4.4 反射係数

 入射波側の自由空間と誘電体の境界面($z=0$)での入射平面波の横断面内電界 $\VEC{E}_{i,\tan}^{(1)}$ を, \begin{eqnarray} \VEC{E}_{i,\tan}^{(1)} \Big| _{z=0} &=& \Big\{ V_{1_{\TE}}^- \big( \VEC{u}_t \times \VEC{u}_z \big) + V_{1_{\TM}}^- \VEC{u}_t \Big\} e^{j\VEC{k}_t \cdot \VECi{\rho}} \nonumber \\ &=& E_{i,x} \VEC{u}_x + E_{i,y} \VEC{u}_y \end{eqnarray} とする.入射角を$(\theta _i, \phi _i)$とすると,入射波の波数ベクトル$\VEC{k}^{inc}$は, \begin{eqnarray} \VEC{k}^{inc} &=& k_x^{inc} \VEC{u}_x + k_y^{inc} \VEC{u}_y + k_z \VEC{u}_z \nonumber \\ &=& \VEC{k}_t + k_z \VEC{u}_z = k_t \VEC{u}_t + k_z \VEC{u}_z \nonumber \\ &=& k ( \sin \theta _i \cos \phi _i \VEC{u}_x + \sin \theta _i \sin \phi _i \VEC{u}_y + \cos \theta _i \VEC{u}_z ) \end{eqnarray} このとき,導体素子による散乱波の接線電界$\VEC{E}_{s,\tan}$は, \begin{gather} \VEC{E}_{s,\tan} \Big| _{z=0} = \frac{1}{d_xd_y} \sum _{m,n} \widetilde{\DYA{G}}_T^{_{(d_i)EJ}} (\VEC{k}_{tmn}) \cdot \SDV{J}_s (\VEC{k}_{tmn}) e^{j\VEC{k}_{tmn} \cdot \VECi{\rho}} \end{gather} ここで, \begin{align} &\VEC{k}_{tmn} = k_{tmn} \VEC{u}_{tmn} = k_{xm} \VEC{u}_x + k_{yn} \VEC{u}_y \\ &k_{xm} = \frac{2\pi m}{d_x} + k_x^{inc} \\ &k_{yn} = \frac{2\pi n}{d_y} + k_y^{inc} \\ &k_{zmn} = \sqrt{k^2 - k_{xm}^2 - k_{yn}^2} \end{align} また,導体素子がない場合の反射波の接線電界$\VEC{E}_{r,\tan}$は, \begin{gather} \VEC{E}_{r,\tan} \Big| _{z=0} = \Big\{ R_{te}^{E-} V_{1_{\TE}}^- (\VEC{u}_t \times \VEC{u}_z ) + R_{tm}^{E-} V_{1_{\TM}}^- \VEC{u}_t \Big\} e^{j\VEC{k}_t \cdot \VECi{\rho}} \end{gather} 境界面での全反射波$\VEC{E}^{(\FSS)}_{r,\tan}$は上の両電界からなり,これをフロケモードで展開すると, \begin{eqnarray} \VEC{E}^{(\FSS)}_{r,\tan} &=& \VEC{E}_{r,\tan} \Big| _{z=0} + \VEC{E}_{s,\tan} \Big| _{z=0} \nonumber \\ &=& \sum _{m,n} \left\{ V_{[mn]}^+ \left( \VEC{u}_{tmn} \times \VEC{u}_z \right) + V_{(mn)}^+ \VEC{u}_{tmn} \right\} e^{j\VEC{k}_{tmn} \cdot \VECi{\rho}} \end{eqnarray} 反射係数を求めるため,両者を等しくおき,両辺に$\psi _{00}^* (\VECi{\rho})= e^{-j\VEC{k}_{t00} \cdot \VECi{\rho}}$を乗じて, 単位セル(面$S$)にわたって次のように積分する. \begin{eqnarray} &&\int _S \Big[ \sum _{m,n} \left\{ V_{[mn]}^+ \left( \VEC{u}_{tmn} \times \VEC{u}_z \right) + V_{(mn)}^+ \VEC{u}_{tmn} \right\} e^{j\VEC{k}_{tmn} \cdot \VECi{\rho}} \Big] e^{-j\VEC{k}_{t00} \cdot \VECi{\rho}} dS \nonumber \\ &=& \int _S \Big[ \Big\{ R_{te}^{E-} V_{1_{\TE}}^- (\VEC{u}_t \times \VEC{u}_z ) + R_{tm}^{E-} V_{1_{\TM}}^- \VEC{u}_t \Big\} e^{j\VEC{k}_t \cdot \VECi{\rho}} \Big] e^{-j\VEC{k}_{t00} \cdot \VECi{\rho}} dS \nonumber \\ &&+ \int _S \Big[ \frac{1}{d_xd_y} \sum _{m,n} \widetilde{\DYA{G}}_T^{_{(d_i)EJ}} (\VEC{k}_{tmn}) \cdot \SDV{J}_s (\VEC{k}_{tmn}) e^{j\VEC{k}_{tmn} \cdot \VECi{\rho}} \Big] e^{-j\VEC{k}_{t00} \cdot \VECi{\rho}} dS \end{eqnarray} ここで,$k_{t00} = k_t$ゆえ, \begin{eqnarray} \int _S e^{j\VEC{k}_{tmn} \cdot \VECi{\rho}} e^{-j\VEC{k}_{t00} \cdot \VECi{\rho}} dS &=& \int _S e^{j \left( \frac{2\pi m}{d_x}x + \frac{2\pi n}{d_y}y \right) } dS \nonumber \\ &=& d_x d_y \delta _{m0} \delta _{n0} \end{eqnarray} より,$\VEC{u}_t^{(00)} = \VEC{u}_t$,$k_{z00} = k_z$を考慮して, \begin{eqnarray} &&\Big\{ V_{[00]}^+ \left( \VEC{u}_t \times \VEC{u}_z \right) + V_{(00)}^+ \VEC{u}_t \Big\} \nonumber \\ &=& \Big\{ R_{te}^{E-} V_{1_{\TE}}^- \left( \VEC{u}_t \times \VEC{u}_z \right) + R_{tm}^{E-} V_{1_{\TM}}^- \VEC{u}_t \Big\} + \frac{1}{d_xd_y} \widetilde{\DYA{G}}_T^{_{(d_i)EJ}} (\VEC{k}_{t}) \cdot \SDV{J}_s (\VEC{k}_{t}) \end{eqnarray} これより,$(\VEC{u}_t \times \VEC{u}_z)$成分,$\VEC{u}_t$成分は, \begin{eqnarray} V_{[00]}^+ &=& R_{te}^{E-} V_{1_{\TE}}^- + \frac{1}{d_xd_y} \left( \VEC{u}_t \times \VEC{u}_z \right) \cdot \widetilde{\DYA{G}}_T^{_{(d_i)EJ}} (\VEC{k}_{t}) \cdot \SDV{J}_s (\VEC{k}_{t}) \\ V_{(00)}^+ &=& R_{tm}^{E-} V_{1_{\TM}}^- + \frac{1}{d_xd_y} \VEC{u}_t \cdot \widetilde{\DYA{G}}_T^{_{(d_i)EJ}} (\VEC{k}_{t}) \cdot \SDV{J}_s (\VEC{k}_{t}) \end{eqnarray} したがって,主偏波成分の反射係数 $R_{[00]}^{^{\TE \to \TE}}$(TE波), $R_{(00)}^{^{\TM \to \TM}}$(TM波)は, \begin{eqnarray} R_{[00]}^{^{\TE \to \TE}} &=& \frac{V_{[00]}^+}{V_{1_{\TE}}^-} \nonumber \\ &=& \left. R_{te}^{E-} + \frac{1}{d_x d_y} \left( \VEC{u}_t \times \VEC{u}_z \right) \cdot \widetilde{\DYA{G}}_T^{_{(d_i)EJ}} \cdot \SDV{J}_s \right| _{V_{1_{\TE}}^- = 1, V_{1_{\TM}}^- = 0} \\ R_{(00)}^{^{\TM \to \TM}} &=& \frac{V_{(00)}^+}{V_{1_{\TM}}^-} \nonumber \\ &=& \left. R_{tm}^{E-} + \frac{1}{d_x d_y} \VEC{u}_t \cdot \widetilde{\DYA{G}}_T^{_{(d_i)EJ}} \cdot \SDV{J}_s \right| _{V_{1_{\TE}}^- = 0, V_{1_{\TM}}^- = 1} \end{eqnarray} また,交差偏波成分の反射係数 $R_{(00)}^{^{\TE \to \TM}}$, $R_{[00]}^{^{\TM \to \TE}}$は, \begin{eqnarray} R_{(00)}^{^{\TE \to \TM}} &=& \frac{V_{(00)}^+}{V_{1_{\TE}}^-} \nonumber \\ &=& \left. \frac{1}{d_x d_y} \VEC{u}_t \cdot \widetilde{\DYA{G}}_T^{_{(d_i)EJ}} \cdot \SDV{J}_s \right| _{V_{1_{\TE}}^- = 1, V_{1_{\TM}}^- = 0} \\ R_{[00]}^{^{\TM \to \TE}} &=& \frac{V_{[00]}^+}{V_{1_{\TM}}^-} \nonumber \\ &=& \frac{1}{d_x d_y} \left. \left( \VEC{u}_t \times \VEC{u}_z \right) \cdot \widetilde{\DYA{G}}_T^{_{(d_i)EJ}} \cdot \SDV{J}_s \right| _{V_{1_{\TE}}^- = 0, V_{1_{\TM}}^- = 1} \end{eqnarray}