2.8 多層誘電体基板中に面電流源がある場合

 図のように誘電体(厚み\(d_1\)の多層誘電体基板)と誘電体(厚み\(d_2\)の多層誘電体基板)の境界面(\(z=0\))に面電流源がある場合を考える. そして,領域(2)の基本行列が次のように与えられているものとする. \begin{gather} \begin{pmatrix} \widetilde{E}_2(0) \\ \widetilde{H}_2(0) \end{pmatrix} = \left[ \boldsymbol{F}^{(+)} \right] \begin{pmatrix} \widetilde{E}_2(d_2) \\ \widetilde{H}_2(d_2) \end{pmatrix}, \ \ \ \left[ \boldsymbol{F}^{(+)} \right] = \begin{pmatrix} F_{11}^{(+)} & F_{12}^{(+)} \\ F_{21}^{(+)} & F_{22}^{(+)} \end{pmatrix} \end{gather}
多層誘電体基板中に面電流源がある場合
逆は, \begin{gather} \begin{pmatrix} \widetilde{E}_2(d_2) \\ \widetilde{H}_2(d_2) \end{pmatrix} = \left[ \boldsymbol{F}^{(+)} \right]^{-1} \begin{pmatrix} \widetilde{E}_2(0) \\ \widetilde{H}_2(0) \end{pmatrix}, \ \ \ \left[ \boldsymbol{F}^{(+)} \right]^{-1} = \begin{pmatrix} F_{11}^{(+)\prime} & F_{12}^{(+)\prime} \\ F_{21}^{(+)\prime} & F_{22}^{(+)\prime} \end{pmatrix} \end{gather} このとき,\(z=d_2\)の接線電磁界の連続条件より, \begin{gather} \widetilde{E}_2(d_2) = \widetilde{E}_3(d_2) \\ \widetilde{H}_2(d_2) = \widetilde{H}_3(d_2) \end{gather} また,領域(3)(\(z\geq d_2\))では,後進波が存在しないことから, \begin{gather} \widetilde{H}_3(d_2) = Y_3 \widetilde{E}_3(d_2) \end{gather} これより,\(z=0\)において\(z\geq 0\)の誘電体を見た入力アドミタンス\(Y_{in}^{(+)}\)は, \begin{eqnarray} Y_{in}^{(+)} &=& \frac{\widetilde{H}_2(0)}{\widetilde{E}_2(0)} \nonumber \\ &=& \frac{F_{21}^{(+)} \widetilde{E}_2(d_2) + F_{22}^{(+)} \widetilde{H}_2(d_2)}{F_{11}^{(+)} \widetilde{E}_2(d_2) + F_{12}^{(+)} \widetilde{H}_2(d_2)} \nonumber \\ &=& \frac{F_{21}^{(+)} \widetilde{E}_3(d_2) + F_{22}^{(+)} \widetilde{H}_3(d_2)}{F_{11}^{(+)} \widetilde{E}_3(d_2) + F_{12}^{(+)} \widetilde{H}_3(d_2)} \nonumber \\ &=& \frac{F_{21}^{(+)} \widetilde{E}_3(d_2) + F_{22}^{(+)} Y_3 \widetilde{E}_3(d_2)}{F_{11}^{(+)} \widetilde{E}_3(d_2) + F_{12}^{(+)} Y_3 \widetilde{E}_3(d_2)} \nonumber \\ &=& \frac{F_{21}^{(+)} + F_{22}^{(+)} Y_3}{F_{11}^{(+)} + F_{12}^{(+)} Y_3} \end{eqnarray} 同様に,領域(1)の基本行列が次のように与えられているものとする. \begin{gather} \begin{pmatrix} \widetilde{E}_1(-d_1) \\ \widetilde{H}_1(-d_1) \end{pmatrix} = \left[ F^{(-)} \right] \begin{pmatrix} \widetilde{E}_1(0) \\ \widetilde{H}_1(0) \end{pmatrix}, \ \ \ \left[ F^{(-)} \right] = \begin{pmatrix} F_{11}^{(-)} & F_{12}^{(-)} \\ F_{21}^{(-)} & F_{22}^{(-)} \end{pmatrix} \end{gather} 逆は, \begin{gather} \hspace{-2mm} \begin{pmatrix} \widetilde{E}_1(0) \\ \widetilde{H}_1(0) \end{pmatrix} = \left[ F^{(-)} \right]^{-1} \begin{pmatrix} \widetilde{E}_1(-d_1) \\ \widetilde{H}_1(-d_1) \end{pmatrix}, \ \ \ \left[ F^{(-)} \right]^{-1}= \begin{pmatrix} F_{11}^{(-)\prime} & F_{12}^{(-)\prime} \\ F_{21}^{(-)\prime} & F_{22}^{(-)\prime} \end{pmatrix} \end{gather} このとき,\(z=-d_1\)の接線電磁界の連続条件より, \begin{gather} \widetilde{E}_1(-d_1) = \widetilde{E}_0(-d_1) \\ \widetilde{H}_1(-d_1) = \widetilde{H}_0(-d_1) \end{gather} また,領域(0)(\(z\leq -d_1\))では,前進波が存在しないことから, \begin{gather} \widetilde{H}_0(-d_1) = -Y_0 \widetilde{E}_0(-d_1) \end{gather} これより,\(z=0\)において\(z\leq 0\)の誘電体を見た入力アドミタンス\(Y_{in}^{(-)}\)は, \begin{eqnarray} Y_{in}^{(-)} &=& \frac{-\widetilde{H}_1(0)}{\widetilde{E}_1(0)} \nonumber \\ &=& -\frac{F_{21}^{(-)\prime} \widetilde{E}_0(-d_1) + F_{22}^{(-)\prime} \widetilde{H}_0(-d_1)}{ F_{11}^{(-)\prime} \widetilde{E}_0(-d_1) + F_{12}^{(-)\prime} \widetilde{H}_0(-d_1)} \nonumber \\ &=& -\frac{F_{21}^{(-)\prime} \widetilde{E}_1(-d_1) + F_{22}^{(-)\prime} \widetilde{H}_1(-d_1)}{ F_{11}^{(-)\prime} \widetilde{E}_1(-d_1) + F_{12}^{(-)\prime} \widetilde{H}_1(-d_1)} \nonumber \\ &=& -\frac{F_{21}^{(-)\prime} \widetilde{E}_1(-d_1) - F_{22}^{(-)\prime} Y_0 \widetilde{E}_1(-d_1)}{ F_{11}^{(-)\prime} \widetilde{E}_1(-d_1) - F_{12}^{(-)\prime} Y_0 \widetilde{E}_1(-d_1)} \nonumber \\ &=& -\frac{F_{21}^{(-)\prime} - F_{22}^{(-)\prime} Y_0}{F_{11}^{(-)\prime} - F_{12}^{(-)\prime} Y_0} \end{eqnarray} そして,\(z=0\) におけるスペクトル領域の電流を\(\widetilde{J}\)とすると,\(z=0\) の電磁界の連続条件より, \begin{eqnarray} \widetilde{E}_2(0) - \widetilde{E}_1(0) &=& 0 \\ \widetilde{H}_2(0) - \widetilde{H}_1(0) &=& -\widetilde{J} \end{eqnarray} これより, \begin{gather} Y_{in}^{(+)} \widetilde{E}_2(0) + Y_{in}^{(-)} \widetilde{E}_2(0) = -\widetilde{J} \end{gather} よって, \begin{gather} \widetilde{E}_2(0) = \widetilde{E}_1(0) = \frac{-\widetilde{J}}{Y_{in}^{(+)} + Y_{in}^{(-)}} \equiv \widetilde{Z}^{(0)} \widetilde{J} \end{gather} ただし, \begin{eqnarray} \widetilde{Z}^{(0)} &=& -\frac{1}{Y_{in}^{(+)} + Y_{in}^{(-)}} \\ Y_{in}^{(+)} &=& \frac{F_{21}^{(+)} + F_{22}^{(+)} Y_3}{F_{11}^{(+)} + F_{12}^{(+)} Y_3} \\ Y_{in}^{(-)} &=& -\frac{F_{21}^{(-)\prime} - F_{22}^{(-)\prime} Y_0}{F_{11}^{(-)\prime} - F_{12}^{(-)\prime} Y_0} \end{eqnarray} また, \begin{eqnarray} \widetilde{H}_2(0) &=& Y_{in}^{(+)} \widetilde{E}_2(0) \nonumber \\ &=& -\frac{Y_{in}^{(+)} \widetilde{J}}{Y_{in}^{(+)} + Y_{in}^{(-)}} \end{eqnarray} \begin{eqnarray} \widetilde{H}_1(0) &=& \widetilde{H}_2(0) + \widetilde{J} \nonumber \\ &=& -\frac{Y_{in}^{(+)} \widetilde{J}}{Y_{in}^{(+)} + Y_{in}^{(-)}} + \widetilde{J} \nonumber \\ &=& -\frac{Y_{in}^{(-)} \widetilde{J}}{Y_{in}^{(+)} + Y_{in}^{(-)}} \end{eqnarray} \(z=d_2\)の誘電体と空気の境界面では, \begin{eqnarray} \widetilde{E}_2(d_2) &=& F_{11}^{(+)\prime } \widetilde{E}_2 (0) + F_{12}^{(+)\prime} \widetilde{H}_2 (0) \nonumber \\ &=& F_{11}^{(+)\prime } \widetilde{E}_2 (0) + F_{12}^{(+)\prime} Y_{in}^{(+)} \widetilde{E}_2 (0) \nonumber \\ &=& \Big( F_{11}^{(+)\prime } + F_{12}^{(+)\prime} Y_{in}^{(+)} \Big) \widetilde{Z}^{(0)} \widetilde{J} \nonumber \\ &\equiv& Y_{trans} \widetilde{Z}^{(0)} \widetilde{J} \equiv \widetilde{Z}^{(d_2)} \widetilde{J} \end{eqnarray} \begin{eqnarray} \widetilde{H}_2(d_2) &=& Y_3 \widetilde{E}_2 (d_2) = Y_3 \widetilde{Z}^{(d_2)} \widetilde{J} \nonumber \\ &\equiv& \widetilde{P}^{(d_2)} \widetilde{J} \end{eqnarray} ここで, \begin{gather} Y_{trans} \equiv F_{11}^{(+)\prime } + F_{12}^{(+)\prime} Y_{in}^{(+)} \end{gather} したがって, \begin{eqnarray} \widetilde{Z}^{(d_2)} &=& Y_{trans} \widetilde{Z}^{(0)} = -\frac{Y_{trans}}{Y_{in}^{(+)} + Y_{in}^{(-)}} \\ \widetilde{P}^{(d_2)} &=& Y_3 \widetilde{Z}^{(d_2)} \end{eqnarray}