2.12 面磁流源に対するグリーン関数

スペクトル領域の磁界型ダイアディック・グリーン関数

 先に示した境界面に接する電界のベクトル\(\widetilde{\boldsymbol{E}}_{\tan}\)は, \begin{eqnarray} \widetilde{\boldsymbol{E}}_{\tan} &=& \widetilde{E}_v \boldsymbol{u}_v + \widetilde{E}_u \boldsymbol{u}_u \nonumber \\ &=& Z_{_{TM}}^{(z)} \widetilde{J}_v \boldsymbol{u}_v + Z_{_{TE}}^{(z)} \widetilde{J}_u \boldsymbol{u}_u \end{eqnarray} 成分を行列表示すると, \begin{gather} \begin{pmatrix} \widetilde{E}_u \\ \widetilde{E}_v \end{pmatrix} = \begin{pmatrix} Z_{_{TE}}^{(z)} & 0 \\ 0 & Z_{_{TM}}^{(z)} \\ \end{pmatrix} \begin{pmatrix} \widetilde{J}_u \\ \widetilde{J}_v \end{pmatrix} \end{gather} 双対性より, \begin{eqnarray} \widetilde{\boldsymbol{H}}_{\tan}^f &=& \widetilde{H}_u^f \boldsymbol{u}_u + \widetilde{H}_v^f \boldsymbol{u}_v \nonumber \\ &=& \widetilde{Y}_{_{TM}}^{(z)} \widetilde{M}_u \boldsymbol{u}_u + \widetilde{Y}_{_{TE}}^{(z)} \widetilde{M}_v \boldsymbol{u}_v \end{eqnarray} 成分を行列表示すると, \begin{gather} \begin{pmatrix} \widetilde{\boldsymbol{H}}_{\tan}^f \cdot \boldsymbol{u}_u \\ \widetilde{\boldsymbol{H}}_{\tan}^f \cdot \boldsymbol{u}_v \end{pmatrix} = \begin{pmatrix} \widetilde{H}_u^f \\ \widetilde{H}_v^f \end{pmatrix} = \begin{pmatrix} \widetilde{Y}_{_{TM}}^{(z)} & 0 \\ 0 & \widetilde{Y}_{_{TE}}^{(z)} \\ \end{pmatrix} \begin{pmatrix} \widetilde{M}_u \\ \widetilde{M}_v \end{pmatrix} \end{gather} これより,スペクトル領域のグリーン関数を求めると, \begin{eqnarray} &&\begin{pmatrix} \widetilde{G}_{xx}^{^{HM}} & \widetilde{G}_{xy}^{^{HM}} \\ \widetilde{G}_{yx}^{^{HM}} & \widetilde{G}_{yy}^{^{HM}} \end{pmatrix} = [\Phi]^t \begin{pmatrix} \widetilde{Y}_{_{TM}}^{(z)} & 0 \\ 0 & \widetilde{Y}_{_{TE}}^{(z)} \\ \end{pmatrix} [\Phi] \nonumber \\ &=& \begin{pmatrix} \sin \Phi & \cos \Phi \\ -\cos \Phi & \sin \Phi \end{pmatrix} \begin{pmatrix} \widetilde{Y}_{_{TM}}^{(z)} & 0 \\ 0 & \widetilde{Y}_{_{TE}}^{(z)} \\ \end{pmatrix} \begin{pmatrix} \sin \Phi & -\cos \Phi \\ \cos \Phi & \sin \Phi \end{pmatrix} \nonumber \\ &=& \begin{pmatrix} \widetilde{Y}_{_{TM}}^{(z)} \sin ^2 \Phi + \widetilde{Y}_{_{TE}}^{(z)} \cos ^2 \Phi & \big( \widetilde{Y}_{_{TE}}^{(z)} - \widetilde{Y}_{_{TM}}^{(z)} \big) \sin \Phi \cos \Phi \\ \big( \widetilde{Y}_{_{TE}}^{(z)} - \widetilde{Y}_{_{TM}}^{(z)} \big) \sin \Phi \cos \Phi & \widetilde{Y}_{_{TM}}^{(z)} \cos ^2 \Phi + \widetilde{Y}_{_{TE}}^{(z)} \sin ^2 \Phi \end{pmatrix} \end{eqnarray} よって, \(\widetilde{\boldsymbol{H}}_{\tan}^f = \widetilde{\bar{\bar{\boldsymbol{G}}}}_T^{^{HM}} \cdot \widetilde{\boldsymbol{M}}\) より, \(\widetilde{\bar{\bar{\boldsymbol{G}}}}_T\)を定義して, \begin{gather} \widetilde{\bar{\bar{\boldsymbol{G}}}}_T^{^{HM}} = \widetilde{G}_{xx}^{^{HM}} \boldsymbol{u}_x \boldsymbol{u}_x + \widetilde{G}_{xy}^{^{HM}} \boldsymbol{u}_x \boldsymbol{u}_y + \widetilde{G}_{yx}^{^{HM}} \boldsymbol{u}_y \boldsymbol{u}_x + \widetilde{G}_{yy}^{^{HM}} \boldsymbol{u}_y \boldsymbol{u}_y \end{gather} ここで, \begin{eqnarray} \widetilde{G}_{xx}^{^{HM}} &=& \widetilde{Y}_{_{TM}}^{(z)} \sin ^2 \Phi + \widetilde{Y}_{_{TE}}^{(z)} \cos ^2 \Phi \nonumber \\ &=& \frac{1}{k_t^2} \Big( k_y^2 \widetilde{Y}_{_{TM}}^{(z)} + k_x^2 \widetilde{Y}_{_{TE}}^{(z)} \Big) \end{eqnarray} \begin{eqnarray} \widetilde{G}_{xy}^{^{HM}} &=& \widetilde{G}_{yx}^{^{HM}} = \big( \widetilde{Y}_{_{TE}}^{(z)} - \widetilde{Y}_{_{TM}}^{(z)} \big) \sin \Phi \cos \Phi \nonumber \\ &=& \frac{k_x k_y}{k_t^2} \Big( \widetilde{Y}_{_{TE}}^{(z)} - \widetilde{Y}_{_{TM}}^{(z)} \Big) \end{eqnarray} \begin{eqnarray} \widetilde{G}_{yy}^{^{HM}} &=& \widetilde{Y}_{_{TM}}^{(z)} \cos ^2 \Phi + \widetilde{Y}_{_{TE}}^{(z)} \sin ^2 \Phi \nonumber \\ &=& \frac{1}{k_t^2} \Big( k_x^2 \widetilde{Y}_{_{TM}}^{(z)} + k_y^2 \widetilde{Y}_{_{TE}}^{(z)} \Big) \end{eqnarray}

スペクトル領域の電界型ダイアディック・グリーン関数

 同様に,先に示した境界面に接する磁界のベクトル\(\widetilde{\boldsymbol{H}}_{\tan}\)は, \begin{eqnarray} \widetilde{\boldsymbol{H}}_{\tan} &=& \widetilde{H}_v' (-\boldsymbol{u}_v) + \widetilde{H}_u \boldsymbol{u}_u \nonumber \\ &=& -P_{_{TE}}^{(z)} \widetilde{J}_u \boldsymbol{u}_v + P_{_{TM}}^{(z)} \widetilde{J}_v \boldsymbol{u}_u \end{eqnarray} 成分を行列表示すると, \begin{gather} \begin{pmatrix} \widetilde{H}_u \\ -\widetilde{H}_v' \end{pmatrix} = \begin{pmatrix} 0 & P_{_{TM}}^{(z)} \\ -P_{_{TE}}^{(z)} & 0 \\ \end{pmatrix} \begin{pmatrix} \widetilde{J}_u \\ \widetilde{J}_v \end{pmatrix} \end{gather} 双対性より, \begin{eqnarray} -\widetilde{\boldsymbol{E}}_{\tan}^f &=& \widetilde{E}_u^{f \prime \prime} \big( -\boldsymbol{u}_u \big) + \widetilde{E}_v^{f \prime} \boldsymbol{u}_v \nonumber \\ &=& \widetilde{Q}_{_{TE}}^{(z)} \widetilde{M}_v \big( -\boldsymbol{u}_u \big) + \widetilde{Q}_{_{TM}}^{(z)} \widetilde{M}_u \boldsymbol{u}_v \end{eqnarray} 成分を行列表示すると, \begin{gather} \begin{pmatrix} \widetilde{\boldsymbol{E}}_{\tan}^f \cdot \boldsymbol{u}_u \\ \widetilde{\boldsymbol{E}}_{\tan}^f \cdot \boldsymbol{u}_v \end{pmatrix} = - \begin{pmatrix} -\widetilde{E}_u^{f \prime \prime} \\ \widetilde{E}_v^{f\prime} \end{pmatrix} = - \begin{pmatrix} 0 & -\widetilde{Q}_{_{TE}}^{(z)} \\ \widetilde{Q}_{_{TM}}^{(z)} & 0 \\ \end{pmatrix} \begin{pmatrix} \widetilde{M}_u \\ \widetilde{M}_v \end{pmatrix} \end{gather} これより,スペクトル領域のグリーン関数を求めると, \begin{eqnarray} &&\begin{pmatrix} \widetilde{G}_{xx}^{^{EM}} & \widetilde{G}_{xy}^{^{EM}} \\ \widetilde{G}_{yx}^{^{EM}} & \widetilde{G}_{yy}^{^{EM}} \end{pmatrix} = -[\Phi]^t \begin{pmatrix} 0 & -\widetilde{Q}_{_{TE}}^{(z)} \\ \widetilde{Q}_{_{TM}}^{(z)} & 0 \end{pmatrix} [\Phi] \nonumber \\ &=& - \begin{pmatrix} \sin \Phi & \cos \Phi \\ -\cos \Phi & \sin \Phi \end{pmatrix} \begin{pmatrix} 0 & -\widetilde{Q}_{_{TE}}^{(z)} \\ \widetilde{Q}_{_{TM}}^{(z)} & 0 \end{pmatrix} \begin{pmatrix} \sin \Phi & -\cos \Phi \\ \cos \Phi & \sin \Phi \end{pmatrix} \nonumber \\ &=& \begin{pmatrix} \big( \widetilde{Q}_{_{TE}}^{(z)} - \widetilde{Q}_{_{TM}}^{(z)} \big) \sin \Phi \cos \Phi & \widetilde{Q}_{_{TM}}^{(z)} \cos ^2 \Phi + \widetilde{Q}_{_{TE}}^{(z)} \sin ^2 \Phi \\ -\widetilde{Q}_{_{TM}}^{(z)} \sin ^2 \Phi - \widetilde{Q}_{_{TE}}^{(z)} \cos ^2 \Phi & \big( \widetilde{Q}_{_{TM}}^{(z)} - \widetilde{Q}_{_{TE}}^{(z)} \big) \sin \Phi \cos \Phi \end{pmatrix} \end{eqnarray} よって, \(\widetilde{\boldsymbol{E}}_{\tan}^f = \widetilde{\bar{\bar{\boldsymbol{G}}}}_T^{^{EM}} \cdot \widetilde{\boldsymbol{M}}\) より, \(\widetilde{\bar{\bar{\boldsymbol{G}}}}_T^{^{EM}}\) を定義して, \begin{gather} \widetilde{\widetilde{\bar{\bar{\boldsymbol{G}}}}}_T \hspace{-2.2mm} ^{^{EM}} = \widetilde{G}_{xx}^{^{EM}} \boldsymbol{u}_x \boldsymbol{u}_x + \widetilde{G}_{xy}^{^{EM}} \boldsymbol{u}_x \boldsymbol{u}_y + \widetilde{G}_{yx}^{^{EM}} \boldsymbol{u}_y \boldsymbol{u}_x + \widetilde{G}_{yy}^{^{EM}} \boldsymbol{u}_y \boldsymbol{u}_y \end{gather} ここで, \begin{eqnarray} \widetilde{G}_{xx}^{^{EM}} &=& -\widetilde{G}_{yy}^{^{EM}} = \big( \widetilde{Q}_{_{TE}}^{(z)} - \widetilde{Q}_{_{TM}}^{(z)} \big) \sin \Phi \cos \Phi \nonumber \\ &=& \frac{k_x k_y}{k_t^2} \Big( \widetilde{Q}_{_{TE}}^{(z)} - \widetilde{Q}_{_{TM}}^{(z)} \Big) \end{eqnarray} \begin{eqnarray} \widetilde{G}_{xy}^{^{EM}} &=& \widetilde{Q}_{_{TM}}^{(z)} \cos ^2 \Phi + \widetilde{Q}_{_{TE}}^{(z)} \sin ^2 \Phi \nonumber \\ &=& \frac{1}{k_t^2} \Big( k_x^2 \widetilde{Q}_{_{TM}}^{(z)} + k_y^2 \widetilde{Q}_{_{TE}}^{(z)} \Big) \end{eqnarray} \begin{eqnarray} \widetilde{G}_{yx}^{^{EM}} &=& -\widetilde{Q}_{_{TM}}^{(z)} \sin ^2 \Phi - \widetilde{Q}_{_{TE}}^{(z)} \cos ^2 \Phi \nonumber \\ &=& -\frac{1}{k_t^2} \Big( k_y^2 \widetilde{Q}_{_{TM}}^{(z)} + k_x^2 \widetilde{Q}_{_{TE}}^{(z)} \Big) \end{eqnarray}