2.7 スペクトル領域の境界条件
面電流源がある場合のスペクトル領域の連続条件
媒質 \(i+1\),\(i\) の境界面\(\mathrm{S}\)(\(xy\)面)に面電流源 \(\boldsymbol{J}\) がある場合,
\begin{gather}
\boldsymbol{u}_z \times \Big( \boldsymbol{H}_{i+1} - \boldsymbol{H}_i \Big) = \boldsymbol{J} \ \ \ \mbox{on S}
\end{gather}
これをフーリエ変換すると,
\begin{align}
&\iint _{-\infty}^\infty \boldsymbol{u}_z \times \Big( \boldsymbol{H}_{i+1} (x,y) - \boldsymbol{H}_i (x,y) \Big) \ e^{-j(k_x x + k_y y)} dx dy
\nonumber \\
&= \iint _{-\infty}^\infty \boldsymbol{J} \ e^{-j(k_x x + k_y y)} dx dy \ \ \ \mbox{(on S)}
\end{align}
これより,面電流源がある場合のスペクトル領域の磁界の連続条件は,
\begin{gather}
\boldsymbol{u}_z \times \Big( \widetilde{\boldsymbol{H}}_{i+1} - \widetilde{\boldsymbol{H}}_i \Big)
= \widetilde{\boldsymbol{J}} \ \ \ \mbox{(on S)}
\end{gather}
ここで,
\begin{gather}
\widetilde{\boldsymbol{H}}_j
= \widetilde{H}_{v,j} \boldsymbol{u}_v + \widetilde{H}_{u,j}' \big( -\boldsymbol{u}_u \big) \ \ \ (j=i,i+1)
\end{gather}
とおくと,
\(\boldsymbol{u}_z = \boldsymbol{u}_u \times \boldsymbol{u}_v\)
より,
\begin{align}
&\boldsymbol{u}_z \times \Big[ \widetilde{H}_{v,i+1} \boldsymbol{u}_v + \widetilde{H}_{u,i+1}' \big( -\boldsymbol{u}_u \big)
- \widetilde{H}_{v,i} \boldsymbol{u}_v - \widetilde{H}_{u,i}' \big( -\boldsymbol{u}_u \big) \Big]
\nonumber \\
&= -\widetilde{H}_{v,i+1} \boldsymbol{u}_u - \widetilde{H}_{u,i+1}' \boldsymbol{u}_v + \widetilde{H}_{v,i} \boldsymbol{u}_u + \widetilde{H}_{u,i}' \boldsymbol{u}_v
\nonumber \\
&= \widetilde{J}_v \boldsymbol{u}_v + \widetilde{J}_u \boldsymbol{u}_u
\ \ \ \mbox{(on S)}
\end{align}
よって,
\begin{eqnarray}
\widetilde{H}_{v,i+1} - \widetilde{H}_{v,i} &=& -\widetilde{J}_u \ \ \ \mbox{(on S)}
\\
\widetilde{H}_{u,i+1}' - \widetilde{H}_{u,i}' &=& -\widetilde{J}_v \ \ \ \mbox{(on S)}
\end{eqnarray}
面磁流源がある場合のスペクトル領域の連続条件
導体面\(\mathrm{S}\)上に面磁流源がある場合の境界条件は,
\begin{gather}
\boldsymbol{u}_z \times (-\widetilde{\boldsymbol{E}}^f)
= \widetilde{\boldsymbol{M}} \ \ \ \mbox{(on S)}
\end{gather}
より,
\begin{eqnarray}
\boldsymbol{u}_z \times \Big[ \widetilde{E}_v^{f \prime} \boldsymbol{u}_v + \widetilde{E}_u^{f \prime \prime} \big( -\boldsymbol{u}_u \big) \Big]
&=& -\widetilde{E}_v^{f \prime} \boldsymbol{u}_u -\widetilde{E}_u^{f \prime \prime} \boldsymbol{u}_v
\nonumber \\
&=& \widetilde{M}_v \boldsymbol{u}_v + \widetilde{M}_u \boldsymbol{u}_u
\end{eqnarray}
よって,
\begin{eqnarray}
\widetilde{E}_v^{f \prime} = -\widetilde{M}_u \ \ \ \mbox{(on S)}
\\
\widetilde{E}_u^{f \prime \prime} = -\widetilde{M}_v \ \ \ \mbox{(on S)}
\end{eqnarray}