2.13 自由空間中の電流素子のスペクトル領域グリーン関数の導出

 誘電体基板がなく,自由空間中の\(xy\)面上に電流源がある場合を考える. \begin{gather} \widetilde{Z}^{(0)} = -\frac{1}{Y_0 + Y_0} = -\frac{1}{2Y_0} \end{gather} これより, \begin{gather} Z^{(0)}_{_{TE}} = -\frac{1}{2Y_{0_{TE}}} = -\frac{1}{2\frac{k_{z0}}{\omega \mu_0}} = -\frac{\omega \mu_0}{2k_{z0}} \\ Z^{(0)}_{_{TM}} = -\frac{1}{2Y_{0_{TM}}} = -\frac{1}{2\frac{\omega \epsilon _0}{k_{z0}}} = -\frac{k_{z0}}{2\omega \epsilon _0} \end{gather} よって, \begin{eqnarray} \widetilde{G}_{xx}^{^{EJ}} &=& \frac{1}{k_t^2} \Big( k_y^2 \widetilde{Z}_{_{TE}}^{(0)} + k_x^2 \widetilde{Z}_{_{TM}}^{(0)} \Big) \nonumber \\ &=& \frac{1}{k_t^2} \left\{ k_y^2 \left( -\frac{\omega \mu_0}{2k_{z0}} \right) + k_x^2 \left( -\frac{k_{z0}}{2\omega \epsilon _0} \right) \right\} \nonumber \\ &=& - \frac{k_0^2 k_y^2 + k_{z0}^2 k_x^2}{2 \omega \epsilon _0 k_t^2 k_{z0} } \end{eqnarray} ここで, \begin{eqnarray} k_0^2 k_y^2 + k_{z0} k_x^2 &=& k_0^2 \big( k_t^2 - k_x^2 \big) + \big( k_0^2 - k_t^2 \big) k_x^2 \nonumber \\ &=& k_t^2 \big( k_0^2 - k_x^2 \big) \end{eqnarray} より, \begin{eqnarray} \widetilde{G}_{xx}^{^{EJ}} &=& - \frac{k_0^2 - k_x^2}{2 \omega \epsilon _0 k_{z0} } = \frac{k_0^2 - k_x^2}{j \omega \epsilon _0} \ \frac{1}{j2k_{z0}} \nonumber \\ &=& -\frac{j\omega \mu_0}{k_0^2} \ \frac{1}{j2k_{z0}} \ \big( k_0^2 - k_x^2 \big) \end{eqnarray} また, \begin{eqnarray} \widetilde{G}_{xy}^{^{EJ}} &=& \widetilde{G}_{yx}^{^{EJ}} = \frac{k_x k_y}{k_t^2} \Big( \widetilde{Z}_{_{TM}}^{(z)} - \widetilde{Z}_{_{TE}}^{(z)} \Big) \nonumber \\ &=& \frac{k_x k_y}{k_t^2} \left( -\frac{k_{z0}}{2\omega \epsilon _0} + \frac{\omega \mu_0}{2k_{z0}} \right) \nonumber \\ &=& \frac{k_x k_y \big( -k_{z0}^2 + k_0^2 \big)}{2\omega \epsilon _0 k_t^2 k_{z0}} = \frac{k_x k_y}{2\omega \epsilon _0 k_{z0}} \nonumber \\ &=& -\frac{k_x k_y}{j\omega \epsilon _0} \ \frac{1}{j2k_{z0}} = \frac{j\omega \mu _0}{k_0^2} \ \frac{1}{j2k_{z0}} \ k_x k_y \end{eqnarray} \begin{eqnarray} \widetilde{G}_{yy}^{^{EJ}} &=& \frac{1}{k_t^2} \Big( k_x^2 \widetilde{Z}_{_{TE}}^{(z)} + k_y^2 \widetilde{Z}_{_{TM}}^{(z)} \Big) \nonumber \\ &=& - \frac{k_0^2 - k_y^2}{2 \omega \epsilon _0 k_{z0} } = \frac{k_0^2 - k_y^2}{j \omega \epsilon _0} \ \frac{1}{j2k_{z0}} \nonumber \\ &=& -\frac{j\omega \mu_0}{k_0^2} \ \frac{1}{j2k_{z0}} \ \big( k_0^2 - k_y^2 \big) \end{eqnarray}