2.10 多層誘電体基板の地導体面に磁流源がある場合
\(z=0\) の境界条件より,
\begin{gather}
\widetilde{E}_1(0) = -\widetilde{M}
\end{gather}
このとき,
\begin{eqnarray}
\widetilde{H}_1(0)
&=& Y_{in}^{(+)} \widetilde{E}_1(0) = -Y_{in}^{(+)} \widetilde{M}
\nonumber \\
&\equiv& \widetilde{Y}^{(0)} \widetilde{M}
\end{eqnarray}
ここで,
\begin{gather}
\widetilde{Y}^{(0)} = -Y_{in}^{(+)} = -\frac{F_{21}^{(+)} + F_{22}^{(+)} Y_2}{F_{11}^{(+)} + F_{12}^{(+)} Y_2}
\end{gather}
また,
\begin{eqnarray}
\widetilde{H}_1(d_1)
&=& F_{21}^{(+)\prime} \widetilde{E}_1 (0) + F_{22}^{(+)\prime} \widetilde{H}_1 (0)
\nonumber \\
&=& F_{21}^{(+)\prime} \left( -\widetilde{M} \right) + F_{22}^{(+)\prime} \left( -\widetilde{M} Y_{in}^{(+)} \right)
\nonumber \\
&=& - \left( F_{21}^{(+)\prime} + F_{22}^{(+)\prime} Y_{in}^{(+)} \right) \widetilde{M}
\nonumber \\
&\equiv& \widetilde{Y}^{(d_1)} \widetilde{M}
\end{eqnarray}
\begin{eqnarray}
\widetilde{E}_1(d_1)
&=& \widetilde{E}_2(d_1) = Z_2 \widetilde{H}_2(d_1)
\nonumber \\
&=& Z_2 \widetilde{H}_1(d_1) = Z_2 \widetilde{Y}^{(d_1)} \widetilde{M}
\nonumber \\
&\equiv& \widetilde{Q}^{(d_1)} \widetilde{M}
\end{eqnarray}
ここで,
\begin{eqnarray}
\widetilde{Y}^{(d_1)}
&=& - \left( F_{21}^{(+)\prime} + F_{22}^{(+)\prime} Y_{in}^{(+)} \right)
\\
\widetilde{Q}^{(d_1)}
&=& Z_2 \widetilde{Y}^{(d_1)}
\nonumber \\
&=& - Z_2 \left( F_{21}^{(+)\prime} + F_{22}^{(+)\prime} Y_{in}^{(+)} \right)
\end{eqnarray}