多層誘電体基板中に面電流源がある場合
     図のように誘電体(厚み\(d_1\)の多層誘電体基板)と誘電体(厚み\(d_2\)の多層誘電体基板)の境界面(\(z=0\))に面電流源がある場合を考える.
    そして,領域(2)の基本行列が次のように与えられているものとする.
    \begin{gather}
    \begin{pmatrix}
    \widetilde{E}_2(0) \\ \widetilde{H}_2(0)
    \end{pmatrix}
    = \left[ \boldsymbol{F}^{(+)} \right]
    \begin{pmatrix}
    \widetilde{E}_2(d_2) \\ \widetilde{H}_2(d_2)
    \end{pmatrix}, \ \ \
    \left[ \boldsymbol{F}^{(+)} \right] = 
    \begin{pmatrix}
    F_{11}^{(+)} & F_{12}^{(+)}  \\ F_{21}^{(+)} & F_{22}^{(+)}
    \end{pmatrix}
    \end{gather}
    
         多層誘電体基板中に面電流源がある場合
    
    逆は,
    \begin{gather}
    \begin{pmatrix}
    \widetilde{E}_2(d_2) \\ \widetilde{H}_2(d_2)
    \end{pmatrix}
    = \left[ \boldsymbol{F}^{(+)} \right]^{-1}
    \begin{pmatrix}
    \widetilde{E}_2(0) \\ \widetilde{H}_2(0)
    \end{pmatrix}, \ \ \
    \left[ \boldsymbol{F}^{(+)} \right]^{-1} = 
    \begin{pmatrix}
    F_{11}^{(+)\prime} & F_{12}^{(+)\prime} \\
    F_{21}^{(+)\prime} & F_{22}^{(+)\prime}
    \end{pmatrix}
    \end{gather}
    このとき,\(z=d_2\)の接線電磁界の連続条件より,
    \begin{gather}
    \widetilde{E}_2(d_2) = \widetilde{E}_3(d_2)
    \\
    \widetilde{H}_2(d_2) = \widetilde{H}_3(d_2)
    \end{gather}
    また,領域(3)(\(z\geq d_2\))では,後進波が存在しないことから,
    \begin{gather}
    \widetilde{H}_3(d_2) = Y_3 \widetilde{E}_3(d_2)
    \end{gather}
    これより,\(z=0\)において\(z\geq 0\)の誘電体を見た入力アドミタンス\(Y_{in}^{(+)}\)は,
    \begin{eqnarray}
    Y_{in}^{(+)}
    &=& \frac{\widetilde{H}_2(0)}{\widetilde{E}_2(0)}
    \nonumber \\
    &=& \frac{F_{21}^{(+)} \widetilde{E}_2(d_2) + F_{22}^{(+)} \widetilde{H}_2(d_2)}{F_{11}^{(+)} \widetilde{E}_2(d_2) + F_{12}^{(+)} \widetilde{H}_2(d_2)} 
    \nonumber \\
    &=& \frac{F_{21}^{(+)} \widetilde{E}_3(d_2) + F_{22}^{(+)} \widetilde{H}_3(d_2)}{F_{11}^{(+)} \widetilde{E}_3(d_2) + F_{12}^{(+)} \widetilde{H}_3(d_2)} 
    \nonumber \\
    &=& \frac{F_{21}^{(+)} \widetilde{E}_3(d_2) + F_{22}^{(+)} Y_3 \widetilde{E}_3(d_2)}{F_{11}^{(+)} \widetilde{E}_3(d_2) + F_{12}^{(+)} Y_3 \widetilde{E}_3(d_2)}
    \nonumber \\
    &=& \frac{F_{21}^{(+)} + F_{22}^{(+)} Y_3}{F_{11}^{(+)} + F_{12}^{(+)} Y_3} 
    \end{eqnarray}
    同様に,領域(1)の基本行列が次のように与えられているものとする.
    \begin{gather}
    \begin{pmatrix}
    \widetilde{E}_1(-d_1) \\ \widetilde{H}_1(-d_1)
    \end{pmatrix}
    = \left[ F^{(-)} \right]
    \begin{pmatrix}
    \widetilde{E}_1(0) \\ \widetilde{H}_1(0)
    \end{pmatrix}, \ \ \
    \left[ F^{(-)} \right] = 
    \begin{pmatrix}
    F_{11}^{(-)} & F_{12}^{(-)}  \\ F_{21}^{(-)} & F_{22}^{(-)}
    \end{pmatrix}
    \end{gather}
    逆は,
    \begin{gather}
    \hspace{-2mm}
    \begin{pmatrix}
    \widetilde{E}_1(0) \\ \widetilde{H}_1(0)
    \end{pmatrix}
    = \left[ F^{(-)} \right]^{-1}
    \begin{pmatrix}
    \widetilde{E}_1(-d_1) \\ \widetilde{H}_1(-d_1)
    \end{pmatrix}, \ \ \
    \left[ F^{(-)} \right]^{-1}= 
    \begin{pmatrix}
    F_{11}^{(-)\prime} & F_{12}^{(-)\prime}  \\ F_{21}^{(-)\prime} & F_{22}^{(-)\prime}
    \end{pmatrix}
    \end{gather}
    このとき,\(z=-d_1\)の接線電磁界の連続条件より,
    \begin{gather}
    \widetilde{E}_1(-d_1) = \widetilde{E}_0(-d_1)
    \\
    \widetilde{H}_1(-d_1) = \widetilde{H}_0(-d_1)
    \end{gather}
    また,領域(0)(\(z\leq -d_1\))では,前進波が存在しないことから,
    \begin{gather}
    \widetilde{H}_0(-d_1) = -Y_0 \widetilde{E}_0(-d_1)
    \end{gather}
    これより,\(z=0\)において\(z\leq 0\)の誘電体を見た入力アドミタンス\(Y_{in}^{(-)}\)は,
    \begin{eqnarray}
    Y_{in}^{(-)}
    &=& \frac{-\widetilde{H}_1(0)}{\widetilde{E}_1(0)}
    \nonumber \\
    &=& -\frac{F_{21}^{(-)\prime} \widetilde{E}_0(-d_1) + F_{22}^{(-)\prime} \widetilde{H}_0(-d_1)}{
    F_{11}^{(-)\prime} \widetilde{E}_0(-d_1) + F_{12}^{(-)\prime} \widetilde{H}_0(-d_1)} 
    \nonumber \\
    &=& -\frac{F_{21}^{(-)\prime} \widetilde{E}_1(-d_1) + F_{22}^{(-)\prime} \widetilde{H}_1(-d_1)}{
    F_{11}^{(-)\prime} \widetilde{E}_1(-d_1) + F_{12}^{(-)\prime} \widetilde{H}_1(-d_1)} 
    \nonumber \\
    &=& -\frac{F_{21}^{(-)\prime} \widetilde{E}_1(-d_1) - F_{22}^{(-)\prime} Y_0 \widetilde{E}_1(-d_1)}{
    F_{11}^{(-)\prime} \widetilde{E}_1(-d_1) - F_{12}^{(-)\prime} Y_0 \widetilde{E}_1(-d_1)} 
    \nonumber \\
    &=& -\frac{F_{21}^{(-)\prime} - F_{22}^{(-)\prime} Y_0}{F_{11}^{(-)\prime} - F_{12}^{(-)\prime} Y_0} 
    \end{eqnarray}
    そして,\(z=0\) におけるスペクトル領域の電流を\(\widetilde{J}\)とすると,\(z=0\) の電磁界の連続条件より,
    \begin{eqnarray}
    \widetilde{E}_2(0) - \widetilde{E}_1(0) &=& 0
    \\
    \widetilde{H}_2(0) - \widetilde{H}_1(0) &=& -\widetilde{J}
    \end{eqnarray}
    これより,
    \begin{gather}
    Y_{in}^{(+)} \widetilde{E}_2(0) + Y_{in}^{(-)} \widetilde{E}_2(0) = -\widetilde{J}
    \end{gather}
    よって,
    \begin{gather}
    \widetilde{E}_2(0) = \widetilde{E}_1(0) = \frac{-\widetilde{J}}{Y_{in}^{(+)} + Y_{in}^{(-)}} \equiv \widetilde{Z}^{(0)} \widetilde{J}
    \end{gather}
    ただし,
    \begin{eqnarray}
    \widetilde{Z}^{(0)} &=& -\frac{1}{Y_{in}^{(+)} + Y_{in}^{(-)}}
    \\
    Y_{in}^{(+)} &=& \frac{F_{21}^{(+)} + F_{22}^{(+)} Y_3}{F_{11}^{(+)} + F_{12}^{(+)} Y_3}
    \\
    Y_{in}^{(-)} &=& -\frac{F_{21}^{(-)\prime} - F_{22}^{(-)\prime} Y_0}{F_{11}^{(-)\prime} - F_{12}^{(-)\prime} Y_0}
    \end{eqnarray}
    また,
    \begin{eqnarray}
    \widetilde{H}_2(0) 
    &=& Y_{in}^{(+)} \widetilde{E}_2(0)
    \nonumber \\
    &=& -\frac{Y_{in}^{(+)} \widetilde{J}}{Y_{in}^{(+)} + Y_{in}^{(-)}}
    \end{eqnarray}
    \begin{eqnarray}
    \widetilde{H}_1(0) 
    &=& \widetilde{H}_2(0) + \widetilde{J}
    \nonumber \\
    &=& -\frac{Y_{in}^{(+)} \widetilde{J}}{Y_{in}^{(+)} + Y_{in}^{(-)}} + \widetilde{J}
    \nonumber \\
    &=& -\frac{Y_{in}^{(-)} \widetilde{J}}{Y_{in}^{(+)} + Y_{in}^{(-)}}
    \end{eqnarray}
    \(z=d_2\)の誘電体と空気の境界面では,
    \begin{eqnarray}
    \widetilde{E}_2(d_2) 
    &=& F_{11}^{(+)\prime } \widetilde{E}_2 (0) + F_{12}^{(+)\prime} \widetilde{H}_2 (0)
    \nonumber \\
    &=& F_{11}^{(+)\prime } \widetilde{E}_2 (0) + F_{12}^{(+)\prime} Y_{in}^{(+)} \widetilde{E}_2 (0)
    \nonumber \\
    &=& \Big( F_{11}^{(+)\prime } + F_{12}^{(+)\prime} Y_{in}^{(+)} \Big) \widetilde{Z}^{(0)} \widetilde{J}
    \nonumber \\
    &\equiv& Y_{trans} \widetilde{Z}^{(0)} \widetilde{J} \equiv \widetilde{Z}^{(d_2)} \widetilde{J}
    \end{eqnarray}
    \begin{eqnarray}
    \widetilde{H}_2(d_2) 
    &=& Y_3 \widetilde{E}_2 (d_2) = Y_3 \widetilde{Z}^{(d_2)} \widetilde{J}
    \nonumber \\
    &\equiv& \widetilde{P}^{(d_2)} \widetilde{J}
    \end{eqnarray}
    ここで,
    \begin{gather}
    Y_{trans} \equiv F_{11}^{(+)\prime } + F_{12}^{(+)\prime} Y_{in}^{(+)} 
    \end{gather}
    したがって,
    \begin{eqnarray}
    \widetilde{Z}^{(d_2)} &=& Y_{trans} \widetilde{Z}^{(0)} =  -\frac{Y_{trans}}{Y_{in}^{(+)} + Y_{in}^{(-)}}
    \\
    \widetilde{P}^{(d_2)} &=& Y_3 \widetilde{Z}^{(d_2)}
    \end{eqnarray}
        多層誘電体基板中に面電流源がある場合
    
    逆は,
    \begin{gather}
    \begin{pmatrix}
    \widetilde{E}_2(d_2) \\ \widetilde{H}_2(d_2)
    \end{pmatrix}
    = \left[ \boldsymbol{F}^{(+)} \right]^{-1}
    \begin{pmatrix}
    \widetilde{E}_2(0) \\ \widetilde{H}_2(0)
    \end{pmatrix}, \ \ \
    \left[ \boldsymbol{F}^{(+)} \right]^{-1} = 
    \begin{pmatrix}
    F_{11}^{(+)\prime} & F_{12}^{(+)\prime} \\
    F_{21}^{(+)\prime} & F_{22}^{(+)\prime}
    \end{pmatrix}
    \end{gather}
    このとき,\(z=d_2\)の接線電磁界の連続条件より,
    \begin{gather}
    \widetilde{E}_2(d_2) = \widetilde{E}_3(d_2)
    \\
    \widetilde{H}_2(d_2) = \widetilde{H}_3(d_2)
    \end{gather}
    また,領域(3)(\(z\geq d_2\))では,後進波が存在しないことから,
    \begin{gather}
    \widetilde{H}_3(d_2) = Y_3 \widetilde{E}_3(d_2)
    \end{gather}
    これより,\(z=0\)において\(z\geq 0\)の誘電体を見た入力アドミタンス\(Y_{in}^{(+)}\)は,
    \begin{eqnarray}
    Y_{in}^{(+)}
    &=& \frac{\widetilde{H}_2(0)}{\widetilde{E}_2(0)}
    \nonumber \\
    &=& \frac{F_{21}^{(+)} \widetilde{E}_2(d_2) + F_{22}^{(+)} \widetilde{H}_2(d_2)}{F_{11}^{(+)} \widetilde{E}_2(d_2) + F_{12}^{(+)} \widetilde{H}_2(d_2)} 
    \nonumber \\
    &=& \frac{F_{21}^{(+)} \widetilde{E}_3(d_2) + F_{22}^{(+)} \widetilde{H}_3(d_2)}{F_{11}^{(+)} \widetilde{E}_3(d_2) + F_{12}^{(+)} \widetilde{H}_3(d_2)} 
    \nonumber \\
    &=& \frac{F_{21}^{(+)} \widetilde{E}_3(d_2) + F_{22}^{(+)} Y_3 \widetilde{E}_3(d_2)}{F_{11}^{(+)} \widetilde{E}_3(d_2) + F_{12}^{(+)} Y_3 \widetilde{E}_3(d_2)}
    \nonumber \\
    &=& \frac{F_{21}^{(+)} + F_{22}^{(+)} Y_3}{F_{11}^{(+)} + F_{12}^{(+)} Y_3} 
    \end{eqnarray}
    同様に,領域(1)の基本行列が次のように与えられているものとする.
    \begin{gather}
    \begin{pmatrix}
    \widetilde{E}_1(-d_1) \\ \widetilde{H}_1(-d_1)
    \end{pmatrix}
    = \left[ F^{(-)} \right]
    \begin{pmatrix}
    \widetilde{E}_1(0) \\ \widetilde{H}_1(0)
    \end{pmatrix}, \ \ \
    \left[ F^{(-)} \right] = 
    \begin{pmatrix}
    F_{11}^{(-)} & F_{12}^{(-)}  \\ F_{21}^{(-)} & F_{22}^{(-)}
    \end{pmatrix}
    \end{gather}
    逆は,
    \begin{gather}
    \hspace{-2mm}
    \begin{pmatrix}
    \widetilde{E}_1(0) \\ \widetilde{H}_1(0)
    \end{pmatrix}
    = \left[ F^{(-)} \right]^{-1}
    \begin{pmatrix}
    \widetilde{E}_1(-d_1) \\ \widetilde{H}_1(-d_1)
    \end{pmatrix}, \ \ \
    \left[ F^{(-)} \right]^{-1}= 
    \begin{pmatrix}
    F_{11}^{(-)\prime} & F_{12}^{(-)\prime}  \\ F_{21}^{(-)\prime} & F_{22}^{(-)\prime}
    \end{pmatrix}
    \end{gather}
    このとき,\(z=-d_1\)の接線電磁界の連続条件より,
    \begin{gather}
    \widetilde{E}_1(-d_1) = \widetilde{E}_0(-d_1)
    \\
    \widetilde{H}_1(-d_1) = \widetilde{H}_0(-d_1)
    \end{gather}
    また,領域(0)(\(z\leq -d_1\))では,前進波が存在しないことから,
    \begin{gather}
    \widetilde{H}_0(-d_1) = -Y_0 \widetilde{E}_0(-d_1)
    \end{gather}
    これより,\(z=0\)において\(z\leq 0\)の誘電体を見た入力アドミタンス\(Y_{in}^{(-)}\)は,
    \begin{eqnarray}
    Y_{in}^{(-)}
    &=& \frac{-\widetilde{H}_1(0)}{\widetilde{E}_1(0)}
    \nonumber \\
    &=& -\frac{F_{21}^{(-)\prime} \widetilde{E}_0(-d_1) + F_{22}^{(-)\prime} \widetilde{H}_0(-d_1)}{
    F_{11}^{(-)\prime} \widetilde{E}_0(-d_1) + F_{12}^{(-)\prime} \widetilde{H}_0(-d_1)} 
    \nonumber \\
    &=& -\frac{F_{21}^{(-)\prime} \widetilde{E}_1(-d_1) + F_{22}^{(-)\prime} \widetilde{H}_1(-d_1)}{
    F_{11}^{(-)\prime} \widetilde{E}_1(-d_1) + F_{12}^{(-)\prime} \widetilde{H}_1(-d_1)} 
    \nonumber \\
    &=& -\frac{F_{21}^{(-)\prime} \widetilde{E}_1(-d_1) - F_{22}^{(-)\prime} Y_0 \widetilde{E}_1(-d_1)}{
    F_{11}^{(-)\prime} \widetilde{E}_1(-d_1) - F_{12}^{(-)\prime} Y_0 \widetilde{E}_1(-d_1)} 
    \nonumber \\
    &=& -\frac{F_{21}^{(-)\prime} - F_{22}^{(-)\prime} Y_0}{F_{11}^{(-)\prime} - F_{12}^{(-)\prime} Y_0} 
    \end{eqnarray}
    そして,\(z=0\) におけるスペクトル領域の電流を\(\widetilde{J}\)とすると,\(z=0\) の電磁界の連続条件より,
    \begin{eqnarray}
    \widetilde{E}_2(0) - \widetilde{E}_1(0) &=& 0
    \\
    \widetilde{H}_2(0) - \widetilde{H}_1(0) &=& -\widetilde{J}
    \end{eqnarray}
    これより,
    \begin{gather}
    Y_{in}^{(+)} \widetilde{E}_2(0) + Y_{in}^{(-)} \widetilde{E}_2(0) = -\widetilde{J}
    \end{gather}
    よって,
    \begin{gather}
    \widetilde{E}_2(0) = \widetilde{E}_1(0) = \frac{-\widetilde{J}}{Y_{in}^{(+)} + Y_{in}^{(-)}} \equiv \widetilde{Z}^{(0)} \widetilde{J}
    \end{gather}
    ただし,
    \begin{eqnarray}
    \widetilde{Z}^{(0)} &=& -\frac{1}{Y_{in}^{(+)} + Y_{in}^{(-)}}
    \\
    Y_{in}^{(+)} &=& \frac{F_{21}^{(+)} + F_{22}^{(+)} Y_3}{F_{11}^{(+)} + F_{12}^{(+)} Y_3}
    \\
    Y_{in}^{(-)} &=& -\frac{F_{21}^{(-)\prime} - F_{22}^{(-)\prime} Y_0}{F_{11}^{(-)\prime} - F_{12}^{(-)\prime} Y_0}
    \end{eqnarray}
    また,
    \begin{eqnarray}
    \widetilde{H}_2(0) 
    &=& Y_{in}^{(+)} \widetilde{E}_2(0)
    \nonumber \\
    &=& -\frac{Y_{in}^{(+)} \widetilde{J}}{Y_{in}^{(+)} + Y_{in}^{(-)}}
    \end{eqnarray}
    \begin{eqnarray}
    \widetilde{H}_1(0) 
    &=& \widetilde{H}_2(0) + \widetilde{J}
    \nonumber \\
    &=& -\frac{Y_{in}^{(+)} \widetilde{J}}{Y_{in}^{(+)} + Y_{in}^{(-)}} + \widetilde{J}
    \nonumber \\
    &=& -\frac{Y_{in}^{(-)} \widetilde{J}}{Y_{in}^{(+)} + Y_{in}^{(-)}}
    \end{eqnarray}
    \(z=d_2\)の誘電体と空気の境界面では,
    \begin{eqnarray}
    \widetilde{E}_2(d_2) 
    &=& F_{11}^{(+)\prime } \widetilde{E}_2 (0) + F_{12}^{(+)\prime} \widetilde{H}_2 (0)
    \nonumber \\
    &=& F_{11}^{(+)\prime } \widetilde{E}_2 (0) + F_{12}^{(+)\prime} Y_{in}^{(+)} \widetilde{E}_2 (0)
    \nonumber \\
    &=& \Big( F_{11}^{(+)\prime } + F_{12}^{(+)\prime} Y_{in}^{(+)} \Big) \widetilde{Z}^{(0)} \widetilde{J}
    \nonumber \\
    &\equiv& Y_{trans} \widetilde{Z}^{(0)} \widetilde{J} \equiv \widetilde{Z}^{(d_2)} \widetilde{J}
    \end{eqnarray}
    \begin{eqnarray}
    \widetilde{H}_2(d_2) 
    &=& Y_3 \widetilde{E}_2 (d_2) = Y_3 \widetilde{Z}^{(d_2)} \widetilde{J}
    \nonumber \\
    &\equiv& \widetilde{P}^{(d_2)} \widetilde{J}
    \end{eqnarray}
    ここで,
    \begin{gather}
    Y_{trans} \equiv F_{11}^{(+)\prime } + F_{12}^{(+)\prime} Y_{in}^{(+)} 
    \end{gather}
    したがって,
    \begin{eqnarray}
    \widetilde{Z}^{(d_2)} &=& Y_{trans} \widetilde{Z}^{(0)} =  -\frac{Y_{trans}}{Y_{in}^{(+)} + Y_{in}^{(-)}}
    \\
    \widetilde{P}^{(d_2)} &=& Y_3 \widetilde{Z}^{(d_2)}
    \end{eqnarray}