6.3 三角関数の公式

三角関数の積和公式

 三角関数の積和公式(積$\to$和・差)を求めるため, \begin{eqnarray} &&e^{j(\alpha+\beta)} + e^{j(\alpha-\beta)} \nonumber \\ &=& e^{j\alpha} (e^{j\beta} + e^{-j\beta}) \nonumber \\ &=& (\cos \alpha + j \sin \alpha) 2 \cos \beta \nonumber \\ &=& 2 \cos \alpha \cos \beta + j2\sin \alpha \cos \beta \nonumber \\ &=& \big\{ \cos (\alpha+\beta) + \cos (\alpha-\beta) \big\} + j \big\{ \sin (\alpha+\beta) + \sin (\alpha-\beta) \big\} \end{eqnarray} 同様にして, \begin{eqnarray} &&e^{j(\alpha+\beta)} - e^{j(\alpha-\beta)} \nonumber \\ &=& e^{j\alpha} (e^{j\beta} - e^{-j\beta}) \nonumber \\ &=& (\cos \alpha + j \sin \alpha) j2 \sin \beta \nonumber \\ &=& j2 \cos \alpha \sin \beta - 2\sin \alpha \sin \beta \nonumber \\ &=& \big\{ \cos (\alpha+\beta) - \cos (\alpha-\beta) \big\} + j \big\{ \sin (\alpha+\beta) - \sin (\alpha-\beta) \big\} \end{eqnarray} これより, \begin{align} &2\cos \alpha \cos \beta = \cos (\alpha+\beta) + \cos (\alpha-\beta) \\ &2\sin \alpha \cos \beta = \sin (\alpha+\beta) + \sin (\alpha-\beta) \\ &2\cos \alpha \sin \beta = \sin (\alpha+\beta) - \sin (\alpha-\beta) \\ &-2\sin \alpha \sin \beta = \cos (\alpha+\beta) - \cos (\alpha-\beta) \end{align}

三角関数の和積公式

 三角関数の和積公式(和・差$\to$積)は, \begin{eqnarray} A &=& \alpha + \beta \\ B &=& \alpha - \beta \end{eqnarray} とおいて, \begin{eqnarray} \alpha &=& \frac{A+B}{2} \\ \beta &=& \frac{A-B}{2} \end{eqnarray} より, \begin{eqnarray} e^{jA} + e^{jB} &=& e^{j\left( \frac{A+B}{2} + \frac{A-B}{2} \right)} + e^{j\left( \frac{A+B}{2} - \frac{A-B}{2} \right)} \nonumber \\ &=& e^{j\frac{A+B}{2}} \left( e^{j\frac{A+B}{2}} + e^{j\frac{A-B}{2}} \right) \nonumber \\ &=& \left\{ \cos \left( \frac{A+B}{2} \right) +j\sin \left( \frac{A+B}{2} \right) \right\} 2 \cos \left( \frac{A-B}{2} \right) \nonumber \\ &=& \cos A + \cos B + j(\sin A + \sin B) \\ e^{jA} - e^{jB} &=& e^{j\left( \frac{A+B}{2} + \frac{A-B}{2} \right)} - e^{j\left( \frac{A+B}{2} - \frac{A-B}{2} \right)} \nonumber \\ &=& e^{j\frac{A+B}{2}} \left( e^{j\frac{A+B}{2}} - e^{j\frac{A-B}{2}} \right) \nonumber \\ &=& \left\{ \cos \left( \frac{A+B}{2} \right) +j\sin \left( \frac{A+B}{2} \right) \right\} j2 \sin \left( \frac{A-B}{2} \right) \nonumber \\ &=& \cos A - \cos B + j(\sin A - \sin B) \end{eqnarray} これより, \begin{gather} \cos A + \cos B = 2\cos \left( \frac{A+B}{2} \right) \cos \left( \frac{A-B}{2} \right) \\ \sin A + \sin B = 2\sin \left( \frac{A+B}{2} \right) \cos \left( \frac{A-B}{2} \right) \\ \cos A - \cos B = -2\sin \left( \frac{A+B}{2} \right) \sin \left( \frac{A-B}{2} \right) \\ \sin A - \sin B = 2\cos \left( \frac{A+B}{2} \right) \sin \left( \frac{A-B}{2} \right) \end{gather}