6.2 ベクトルの微分

ベクトルの微分公式

\begin{align} &\nabla (\phi \psi) = \phi \nabla \psi + \psi \nabla \phi \\ &\nabla \cdot (\phi \VEC{a}) = \VEC{a} \cdot \nabla \phi + \phi \nabla \cdot \VEC{a} \\ &\nabla \times (\phi \VEC{a}) = \nabla \phi \times \VEC{a} + \phi \nabla \times \VEC{a} \label{eq:rot_phi_a} \\ &\nabla (\VEC{a} \cdot \VEC{b}) = (\VEC{a} \cdot \nabla ) \VEC{b} + (\VEC{b} \cdot \nabla ) \VEC{a} + \VEC{a} \times ( \nabla \times \VEC{b}) + \VEC{b} \times ( \nabla \times \VEC{a}) \\ &\nabla \cdot (\VEC{a} \times \VEC{b}) = \VEC{b} \cdot \nabla \times \VEC{a} - \VEC{a} \cdot \nabla \times \VEC{b} \\ &\nabla \times (\VEC{a} \times \VEC{b}) = \VEC{a} (\nabla \cdot \VEC{b}) - \VEC{b} (\nabla \cdot \VEC{a}) + (\VEC{b} \cdot \nabla ) \VEC{a} - (\VEC{a} \cdot \nabla ) \VEC{b} \\ &\nabla \times \nabla \times \VEC{a} = \nabla \nabla \cdot \VEC{a} - \nabla^2 \VEC{a} \label{eq:rot_rot_a} \end{align} また, \begin{align} &\nabla \times ( \nabla \phi ) = 0 \label{eq:rot_grad_0} \\ &\nabla \cdot (\nabla \times \VEC{A}) = 0 \label{eq:div_rot_0} \end{align}

ストークスの定理の応用

 式\eqref{eq:div_rot_0}をストークスの定理を用いて証明する.まず,閉じた積分路$C$でできる面として,上に膨らんだ面$S_1$を考えると,ストークスの定理は, \begin{gather} \oint _{C} \VEC{A} \cdot d\VEC{s} = \int _{S_1} ( \nabla \times \VEC{A} ) \cdot d\VEC{S} \end{gather} この積分路$C$の向きを逆にした経路を$C^{(-)}$とし,この$C^{(-)}$からなる面として下に膨らんだ面$S_2$を考えると,ストークスの定理は, \begin{gather} \oint _{C^{(-)}} \VEC{A} \cdot d\VEC{s} = \int _{S_2} ( \nabla \times \VEC{A} ) \cdot d\VEC{S} \end{gather} 両者を辺々加えると, \begin{gather} \oint _{C} \VEC{A} \cdot d\VEC{s} + \oint _{C^{(-)}} \VEC{A} \cdot d\VEC{s} = \int _{S_1} ( \nabla \times \VEC{A} ) \cdot d\VEC{S} + \int _{S_2} ( \nabla \times \VEC{A} ) \cdot d\VEC{S} \end{gather} 上式左辺は,同じ積分路で向きが逆ゆえゼロである.よって, \begin{eqnarray} 0 = \int _{S_1 + S_2} ( \nabla \times \VEC{A} ) \cdot d\VEC{S} \end{eqnarray} 上式右辺の$S_1 + S_2$は閉曲面を表し,この体積を微小$\Delta v$として極限を求めると,$\nabla \times \VEC{A}$の発散(div)ゆえ, \begin{gather} \lim _{\Delta v \to 0} \frac{1}{\Delta v} \int _{S_1 + S_2} ( \nabla \times \VEC{A} ) \cdot d\VEC{S} = \nabla \cdot \big( \nabla \times \VEC{A} \big) = 0 \end{gather} よって, \begin{gather} \nabla \cdot \big( \nabla \times \VEC{A} \big) = 0 \end{gather}  式\eqref{eq:rot_grad_0}もストークスの定理を用いて証明しよう.まず,ストークスの定理を$\nabla \phi$に対して用いると, \begin{gather} \iint_S \big\{ \nabla \times (\nabla \phi) \big\} \cdot \VEC{n} dS = \oint_C (\nabla \phi) \cdot \VEC{s} ds = \oint_C \frac{\partial \phi}{\partial s} ds = \Big[ \phi \Big]_C = 0 \end{gather} この面を微小$\Delta S$として極限を求めてもゼロであり,右辺についてはベクトル$\nabla \phi$の回転(rot)ゆえ, \begin{eqnarray} \lim _{\Delta S \to 0} \frac{1}{\Delta S} \iint_{\Delta S} \big\{ \nabla \times (\nabla \phi) \big\} \cdot \VEC{n} dS &=& \lim _{\Delta S \to 0} \frac{1}{\Delta S} \oint_C (\nabla \phi) \cdot d\VEC{s} \nonumber \\ &=& \big\{ \nabla \times (\nabla \phi) \big\} \cdot \VEC{n} \nonumber \\ &=& 0 \end{eqnarray} 面のとり方は任意であり,その法線ベクトル$\VEC{n}$も任意ゆえ,次式が成り立つ. \begin{gather} \nabla \times ( \nabla \phi ) = 0 \end{gather}

【例題1】直角座標系$(x,y,z)$において,式\eqref{eq:div_rot_0}の左辺から右辺を導出せよ.

略解 直角座標系$(x,y,z)$では, \begin{eqnarray} &&\nabla \cdot \big( \nabla \times \VEC{A} \big) \nonumber \\ &=& \frac{\partial}{\partial x} \big( \nabla \times \VEC{A} \big) _x + \frac{\partial}{\partial y} \big( \nabla \times \VEC{A} \big) _y + \frac{\partial}{\partial z} \big( \nabla \times \VEC{A} \big) _z \nonumber \\ &=& \frac{\partial}{\partial x} \left( \frac{\partial A_z}{\partial y} -\frac{\partial A_y}{\partial z} \right) + \frac{\partial}{\partial y} \left( \frac{\partial A_x}{\partial z} -\frac{\partial A_z}{\partial x} \right) + \frac{\partial}{\partial z} \left( \frac{\partial A_y}{\partial x} -\frac{\partial A_x}{\partial y} \right) \nonumber \\ &=& \frac{\partial ^2 A_z}{\partial x \partial y} - \frac{\partial ^2 A_y}{\partial x \partial z} + \frac{\partial ^2 A_x}{\partial y \partial z} - \frac{\partial ^2 A_z}{\partial y \partial x} + \frac{\partial ^2 A_y}{\partial z \partial x} - \frac{\partial ^2 A_x}{\partial z \partial y} \nonumber \\ &=& 0 \end{eqnarray}

【例題2】直角座標系$(x,y,z)$において,式\eqref{eq:rot_grad_0}の左辺から右辺を導出せよ.

略解 まず,$x$成分は, \begin{eqnarray} \Big\{ \nabla \times \big( \nabla \phi \big) \Big\} _x &=& \frac{\partial}{\partial y} \big( \nabla \phi \big) _z - \frac{\partial}{\partial z} \big( \nabla \phi \big) _y \nonumber \\ &=& \frac{\partial}{\partial y} \left( \frac{\partial \phi}{\partial z} \right) - \frac{\partial}{\partial z} \left( \frac{\partial \phi}{\partial y} \right) \nonumber \\ &=& 0 \end{eqnarray} 同様にして,$y$成分,$z$成分も次のようになる. \begin{gather} \Big\{ \nabla \times \big( \nabla \phi \big) \Big\} _y = 0 \\ \Big\{ \nabla \times \big( \nabla \phi \big) \Big\} _z = 0 \end{gather} よって, \begin{gather} \nabla \times ( \nabla \phi ) = 0 \end{gather}

【例題3】直角座標系$(x,y,z)$において,式\eqref{eq:rot_phi_a}の左辺から右辺を導出せよ.

略解 左辺の$x$成分は, \begin{eqnarray} \Big\{ \nabla \times \big( \phi \VEC{a} \big) \Big\} _x &=& \frac{\partial (\phi a_z)}{\partial y}-\frac{\partial (\phi a_y)}{\partial z} \nonumber \\ &=& \left( \frac{\partial \phi}{\partial y} a_z + \phi \frac{\partial a_z}{\partial y} \right) - \left( \frac{\partial \phi}{\partial z} a_y + \phi \frac{\partial a_y}{\partial z} \right) \nonumber \\ &=& \left( \frac{\partial \phi}{\partial y} a_z - \frac{\partial \phi}{\partial z} a_y \right) + \phi \left( \frac{\partial a_z}{\partial y} - \frac{\partial a_y}{\partial z} \right) \nonumber \\ &=& \Big\{ \big( \nabla \phi \big) \times \VEC{a} \big) \Big\} _x + \phi \big( \nabla \times \VEC{a} \big) _x \end{eqnarray} 同様にして,$y$成分および$z$成分は次のようになる. \begin{align} &\Big\{ \nabla \times \big( \phi \VEC{a} \big) \Big\} _y = \Big\{ \big( \nabla \phi \big) \times \VEC{a} \big) \Big\} _y + \phi \big( \nabla \times \VEC{a} \big) _y \\ &\Big\{ \nabla \times \big( \phi \VEC{a} \big) \Big\} _z = \Big\{ \big( \nabla \phi \big) \times \VEC{a} \big) \Big\} _z + \phi \big( \nabla \times \VEC{a} \big) _z \end{align} これらを合成すれば右辺の式が得られる. \begin{gather} \nabla \times \big( \phi \VEC{a} \big) = \big( \nabla \phi \big) \times \VEC{a} + \phi \nabla \times \VEC{a} \end{gather}

【例題4】式\eqref{eq:rot_rot_a}を導出せよ.

略解 ベクトル演算と$\nabla$を用いた演算との対比を考え, ベクトル積に関わる公式 \begin{gather} \VEC{A} \times ( \VEC{B} \times \VEC{C} ) = \VEC{B} (\VEC{A} \cdot \VEC{C}) - (\VEC{A} \cdot \VEC{B}) \VEC{C} \end{gather} において,ベクトル$\VEC{A}$,$\VEC{B}$を$\nabla$に置き換え,$\VEC{C}$を$\VEC{a}$に変えると,次式が得られる. \begin{eqnarray} \nabla \times ( \nabla \times \VEC{a} ) &=& \nabla (\nabla \cdot \VEC{a}) - (\nabla \cdot \nabla) \VEC{a} \nonumber \\ &=& \nabla (\nabla \cdot \VEC{a}) - \nabla ^2 \VEC{a} \end{eqnarray}  また,直角座標系において,左辺から右辺を導出する.まず,$x$成分については, \begin{eqnarray} &&\{ \nabla \times (\nabla \times \VEC{a}) \} _x \nonumber \\ &=& \frac{\partial}{\partial y} (\nabla \times \VEC{a})_z - \frac{\partial}{\partial z} (\nabla \times \VEC{a})_y \nonumber \\ &=& \frac{\partial}{\partial y} \left( \frac{\partial a_y}{\partial x} - \frac{\partial a_x}{\partial y} \right) - \frac{\partial}{\partial z} \left( \frac{\partial a_x}{\partial z} - \frac{\partial a_z}{\partial x} \right) \nonumber \\ &=& \frac{\partial}{\partial x} \left( \frac{\partial a_x}{\partial x} + \frac{\partial a_y}{\partial y} + \frac{\partial a_z}{\partial z} \right) - \left( \frac{\partial ^2 a_x}{\partial x^2} + \frac{\partial ^2 a_x}{\partial y^2} + \frac{\partial ^2 a_x}{\partial z^2} \right) \nonumber \\ &=& \frac{\partial}{\partial x} (\nabla \cdot \VEC{a}) - \nabla ^2 a_x \end{eqnarray} 同様にして,$y$成分および$z$成分は次のようになる. \begin{gather} \{ \nabla \times (\nabla \times \VEC{a}) \} _y = \frac{\partial}{\partial y} (\nabla \cdot \VEC{a}) - \nabla ^2 a_y \\ \{ \nabla \times (\nabla \times \VEC{a}) \} _z = \frac{\partial}{\partial z} (\nabla \cdot \VEC{a}) - \nabla ^2 a_z \end{gather} これらを合成すれば右辺の式が得られる. \begin{eqnarray} &&\nabla \times ( \nabla \times \VEC{a} ) \nonumber \\ &=& \{ \nabla \times (\nabla \times \VEC{a}) \} _x \VEC{i} + \{ \nabla \times (\nabla \times \VEC{a}) \} _y \VEC{j} + \{ \nabla \times (\nabla \times \VEC{a}) \}_z \VEC{k} \nonumber \\ &=& \left\{ \frac{\partial}{\partial x} (\nabla \cdot \VEC{a}) - \nabla ^2 a_x \right\} \VEC{i} \nonumber \\ &&+ \left\{ \frac{\partial}{\partial y} (\nabla \cdot \VEC{a}) - \nabla ^2 a_y \right\} \VEC{j} + \left\{ \frac{\partial}{\partial z} (\nabla \cdot \VEC{a}) - \nabla ^2 a_z \right\} \VEC{k} \nonumber \\ &=& \left( \VEC{i} \frac{\partial}{\partial x} +\VEC{j} \frac{\partial}{\partial y} + \VEC{k} \frac{\partial}{\partial z} \right) ( \nabla \cdot \VEC{a} ) - \Big\{ (\nabla ^2 a_x) \VEC{i} + (\nabla ^2 a_y) \VEC{j} + (\nabla ^2 a_z) \VEC{k} \Big\} \nonumber \\ &=& \nabla (\nabla \cdot \VEC{a}) - \nabla ^2 \VEC{a} \end{eqnarray}