geq 1$ となるケースはなし, $m=2$ のとき $n' = m-1 = 1$, $m=3,4, \cdots$ のとき $n'=m-1$ である.したがって, \begin{align} &\int _0^{2\pi} \cos (m-1) \phi' \cos n' (\phi - \phi') d\phi' \nonumber \\ &= \left\{ \begin{array}{cl} \pi \cos |m-1| \phi & (n' = |m-1|, \ m=0,2,3,4,\cdots) \\ 0 & (\mbox{otherwise}) \end{array} \right. \end{align} また,下側符号では,$m=0$ のとき $n' = m+1 = 1$, $m=1,2,\cdots $ のとき $n'=m+1$ である.したがって, \begin{align} &\int _0^{2\pi} \cos (m+1) \phi' \cos n' (\phi - \phi') d\phi' \nonumber \\ &= \left\{ \begin{array}{cl} \pi \cos (m+1) \phi & (n' = m+1) \\ 0 & (\mbox{otherwise}) \end{array} \right. \end{align} 同様にして(導出省略), \begin{align} &\int _0^{2\pi} \sin (m-1) \phi' \cos n' (\phi - \phi') d\phi' \nonumber \\ &= \left\{ \begin{array}{cl} \pi \sin |m-1| \phi & (n' = |m-1|, \ m=0,2,3,4,\cdots) \\ 0 & (\mbox{otherwise}) \end{array} \right. \\ &\int _0^{2\pi} \sin (m+1) \phi' \cos n' (\phi - \phi') d\phi' \nonumber \\ &= \left\{ \begin{array}{cl} \pi \sin (m+1) \phi & (n' = m+1) \\ 0 & (\mbox{otherwise}) \end{array} \right. \end{align} よって,積分項は, \begin{gather} I_{Nx1} = j^{m-1} 2\pi \ \begin{matrix} \cos \\ \sin \end{matrix} (m-1) \phi \int_0^1 J_{m-1} \left( \bar{\chi}_{mn} \bar{\rho} \right) J_{m-1} (u \bar{\rho}) \bar{\rho} d\bar{\rho} \end{gather} 同様にして,$\bar{N}_x$の第2項の積分$I_{Nx2}$は, \begin{eqnarray} I_{Nx2} &=& \int_0^{2\pi} \hspace{-2mm} \int_0^1 J_{m+1} \left( \bar{\chi}_{mn} \bar{\rho} \right) \begin{matrix} \cos \\ \sin \end{matrix} (m+1) \phi' \nonumber \\ &&\cdot \left\{ J_0 (u \bar{\rho}) + \sum_{n'=1}^\infty 2j^{n'} J_{n'} (u \bar{\rho} ) \cos n' (\phi - \phi') \right\} \bar{\rho} d\bar{\rho} d\phi' \nonumber \\ &=& j^{m+1} 2\pi \ \begin{matrix} \cos \\ \sin \end{matrix} (m+1) \phi \int_0^1 J_{m+1} \left( \bar{\chi}_{mn} \bar{\rho} \right) J_{m+1} (u \bar{\rho}) \bar{\rho} d\bar{\rho} \end{eqnarray} さらに,$\bar{N}_y$の第1項の積分$I_{Ny1}$は, \begin{eqnarray} I_{Ny1} &=& \int_0^{2\pi} \hspace{-2mm} \int_0^1 -J_{m-1} \left( \bar{\chi}_{mn} \bar{\rho} \right) \begin{matrix} \sin \\ -\cos \end{matrix} (m-1) \phi' \cdot e^{ju \bar{\rho} \cos (\phi - \phi')} \bar{\rho} d\bar{\rho} d\phi' \nonumber \\ &=& -j^{m-1} 2\pi \ \begin{matrix} \sin \\ -\cos \end{matrix} (m-1) \phi \int_0^1 J_{m-1} \left( \bar{\chi}_{mn} \bar{\rho} \right) J_{m-1} (u \bar{\rho}) \bar{\rho} d\bar{\rho} \end{eqnarray} また,$\bar{N}_y$の第2項の積分$I_{Ny2}$は, \begin{eqnarray} I_{Ny2} &=& \int_0^{2\pi} \hspace{-2mm} \int_0^1 J_{m+1} \left( \bar{\chi}_{mn} \bar{\rho} \right) \begin{matrix} \sin \\ -\cos \end{matrix} (m+1) \phi' \cdot e^{ju \bar{\rho} \cos (\phi - \phi')} \bar{\rho} d\bar{\rho} d\phi' \nonumber \\ &=& j^{m+1} 2\pi \ \begin{matrix} \sin \\ -\cos \end{matrix} (m+1) \phi \int_0^1 J_{m+1} \left( \bar{\chi}_{mn} \bar{\rho} \right) J_{m+1} (u \bar{\rho}) \bar{\rho} d\bar{\rho} \end{eqnarray} 積分項は, \begin{gather} I_{m \pm 1,n} \equiv \int_0^1 J_{m \pm 1} \left( \bar{\chi}_{mn} \bar{\rho} \right) J_{m \pm 1} (u \bar{\rho}) \bar{\rho} d\bar{\rho} \end{gather} ベッセル関数の不定積分公式 $ (\alpha \neq \beta )$ \begin{gather} \int z J_{\nu }(\alpha z) J_{\nu }(\beta z) dz = \frac{z}{\alpha ^2 - \beta ^2} \left\{ \beta J_{\nu }(\alpha z) J_{\nu }'(\beta z) - \alpha J_{\nu }'(\alpha z) J_{\nu }(\beta z) \right\} \end{gather} より, \begin{gather} \int_0^1 z J_{\nu }(\alpha z) J_{\nu }(\beta z) dz = \frac{1}{\alpha ^2 - \beta ^2} \left\{ \beta J_{\nu }(\alpha) J_{\nu }'(\beta) - \alpha J_{\nu }'(\alpha) J_{\nu }(\beta) \right\} \end{gather} よって, \begin{gather} I_{m \pm 1,n} = \frac{1}{\bar{\chi}_{mn}^2 - u^2} \left\{ u J_{m \pm 1}(\bar{\chi}_{mn}) J_{m \pm 1}'(u) - \bar{\chi}_{mn} J_{m \pm 1}'(\bar{\chi}_{mn}) J_{m \pm 1}(u) \right\} \nonumber \end{gather}