2.9 地導体板付き多層誘電体基板中に面電流源がある場合
厚み\(d_1\)の多層誘電体基板の片面に地導体板を付け(\(z=-d_1\)),この基板と厚み\(d_2\)の多層誘電体基板との境界面(\(z=0\))に電流源がある場合を考える.ここでも同様に,領域(1),(2)の基本行列が各々与えられているものとする.
\(z=0\) において\(z\geq 0\) の誘電体を見た入力アドミタンス\(Y_{in}^{(+)}\)は,
\begin{gather}
Y_{in}^{(+)} = \frac{F_{21}^{(+)} + F_{22}^{(+)} Y_3}{F_{11}^{(+)} + F_{12}^{(+)} Y_3}
\end{gather}
一方,地導体板が完全導体のとき,\(z=-d_1\) の電界の接線成分はゼロゆえ,
\begin{gather}
\widetilde{E}_1 (-d_1) =0
\end{gather}
これより,\(z=0\) において\(z\leq 0\) の誘電体を見た入力アドミタンス\(Y_{in}^{(-)}\)は,
\begin{eqnarray}
Y_{in}^{(-)}
&=& \frac{-\widetilde{H}_1(0)}{\widetilde{E}_1(0)}
\nonumber \\
&=& -\frac{F_{21}^{(-)\prime} \widetilde{E}_1(-d_1) + F_{22}^{(-)\prime} \widetilde{H}_1(-d_1)}{
F_{11}^{(-)\prime} \widetilde{E}_1(-d_1) + F_{12}^{(-)\prime} \widetilde{H}_1(-d_1)}
\nonumber \\
&=& -\frac{F_{22}^{(-)\prime} \widetilde{H}_1(-d_1)}{F_{12}^{(-)\prime} \widetilde{H}_1(-d_1)}
= -\frac{F_{22}^{(-)\prime}}{F_{12}^{(-)\prime}}
\end{eqnarray}
\(z=0\) でのスペクトル領域の電流を\(\widetilde{J}\)とすると,\(z=0\) の電磁界の連続条件より,
\begin{eqnarray}
\widetilde{E}_2(0) - \widetilde{E}_1(0) &=& 0
\\
\widetilde{H}_2(0) - \widetilde{H}_1(0) &=& -\widetilde{J}
\end{eqnarray}
これより,
\begin{gather}
Y_{in}^{(+)} \widetilde{E}_2(0) + Y_{in}^{(-)} \widetilde{E}_2(0) = -\widetilde{J}
\end{gather}
よって,
\begin{gather}
\widetilde{E}_2(0) = \widetilde{E}_1(0) = \frac{-\widetilde{J}}{Y_{in}^{(+)} + Y_{in}^{(-)}} \equiv \widetilde{Z}^{(0)} \widetilde{J}
\end{gather}
ただし,
\begin{eqnarray}
\widetilde{Z}^{(0)} &=& -\frac{1}{Y_{in}^{(+)} + Y_{in}^{(-)}}
\\
Y_{in}^{(+)} &=& \frac{F_{21}^{(+)} + F_{22}^{(+)} Y_3}{F_{11}^{(+)} + F_{12}^{(+)} Y_3}
\\
Y_{in}^{(-)} &=& -\frac{F_{22}^{(-)\prime}}{F_{12}^{(-)\prime}}
\end{eqnarray}
また,
\begin{eqnarray}
\widetilde{H}_2(0)
&=& Y_{in}^{(+)} \widetilde{E}_2(0)
\nonumber \\
&=& -\frac{Y_{in}^{(+)} \widetilde{J}}{Y_{in}^{(+)} + Y_{in}^{(-)}}
\end{eqnarray}
\begin{eqnarray}
\widetilde{H}_1(0)
&=& \widetilde{H}_2(0) + \widetilde{J}
\nonumber \\
&=& -\frac{Y_{in}^{(+)} \widetilde{J}}{Y_{in}^{(+)} + Y_{in}^{(-)}} + \widetilde{J}
\nonumber \\
&=& -\frac{Y_{in}^{(-)} \widetilde{J}}{Y_{in}^{(+)} + Y_{in}^{(-)}}
\end{eqnarray}
\(z=d_2\) の誘電体と空気の境界面では,
\begin{eqnarray}
\widetilde{E}_2(d_2)
&=& F_{11}^{(+)\prime } \widetilde{E}_2 (0) + F_{12}^{(+)\prime} \widetilde{H}_2 (0)
\nonumber \\
&=& F_{11}^{(+)\prime } \widetilde{E}_2 (0) + F_{12}^{(+)\prime} Y_{in}^{(+)} \widetilde{E}_2 (0)
\nonumber \\
&=& \Big( F_{11}^{(+)\prime } + F_{12}^{(+)\prime} Y_{in}^{(+)} \Big) \widetilde{Z}^{(0)} \widetilde{J}
\nonumber \\
&\equiv& Y_{trans} \widetilde{Z}^{(0)} \widetilde{J} \equiv \widetilde{Z}^{(d_2)} \widetilde{J}
\end{eqnarray}
ここで,
\begin{gather}
Y_{trans} \equiv F_{11}^{(+)\prime } + F_{12}^{(+)\prime} Y_{in}^{(+)}
\end{gather}
これより,
\begin{gather}
\widetilde{H}_2(d_2) = Y_3 \widetilde{E}_2 (d_2) = Y_3 \widetilde{Z}^{(d_2)} \widetilde{J} \equiv \widetilde{P}^{(d_2)} \widetilde{J}
\end{gather}
したがって,
\begin{eqnarray}
\widetilde{Z}^{(d_2)} &=& Y_{trans} \widetilde{Z}^{(0)} = -\frac{Y_{trans}}{Y_{in}^{(+)} + Y_{in}^{(-)}}
\\
\widetilde{P}^{(d_2)} &=& Y_3 \widetilde{Z}^{(d_2)}
\end{eqnarray}
一方,\(z=-d_1\)の地導体面上では,
\begin{gather}
\widetilde{E}_1(-d_1) =0
\end{gather}
また,
\begin{eqnarray}
\widetilde{H}_1(-d_1)
&=& F_{21}^{(-)} \widetilde{E}_1 (0) + F_{22}^{(-)} \widetilde{H}_1 (0)
\nonumber \\
&=& F_{21}^{(-)} \widetilde{E}_1 (0) + F_{22}^{(-)} \left( -Y_{in}^{(-)} \widetilde{E}_1 (0) \right)
\nonumber \\
&=& \left( F_{21}^{(-)} - F_{22}^{(-)} Y_{in}^{(-)} \right) \widetilde{E}_1 (0)
\nonumber \\
&=& -\frac{ F_{21}^{(-)} - F_{22}^{(-)} Y_{in}^{(-)}}{Y_{in}^{(+)} + Y_{in}^{(-)}} \widetilde{J}
\nonumber \\
&\equiv& \widetilde{P}^{(-d_1)} \widetilde{J}
\end{eqnarray}
ここで,
\begin{gather}
\widetilde{P}^{(-d_1)} = \frac{ -F_{21}^{(-)} + F_{22}^{(-)} Y_{in}^{(-)}}{Y_{in}^{(+)} + Y_{in}^{(-)}}
\end{gather}