2.6 スペクトル領域の基本行列
スペクトル領域の磁気的ベクトルポテンシャル \(\widetilde{\boldsymbol{A}} = \widetilde{A}_u \boldsymbol{u}_u\) によるTE波成分
\(\widetilde{A}_v = 0\) のとき,電界の\(z\)成分がゼロゆえ,TE波が得られる.このとき,
\(\widetilde{\boldsymbol{A}} = \widetilde{A}_u \boldsymbol{u}_u\)
とおくと,
\begin{gather}
\left( \frac{\partial ^2}{\partial z^2} + k_z^2 \right) \widetilde{A}_u = 0
\end{gather}
よって,
\begin{gather}
\widetilde{A}_u = \widetilde{A}^+_u e^{-jk_z z} + \widetilde{A}^-_u e^{jk_z z}
\end{gather}
電磁界の \(xy\) 面内の成分は,
\(\widetilde{E}_u\),\(\widetilde{H}_v\)
のみとなり,
\begin{eqnarray}
\widetilde{E}_u (z)
&=& -j\omega \widetilde{A}_u
\nonumber \\
&=& -j\omega \big( \widetilde{A}^+_u e^{-jk_z z} + \widetilde{A}^-_u e^{jk_z z} \big)
\nonumber \\
&\equiv& \widetilde{E}^+_u e^{-jk_z z} + \widetilde{E}^-_u e^{jk_z z}
\\
\widetilde{H}_v (z)
&=& \frac{1}{\mu} \frac{\partial \widetilde{A}_u}{\partial z}
\nonumber \\
&=& \frac{1}{\mu} \frac{\partial}{\partial z} \big( \widetilde{A}^+_u e^{-jk_z z} + \widetilde{A}^-_u e^{jk_z z} \big)
\nonumber \\
&=& -\frac{jk_z}{\mu} \big( \widetilde{A}^+_u e^{-jk_z z} - \widetilde{A}^-_u e^{jk_z z} \big)
\nonumber \\
&=& \frac{k_z}{\omega \mu} \big( \widetilde{E}^+_u e^{-jk_z z} - \widetilde{E}^-_u e^{jk_z z} \big)
\nonumber \\
&=& Y_{_{\mathrm{TE}}} \big( \widetilde{E}^+_u e^{-jk_z z} - \widetilde{E}^-_u e^{jk_z z} \big)
\end{eqnarray}
ここで,\(\gamma \equiv jk_z\) とおくと
\begin{gather}
Y_{_{\mathrm{TE}}} \equiv \frac{k_z}{\omega \mu} = \frac{\gamma }{j\omega \mu}
= \frac{1}{Z_{_{\mathrm{TE}}}}
\end{gather}
スペクトル領域の磁気的ベクトルポテンシャル \(\widetilde{\boldsymbol{A}} = \widetilde{A}_v \boldsymbol{u}_v\) によるTM波成分
\(\widetilde{A}_u = 0\)
のとき,磁界の\(z\)成分がゼロゆえ,TM波が得られる.このとき,
\(\widetilde{\boldsymbol{A}} = \widetilde{A}_v \boldsymbol{u}_v\) とおくと,
\begin{gather}
\left( \frac{\partial ^2}{\partial z^2} + k_z^2 \right) \widetilde{A}_v = 0
\end{gather}
よって,
\begin{gather}
\widetilde{A}_v = \widetilde{A}^+_v e^{-jk_z z} + \widetilde{A}^-_v e^{jk_z z}
\end{gather}
電磁界の \(xy\) 面内の成分は,
\(\widetilde{E}_v\),\(\widetilde{H}_u'\)
のみとなり,
\begin{eqnarray}
\widetilde{E}_v (z)
&=& -j\omega \frac{k_z^2}{k^2} \widetilde{A}_v
\nonumber \\
&=& -j\omega \frac{k_z^2}{k^2} \big( \widetilde{A}^+_v e^{-jk_z z} + \widetilde{A}^-_v e^{jk_z z} \big)
\nonumber \\
&\equiv& \widetilde{E}^+_v e^{-jk_z z} + \widetilde{E}^-_v e^{jk_z z}
\\
\widetilde{H}_u' (z)
&=& \frac{1}{\mu} \frac{\partial \widetilde{A}_v}{\partial z}
\nonumber \\
&=& \frac{1}{\mu} \frac{\partial}{\partial z} \big( \widetilde{A}^+_v e^{-jk_z z} + \widetilde{A}^-_v e^{jk_z z} \big)
\nonumber \\
&=& -\frac{jk_z}{\mu} \big( \widetilde{A}^+_v e^{-jk_z z} - \widetilde{A}^-_v e^{jk_z z} \big)
\nonumber \\
&=& \frac{k^2}{\omega \mu k_z} \big( \widetilde{E}^+_v e^{-jk_z z} - \widetilde{E}^-_v e^{jk_z z} \big)
\nonumber \\
&=& Y_{_{\mathrm{TM}}} \big( \widetilde{E}^+_v e^{-jk_z z} - \widetilde{E}^-_v e^{jk_z z} \big)
\end{eqnarray}
ただし,
\begin{gather}
Y_{_{\mathrm{TM}}} \equiv \frac{k^2}{\omega \mu k_z} = \frac{\omega ^2 \epsilon \mu}{\omega \mu k_z}
= \frac{\omega \epsilon}{k_z} = \frac{j\omega \epsilon}{\gamma} = \frac{1}{Z_{_{\mathrm{TM}}}}
\end{gather}
スペクトル領域の電気的ベクトルポテンシャル\(\widetilde{\boldsymbol{F}} = \widetilde{F}_u \boldsymbol{u}_u\)によるTM波成分
\(\widetilde{F}_v = 0\)
のとき,磁界の\(z\)成分がゼロゆえTM波が得られる.このとき,
\(\widetilde{\boldsymbol{F}} = \widetilde{F}_u \boldsymbol{u}_u\) とおくと,
\begin{gather}
\left( \frac{\partial ^2}{\partial z^2} + k_z^2 \right) \widetilde{F}_u = 0
\end{gather}
よって,
\begin{gather}
\widetilde{F}_u = \widetilde{F}^+_u e^{-jk_z z} + \widetilde{F}^-_u e^{jk_z z}
\end{gather}
電磁界の\(xy\)面内の成分は,
\(\widetilde{H}_u^f\),\(\widetilde{E}_v^{f \prime}\)
のみとなり,
\begin{eqnarray}
\widetilde{H}_u^f (z)
&=& -j\omega \widetilde{F}_u
\nonumber \\
&=& -j\omega \big( \widetilde{F}^+_u e^{-jk_z z} + \widetilde{F}^-_u e^{jk_z z} \big)
\nonumber \\
&\equiv& \widetilde{H}^{f+}_u e^{-jk_z z} + \widetilde{H}^{f-}_u e^{jk_z z}
\\
\widetilde{E}_v^{f \prime} (z)
&=& \frac{1}{\epsilon} \frac{\partial \widetilde{F}_u}{\partial z}
\nonumber \\
&=& \frac{1}{\epsilon} \frac{\partial}{\partial z} \big( \widetilde{F}^+_u e^{-jk_z z} + \widetilde{F}^-_u e^{jk_z z} \big)
\nonumber \\
&=& -\frac{jk_z}{\epsilon} \big( \widetilde{F}^+_u e^{-jk_z z} - \widetilde{F}^-_u e^{jk_z z} \big)
\nonumber \\
&=& \frac{k_z}{\omega \epsilon} \big( \widetilde{H}^{f+}_u e^{-jk_z z} - \widetilde{H}^{f-}_u e^{jk_z z} \big)
\nonumber \\
&=& Z_{_{\mathrm{TM}}}\big( \widetilde{H}^{f+}_u e^{-jk_z z} - \widetilde{H}^{f-}_u e^{jk_z z} \big)
\end{eqnarray}
ここで,\(\gamma \equiv jk_z\) とおくと
\begin{gather}
Z_{_{\mathrm{TM}}} \equiv \frac{k_z}{\omega \epsilon} = \frac{\gamma }{j\omega \epsilon} = \frac{1}{Y_{_{\mathrm{TM}}}}
\end{gather}
電界の係数を基準にして表すと,
\begin{eqnarray}
\widetilde{E}_v^{f \prime} (z) &\equiv& \widetilde{E}^{f+}_v e^{-jk_z z} + \widetilde{E}^{f-}_v e^{jk_z z}
\\
\widetilde{H}_u^f (z) &=& Y_{_{\mathrm{TM}}}\big( \widetilde{E}^{f+}_v e^{-jk_z z} - \widetilde{E}^{f-}_v e^{jk_z z} \big)
\end{eqnarray}
スペクトル領域の電気的ベクトルポテンシャル \(\widetilde{\boldsymbol{F}} = \widetilde{F}_v \boldsymbol{u}_v\) によるTE波成分
\(\widetilde{F}_u = 0\)
のとき,電界の\(z\)成分がゼロゆえTE波が得られる.このとき,
\(\widetilde{\boldsymbol{F}} = \widetilde{F}_v \boldsymbol{u}_v\)
とおくと,
\begin{gather}
\left( \frac{\partial ^2}{\partial z^2} + k_z^2 \right) \widetilde{F}_v = 0
\end{gather}
よって,
\begin{gather}
\widetilde{F}_v = \widetilde{F}^+_v e^{-jk_z z} + \widetilde{F}^-_v e^{jk_z z}
\end{gather}
電磁界の \(xy\) 面内の成分は,
\(\widetilde{H}_v^f\),\(\widetilde{E}_u^{f \prime \prime}\)
のみとなり,
\begin{eqnarray}
\widetilde{H}_v^f (z)
&=& -j\omega \frac{k_z^2}{k^2} \widetilde{F}_v
\nonumber \\
&=& -j\omega \frac{k_z^2}{k^2} \big( \widetilde{F}^+_v e^{-jk_z z} + \widetilde{F}^-_v e^{jk_z z} \big)
\nonumber \\
&\equiv& \widetilde{H}^{f+}_v e^{-jk_z z} + \widetilde{H}^{f-}_v e^{jk_z z}
\\
\widetilde{E}_u^{f \prime \prime} (z)
&=& \frac{1}{\epsilon} \frac{\partial \widetilde{F}_v}{\partial z}
\nonumber \\
&=& \frac{1}{\epsilon} \frac{\partial}{\partial z} \big( \widetilde{F}^+_v e^{-jk_z z} + \widetilde{F}^-_v e^{jk_z z} \big)
\nonumber \\
&=& -\frac{jk_z}{\epsilon} \big( \widetilde{F}^+_v e^{-jk_z z} - \widetilde{F}^-_v e^{jk_z z} \big)
\nonumber \\
&=& \frac{k^2}{\omega \epsilon k_z} \big( \widetilde{H}^{f+}_v e^{-jk_z z} - \widetilde{H}^{f-}_v e^{jk_z z} \big)
\nonumber \\
&=& Z_{_{\mathrm{TE}}} \big( \widetilde{H}^{f+}_v e^{-jk_z z} - \widetilde{H}^{f-}_v e^{jk_z z} \big)
\end{eqnarray}
ただし,
\begin{gather}
Z_{_{\mathrm{TE}}} \equiv \frac{k^2}{\omega \epsilon k_z} = \frac{\omega ^2 \epsilon \mu}{\omega \epsilon k_z}
= \frac{\omega \mu}{k_z} = \frac{j\omega \mu}{\gamma} = \frac{1}{Y_{_{\mathrm{TE}}}}
\end{gather}
電界の係数を基準にして表すと,
\begin{eqnarray}
\widetilde{E}_u^{f \prime \prime} (z) &\equiv& \widetilde{E}^{f+}_u e^{-jk_z z} + \widetilde{E}^{f-}_u e^{jk_z z}
\\
\widetilde{H}_v^f (z) &=& Y_{_{\mathrm{TE}}} \big( \widetilde{E}^{f+}_u e^{-jk_z z} - \widetilde{E}^{f-}_u e^{jk_z z} \big)
\end{eqnarray}
基本行列
境界面に接する電磁界は,\(\widetilde{\boldsymbol{A}}\)より,
\begin{eqnarray}
\widetilde{\boldsymbol{E}}_{\tan} &=& \widetilde{E}_v (z) \boldsymbol{u}_v + \widetilde{E}_u (z) \boldsymbol{u}_u
\\
\widetilde{\boldsymbol{H}}_{\tan} &=& \widetilde{H}_v (z) \boldsymbol{u}_v + \widetilde{H}_u' (z) \big( -\boldsymbol{u}_u \big)
\end{eqnarray}
また,\(\widetilde{\boldsymbol{F}}\)より,
\begin{eqnarray}
\widetilde{\boldsymbol{H}}_{\tan}^f &=& \widetilde{H}_v^f (z) \boldsymbol{u}_v + \widetilde{H}_u^f (z) \boldsymbol{u}_u
\\
-\widetilde{\boldsymbol{E}}_{\tan}^f &=& \widetilde{E}_v^{f \prime} (z) \boldsymbol{u}_v + \widetilde{E}_u^{f \prime \prime} (z) \big( -\boldsymbol{u}_u \big)
\end{eqnarray}
で表され,各成分は先に示したように,
- \(\widetilde{\boldsymbol{A}}\)
から得られるTE波成分
\(\widetilde{E}_u(z)\),\(\widetilde{H}_v(z)\),
\(Y_{_{\mathrm{TE}}} =1/Z_{_{\mathrm{TE}}}\),
\(\widetilde{E}_u^+\),\(\widetilde{E}_u^-\)
- \(\widetilde{\boldsymbol{A}}\)
から得られるTM波成分
\(\widetilde{E}_v(z)\),\(\widetilde{H}_u'(z)\),
\(Y_{_{\mathrm{TM}}} =1/Z_{_{\mathrm{TM}}}\),
\(\widetilde{E}_v^+\),\(\widetilde{E}_v^-\)
- \(\widetilde{\boldsymbol{F}}\)
から得られるTM波成分
\(\widetilde{E}_v^{f \prime}(z)\),
\(\widetilde{H}_u^f(z)\),
\(Y_{_{\mathrm{TM}}} =1/Z_{_{\mathrm{TM}}}\),
\(\widetilde{E}_v^{f+}\),\(\widetilde{E}_v^{f-}\)
- \(\widetilde{\boldsymbol{F}}\)
から得られるTE波成分
\(\widetilde{E}_u^{f \prime \prime} (z)\),
\(\widetilde{H}_v^f(z)\),
\(Y_{_{\mathrm{TE}}} =1/Z_{_{\mathrm{TE}}}\),
\(\widetilde{E}_u^{f+}\),\(\widetilde{E}_u^{f-}\)
これらを,
\begin{gather}
\widetilde{E}(z), \ \ \ \ \
\widetilde{H}(z), \ \ \ \ \
Y=1/Z, \ \ \ \ \
\widetilde{E}^+, \ \ \ \ \
\widetilde{E}^-
\nonumber
\end{gather}
でまとめて表すと,次のようになる.
\begin{eqnarray}
\widetilde{E} (z) &=& \widetilde{E}^+ e^{-jk_z z} + \widetilde{E}^- e^{jk_z z}
\\
\widetilde{H} (z) &=& Y \big( \widetilde{E}^+ e^{-jk_z z} - \widetilde{E}^- e^{jk_z z})
\end{eqnarray}
いま,\(z=0\) のとき,
\begin{eqnarray}
\widetilde{E} (0) &=& \widetilde{E}^+ + \widetilde{E}^-
\\
\widetilde{H} (0) &=& Y \big( \widetilde{E}^+ - \widetilde{E}^- \big)\\
\end{eqnarray}
また,\(z=d\) のとき,
\begin{eqnarray}
\widetilde{E} (d) &=& \widetilde{E}^+ e^{-jk_z d} + \widetilde{E}^- e^{jk_z d}
\\
\widetilde{H} (d) &=& Y \big( \widetilde{E}^+ e^{-jk_z d} - \widetilde{E}^- e^{jk_z d})
\end{eqnarray}
これより,\(\widetilde{E}^+\),\(\widetilde{E}^-\) を消去すれば,スペクトル領域の電磁界成分に対する基本行列\([\boldsymbol{F}]\) を定義することができ,次のようになる.
\begin{gather}
\begin{pmatrix}
\widetilde{E}(0) \\ \widetilde{H}(0)
\end{pmatrix}
= [\boldsymbol{F}]
\begin{pmatrix}
\widetilde{E}(d) \\ \widetilde{H}(d)
\end{pmatrix}, \ \ \ \ \
[\boldsymbol{F}] =
\begin{pmatrix}
\cos k_z d & jZ \sin k_z d \\
j Y \sin k_z d & \cos k_z d \\
\end{pmatrix}
\end{gather}
あるいは,
\begin{gather}
\begin{pmatrix}
\widetilde{E}(-d) \\ \widetilde{H}(-d)
\end{pmatrix}
= [\boldsymbol{F}]
\begin{pmatrix}
\widetilde{E}(0) \\ \widetilde{H}(0)
\end{pmatrix}
\end{gather}
逆行列を考えると,
\begin{gather}
\begin{pmatrix}
\widetilde{E}(d) \\ \widetilde{H}(d)
\end{pmatrix}
= [\boldsymbol{F}]^{-1}
\begin{pmatrix}
\widetilde{E}(0) \\ \widetilde{H}(0)
\end{pmatrix}, \ \ \
[\boldsymbol{F}]^{-1} =
\begin{pmatrix}
\cos k_z d & -jZ \sin k_z d \\
-jY \sin k_z d & \cos k_z d \\
\end{pmatrix}
\end{gather}
あるいは,
\begin{gather}
\begin{pmatrix}
\widetilde{E}(0) \\ \widetilde{H}(0)
\end{pmatrix}
= [\boldsymbol{F}]^{-1}
\begin{pmatrix}
\widetilde{E}(-d) \\ \widetilde{H}(-d)
\end{pmatrix}
\end{gather}
これより,
\(N\)層の誘電体に対する基本行列は,次のようにして求められる.
\begin{gather}
\begin{pmatrix}
\widetilde{E}(0) \\ \widetilde{H}(0)
\end{pmatrix}
= [\boldsymbol{F}_1] [\boldsymbol{F}_2] \cdots [\boldsymbol{F}_N]
\begin{pmatrix}
\widetilde{E}(d) \\ \widetilde{H}(d)
\end{pmatrix}
\end{gather}
ここで,
\begin{gather}
[\boldsymbol{F}_i] =
\begin{pmatrix}
\cos k_{z,i} d_i & jZ_i \sin k_{z,i} d_i \\
j Y_i \sin k_{z,i} d_i & \cos k_{z,i} d_i \\
\end{pmatrix} \ \ \ (i=1,2, \cdots , N)
\end{gather}
ただし,添字 \(i\) は,\(i\) 番目の誘電体に対するパラメータを示す.