2.9 地導体板付き多層誘電体基板中に面電流源がある場合

 厚み\(d_1\)の多層誘電体基板の片面に地導体板を付け(\(z=-d_1\)),この基板と厚み\(d_2\)の多層誘電体基板との境界面(\(z=0\))に電流源がある場合を考える.ここでも同様に,領域(1),(2)の基本行列が各々与えられているものとする. \(z=0\) において\(z\geq 0\) の誘電体を見た入力アドミタンス\(Y_{in}^{(+)}\)は, \begin{gather} Y_{in}^{(+)} = \frac{F_{21}^{(+)} + F_{22}^{(+)} Y_3}{F_{11}^{(+)} + F_{12}^{(+)} Y_3} \end{gather} 一方,地導体板が完全導体のとき,\(z=-d_1\) の電界の接線成分はゼロゆえ, \begin{gather} \widetilde{E}_1 (-d_1) =0 \end{gather}
地導体板付き多層誘電体基板中に面電流源がある場合
これより,\(z=0\) において\(z\leq 0\) の誘電体を見た入力アドミタンス\(Y_{in}^{(-)}\)は, \begin{eqnarray} Y_{in}^{(-)} &=& \frac{-\widetilde{H}_1(0)}{\widetilde{E}_1(0)} \nonumber \\ &=& -\frac{F_{21}^{(-)\prime} \widetilde{E}_1(-d_1) + F_{22}^{(-)\prime} \widetilde{H}_1(-d_1)}{ F_{11}^{(-)\prime} \widetilde{E}_1(-d_1) + F_{12}^{(-)\prime} \widetilde{H}_1(-d_1)} \nonumber \\ &=& -\frac{F_{22}^{(-)\prime} \widetilde{H}_1(-d_1)}{F_{12}^{(-)\prime} \widetilde{H}_1(-d_1)} = -\frac{F_{22}^{(-)\prime}}{F_{12}^{(-)\prime}} \end{eqnarray} \(z=0\) でのスペクトル領域の電流を\(\widetilde{J}\)とすると,\(z=0\) の電磁界の連続条件より, \begin{eqnarray} \widetilde{E}_2(0) - \widetilde{E}_1(0) &=& 0 \\ \widetilde{H}_2(0) - \widetilde{H}_1(0) &=& -\widetilde{J} \end{eqnarray} これより, \begin{gather} Y_{in}^{(+)} \widetilde{E}_2(0) + Y_{in}^{(-)} \widetilde{E}_2(0) = -\widetilde{J} \end{gather} よって, \begin{gather} \widetilde{E}_2(0) = \widetilde{E}_1(0) = \frac{-\widetilde{J}}{Y_{in}^{(+)} + Y_{in}^{(-)}} \equiv \widetilde{Z}^{(0)} \widetilde{J} \end{gather} ただし, \begin{eqnarray} \widetilde{Z}^{(0)} &=& -\frac{1}{Y_{in}^{(+)} + Y_{in}^{(-)}} \\ Y_{in}^{(+)} &=& \frac{F_{21}^{(+)} + F_{22}^{(+)} Y_3}{F_{11}^{(+)} + F_{12}^{(+)} Y_3} \\ Y_{in}^{(-)} &=& -\frac{F_{22}^{(-)\prime}}{F_{12}^{(-)\prime}} \end{eqnarray} また, \begin{eqnarray} \widetilde{H}_2(0) &=& Y_{in}^{(+)} \widetilde{E}_2(0) \nonumber \\ &=& -\frac{Y_{in}^{(+)} \widetilde{J}}{Y_{in}^{(+)} + Y_{in}^{(-)}} \end{eqnarray} \begin{eqnarray} \widetilde{H}_1(0) &=& \widetilde{H}_2(0) + \widetilde{J} \nonumber \\ &=& -\frac{Y_{in}^{(+)} \widetilde{J}}{Y_{in}^{(+)} + Y_{in}^{(-)}} + \widetilde{J} \nonumber \\ &=& -\frac{Y_{in}^{(-)} \widetilde{J}}{Y_{in}^{(+)} + Y_{in}^{(-)}} \end{eqnarray} \(z=d_2\) の誘電体と空気の境界面では, \begin{eqnarray} \widetilde{E}_2(d_2) &=& F_{11}^{(+)\prime } \widetilde{E}_2 (0) + F_{12}^{(+)\prime} \widetilde{H}_2 (0) \nonumber \\ &=& F_{11}^{(+)\prime } \widetilde{E}_2 (0) + F_{12}^{(+)\prime} Y_{in}^{(+)} \widetilde{E}_2 (0) \nonumber \\ &=& \Big( F_{11}^{(+)\prime } + F_{12}^{(+)\prime} Y_{in}^{(+)} \Big) \widetilde{Z}^{(0)} \widetilde{J} \nonumber \\ &\equiv& Y_{trans} \widetilde{Z}^{(0)} \widetilde{J} \equiv \widetilde{Z}^{(d_2)} \widetilde{J} \end{eqnarray} ここで, \begin{gather} Y_{trans} \equiv F_{11}^{(+)\prime } + F_{12}^{(+)\prime} Y_{in}^{(+)} \end{gather} これより, \begin{gather} \widetilde{H}_2(d_2) = Y_3 \widetilde{E}_2 (d_2) = Y_3 \widetilde{Z}^{(d_2)} \widetilde{J} \equiv \widetilde{P}^{(d_2)} \widetilde{J} \end{gather} したがって, \begin{eqnarray} \widetilde{Z}^{(d_2)} &=& Y_{trans} \widetilde{Z}^{(0)} = -\frac{Y_{trans}}{Y_{in}^{(+)} + Y_{in}^{(-)}} \\ \widetilde{P}^{(d_2)} &=& Y_3 \widetilde{Z}^{(d_2)} \end{eqnarray}  一方,\(z=-d_1\)の地導体面上では, \begin{gather} \widetilde{E}_1(-d_1) =0 \end{gather} また, \begin{eqnarray} \widetilde{H}_1(-d_1) &=& F_{21}^{(-)} \widetilde{E}_1 (0) + F_{22}^{(-)} \widetilde{H}_1 (0) \nonumber \\ &=& F_{21}^{(-)} \widetilde{E}_1 (0) + F_{22}^{(-)} \left( -Y_{in}^{(-)} \widetilde{E}_1 (0) \right) \nonumber \\ &=& \left( F_{21}^{(-)} - F_{22}^{(-)} Y_{in}^{(-)} \right) \widetilde{E}_1 (0) \nonumber \\ &=& -\frac{ F_{21}^{(-)} - F_{22}^{(-)} Y_{in}^{(-)}}{Y_{in}^{(+)} + Y_{in}^{(-)}} \widetilde{J} \nonumber \\ &\equiv& \widetilde{P}^{(-d_1)} \widetilde{J} \end{eqnarray} ここで, \begin{gather} \widetilde{P}^{(-d_1)} = \frac{ -F_{21}^{(-)} + F_{22}^{(-)} Y_{in}^{(-)}}{Y_{in}^{(+)} + Y_{in}^{(-)}} \end{gather}