2.6 スペクトル領域の基本行列

スペクトル領域の磁気的ベクトルポテンシャル \(\widetilde{\boldsymbol{A}} = \widetilde{A}_u \boldsymbol{u}_u\) によるTE波成分

 \(\widetilde{A}_v = 0\) のとき,電界の\(z\)成分がゼロゆえ,TE波が得られる.このとき, \(\widetilde{\boldsymbol{A}} = \widetilde{A}_u \boldsymbol{u}_u\) とおくと, \begin{gather} \left( \frac{\partial ^2}{\partial z^2} + k_z^2 \right) \widetilde{A}_u = 0 \end{gather} よって, \begin{gather} \widetilde{A}_u = \widetilde{A}^+_u e^{-jk_z z} + \widetilde{A}^-_u e^{jk_z z} \end{gather} 電磁界の \(xy\) 面内の成分は, \(\widetilde{E}_u\),\(\widetilde{H}_v\) のみとなり, \begin{eqnarray} \widetilde{E}_u (z) &=& -j\omega \widetilde{A}_u \nonumber \\ &=& -j\omega \big( \widetilde{A}^+_u e^{-jk_z z} + \widetilde{A}^-_u e^{jk_z z} \big) \nonumber \\ &\equiv& \widetilde{E}^+_u e^{-jk_z z} + \widetilde{E}^-_u e^{jk_z z} \\ \widetilde{H}_v (z) &=& \frac{1}{\mu} \frac{\partial \widetilde{A}_u}{\partial z} \nonumber \\ &=& \frac{1}{\mu} \frac{\partial}{\partial z} \big( \widetilde{A}^+_u e^{-jk_z z} + \widetilde{A}^-_u e^{jk_z z} \big) \nonumber \\ &=& -\frac{jk_z}{\mu} \big( \widetilde{A}^+_u e^{-jk_z z} - \widetilde{A}^-_u e^{jk_z z} \big) \nonumber \\ &=& \frac{k_z}{\omega \mu} \big( \widetilde{E}^+_u e^{-jk_z z} - \widetilde{E}^-_u e^{jk_z z} \big) \nonumber \\ &=& Y_{_{\mathrm{TE}}} \big( \widetilde{E}^+_u e^{-jk_z z} - \widetilde{E}^-_u e^{jk_z z} \big) \end{eqnarray} ここで,\(\gamma \equiv jk_z\) とおくと \begin{gather} Y_{_{\mathrm{TE}}} \equiv \frac{k_z}{\omega \mu} = \frac{\gamma }{j\omega \mu} = \frac{1}{Z_{_{\mathrm{TE}}}} \end{gather}

スペクトル領域の磁気的ベクトルポテンシャル \(\widetilde{\boldsymbol{A}} = \widetilde{A}_v \boldsymbol{u}_v\) によるTM波成分

 \(\widetilde{A}_u = 0\) のとき,磁界の\(z\)成分がゼロゆえ,TM波が得られる.このとき, \(\widetilde{\boldsymbol{A}} = \widetilde{A}_v \boldsymbol{u}_v\) とおくと, \begin{gather} \left( \frac{\partial ^2}{\partial z^2} + k_z^2 \right) \widetilde{A}_v = 0 \end{gather} よって, \begin{gather} \widetilde{A}_v = \widetilde{A}^+_v e^{-jk_z z} + \widetilde{A}^-_v e^{jk_z z} \end{gather} 電磁界の \(xy\) 面内の成分は, \(\widetilde{E}_v\),\(\widetilde{H}_u'\) のみとなり, \begin{eqnarray} \widetilde{E}_v (z) &=& -j\omega \frac{k_z^2}{k^2} \widetilde{A}_v \nonumber \\ &=& -j\omega \frac{k_z^2}{k^2} \big( \widetilde{A}^+_v e^{-jk_z z} + \widetilde{A}^-_v e^{jk_z z} \big) \nonumber \\ &\equiv& \widetilde{E}^+_v e^{-jk_z z} + \widetilde{E}^-_v e^{jk_z z} \\ \widetilde{H}_u' (z) &=& \frac{1}{\mu} \frac{\partial \widetilde{A}_v}{\partial z} \nonumber \\ &=& \frac{1}{\mu} \frac{\partial}{\partial z} \big( \widetilde{A}^+_v e^{-jk_z z} + \widetilde{A}^-_v e^{jk_z z} \big) \nonumber \\ &=& -\frac{jk_z}{\mu} \big( \widetilde{A}^+_v e^{-jk_z z} - \widetilde{A}^-_v e^{jk_z z} \big) \nonumber \\ &=& \frac{k^2}{\omega \mu k_z} \big( \widetilde{E}^+_v e^{-jk_z z} - \widetilde{E}^-_v e^{jk_z z} \big) \nonumber \\ &=& Y_{_{\mathrm{TM}}} \big( \widetilde{E}^+_v e^{-jk_z z} - \widetilde{E}^-_v e^{jk_z z} \big) \end{eqnarray} ただし, \begin{gather} Y_{_{\mathrm{TM}}} \equiv \frac{k^2}{\omega \mu k_z} = \frac{\omega ^2 \epsilon \mu}{\omega \mu k_z} = \frac{\omega \epsilon}{k_z} = \frac{j\omega \epsilon}{\gamma} = \frac{1}{Z_{_{\mathrm{TM}}}} \end{gather}

スペクトル領域の電気的ベクトルポテンシャル\(\widetilde{\boldsymbol{F}} = \widetilde{F}_u \boldsymbol{u}_u\)によるTM波成分

 \(\widetilde{F}_v = 0\) のとき,磁界の\(z\)成分がゼロゆえTM波が得られる.このとき, \(\widetilde{\boldsymbol{F}} = \widetilde{F}_u \boldsymbol{u}_u\) とおくと, \begin{gather} \left( \frac{\partial ^2}{\partial z^2} + k_z^2 \right) \widetilde{F}_u = 0 \end{gather} よって, \begin{gather} \widetilde{F}_u = \widetilde{F}^+_u e^{-jk_z z} + \widetilde{F}^-_u e^{jk_z z} \end{gather} 電磁界の\(xy\)面内の成分は, \(\widetilde{H}_u^f\),\(\widetilde{E}_v^{f \prime}\) のみとなり, \begin{eqnarray} \widetilde{H}_u^f (z) &=& -j\omega \widetilde{F}_u \nonumber \\ &=& -j\omega \big( \widetilde{F}^+_u e^{-jk_z z} + \widetilde{F}^-_u e^{jk_z z} \big) \nonumber \\ &\equiv& \widetilde{H}^{f+}_u e^{-jk_z z} + \widetilde{H}^{f-}_u e^{jk_z z} \\ \widetilde{E}_v^{f \prime} (z) &=& \frac{1}{\epsilon} \frac{\partial \widetilde{F}_u}{\partial z} \nonumber \\ &=& \frac{1}{\epsilon} \frac{\partial}{\partial z} \big( \widetilde{F}^+_u e^{-jk_z z} + \widetilde{F}^-_u e^{jk_z z} \big) \nonumber \\ &=& -\frac{jk_z}{\epsilon} \big( \widetilde{F}^+_u e^{-jk_z z} - \widetilde{F}^-_u e^{jk_z z} \big) \nonumber \\ &=& \frac{k_z}{\omega \epsilon} \big( \widetilde{H}^{f+}_u e^{-jk_z z} - \widetilde{H}^{f-}_u e^{jk_z z} \big) \nonumber \\ &=& Z_{_{\mathrm{TM}}}\big( \widetilde{H}^{f+}_u e^{-jk_z z} - \widetilde{H}^{f-}_u e^{jk_z z} \big) \end{eqnarray} ここで,\(\gamma \equiv jk_z\) とおくと \begin{gather} Z_{_{\mathrm{TM}}} \equiv \frac{k_z}{\omega \epsilon} = \frac{\gamma }{j\omega \epsilon} = \frac{1}{Y_{_{\mathrm{TM}}}} \end{gather} 電界の係数を基準にして表すと, \begin{eqnarray} \widetilde{E}_v^{f \prime} (z) &\equiv& \widetilde{E}^{f+}_v e^{-jk_z z} + \widetilde{E}^{f-}_v e^{jk_z z} \\ \widetilde{H}_u^f (z) &=& Y_{_{\mathrm{TM}}}\big( \widetilde{E}^{f+}_v e^{-jk_z z} - \widetilde{E}^{f-}_v e^{jk_z z} \big) \end{eqnarray}

スペクトル領域の電気的ベクトルポテンシャル \(\widetilde{\boldsymbol{F}} = \widetilde{F}_v \boldsymbol{u}_v\) によるTE波成分

 \(\widetilde{F}_u = 0\) のとき,電界の\(z\)成分がゼロゆえTE波が得られる.このとき, \(\widetilde{\boldsymbol{F}} = \widetilde{F}_v \boldsymbol{u}_v\) とおくと, \begin{gather} \left( \frac{\partial ^2}{\partial z^2} + k_z^2 \right) \widetilde{F}_v = 0 \end{gather} よって, \begin{gather} \widetilde{F}_v = \widetilde{F}^+_v e^{-jk_z z} + \widetilde{F}^-_v e^{jk_z z} \end{gather} 電磁界の \(xy\) 面内の成分は, \(\widetilde{H}_v^f\),\(\widetilde{E}_u^{f \prime \prime}\) のみとなり, \begin{eqnarray} \widetilde{H}_v^f (z) &=& -j\omega \frac{k_z^2}{k^2} \widetilde{F}_v \nonumber \\ &=& -j\omega \frac{k_z^2}{k^2} \big( \widetilde{F}^+_v e^{-jk_z z} + \widetilde{F}^-_v e^{jk_z z} \big) \nonumber \\ &\equiv& \widetilde{H}^{f+}_v e^{-jk_z z} + \widetilde{H}^{f-}_v e^{jk_z z} \\ \widetilde{E}_u^{f \prime \prime} (z) &=& \frac{1}{\epsilon} \frac{\partial \widetilde{F}_v}{\partial z} \nonumber \\ &=& \frac{1}{\epsilon} \frac{\partial}{\partial z} \big( \widetilde{F}^+_v e^{-jk_z z} + \widetilde{F}^-_v e^{jk_z z} \big) \nonumber \\ &=& -\frac{jk_z}{\epsilon} \big( \widetilde{F}^+_v e^{-jk_z z} - \widetilde{F}^-_v e^{jk_z z} \big) \nonumber \\ &=& \frac{k^2}{\omega \epsilon k_z} \big( \widetilde{H}^{f+}_v e^{-jk_z z} - \widetilde{H}^{f-}_v e^{jk_z z} \big) \nonumber \\ &=& Z_{_{\mathrm{TE}}} \big( \widetilde{H}^{f+}_v e^{-jk_z z} - \widetilde{H}^{f-}_v e^{jk_z z} \big) \end{eqnarray} ただし, \begin{gather} Z_{_{\mathrm{TE}}} \equiv \frac{k^2}{\omega \epsilon k_z} = \frac{\omega ^2 \epsilon \mu}{\omega \epsilon k_z} = \frac{\omega \mu}{k_z} = \frac{j\omega \mu}{\gamma} = \frac{1}{Y_{_{\mathrm{TE}}}} \end{gather} 電界の係数を基準にして表すと, \begin{eqnarray} \widetilde{E}_u^{f \prime \prime} (z) &\equiv& \widetilde{E}^{f+}_u e^{-jk_z z} + \widetilde{E}^{f-}_u e^{jk_z z} \\ \widetilde{H}_v^f (z) &=& Y_{_{\mathrm{TE}}} \big( \widetilde{E}^{f+}_u e^{-jk_z z} - \widetilde{E}^{f-}_u e^{jk_z z} \big) \end{eqnarray}

基本行列

 境界面に接する電磁界は,\(\widetilde{\boldsymbol{A}}\)より, \begin{eqnarray} \widetilde{\boldsymbol{E}}_{\tan} &=& \widetilde{E}_v (z) \boldsymbol{u}_v + \widetilde{E}_u (z) \boldsymbol{u}_u \\ \widetilde{\boldsymbol{H}}_{\tan} &=& \widetilde{H}_v (z) \boldsymbol{u}_v + \widetilde{H}_u' (z) \big( -\boldsymbol{u}_u \big) \end{eqnarray} また,\(\widetilde{\boldsymbol{F}}\)より, \begin{eqnarray} \widetilde{\boldsymbol{H}}_{\tan}^f &=& \widetilde{H}_v^f (z) \boldsymbol{u}_v + \widetilde{H}_u^f (z) \boldsymbol{u}_u \\ -\widetilde{\boldsymbol{E}}_{\tan}^f &=& \widetilde{E}_v^{f \prime} (z) \boldsymbol{u}_v + \widetilde{E}_u^{f \prime \prime} (z) \big( -\boldsymbol{u}_u \big) \end{eqnarray} で表され,各成分は先に示したように, これらを, \begin{gather} \widetilde{E}(z), \ \ \ \ \ \widetilde{H}(z), \ \ \ \ \ Y=1/Z, \ \ \ \ \ \widetilde{E}^+, \ \ \ \ \ \widetilde{E}^- \nonumber \end{gather} でまとめて表すと,次のようになる. \begin{eqnarray} \widetilde{E} (z) &=& \widetilde{E}^+ e^{-jk_z z} + \widetilde{E}^- e^{jk_z z} \\ \widetilde{H} (z) &=& Y \big( \widetilde{E}^+ e^{-jk_z z} - \widetilde{E}^- e^{jk_z z}) \end{eqnarray} いま,\(z=0\) のとき, \begin{eqnarray} \widetilde{E} (0) &=& \widetilde{E}^+ + \widetilde{E}^- \\ \widetilde{H} (0) &=& Y \big( \widetilde{E}^+ - \widetilde{E}^- \big)\\ \end{eqnarray} また,\(z=d\) のとき, \begin{eqnarray} \widetilde{E} (d) &=& \widetilde{E}^+ e^{-jk_z d} + \widetilde{E}^- e^{jk_z d} \\ \widetilde{H} (d) &=& Y \big( \widetilde{E}^+ e^{-jk_z d} - \widetilde{E}^- e^{jk_z d}) \end{eqnarray} これより,\(\widetilde{E}^+\),\(\widetilde{E}^-\) を消去すれば,スペクトル領域の電磁界成分に対する基本行列\([\boldsymbol{F}]\) を定義することができ,次のようになる. \begin{gather} \begin{pmatrix} \widetilde{E}(0) \\ \widetilde{H}(0) \end{pmatrix} = [\boldsymbol{F}] \begin{pmatrix} \widetilde{E}(d) \\ \widetilde{H}(d) \end{pmatrix}, \ \ \ \ \ [\boldsymbol{F}] = \begin{pmatrix} \cos k_z d & jZ \sin k_z d \\ j Y \sin k_z d & \cos k_z d \\ \end{pmatrix} \end{gather} あるいは, \begin{gather} \begin{pmatrix} \widetilde{E}(-d) \\ \widetilde{H}(-d) \end{pmatrix} = [\boldsymbol{F}] \begin{pmatrix} \widetilde{E}(0) \\ \widetilde{H}(0) \end{pmatrix} \end{gather} 逆行列を考えると, \begin{gather} \begin{pmatrix} \widetilde{E}(d) \\ \widetilde{H}(d) \end{pmatrix} = [\boldsymbol{F}]^{-1} \begin{pmatrix} \widetilde{E}(0) \\ \widetilde{H}(0) \end{pmatrix}, \ \ \ [\boldsymbol{F}]^{-1} = \begin{pmatrix} \cos k_z d & -jZ \sin k_z d \\ -jY \sin k_z d & \cos k_z d \\ \end{pmatrix} \end{gather} あるいは, \begin{gather} \begin{pmatrix} \widetilde{E}(0) \\ \widetilde{H}(0) \end{pmatrix} = [\boldsymbol{F}]^{-1} \begin{pmatrix} \widetilde{E}(-d) \\ \widetilde{H}(-d) \end{pmatrix} \end{gather} これより, \(N\)層の誘電体に対する基本行列は,次のようにして求められる. \begin{gather} \begin{pmatrix} \widetilde{E}(0) \\ \widetilde{H}(0) \end{pmatrix} = [\boldsymbol{F}_1] [\boldsymbol{F}_2] \cdots [\boldsymbol{F}_N] \begin{pmatrix} \widetilde{E}(d) \\ \widetilde{H}(d) \end{pmatrix} \end{gather} ここで, \begin{gather} [\boldsymbol{F}_i] = \begin{pmatrix} \cos k_{z,i} d_i & jZ_i \sin k_{z,i} d_i \\ j Y_i \sin k_{z,i} d_i & \cos k_{z,i} d_i \\ \end{pmatrix} \ \ \ (i=1,2, \cdots , N) \end{gather} ただし,添字 \(i\) は,\(i\) 番目の誘電体に対するパラメータを示す.