4.7 Roof-top型部分領域基底関数による高速化
四角配列されたFSSを対象とし,
電流分布をroof-top型部分領域基底関数で展開する.
\begin{eqnarray}
B_{xpq} (x,y) &=& \Lambda _{p+\frac{1}{2}} (x) \Xi _q (y)
\\
B_{ypq} (x,y) &=& \Xi _p (x) \Lambda _{q+\frac{1}{2}} (y)
\end{eqnarray}
ここで,$\Lambda _{p} (x)$は三角形を表す関数によって定義され,
\begin{gather}
\Lambda _{p} (x) = \left\{
\begin {array}{cc}
\displaystyle{\frac{1}{\Delta x} \big\{ x-(p-1)\Delta x \big\} } & \big( (p-1)\Delta x \leq x \leq p\Delta x \big) \\
\displaystyle{-\frac{1}{\Delta x} \big\{ x-(p+1)\Delta x \big\} } & \big( p\Delta x \leq x \leq (p+1)\Delta x \big) \\
0 & (\mbox{otherwise})
\end{array} \right.
\end{gather}
あるいは,
\begin{gather}
\Lambda _{p} (x) = \left\{
\begin {array}{cc}
\displaystyle{1-\frac{|x-p\Delta x|}{\Delta x}} & \big( |x-p\Delta x| \leq \Delta x \big) \\
0 & \big( |x-p\Delta x| > \Delta x \big)
\end{array} \right.
\end{gather}
$\Lambda _{q} (y)$も同様である.
また,$\Xi _{p} (x)$は方形を表す関数で,
\begin{gather}
\Xi _{p} (x) = \left\{
\begin {array}{cc}
1 & \displaystyle{\left( |x-p\Delta x| \leq \frac{\Delta x}{2} \right)} \\
0 & \displaystyle{\left( |x-p\Delta x| > \frac{\Delta x}{2} \right)}
\end{array} \right.
\end{gather}
$\Xi _{q} (y)$も同様である.
これより,$\SDS{B}_{xpq}^{mn}$,$\SDS{B}_{ypq}^{mn}$は,
\begin{eqnarray}
\SDS{B}_{xpq}^{mn}
&=& \int _S B_{xpq}(x,y) e^{-j\VEC{k}_{tmn} \cdot \VECi{\rho}} dS
\nonumber \\
&=& \int _{(p-1/2)\Delta x}^{(p+3/2)\Delta x} \hspace{-5mm} \Lambda _{p+\frac{1}{2}}(x) e^{-jk_{xmn} x} dx
\int _{(q-1/2)\Delta y}^{(q+1/2)\Delta y} \hspace{-5mm} \Xi _q (y) e^{-jk_{ymn}y} dy
\end{eqnarray}
ここで,
$x' \equiv x-(p+1/2) \Delta x$,$y'\equiv y-q\Delta y$とおくと,
\begin{eqnarray}
\SDS{B}_{xpq}^{mn}
&=& \left\{ \int _{-\Delta x}^{0} \hspace{-1mm} \left( 1+\frac{x'}{\Delta x} \right) e^{-jk_{xm} x'} dx'
+ \int _{0}^{\Delta x} \hspace{-1mm} \left( 1-\frac{x'}{\Delta x} \right) e^{-jk_{xm} x'} dx' \right\}
\nonumber \\
&&\cdot \left( \int _{-\Delta y/2}^{\Delta y/2} e^{-jk_{yn}y'} dy' \right)
e^{-j(k_{xm} p \Delta x + k_{yn} q \Delta y)} e^{-jk_{xm} \frac{\Delta x}{2}}
\nonumber \\
&=& \Delta x \left( \frac{\sin (k_{xm}\Delta x /2)}{k_{xm}\Delta x /2} \right) ^2
\cdot \Delta y \frac{\sin (k_{yn}\Delta y /2)}{k_{yn}\Delta y /2}
\nonumber \\
&&\cdot e^{-j(k_{xm} p \Delta x + k_{yn} q \Delta y)} e^{-jk_{xm} \frac{\Delta x}{2}}
\nonumber \\
&=& \Delta x \Delta y \ \mbox{sinc} ^2 \left( k_{xm} \frac{\Delta x}{2} \right) \ \mbox{sinc} \left( k_{yn} \frac{\Delta y}{2} \right)
\nonumber \\
&&\cdot e^{-j(k_{xm} p \Delta x + k_{yn} q \Delta y)} e^{-jk_{xm} \frac{\Delta x}{2}}
\nonumber \\
&\equiv& \SDS{B}_x^{mn} e^{-j(k_{xm} p \Delta x + k_{yn} q \Delta y)} e^{-jk_{xm} \frac{\Delta x}{2}}
\\
\SDS{B}_{ypq}^{mn}
&=& \Delta x \Delta y \ \mbox{sinc} \left( k_{xm} \frac{\Delta x}{2} \right) \ \mbox{sinc} ^2 \left( k_{yn} \frac{\Delta y}{2} \right)
\nonumber \\
&&\cdot e^{-j(k_{xm} p \Delta x + k_{yn} q \Delta y)} e^{-jk_{yn} \frac{\Delta y}{2}}
\nonumber \\
&\equiv& \SDS{B}_y^{mn} e^{-j(k_{xm} p \Delta x + k_{yn} q \Delta y)} e^{-jk_{yn} \frac{\Delta y}{2}}
\end{eqnarray}
試行関数
$T_{xkl}$,$T_{ykl}$
を,基底関数と同じ関数にとると,
$\SDS{T}_{xkl}^{mn}$,$\SDS{T}_{ykl}^{mn}$は,
\begin{eqnarray}
\SDS{T}_{xkl}^{mn}
&=& \Delta x \Delta y \ \mbox{sinc} ^2 \left( k_{xm} \frac{\Delta x}{2} \right) \ \mbox{sinc} \left( k_{yn} \frac{\Delta y}{2} \right)
\nonumber \\
&&\cdot e^{-j(k_{xm} k \Delta x + k_{yn} l \Delta y)} e^{-jk_{xm} \frac{\Delta x}{2}}
\nonumber \\
&\equiv& \SDS{T}_x^{mn} e^{-j(k_{xm} k \Delta x + k_{yn} l \Delta y)} e^{-jk_{xm} \frac{\Delta x}{2}}
\\
\SDS{T}_{ykl}^{mn}
&=& \Delta x \Delta y \ \mbox{sinc} \left( k_{xm} \frac{\Delta x}{2} \right) \ \mbox{sinc} ^2 \left( k_{yn} \frac{\Delta y}{2} \right)
\nonumber \\
&&\cdot e^{-j(k_{xm} k \Delta x + k_{yn} l \Delta y)} e^{-jk_{yn} \frac{\Delta y}{2}}
\nonumber \\
&\equiv& \SDS{T}_y^{mn} e^{-j(k_{xm} k \Delta x + k_{yn} l \Delta y)} e^{-jk_{yn} \frac{\Delta y}{2}}
\end{eqnarray}
ただし,
\begin{gather}
\SDS{B}_{x}^{mn} = \SDS{T}_{x}^{mn}
= \Delta x \Delta y \ \mbox{sinc} ^2 \left( k_{xm} \frac{\Delta x}{2} \right) \ \mbox{sinc} \left( k_{yn} \frac{\Delta y}{2} \right) \\
\SDS{B}_{y}^{mn} = \SDS{T}_{y}^{mn}
= \Delta x \Delta y \ \mbox{sinc} \left( k_{xm} \frac{\Delta x}{2} \right) \ \mbox{sinc} ^2 \left( k_{yn} \frac{\Delta y}{2} \right)
\end{gather}
これより,$\SDS{T}_{xkl}^{mn*} \SDS{B}_{xpq}^{mn} $は,
\begin{gather}
\SDS{T}_{xkl}^{mn*} \SDS{B}_{xpq}^{mn}
= \SDS{T}_{x}^{mn*} \SDS{B}_{x}^{mn} \cdot e^{j(k_{xm} (k-p) \Delta x + k_{yn} (l-q) \Delta y)}
\end{gather}
ここで,単位セル内の$x$方向および$y$方向のメッシュの数を$M_p$,$N_q$とすると,
\begin{eqnarray}
d_x &=& M_p \Delta x
\\
d_y &=& N_q \Delta y
\end{eqnarray}
また,
\begin{eqnarray}
\bar{p} &\equiv& k-p
\\
\bar{q} &\equiv& l-q
\end{eqnarray}
とおくと
\begin{eqnarray}
k_{xm} (k-p) \Delta x
&=& \left( \frac{2\pi m}{d_x} + k_x^{inc} \right) \bar{p} \Delta x
\nonumber \\
&=& \left( \frac{2\pi m}{M_p} + k_x^{inc} \Delta x \right) \bar{p}
\\
k_{yn} (l-q) \Delta y
&=& \left( \frac{2\pi n}{d_y} + k_y^{inc} \right) \bar{q} \Delta y
\nonumber \\
&=& \left( \frac{2\pi n}{N_q} + k_y^{inc} \Delta y \right) \bar{q}
\end{eqnarray}
より,
\begin{gather}
\SDS{T}_{xkl}^{mn*} \SDS{B}_{xpq}^{mn}
= \SDS{T}_{x}^{mn*} \SDS{B}_{x}^{mn} \ e^{j2\pi \left( \frac{m\bar{p}}{M_p} + \frac{n\bar{q}}{N_q} \right)}
W_{\bar{p}\bar{q}}^*
\end{gather}
ただし,
\begin{gather}
W_{\bar{p}\bar{q}} \equiv e^{-j(k_x^{inc} \bar{p} \Delta x + k_y^{inc} \bar{q} \Delta y)}
\end{gather}
同様にして,$\SDS{T}_{xkl}^{mn*} \SDS{B}_{ypq}^{mn}$,
$\SDS{T}_{ykl}^{mn*} \SDS{B}_{xpq}^{mn}$,$\SDS{T}_{ykl}^{mn*} \SDS{B}_{ypq}^{mn}$は,
\begin{gather}
\SDS{T}_{xkl}^{mn*} \SDS{B}_{ypq}^{mn}
= \SDS{T}_{x}^{mn*} \SDS{B}_{y}^{mn} \ e^{jk_{xm} \frac{\Delta x}{2}} e^{-jk_{yn} \frac{\Delta y}{2}}
e^{j2\pi \left( \frac{m\bar{p}}{M_p} + \frac{n\bar{q}}{N_q} \right)} W_{\bar{p}\bar{q}}^* \\
\SDS{T}_{ykl}^{mn*} \SDS{B}_{xpq}^{mn}
= \SDS{T}_{y}^{mn*} \SDS{B}_{x}^{mn} \ e^{-jk_{xm} \frac{\Delta x}{2}} e^{jk_{yn} \frac{\Delta y}{2}}
e^{j2\pi \left( \frac{m\bar{p}}{M_p} + \frac{n\bar{q}}{N_q} \right)} W_{\bar{p}\bar{q}}^*
\end{gather}
また,
\begin{gather}
\SDS{T}_{ykl}^{mn*} \SDS{B}_{ypq}^{mn}
= \SDS{T}_{y}^{mn*} \SDS{B}_{y}^{mn} \ e^{j2\pi \left( \frac{m\bar{p}}{M_p} + \frac{n\bar{q}}{N_q} \right)} W_{\bar{p}\bar{q}}^*
\end{gather}
いま,簡単のため,導体損がない場合を考えると,行列要素
$z_{kl,pq}^{xx}$
は,
\begin{eqnarray}
z_{kl,pq}^{xx}
&=& \frac{1}{d_xd_y} \sum _{m,n} \SDS{T}_{xkl}^{mn*} \SDS{G}_{xx}^{mn} \SDS{B}_{xpq}^{mn}
\nonumber \\
&=& \frac{1}{d_xd_y} \sum _{m,n} \SDS{T}_{x}^{mn*} \SDS{G}_{xx}^{mn} \SDS{B}_{x}^{mn}
e^{j2\pi \left( \frac{m\bar{p}}{M_p} + \frac{n\bar{q}}{N_q} \right)} W_{\bar{p}\bar{q}}^*
\end{eqnarray}
ここで,整数$m'$,$n'$を
\begin{eqnarray}
m' &=& -\frac{M_p}{2}, -\frac{M_p}{2}+1, \cdots , \frac{M_p}{2}-1
\\
n' &=& -\frac{N_q}{2}, -\frac{N_q}{2}+1, \cdots , \frac{N_q}{2}-1
\end{eqnarray}
で新たに定義し,
\begin{eqnarray}
m &\equiv& m'+rM_p
\\
n &\equiv& n' + sN_q
\end{eqnarray}
とおくと($r$,$s$は整数),
\begin{eqnarray}
e^{j2\pi \left( \frac{m\bar{p}}{M_p} + \frac{n\bar{q}}{N_q} \right)}
&=& e^{j2\pi \left( \frac{(m'+rM_p)\bar{p}}{M_p} + \frac{(n'+sN_q)\bar{q}}{N_q} \right)}
\nonumber \\
&=& e^{j2\pi \left( \frac{m'\bar{p}}{M_p} + \frac{n'\bar{q}}{N_q} \right)} \ e^{j2\pi (r\bar{p}+s\bar{q})}
\nonumber \\
&=& e^{j2\pi \left( \frac{m'\bar{p}}{M_p} + \frac{n'\bar{q}}{N_q} \right)}
\end{eqnarray}
これより,行列要素
$z_{kl,pq}^{xx}$
は,
\begin{eqnarray}
z_{kl,pq}^{xx}
&=& \frac{W_{\bar{p}\bar{q}}^*}{d_xd_y} \sum _{m,n} \SDS{T}_{x}^{mn*} \SDS{G}_{xx}^{mn} \SDS{B}_{x}^{mn}
e^{j2\pi \left( \frac{m'\bar{p}}{M_p} + \frac{n'\bar{q}}{N_q} \right)}
\nonumber \\
&=& \frac{W_{\bar{p}\bar{q}}^*}{d_xd_y} \sum _{m',n'} \left( \sum _{r,s} \SDS{T}_{x}^{mn*} \SDS{G}_{xx}^{mn} \SDS{B}_{x}^{mn} \right)
e^{j2\pi \left( \frac{m'\bar{p}}{M_p} + \frac{n'\bar{q}}{N_q} \right)}
\end{eqnarray}
ここで,
\begin{gather}
\SDS{g}_{m'n'}^{xx} \equiv \frac{1}{\Delta x \Delta y} \sum _{r}\ \sum _{s} \SDS{T}_{x}^{mn*} \SDS{G}_{xx}^{mn} \SDS{B}_{x}^{mn}
\end{gather}
とおくと,
\begin{eqnarray}
z_{kl,pq}^{xx}
&=& W_{\bar{p}\bar{q}}^* \ \frac{1}{M_p N_q} \hspace{-2mm} \sum _{m'=-\frac{M_p}{2}}^{\frac{M_p}{2}-1} \sum _{n'=-\frac{N_q}{2}}^{\frac{N_q}{2}-1}
\SDS{g}^{xx}_{m'n'} e^{j2\pi \left( \frac{m'\bar{p}}{M_p} + \frac{n'\bar{q}}{N_q} \right)}
\nonumber \\
&=& W_{\bar{p}\bar{q}}^* \ \mbox{FFT}^{-1}_{\bar{p}\bar{q}} \Big[ \SDS{g}_{m'n'}^{xx} \Big]
\end{eqnarray}
同様にして,$z_{kl,pq}^{xy}$は,
\begin{gather}
z_{kl,pq}^{xy}
= \frac{W_{\bar{p}\bar{q}}^*}{d_xd_y} \sum _{m,n} \SDS{T}_{x}^{mn*} \SDS{G}_{xy}^{mn} \SDS{B}_{y}^{mn}
e^{j2\pi \left( \frac{m'\bar{p}}{M_p} + \frac{n'\bar{q}}{N_q} \right)}
e^{j\left( k_{xm} \frac{\Delta x}{2} -k_{yn} \frac{\Delta y}{2} \right) }
\end{gather}
ここで,
\begin{gather}
\SDS{g}_{m'n'}^{xy} \equiv \frac{1}{\Delta x \Delta y} \sum _{r}\ \sum _{s} \SDS{T}_{x}^{mn*} \SDS{G}_{xy}^{mn} \SDS{B}_{y}^{mn}
e^{j\left( k_{xm} \frac{\Delta x}{2} -k_{yn} \frac{\Delta y}{2} \right) }
\end{gather}
とおくと,
\begin{eqnarray}
z_{kl,pq}^{xy}
&=& W_{\bar{p}\bar{q}}^* \ \frac{1}{M_p N_q} \sum _{m'=-\frac{M_p}{2}}^{\frac{M_p}{2}-1} \sum _{n'=-\frac{N_q}{2}}^{\frac{N_q}{2}-1}
\SDS{g}^{xy}_{m'n'} e^{j2\pi \left( \frac{m'\bar{p}}{M_p} + \frac{n'\bar{q}}{N_q} \right)}
\nonumber \\
&=& W_{\bar{p}\bar{q}}^* \ \mbox{FFT}^{-1}_{\bar{p}\bar{q}} \Big[ \SDS{g}_{m'n'}^{xy} \Big]
\end{eqnarray}
また,$z_{kl,pq}^{yx}$は,
\begin{gather}
z_{kl,pq}^{yx}
= \frac{W_{\bar{p}\bar{q}}^*}{d_xd_y} \sum _{m,n} \SDS{T}_{y}^{mn*} \SDS{G}_{yx}^{mn} \SDS{B}_{x}^{mn}
e^{j2\pi \left( \frac{m'\bar{p}}{M_p} + \frac{n'\bar{q}}{N_q} \right)}
e^{j\left( -k_{xm} \frac{\Delta x}{2} +k_{yn} \frac{\Delta y}{2} \right) }
\end{gather}
ここで,
\begin{gather}
\SDS{g}_{m'n'}^{yx} \equiv \frac{1}{\Delta x \Delta y} \sum _{r}\ \sum _{s} \SDS{T}_{y}^{mn*} \SDS{G}_{yx}^{mn} \SDS{B}_{x}^{mn}
e^{j\left( -k_{xm} \frac{\Delta x}{2} +k_{yn} \frac{\Delta y}{2} \right) }
\end{gather}
とおくと,
\begin{eqnarray}
z_{kl,pq}^{yx}
&=& W_{\bar{p}\bar{q}}^* \ \frac{1}{M_p N_q} \sum _{m'=-\frac{M_p}{2}}^{\frac{M_p}{2}-1} \sum _{n'=-\frac{N_q}{2}}^{\frac{N_q}{2}-1}
\SDS{g}^{yx}_{m'n'} e^{j2\pi \left( \frac{m'\bar{p}}{M_p} + \frac{n'\bar{q}}{N_q} \right)}
\nonumber \\
&=& W_{\bar{p}\bar{q}}^* \ \mbox{FFT}^{-1}_{\bar{p}\bar{q}} \Big[ \SDS{g}_{m'n'}^{yx} \Big]
\end{eqnarray}
そして,$z_{kl,pq}^{yy}$は,
\begin{gather}
z_{kl,pq}^{yy}
= \frac{W_{\bar{p}\bar{q}}^*}{d_xd_y} \sum _{m,n} \SDS{T}_{y}^{mn*} \SDS{G}_{yy}^{mn} \SDS{B}_{y}^{mn}
e^{j2\pi \left( \frac{m'\bar{p}}{M_p} + \frac{n'\bar{q}}{N_q} \right)}
\end{gather}
ここで,
\begin{gather}
\SDS{g}_{m'n'}^{yy} \equiv \frac{1}{\Delta x \Delta y} \sum _{r}\ \sum _{s} \SDS{T}_{y}^{mn*} \SDS{G}_{yy}^{mn} \SDS{B}_{y}^{mn}
\end{gather}
とおくと,
\begin{eqnarray}
z_{kl,pq}^{yy}
&=& W_{\bar{p}\bar{q}}^* \ \frac{1}{M_p N_q} \sum _{m'=-\frac{M_p}{2}}^{\frac{M_p}{2}-1} \sum _{n'=-\frac{N_q}{2}}^{\frac{N_q}{2}-1}
\SDS{g}^{yy}_{m'n'} e^{j2\pi \left( \frac{m'\bar{p}}{M_p} + \frac{n'\bar{q}}{N_q} \right)}
\nonumber \\
&=& W_{\bar{p}\bar{q}}^* \ \mbox{FFT}^{-1}_{\bar{p}\bar{q}} \Big[ \SDS{g}_{m'n'}^{yy} \Big]
\end{eqnarray}
よって,
\begin{eqnarray}
v_{xkl} &=&
\sum _{p=-\frac{M_p}{2}}^{\frac{M_p}{2}-1} \sum _{q=-\frac{N_q}{2}}^{\frac{N_q}{2}-1}
\Big( z_{kl,pq}^{xx} I_{xpq} + z_{kl,pq}^{xy} I_{ypq} \Big)
\nonumber \\
&=& \sum _{p=-\frac{M_p}{2}}^{\frac{M_p}{2}-1} \sum _{q=-\frac{N_q}{2}}^{\frac{N_q}{2}-1}
W_{\bar{p}\bar{q}}^* \left( \mbox{FFT}^{-1}_{\bar{p}\bar{q}} \Big[ \SDS{g}_{m'n'}^{xx} \Big] I_{xpq}
+ \mbox{FFT}^{-1}_{\bar{p}\bar{q}} \Big[ \SDS{g}_{m'n'}^{xy} \Big] I_{ypq} \right) \\
v_{ykl} &=&
\sum _{p=-\frac{M_p}{2}}^{\frac{M_p}{2}-1} \sum _{q=-\frac{N_q}{2}}^{\frac{N_q}{2}-1}
\Big( z_{kl,pq}^{yx} I_{xpq} + z_{kl,pq}^{yy} I_{ypq} \Big)
\nonumber \\
&=& \sum _{p=-\frac{M_p}{2}}^{\frac{M_p}{2}-1} \sum _{q=-\frac{N_q}{2}}^{\frac{N_q}{2}-1}
W_{\bar{p}\bar{q}}^* \left( \mbox{FFT}^{-1}_{\bar{p}\bar{q}} \Big[ \SDS{g}_{m'n'}^{yx} \Big] I_{xpq}
+ \mbox{FFT}^{-1}_{\bar{p}\bar{q}} \Big[ \SDS{g}_{m'n'}^{yy} \Big] I_{ypq} \right)
\end{eqnarray}
成分を行列表示すると,
\begin{gather}
\begin{pmatrix}
v_{xkl} \\ v_{ykl}
\end{pmatrix}
= \sum _{p=-\frac{M_p}{2}}^{\frac{M_p}{2}-1} \sum _{q=-\frac{N_q}{2}}^{\frac{N_q}{2}-1} W_{\bar{p}\bar{q}}^*
\left\{ \mbox{FFT}^{-1}_{\bar{p}\bar{q}}
\begin{pmatrix}
\SDS{g}_{m'n'}^{xx} & \SDS{g}_{m'n'}^{xy} \\ \SDS{g}_{m'n'}^{yx} & \SDS{g}_{m'n'}^{yy}
\end{pmatrix}
\right\}
\begin{pmatrix}
I_{xpq} \\ I_{ypq}
\end{pmatrix}
\end{gather}
ここで,$k$,$l$は,
\begin{gather}
k = -\frac{M_p}{2}, -\frac{M_p}{2}+1, \cdots , \frac{M_p}{2}-1 \\
l = -\frac{N_q}{2}, -\frac{N_q}{2}+1, \cdots , \frac{N_q}{2}-1
\end{gather}
これより,電流分布の未知係数$I_{xpq}$,$I_{ypq}$は次式より求めることができる.
\begin{gather}
\begin{pmatrix}
\VECi{I}_x \\ \VECi{I}_y
\end{pmatrix}
=
\begin{pmatrix}
\Big[ Z_{xx} \Big] & \Big[ Z_{xy} \Big] \\
\Big[ Z_{yx} \Big] & \Big[ Z_{yy} \Big]
\end{pmatrix}^{-1}
\begin{pmatrix}
\VECi{V}_x \\ \VECi{V}_y
\end{pmatrix}
\end{gather}
また,$\bar{p}=k-p$,$\bar{q}=l-q$より,
\begin{eqnarray}
W_{\bar{p}\bar{q}}^*
&=& e^{j \left( k_x^{inc} \bar{p} \Delta x + k_y^{inc} \bar{q} \Delta y \right)}
\nonumber \\
&=& e^{j \left( k_x^{inc} k \Delta x + k_y^{inc} l \Delta y \right)} e^{-j \left( k_x^{inc} p \Delta x + k_y^{inc} q \Delta y \right)}
\nonumber \\
&=& W_{kl}^* W_{pq}
\end{eqnarray}
そして,
\begin{gather}
\frac{m'\bar{p}}{M_p} + \frac{n'\bar{q}}{N_q}
= \left( \frac{m'k}{M_p} + \frac{n'l}{N_q} \right) - \left( \frac{m'p}{M_p} + \frac{n'q}{N_q} \right)
\end{gather}
これより,
\begin{eqnarray}
\sum _{p,q} z_{kl,pq} I_{xpq}
&=& \sum _{p,q} W_{\bar{p}\bar{q}}^* \ \frac{1}{M_p N_q} \sum _{m',n'}
\SDS{g}^{xx}_{m'n'} e^{j2\pi \left( \frac{m'\bar{p}}{M_p} + \frac{n'\bar{q}}{N_q} \right)} I_{xpq}
\nonumber \\
&=& \sum _{p,q} W_{kl}^* W_{pq} \ \frac{1}{M_p N_q} \sum _{m',n'}
\SDS{g}^{xx}_{m'n'} e^{j2\pi \left( \frac{m'k}{M_p} + \frac{n'l}{N_q} \right)}
e^{-j2\pi \left( \frac{m'p}{M_p} + \frac{n'q}{N_q} \right)} I_{xpq}
\nonumber \\
&=& \frac{W_{kl}^*}{M_p N_q} \sum _{m',n'} \SDS{g}^{xx}_{m'n'} \left( \sum _{p,q} W_{pq} I_{xpq}
e^{-j2\pi \left( \frac{m'p}{M_p} + \frac{n'q}{N_q} \right)} \right) e^{j2\pi \left( \frac{m'k}{M_p} + \frac{n'l}{N_q} \right)}
\end{eqnarray}
上式の$( \ )$は,FFTで計算でき,次のようになる.
\begin{eqnarray}
\sum _{p,q} z_{kl,pq} I_{xpq}
&=& \frac{W_{kl}^*}{M_p N_q} \sum _{m',n'} \SDS{g}^{xx}_{m'n'} \left( \mbox{FFT}_{m'n'} \Big[ W_{pq} I_{xpq} \Big] \right)
e^{j2\pi \left( \frac{m'k}{M_p} + \frac{n'l}{N_q} \right)}
\nonumber \\
&=& W_{kl}^* \ \mbox{FFT}^{-1}_{k,l} \left[ \SDS{g}^{xx}_{m'n'} \left( \mbox{FFT}_{m'n'} \Big[ W_{pq} I_{xpq} \Big] \right) \right]
\end{eqnarray}
したがって,
\begin{eqnarray}
v_{xkl}
&=& W_{kl}^* \ \mbox{FFT}^{-1}_{k,l} \left[ \SDS{g}^{xx}_{m'n'} \left( \mbox{FFT}_{m'n'} \Big[ W_{pq} I_{xpq} \Big] \right) \right.
\nonumber \\
&&\left. + \SDS{g}^{xy}_{m'n'} \left( \mbox{FFT}_{m'n'} \Big[ W_{pq} I_{ypq} \Big] \right) \right]
\\
v_{ykl}
&=& W_{kl}^* \ \mbox{FFT}^{-1}_{k,l} \left[ \SDS{g}^{yx}_{m'n'} \left( \mbox{FFT}_{m'n'} \Big[ W_{pq} I_{xpq} \Big] \right) \right.
\nonumber \\
&&\left. + \SDS{g}^{yy}_{m'n'} \left( \mbox{FFT}_{m'n'} \Big[ W_{pq} I_{ypq} \Big] \right) \right]
\end{eqnarray}
成分を行列表示すると,
\begin{gather}
\begin{pmatrix}
v_{xkl} \\ v_{ykl}
\end{pmatrix}
= W_{k,l}^* \
\mbox{FFT}^{-1}_{k,l} \left[
\begin{pmatrix}
\SDS{g}_{m'n'}^{xx} & \SDS{g}_{m'n'}^{xy} \\ \SDS{g}_{m'n'}^{yx} & \SDS{g}_{m'n'}^{yy}
\end{pmatrix}
\mbox{FFT}_{m'n'} \left\{ W_{pq}
\begin{pmatrix}
I_{xpq} \\ I_{ypq}
\end{pmatrix}
\right\} \right]
\end{gather}
ここで,$k$,$l$は,
\begin{gather}
k = -\frac{M_p}{2}, -\frac{M_p}{2}+1, \cdots , \frac{M_p}{2}-1
\\
l = -\frac{N_q}{2}, -\frac{N_q}{2}+1, \cdots , \frac{N_q}{2}-1
\end{gather}
また,導体損を考慮すると,
\begin{gather}
F_{x\bar{p}\bar{q}} \equiv \int _S T_{xkl}^* B_{xpq} dS
= \delta _{lq} \left\{
\begin {array}{cc}
\displaystyle{\frac{2}{3} \Delta x \Delta y} & (\bar{p}=0) \\
\displaystyle{\frac{1}{6} \Delta x \Delta y} & (|\bar{p}|=1) \\
0 & (\mbox{otherwise})
\end{array} \right.
\end{gather}
\begin{gather}
F_{y\bar{p}\bar{q}} \equiv \int _S T_{ykl}^* B_{ypq} dS
= \delta _{kp} \left\{
\begin {array}{cc}
\displaystyle{\frac{2}{3} \Delta x \Delta y} & (\bar{q}=0) \\
\displaystyle{\frac{1}{6} \Delta x \Delta y} & (|\bar{q}|=1) \\
0 & (\mbox{otherwise})
\end{array} \right.
\end{gather}
これより,
\begin{gather}
v_{xkl}
= \sum _{p,q}
\left\{ \left( W_{\bar{p}\bar{q}}^* \mbox{FFT}^{-1}_{\bar{p}\bar{q}} \Big[ \SDS{g}_{m'n'}^{xx} \Big] - Z_s F_{x\bar{p}\bar{q}} \right) I_{xpq}
+ W_{\bar{p}\bar{q}}^* \mbox{FFT}^{-1}_{\bar{p}\bar{q}} \Big[ \SDS{g}_{m'n'}^{xy} \Big] I_{ypq} \right\} \\
v_{ykl}
= \sum _{p,q}
\left\{ W_{\bar{p}\bar{q}}^* \mbox{FFT}^{-1}_{\bar{p}\bar{q}} \Big[ \SDS{g}_{m'n'}^{yx} \Big] I_{xpq}
+ \left( W_{\bar{p}\bar{q}}^* \mbox{FFT}^{-1}_{\bar{p}\bar{q}} \Big[ \SDS{g}_{m'n'}^{yy} \Big] - Z_s F_{y\bar{p}\bar{q}} \right) I_{ypq} \right\}
\end{gather}
成分を行列表示すると,
\begin{gather}
\begin{pmatrix}
v_{xkl} \\ v_{ykl}
\end{pmatrix}
= \hspace{-3mm}
\sum _{p=-\frac{M_p}{2}}^{\frac{M_p}{2}-1} \sum _{q=-\frac{N_q}{2}}^{\frac{N_q}{2}-1}
\left\{ W_{\bar{p}\bar{q}}^* \ \mbox{FFT}^{-1}_{\bar{p}\bar{q}}
\begin{pmatrix}
\SDS{g}_{m'n'}^{xx} & \SDS{g}_{m'n'}^{xy} \\ \SDS{g}_{m'n'}^{yx} & \SDS{g}_{m'n'}^{yy}
\end{pmatrix} \right.
\nonumber \\
\left. - Z_s
\begin{pmatrix}
F_{x\bar{p}\bar{q}} & 0 \\ 0 & F_{y\bar{p}\bar{q}}
\end{pmatrix}
\right\}
\begin{pmatrix}
I_{xpq} \\ I_{ypq}
\end{pmatrix}
\end{gather}
また,
\begin{eqnarray}
\begin{pmatrix}
v_{xkl} \\ v_{ykl}
\end{pmatrix}
&=& W_{k,l}^* \
\mbox{FFT}^{-1}_{k,l} \left[
\begin{pmatrix}
\SDS{g}_{m'n'}^{xx} & \SDS{g}_{m'n'}^{xy} \\ \SDS{g}_{m'n'}^{yx} & \SDS{g}_{m'n'}^{yy}
\end{pmatrix}
\mbox{FFT}_{m'n'} \left\{ W_{pq}
\begin{pmatrix}
I_{xpq} \\ I_{ypq}
\end{pmatrix}
\right\} \right]
\nonumber \\
&&- Z_s
\begin{pmatrix}
F_{x\bar{p}\bar{q}} & 0 \\ 0 & F_{y\bar{p}\bar{q}}
\end{pmatrix}
\begin{pmatrix}
I_{xpq} \\ I_{ypq}
\end{pmatrix}
\end{eqnarray}