方形導波管のTEモードの正規化

磁界モード関数の正規化条件

 モード関数の正規化条件より, \begin{eqnarray} &&\iint_S \big| \boldsymbol{h}_{[mn]} \big| ^2 dS \nonumber \\ &=& A_{[mn]}^2 \iint _{(a \times b)} \left[ \left\{ \frac{m\pi}{a} \sin \left( \frac{m\pi x}{a} \right) \cos \left( \frac{n\pi y}{b} \right) \right\}^2 \right. \nonumber \\ &&\left. + \left\{ \frac{n\pi}{b} \cos \left( \frac{m\pi x}{a} \right) \sin \left( \frac{n\pi y}{b} \right) \right\}^2 \right] dS =1 \end{eqnarray} 整理して, \begin{align} &A_{[mn]}^2 \left[ \left( \frac{m\pi}{a} \right)^2 \int _0^a \sin ^2 \left( \frac{m\pi x}{a} \right) dx \int _0^b \cos ^2 \left( \frac{n\pi y}{b} \right) dy \right. \nonumber \\ &\left. + \left( \frac{n\pi}{b} \right)^2 \int _0^a \cos ^2 \left( \frac{m\pi x}{a} \right) dx \int _0^b \sin ^2 \left( \frac{n\pi y}{b} \right) dy \right] =1 \end{align} 積分項は,\(m \ne 0\) のとき, \begin{eqnarray} \int _0^a \sin ^2 \left( \frac{m\pi x}{a} \right) dx &=& \frac{1}{2} \int _0^a \left\{ 1- \cos \left( \frac{2m\pi x}{a} \right) \right\} dx \nonumber \\ &=& \frac{1}{2} \left[ x-\frac{a}{2m \pi} \sin \left( \frac{2m\pi x}{a} \right) \right]_0^a \nonumber \\ &=& \frac{a}{2} \\ \int _0^a \cos ^2 \left( \frac{m\pi x}{a} \right) dx &=& \frac{1}{2} \int _0^a \left\{ 1+ \cos \left( \frac{2m\pi x}{a} \right) \right\} dx \nonumber \\ &=& \frac{a}{2} \end{eqnarray} また,\(m=0\) のとき, \begin{eqnarray} \int _0^a \sin ^2 \left( \frac{m\pi x}{a} \right) dx &=& 0 \\ \int _0^a \cos ^2 \left( \frac{m\pi x}{a} \right) dx &=& \int_0^a dx = a \end{eqnarray} まとめると, \begin{eqnarray} \int _0^a \sin ^2 \left( \frac{m\pi x}{a} \right) dx &=& \left\{ \begin {array}{cl} \displaystyle{\frac{a}{2}} & (m \neq 0) \\ 0 & (m = 0) \end{array} \right. \\ \int _0^a \cos ^2 \left( \frac{m\pi x}{a} \right) dx &=& \left\{ \begin {array}{cl} \displaystyle{\frac{a}{2}} & (m \neq 0) \\ a & (m = 0) \end{array} \right. \equiv \frac{a}{\epsilon _m} \end{eqnarray} ここで, \begin{gather} \epsilon _m = \left\{ \begin {array}{ll} 1 & (m=0) \\ 2 & (m=1,2, \cdots ) \end{array} \right. \end{gather} これより, \begin{eqnarray} &&\iint_S \big| \boldsymbol{h}_{[mn]} \big| ^2 dS \nonumber \\ &=& A_{[mn]}^2 \left[ \left( \frac{m\pi}{a} \right)^2 \frac{a}{2} \cdot \frac{b}{\epsilon _n} + \left( \frac{n\pi}{b} \right)^2 \frac{a}{\epsilon _m} \cdot \frac{b}{2} \right] \nonumber \\ &=& A_{[mn]}^2 \pi ^2 \frac{(mb)^2 \epsilon _m + (nb)^2 \epsilon _n}{2ab \epsilon _m \epsilon _n} \nonumber \\ &=& A_{[mn]}^2 \pi ^2 \frac{(mb)^2+ (nb)^2}{ab \epsilon _m \epsilon _n} = 1 \end{eqnarray} よって,正規化係数\(A_{[mn]}\)は次のようになる. \begin{eqnarray} A_{[mn]} &=& \frac{1}{\pi} \sqrt{\frac{ab\epsilon _m \epsilon _n}{(mb)^2+(na)^2}} \nonumber \\ &=& \sqrt{\frac{\epsilon _m \epsilon _n}{ab}} \frac{1}{k_{c,[mn]}} \end{eqnarray}

スカラ関数を用いた正規化

 あるいは,スカラ関数\(\Psi ^\mathrm{TE}\)より求めることもでき次のようになる. \begin{eqnarray} &&\iint_S \big| \boldsymbol{h}_{[mn]} \big| ^2 dS \nonumber \\ &=& k^2_{c,[mn]} \iint \big( \Psi ^\mathrm{TE} (x,y) \big)^2 dS \nonumber \\ &=& k^2_{c,[mn]} A_{[mn]}^2 \int_0^b \int_0^a \left\{ \cos \left( \frac{m\pi x}{a} \right) \cos \left( \frac{n\pi y}{b} \right) \right\}^2 dx dy \nonumber \\ &=& k^2_{c,[mn]} A_{[mn]}^2 \int_0^a \cos^2 \left( \frac{m\pi x}{a} \right) dx \int_0^b \cos^2 \left( \frac{n\pi y}{b} \right) dy \nonumber \\ &=& k^2_{c,[mn]} A_{[mn]}^2 \frac{a}{\epsilon _m} \frac{b}{\epsilon _n} =1 \end{eqnarray}