2.7 スペクトル領域の境界条件

面電流源がある場合のスペクトル領域の連続条件

 媒質 \(i+1\),\(i\) の境界面\(\mathrm{S}\)(\(xy\)面)に面電流源 \(\boldsymbol{J}\) がある場合, \begin{gather} \boldsymbol{u}_z \times \Big( \boldsymbol{H}_{i+1} - \boldsymbol{H}_i \Big) = \boldsymbol{J} \ \ \ \mbox{on S} \end{gather} これをフーリエ変換すると, \begin{align} &\iint _{-\infty}^\infty \boldsymbol{u}_z \times \Big( \boldsymbol{H}_{i+1} (x,y) - \boldsymbol{H}_i (x,y) \Big) \ e^{-j(k_x x + k_y y)} dx dy \nonumber \\ &= \iint _{-\infty}^\infty \boldsymbol{J} \ e^{-j(k_x x + k_y y)} dx dy \ \ \ \mbox{(on S)} \end{align} これより,面電流源がある場合のスペクトル領域の磁界の連続条件は, \begin{gather} \boldsymbol{u}_z \times \Big( \widetilde{\boldsymbol{H}}_{i+1} - \widetilde{\boldsymbol{H}}_i \Big) = \widetilde{\boldsymbol{J}} \ \ \ \mbox{(on S)} \end{gather} ここで, \begin{gather} \widetilde{\boldsymbol{H}}_j = \widetilde{H}_{v,j} \boldsymbol{u}_v + \widetilde{H}_{u,j}' \big( -\boldsymbol{u}_u \big) \ \ \ (j=i,i+1) \end{gather} とおくと, \(\boldsymbol{u}_z = \boldsymbol{u}_u \times \boldsymbol{u}_v\) より, \begin{align} &\boldsymbol{u}_z \times \Big[ \widetilde{H}_{v,i+1} \boldsymbol{u}_v + \widetilde{H}_{u,i+1}' \big( -\boldsymbol{u}_u \big) - \widetilde{H}_{v,i} \boldsymbol{u}_v - \widetilde{H}_{u,i}' \big( -\boldsymbol{u}_u \big) \Big] \nonumber \\ &= -\widetilde{H}_{v,i+1} \boldsymbol{u}_u - \widetilde{H}_{u,i+1}' \boldsymbol{u}_v + \widetilde{H}_{v,i} \boldsymbol{u}_u + \widetilde{H}_{u,i}' \boldsymbol{u}_v \nonumber \\ &= \widetilde{J}_v \boldsymbol{u}_v + \widetilde{J}_u \boldsymbol{u}_u \ \ \ \mbox{(on S)} \end{align} よって, \begin{eqnarray} \widetilde{H}_{v,i+1} - \widetilde{H}_{v,i} &=& -\widetilde{J}_u \ \ \ \mbox{(on S)} \\ \widetilde{H}_{u,i+1}' - \widetilde{H}_{u,i}' &=& -\widetilde{J}_v \ \ \ \mbox{(on S)} \end{eqnarray}

面磁流源がある場合のスペクトル領域の連続条件

 導体面\(\mathrm{S}\)上に面磁流源がある場合の境界条件は, \begin{gather} \boldsymbol{u}_z \times (-\widetilde{\boldsymbol{E}}^f) = \widetilde{\boldsymbol{M}} \ \ \ \mbox{(on S)} \end{gather} より, \begin{eqnarray} \boldsymbol{u}_z \times \Big[ \widetilde{E}_v^{f \prime} \boldsymbol{u}_v + \widetilde{E}_u^{f \prime \prime} \big( -\boldsymbol{u}_u \big) \Big] &=& -\widetilde{E}_v^{f \prime} \boldsymbol{u}_u -\widetilde{E}_u^{f \prime \prime} \boldsymbol{u}_v \nonumber \\ &=& \widetilde{M}_v \boldsymbol{u}_v + \widetilde{M}_u \boldsymbol{u}_u \end{eqnarray} よって, \begin{eqnarray} \widetilde{E}_v^{f \prime} = -\widetilde{M}_u \ \ \ \mbox{(on S)} \\ \widetilde{E}_u^{f \prime \prime} = -\widetilde{M}_v \ \ \ \mbox{(on S)} \end{eqnarray}