2.10 多層誘電体基板の地導体面に磁流源がある場合

 \(z=0\) の境界条件より, \begin{gather} \widetilde{E}_1(0) = -\widetilde{M} \end{gather} このとき, \begin{eqnarray} \widetilde{H}_1(0) &=& Y_{in}^{(+)} \widetilde{E}_1(0) = -Y_{in}^{(+)} \widetilde{M} \nonumber \\ &\equiv& \widetilde{Y}^{(0)} \widetilde{M} \end{eqnarray} ここで, \begin{gather} \widetilde{Y}^{(0)} = -Y_{in}^{(+)} = -\frac{F_{21}^{(+)} + F_{22}^{(+)} Y_2}{F_{11}^{(+)} + F_{12}^{(+)} Y_2} \end{gather}
多層誘電体基板の地導体面に磁流源がある場合
また, \begin{eqnarray} \widetilde{H}_1(d_1) &=& F_{21}^{(+)\prime} \widetilde{E}_1 (0) + F_{22}^{(+)\prime} \widetilde{H}_1 (0) \nonumber \\ &=& F_{21}^{(+)\prime} \left( -\widetilde{M} \right) + F_{22}^{(+)\prime} \left( -\widetilde{M} Y_{in}^{(+)} \right) \nonumber \\ &=& - \left( F_{21}^{(+)\prime} + F_{22}^{(+)\prime} Y_{in}^{(+)} \right) \widetilde{M} \nonumber \\ &\equiv& \widetilde{Y}^{(d_1)} \widetilde{M} \end{eqnarray} \begin{eqnarray} \widetilde{E}_1(d_1) &=& \widetilde{E}_2(d_1) = Z_2 \widetilde{H}_2(d_1) \nonumber \\ &=& Z_2 \widetilde{H}_1(d_1) = Z_2 \widetilde{Y}^{(d_1)} \widetilde{M} \nonumber \\ &\equiv& \widetilde{Q}^{(d_1)} \widetilde{M} \end{eqnarray} ここで, \begin{eqnarray} \widetilde{Y}^{(d_1)} &=& - \left( F_{21}^{(+)\prime} + F_{22}^{(+)\prime} Y_{in}^{(+)} \right) \\ \widetilde{Q}^{(d_1)} &=& Z_2 \widetilde{Y}^{(d_1)} \nonumber \\ &=& - Z_2 \left( F_{21}^{(+)\prime} + F_{22}^{(+)\prime} Y_{in}^{(+)} \right) \end{eqnarray}