2. 電磁界のスペクトル領域解析

2.1 スペクトル領域の電磁界

 直角座標系\((x,y,z)\)において,\(xy\)面にマイクロストリップ素子がある場合を考え,電磁界 \(\boldsymbol{E}(x,y,z)\),\(\boldsymbol{H}(x,y,z)\) より, 空間領域\((x,y)\)からスペクトル領域\((k_x,k_y)\)へのフーリエ変換 \(\widetilde{\boldsymbol{E}}(k_x,k_y,z)\),\(\widetilde{\boldsymbol{H}}(k_x,k_y,z)\) を定義する. \begin{gather} \widetilde{\boldsymbol{E}}(k_x,k_y,z) = \iint _{-\infty}^\infty \boldsymbol{E}(x,y,z) \ e^{-j(k_x x + k_y y)} dx dy \\ \widetilde{\boldsymbol{H}}(k_x,k_y,z) = \iint _{-\infty}^\infty \boldsymbol{H}(x,y,z) \ e^{-j(k_x x + k_y y)} dx dy \end{gather} フーリエ変換対の関係より, \begin{gather} \boldsymbol{E}(x,y,z) = \frac{1}{(2\pi)^2} \iint _{-\infty}^\infty \widetilde{\boldsymbol{E}}(k_x,k_y,z) \ e^{j(k_x x + k_y y)} dk_x dk_y \\ \boldsymbol{H}(x,y,z) = \frac{1}{(2\pi)^2} \iint _{-\infty}^\infty \widetilde{\boldsymbol{H}}(k_x,k_y,z) \ e^{j(k_x x + k_y y)} dk_x dk_y \end{gather} これより,\(\nabla \cdot \boldsymbol{E}\) は, \begin{eqnarray} &&\nabla \cdot \boldsymbol{E}(x,y,z) \nonumber \\ &=& \nabla \cdot \left[ \frac{1}{(2\pi)^2} \iint _{-\infty}^\infty \widetilde{\boldsymbol{E}}(k_x,k_y,z) \ e^{j(k_x x + k_y y)} dk_x dk_y \right] \nonumber \\ &=& \frac{1}{(2\pi)^2} \iint _{-\infty}^\infty \nabla \cdot \big\{ \widetilde{\boldsymbol{E}} \ e^{j(k_x x + k_y y)} \big\} dk_x dk_y \nonumber \\ &=& \frac{1}{(2\pi)^2} \iint _{-\infty}^\infty \left( jk_x\boldsymbol{u}_x + jk_y\boldsymbol{u}_y + \frac{\partial }{\partial z} \boldsymbol{u}_z \right) \nonumber \\ &&\cdot \widetilde{\boldsymbol{E}}(k_x,k_y,z) \ e^{j(k_x x + k_y y)} dk_x dk_y \end{eqnarray} フーリエ変換対の関係より, \begin{align} &\left( jk_x\boldsymbol{u}_x + jk_y\boldsymbol{u}_y + \frac{\partial }{\partial z} \boldsymbol{u}_z \right) \cdot \widetilde{\boldsymbol{E}} \nonumber \\ &= \iint _{-\infty}^\infty \nabla \cdot \boldsymbol{E}(x,y,z) \ e^{-j(k_x x + k_y y)} dx dy \end{align} ここで, \begin{gather} \boldsymbol{k}_t \equiv k_x\boldsymbol{u}_x + k_y\boldsymbol{u}_y \end{gather} とおくと, \begin{gather} \left( j\boldsymbol{k}_t + \frac{\partial }{\partial z} \boldsymbol{u}_z \right) \cdot \widetilde{\boldsymbol{E}}(k_x,k_y,z) = \iint _{-\infty}^\infty \nabla \cdot \boldsymbol{E}(x,y,z) \ e^{-j(k_x x + k_y y)} dx dy \end{gather} 同様にして,\(\nabla \cdot \boldsymbol{H}\) のフーリエ変換は, \begin{gather} \left( j\boldsymbol{k}_t + \frac{\partial }{\partial z} \boldsymbol{u}_z \right) \cdot \widetilde{\boldsymbol{H}}(k_x,k_y,z) = \iint _{-\infty}^\infty \nabla \cdot \boldsymbol{H}(x,y,z) \ e^{-j(k_x x + k_y y)} dx dy \end{gather} また, \(\nabla \times \boldsymbol{E}\),\(\nabla \times \boldsymbol{H}\) のフーリエ変換は(導出省略), \begin{align} &\left( j\boldsymbol{k}_t + \frac{\partial }{\partial z} \boldsymbol{u}_z \right) \times \widetilde{\boldsymbol{E}}(k_x,k_y,z) \nonumber \\ &= \iint _{-\infty}^\infty \nabla \times \boldsymbol{E}(x,y,z) \ e^{-j(k_x x + k_y y)} dx dy \\ &\left( j\boldsymbol{k}_t + \frac{\partial }{\partial z} \boldsymbol{u}_z \right) \times \widetilde{\boldsymbol{H}}(k_x,k_y,z) \nonumber \\ &= \iint _{-\infty}^\infty \nabla \times \boldsymbol{H}(x,y,z) \ e^{-j(k_x x + k_y y)} dx dy \end{align} さらに, \(\nabla ^2 \boldsymbol{E}\) は, \begin{gather} \nabla ^2 \boldsymbol{E}(x,y,z) = \nabla ^2 E_x(x,y,z) \boldsymbol{u}_x + \nabla ^2 E_y(x,y,z) \boldsymbol{u}_y + \nabla ^2 E_z(x,y,z) \boldsymbol{u}_z \end{gather} いま,添え字 \(x\),\(y\),\(z\) を \(i\) で置き換え, \begin{eqnarray} &&\nabla ^2 E_i(x,y,z) \nonumber \\ &=& \nabla ^2 \left[ \frac{1}{(2\pi)^2} \iint _{-\infty}^\infty \widetilde{E}_i(k_x,k_y,z) \ e^{j(k_x x + k_y y)} dk_x dk_y \right] \nonumber \\ &=& \frac{1}{(2\pi)^2} \iint _{-\infty}^\infty \nabla ^2 \big\{ \widetilde{E}_i \ e^{j(k_x x + k_y y)} \big\} dk_x dk_y \nonumber \\ &=& \frac{1}{(2\pi)^2} \iint _{-\infty}^\infty \left( (jk_x)^2 + (jk_y)^2 + \frac{\partial ^2}{\partial z^2} \right) \nonumber \\ &&\cdot \widetilde{E}_i(k_x,k_y,z) \ e^{j(k_x x + k_y y)} dk_x dk_y \nonumber \\ &=& \frac{1}{(2\pi)^2} \iint _{-\infty}^\infty \left( -k_t^2 + \frac{\partial ^2}{\partial z^2} \right) \widetilde{E}_i \ e^{j(k_x x + k_y y)} dk_x dk_y \end{eqnarray} ここで,フーリエ変換対の関係より, \begin{gather} \left( -k_t^2 + \frac{\partial ^2}{\partial z^2} \right) \widetilde{E}_i(k_x,k_y,z) = \iint _{-\infty}^\infty \nabla ^2 E_i(x,y,z) \ e^{-j(k_x x + k_y y)} dx dy \end{gather} ベクトルでも同様で, \begin{gather} \left( -k_t^2 + \frac{\partial ^2}{\partial z^2} \right) \widetilde{\boldsymbol{E}}(k_x,k_y,z) = \iint _{-\infty}^\infty \nabla ^2 \boldsymbol{E}(x,y,z) \ e^{-j(k_x x + k_y y)} dx dy \end{gather} これより,電磁流がない場合のMaxwellの方程式をフーリエ変換すると, \begin{gather} \nabla \times \boldsymbol{E} = -j\omega \mu \boldsymbol{H} \ \ \to \ \ \left( j\boldsymbol{k}_t + \frac{\partial }{\partial z} \boldsymbol{u}_z \right) \times \widetilde{\boldsymbol{E}} = -j\omega \mu \widetilde{\boldsymbol{H}} \label{eq:sde} \\ \nabla \times \boldsymbol{H} = j\omega \epsilon \boldsymbol{E} \ \ \to \ \ \left( j\boldsymbol{k}_t + \frac{\partial }{\partial z} \boldsymbol{u}_z \right) \times \widetilde{\boldsymbol{H}} = j\omega \epsilon \widetilde{\boldsymbol{E}} \label{eq:sdh} \\ \nabla \cdot \boldsymbol{E} = 0 \ \ \to \ \ \left( j\boldsymbol{k}_t + \frac{\partial }{\partial z} \boldsymbol{u}_z \right) \cdot \widetilde{\boldsymbol{E}} = 0 \label{eq:sde2} \\ \nabla \cdot \boldsymbol{H} = 0 \ \ \to \ \ \left( j\boldsymbol{k}_t + \frac{\partial }{\partial z} \boldsymbol{u}_z \right) \cdot \widetilde{\boldsymbol{H}} = 0 \label{eq:sdh2} \end{gather} また, \begin{align} &\big( \nabla ^2 + k^2 \big) \boldsymbol{E} = 0 \nonumber \\ &\to \ \ \left( -k_t^2 + \frac{\partial ^2}{\partial z^2} + k^2 \right) \widetilde{\boldsymbol{E}} = \left( \frac{\partial ^2}{\partial z^2} + k_z^2 \right) \widetilde{\boldsymbol{E}} = 0 \\ &\big( \nabla ^2 + k^2 \big) \boldsymbol{H} = 0 \nonumber \\ &\to \ \ \left( -k_t^2 + \frac{\partial ^2}{\partial z^2} + k^2 \right) \widetilde{\boldsymbol{H}} = \left( \frac{\partial ^2}{\partial z^2} + k_z^2 \right) \widetilde{\boldsymbol{H}} = 0 \end{align} 式\eqref{eq:sde}より, \begin{eqnarray} \boldsymbol{u}_z \cdot \left\{\left( j\boldsymbol{k}_t + \frac{\partial }{\partial z} \boldsymbol{u}_z \right) \times \widetilde{\boldsymbol{E}} \right\} &=& j \boldsymbol{u}_z \cdot ( \boldsymbol{k}_t \times \widetilde{\boldsymbol{E}} ) \nonumber \\ &=& -j\omega \mu \widetilde{\boldsymbol{H}} \cdot \boldsymbol{u}_z \end{eqnarray} \begin{gather} k_x \widetilde{E}_y - k_y \widetilde{E}_x = - \omega \mu \widetilde{H}_z \end{gather} また,式\eqref{eq:sde2}より, \begin{align} &j\boldsymbol{k}_t \cdot \widetilde{\boldsymbol{E}} = - \boldsymbol{u}_z \cdot \frac{\partial \widetilde{\boldsymbol{E}}}{\partial z} \nonumber \\ &k_x \widetilde{E}_x + k_y \widetilde{E}_y = j \frac{\partial \widetilde{E}_z}{\partial z} \end{align} これより,\(\widetilde{E}_x\),\(\widetilde{E}_y\)について解くと, \begin{gather} \widetilde{E}_x = \frac{jk_x}{k_t^2} \frac{\partial \widetilde{E}_z}{\partial z} + \frac{\omega \mu k_y}{k_t^2} \widetilde{H}_z \\ \widetilde{E}_y = \frac{jk_y}{k_t^2} \frac{\partial \widetilde{E}_z}{\partial z} - \frac{\omega \mu k_x}{k_t^2} \widetilde{H}_z \end{gather} 同様にして,\(\widetilde{H}_x\),\(\widetilde{H}_y\)は, \begin{gather} \widetilde{H}_x = \frac{jk_x}{k_t^2} \frac{\partial \widetilde{H}_z}{\partial z} - \frac{\omega \epsilon k_y}{k_t^2} \widetilde{E}_z \\ \widetilde{H}_y = \frac{jk_y}{k_t^2} \frac{\partial \widetilde{H}_z}{\partial z} - \frac{\omega \epsilon k_x}{k_t^2} \widetilde{E}_z \end{gather} ただし, \begin{gather} k_t^2 = k_x^2 + k_y^2 \end{gather} ここで, \begin{gather} \left( \frac{\partial ^2}{\partial z^2} + k_z^2 \right) \widetilde{E}_z = 0 \\ \left( \frac{\partial ^2}{\partial z^2} + k_z^2 \right) \widetilde{H}_z = 0 \end{gather} より,\(\widetilde{E}_z\),\(\widetilde{H}_z\) の解としては, \(e^{-jk_z z}\),\(e^{jk_z z}\) あるいは,\(\sin k_z z\),\(\cos k_z z\) のいずれかを考えればよい.