2.11 面電流源に対するグリーン関数

スペクトル領域の電界型ダイアディック・グリーン関数

 境界面に接する電界のベクトル\(\widetilde{\boldsymbol{E}}_{\tan}\)は, \begin{gather} \widetilde{\boldsymbol{E}}_{\tan} = \widetilde{E}_u \boldsymbol{u}_u + \widetilde{E}_v \boldsymbol{u}_v = \widetilde{Z}_{_{TE}}^{(z)} \widetilde{J}_u \boldsymbol{u}_u + \widetilde{Z}_{_{TM}}^{(z)} \widetilde{J}_v \boldsymbol{u}_v \\ \end{gather} 成分を行列表示すると, \begin{gather} \begin{pmatrix} \widetilde{\boldsymbol{E}}_{\tan} \cdot \boldsymbol{u}_u \\ \widetilde{\boldsymbol{E}}_{\tan} \cdot \boldsymbol{u}_v \end{pmatrix} = \begin{pmatrix} \widetilde{E}_u \\ \widetilde{E}_v \end{pmatrix} = \begin{pmatrix} \widetilde{Z}_{_{TE}}^{(z)} & 0 \\ 0 & \widetilde{Z}_{_{TM}}^{(z)} \\ \end{pmatrix} \begin{pmatrix} \widetilde{J}_u \\ \widetilde{J}_v \end{pmatrix} \end{gather} \(x\),\(y\)成分を求めると, \begin{eqnarray} \begin{pmatrix} \widetilde{E}_x \\ \widetilde{E}_y \end{pmatrix} &=& \begin{pmatrix} \big( \widetilde{E}_v \boldsymbol{u}_v + \widetilde{E}_u \boldsymbol{u}_u \big) \cdot \boldsymbol{u}_x \\ \big( \widetilde{E}_v \boldsymbol{u}_v + \widetilde{E}_u \boldsymbol{u}_u \big) \cdot \boldsymbol{u}_y \end{pmatrix} \nonumber \\ &=& \begin{pmatrix} \boldsymbol{u}_u \cdot \boldsymbol{u}_x & \boldsymbol{u}_v \cdot \boldsymbol{u}_x \\ \boldsymbol{u}_u \cdot \boldsymbol{u}_y & \boldsymbol{u}_v \cdot \boldsymbol{u}_y \end{pmatrix} \begin{pmatrix} \widetilde{E}_u \\ \widetilde{E}_v \end{pmatrix} \nonumber \\ &=& [\Phi]^t \begin{pmatrix} \widetilde{Z}_{_{TE}}^{(z)} & 0 \\ 0 & \widetilde{Z}_{_{TM}}^{(z)} \\ \end{pmatrix} \begin{pmatrix} \widetilde{J}_u \\ \widetilde{J}_v \end{pmatrix} \nonumber \\ &=& [\Phi]^t \begin{pmatrix} \widetilde{Z}_{_{TE}}^{(z)} & 0 \\ 0 & \widetilde{Z}_{_{TM}}^{(z)} \\ \end{pmatrix} \begin{pmatrix} \big( \widetilde{J}_x \boldsymbol{u}_x + \widetilde{J}_y \boldsymbol{u}_y \big) \cdot \boldsymbol{u}_u \\ \big( \widetilde{J}_x \boldsymbol{u}_x + \widetilde{J}_y \boldsymbol{u}_y \big) \cdot \boldsymbol{u}_v \end{pmatrix} \nonumber \\ &=& [\Phi]^t \begin{pmatrix} \widetilde{Z}_{_{TE}}^{(z)} & 0 \\ 0 & \widetilde{Z}_{_{TM}}^{(z)} \\ \end{pmatrix} \begin{pmatrix} \boldsymbol{u}_x \cdot \boldsymbol{u}_u & \boldsymbol{u}_y \cdot \boldsymbol{u}_u \\ \boldsymbol{u}_x \cdot \boldsymbol{u}_v & \boldsymbol{u}_y \cdot \boldsymbol{u}_v \end{pmatrix} \begin{pmatrix} \widetilde{J}_x \\ \widetilde{J}_y \end{pmatrix} \nonumber \\ &=& [\Phi]^t \begin{pmatrix} \widetilde{Z}_{_{TE}}^{(z)} & 0 \\ 0 & \widetilde{Z}_{_{TM}}^{(z)} \\ \end{pmatrix} [\Phi] \begin{pmatrix} \widetilde{J}_x \\ \widetilde{J}_y \end{pmatrix} \end{eqnarray} ここで, \begin{gather} \begin{pmatrix} \widetilde{E}_x \\ \widetilde{E}_y \end{pmatrix} = \begin{pmatrix} \widetilde{G}_{xx}^{^{EJ}} & \widetilde{G}_{xy}^{^{EJ}} \\ \widetilde{G}_{yx}^{^{EJ}} & \widetilde{G}_{yy}^{^{EJ}} \end{pmatrix} \begin{pmatrix} \widetilde{J}_x \\ \widetilde{J}_y \end{pmatrix} \end{gather} とおくと, \begin{eqnarray} &&\begin{pmatrix} \widetilde{G}_{xx}^{^{EJ}} & \widetilde{G}_{xy}^{^{EJ}} \\ \widetilde{G}_{yx}^{^{EJ}} & \widetilde{G}_{yy}^{^{EJ}} \end{pmatrix} = [\Phi]^t \begin{pmatrix} \widetilde{Z}_{_{TE}}^{(z)} & 0 \\ 0 & \widetilde{Z}_{_{TM}}^{(z)} \\ \end{pmatrix} [\Phi] \nonumber \\ &=& \begin{pmatrix} \sin \Phi & \cos \Phi \\ -\cos \Phi & \sin \Phi \end{pmatrix} \begin{pmatrix} \widetilde{Z}_{_{TE}}^{(z)} & 0 \\ 0 & \widetilde{Z}_{_{TM}}^{(z)} \\ \end{pmatrix} \begin{pmatrix} \sin \Phi & -\cos \Phi \\ \cos \Phi & \sin \Phi \end{pmatrix} \nonumber \\ &=& \begin{pmatrix} \widetilde{Z}_{_{TE}}^{(z)} \sin ^2 \Phi + \widetilde{Z}_{_{TM}}^{(z)} \cos ^2 \Phi & \big( \widetilde{Z}_{_{TM}}^{(z)} - \widetilde{Z}_{_{TE}}^{(z)} \big) \sin \Phi \cos \Phi \\ \big( \widetilde{Z}_{_{TM}}^{(z)} - \widetilde{Z}_{_{TE}}^{(z)} \big) \sin \Phi \cos \Phi & \widetilde{Z}_{_{TE}}^{(z)} \cos ^2 \Phi + \widetilde{Z}_{_{TM}}^{(z)} \sin ^2 \Phi \end{pmatrix} \end{eqnarray} これより, \begin{gather} \widetilde{\bar{\bar{\boldsymbol{G}}}}_T^{^{EJ}} = \widetilde{G}_{xx}^{^{EJ}} \boldsymbol{u}_x \boldsymbol{u}_x + \widetilde{G}_{xy}^{^{EJ}} \boldsymbol{u}_x \boldsymbol{u}_y + \widetilde{G}_{yx}^{^{EJ}} \boldsymbol{u}_y \boldsymbol{u}_x + \widetilde{G}_{yy}^{^{EJ}} \boldsymbol{u}_y \boldsymbol{u}_y \end{gather} とおくと,\(\widetilde{\boldsymbol{E}}_{\tan}\)は, \begin{eqnarray} \widetilde{\boldsymbol{E}}_{\tan} &=& \Big( \widetilde{G}_{xx}^{^{EJ}} \widetilde{J}_x + \widetilde{G}_{xy}^{^{EJ}} \widetilde{J}_y \Big) \boldsymbol{u}_x + \Big( \widetilde{G}_{yx}^{^{EJ}} \widetilde{J}_x + \widetilde{G}_{yy}^{^{EJ}} \widetilde{J}_y \Big) \boldsymbol{u}_y \nonumber \\ &=& \widetilde{\bar{\bar{\boldsymbol{G}}}}_T \hspace{-2.2mm} ^{^{EJ}} \cdot \widetilde{\boldsymbol{J}} \end{eqnarray} ただし, \begin{eqnarray} \widetilde{G}_{xx}^{^{EJ}} &=& \widetilde{Z}_{_{TE}}^{(z)} \sin ^2 \Phi + \widetilde{Z}_{_{TM}}^{(z)} \cos ^2 \Phi \nonumber \\ &=& \frac{1}{k_t^2} \Big( k_y^2 \widetilde{Z}_{_{TE}}^{(z)} + k_x^2 \widetilde{Z}_{_{TM}}^{(z)} \Big) \end{eqnarray} \begin{eqnarray} \widetilde{G}_{xy}^{^{EJ}} &=& \widetilde{G}_{yx}^{^{EJ}} = \big( \widetilde{Z}_{_{TM}}^{(z)} - \widetilde{Z}_{_{TE}}^{(z)} \big) \sin \Phi \cos \Phi \nonumber \\ &=& \frac{k_x k_y}{k_t^2} \Big( \widetilde{Z}_{_{TM}}^{(z)} - \widetilde{Z}_{_{TE}}^{(z)} \Big) \end{eqnarray} \begin{eqnarray} \widetilde{G}_{yy}^{^{EJ}} &=& \widetilde{Z}_{_{TE}}^{(z)} \cos ^2 \Phi + \widetilde{Z}_{_{TM}}^{(z)} \sin ^2 \Phi \nonumber \\ &=& \frac{1}{k_t^2} \Big( k_x^2 \widetilde{Z}_{_{TE}}^{(z)} + k_y^2 \widetilde{Z}_{_{TM}}^{(z)} \Big) \end{eqnarray}

スペクトル領域の磁界型ダイアディック・グリーン関数

同様にして,境界面に接する磁界のベクトル\(\widetilde{\boldsymbol{H}}_{\tan}\)が, \begin{eqnarray} \widetilde{\boldsymbol{H}}_{\tan} &=& \widetilde{H}_u' \big( -\boldsymbol{u}_u \big) + \widetilde{H}_v \boldsymbol{u}_v \nonumber \\ &=& \widetilde{P}_{_{TM}}^{(z)} \widetilde{J}_v \big( -\boldsymbol{u}_u \big) + \widetilde{P}_{_{TE}}^{(z)} \widetilde{J}_u \boldsymbol{u}_v \end{eqnarray} で与えられている場合を考える.成分を行列表示すると, \begin{gather} \begin{pmatrix} \widetilde{\boldsymbol{H}}_{\tan} \cdot \boldsymbol{u}_u \\ \widetilde{\boldsymbol{H}}_{\tan} \cdot \boldsymbol{u}_v \end{pmatrix} = \begin{pmatrix} -\widetilde{H}_u' \\ \widetilde{H}_v \end{pmatrix} = \begin{pmatrix} 0 & -\widetilde{P}_{_{TM}}^{(z)} \\ \widetilde{P}_{_{TE}}^{(z)} & 0 \\ \end{pmatrix} \begin{pmatrix} \widetilde{J}_u \\ \widetilde{J}_v \end{pmatrix} \end{gather} \(x\),\(y\)成分を求めると, \begin{eqnarray} \begin{pmatrix} \widetilde{H}_x \\ \widetilde{H}_y \end{pmatrix} &=& \begin{pmatrix} \big( \widetilde{H}_v \boldsymbol{u}_v - \widetilde{H}_u' \boldsymbol{u}_u \big) \cdot \boldsymbol{u}_x \\ \big( \widetilde{H}_v \boldsymbol{u}_v - \widetilde{H}_u' \boldsymbol{u}_u \big) \cdot \boldsymbol{u}_y \end{pmatrix} \nonumber \\ &=& \begin{pmatrix} \boldsymbol{u}_u \cdot \boldsymbol{u}_x & \boldsymbol{u}_v \cdot \boldsymbol{u}_x \\ \boldsymbol{u}_u \cdot \boldsymbol{u}_y & \boldsymbol{u}_v \cdot \boldsymbol{u}_y \end{pmatrix} \begin{pmatrix} -\widetilde{H}_u' \\ \widetilde{H}_v \end{pmatrix} \nonumber \\ &=& [\Phi]^t \begin{pmatrix} 0 & -\widetilde{P}_{_{TM}}^{(z)} \\ \widetilde{P}_{_{TE}}^{(z)} & 0 \end{pmatrix} \begin{pmatrix} \widetilde{J}_v \\ \widetilde{J}_u \end{pmatrix} \nonumber \\ &=& [\Phi]^t \begin{pmatrix} 0 & -\widetilde{P}_{_{TM}}^{(z)} \\ \widetilde{P}_{_{TE}}^{(z)} & 0 \end{pmatrix} [\Phi] \begin{pmatrix} \widetilde{J}_x \\ \widetilde{J}_y \end{pmatrix} \nonumber \\ &=& \begin{pmatrix} \widetilde{G}_{xx}^{^{HJ}} & \widetilde{G}_{xy}^{^{HJ}} \\ \widetilde{G}_{yx}^{^{HJ}} & \widetilde{G}_{yy}^{^{HJ}} \end{pmatrix} \begin{pmatrix} \widetilde{J}_x \\ \widetilde{J}_y \end{pmatrix} \end{eqnarray} したがって, \begin{eqnarray} &&\begin{pmatrix} \widetilde{G}_{xx}^{^{HJ}} & \widetilde{G}_{xy}^{^{HJ}} \\ \widetilde{G}_{yx}^{^{HJ}} & \widetilde{G}_{yy}^{^{HJ}} \end{pmatrix} = [\Phi]^t \begin{pmatrix} 0 & -\widetilde{P}_{_{TM}}^{(z)} \\ \widetilde{P}_{_{TE}}^{(z)} & 0 \end{pmatrix} [\Phi] \nonumber \\ &=& \begin{pmatrix} \sin \Phi & \cos \Phi \\ -\cos \Phi & \sin \Phi \end{pmatrix} \begin{pmatrix} 0 & -\widetilde{P}_{_{TM}}^{(z)} \\ \widetilde{P}_{_{TE}}^{(z)} & 0 \end{pmatrix} \begin{pmatrix} \sin \Phi & -\cos \Phi \\ \cos \Phi & \sin \Phi \end{pmatrix} \nonumber \\ &=& \begin{pmatrix} \big( \widetilde{P}_{_{TE}}^{(z)} - \widetilde{P}_{_{TM}}^{(z)} \big) \sin \Phi \cos \Phi & -\widetilde{P}_{_{TE}}^{(z)} \cos ^2 \Phi - \widetilde{P}_{_{TM}}^{(z)} \sin ^2 \Phi \\ \widetilde{P}_{_{TE}}^{(z)} \sin ^2 \Phi + \widetilde{P}_{_{TM}}^{(z)} \cos ^2 \Phi & \big( \widetilde{P}_{_{TM}}^{(z)} - \widetilde{P}_{_{TE}}^{(z)} \big) \sin \Phi \cos \Phi \end{pmatrix} \end{eqnarray} よって, \(\widetilde{\boldsymbol{H}}_{\tan} = \widetilde{\bar{\bar{\boldsymbol{G}}}}_T \hspace{-2.2mm} ^{^{HJ}} \cdot \widetilde{\boldsymbol{J}}\) とおいて, \(\widetilde{\bar{\bar{\boldsymbol{G}}}}_T\)を定義すると, \begin{gather} \widetilde{\widetilde{\bar{\bar{\boldsymbol{G}}}}}_T^{^{HJ}} = \widetilde{G}_{xx}^{^{HJ}} \boldsymbol{u}_x \boldsymbol{u}_x + \widetilde{G}_{xy}^{^{HJ}} \boldsymbol{u}_x \boldsymbol{u}_y + \widetilde{G}_{yx}^{^{HJ}} \boldsymbol{u}_y \boldsymbol{u}_x + \widetilde{G}_{yy}^{^{HJ}} \boldsymbol{u}_y \boldsymbol{u}_y \end{gather} 各成分は次のようになる. \begin{eqnarray} \widetilde{G}_{xx}^{^{HJ}} &=& -\widetilde{G}_{yy}^{^{HJ}} = \big( \widetilde{P}_{_{TE}}^{(z)} - \widetilde{P}_{_{TM}}^{(z)} \big) \sin \Phi \cos \Phi \nonumber \\ &=& \frac{k_x k_y}{k_t^2} \Big( \widetilde{P}_{_{TE}}^{(z)} - \widetilde{P}_{_{TM}}^{(z)} \Big) \end{eqnarray} \begin{eqnarray} \widetilde{G}_{xy}^{^{HJ}} &=& -\widetilde{P}_{_{TE}}^{(z)} \cos ^2 \Phi - \widetilde{P}_{_{TM}}^{(z)} \sin ^2 \Phi \nonumber \\ &=& -\frac{1}{k_t^2} \Big( k_x^2 \widetilde{P}_{_{TE}}^{(z)} + k_y^2 \widetilde{P}_{_{TM}}^{(z)} \Big) \end{eqnarray} \begin{eqnarray} \widetilde{G}_{yx}^{^{HJ}} &=& \widetilde{P}_{_{TE}}^{(z)} \sin ^2 \Phi + \widetilde{P}_{_{TM}}^{(z)} \cos ^2 \Phi \nonumber \\ &=& \frac{1}{k_t^2} \Big( k_y^2 \widetilde{P}_{_{TE}}^{(z)} + k_x^2 \widetilde{P}_{_{TM}}^{(z)} \Big) \end{eqnarray}