4.7 Roof-top型部分領域基底関数による高速化

 四角配列されたFSSを対象とし, 電流分布をroof-top型部分領域基底関数で展開する. \begin{eqnarray} B_{xpq} (x,y) &=& \Lambda _{p+\frac{1}{2}} (x) \Xi _q (y) \\ B_{ypq} (x,y) &=& \Xi _p (x) \Lambda _{q+\frac{1}{2}} (y) \end{eqnarray} ここで,$\Lambda _{p} (x)$は三角形を表す関数によって定義され, \begin{gather} \Lambda _{p} (x) = \left\{ \begin {array}{cc} \displaystyle{\frac{1}{\Delta x} \big\{ x-(p-1)\Delta x \big\} } & \big( (p-1)\Delta x \leq x \leq p\Delta x \big) \\ \displaystyle{-\frac{1}{\Delta x} \big\{ x-(p+1)\Delta x \big\} } & \big( p\Delta x \leq x \leq (p+1)\Delta x \big) \\ 0 & (\mbox{otherwise}) \end{array} \right. \end{gather} あるいは, \begin{gather} \Lambda _{p} (x) = \left\{ \begin {array}{cc} \displaystyle{1-\frac{|x-p\Delta x|}{\Delta x}} & \big( |x-p\Delta x| \leq \Delta x \big) \\ 0 & \big( |x-p\Delta x| > \Delta x \big) \end{array} \right. \end{gather} $\Lambda _{q} (y)$も同様である. また,$\Xi _{p} (x)$は方形を表す関数で, \begin{gather} \Xi _{p} (x) = \left\{ \begin {array}{cc} 1 & \displaystyle{\left( |x-p\Delta x| \leq \frac{\Delta x}{2} \right)} \\ 0 & \displaystyle{\left( |x-p\Delta x| > \frac{\Delta x}{2} \right)} \end{array} \right. \end{gather} $\Xi _{q} (y)$も同様である. これより,$\SDS{B}_{xpq}^{mn}$,$\SDS{B}_{ypq}^{mn}$は, \begin{eqnarray} \SDS{B}_{xpq}^{mn} &=& \int _S B_{xpq}(x,y) e^{-j\VEC{k}_{tmn} \cdot \VECi{\rho}} dS \nonumber \\ &=& \int _{(p-1/2)\Delta x}^{(p+3/2)\Delta x} \hspace{-5mm} \Lambda _{p+\frac{1}{2}}(x) e^{-jk_{xmn} x} dx \int _{(q-1/2)\Delta y}^{(q+1/2)\Delta y} \hspace{-5mm} \Xi _q (y) e^{-jk_{ymn}y} dy \end{eqnarray} ここで, $x' \equiv x-(p+1/2) \Delta x$,$y'\equiv y-q\Delta y$とおくと, \begin{eqnarray} \SDS{B}_{xpq}^{mn} &=& \left\{ \int _{-\Delta x}^{0} \hspace{-1mm} \left( 1+\frac{x'}{\Delta x} \right) e^{-jk_{xm} x'} dx' + \int _{0}^{\Delta x} \hspace{-1mm} \left( 1-\frac{x'}{\Delta x} \right) e^{-jk_{xm} x'} dx' \right\} \nonumber \\ &&\cdot \left( \int _{-\Delta y/2}^{\Delta y/2} e^{-jk_{yn}y'} dy' \right) e^{-j(k_{xm} p \Delta x + k_{yn} q \Delta y)} e^{-jk_{xm} \frac{\Delta x}{2}} \nonumber \\ &=& \Delta x \left( \frac{\sin (k_{xm}\Delta x /2)}{k_{xm}\Delta x /2} \right) ^2 \cdot \Delta y \frac{\sin (k_{yn}\Delta y /2)}{k_{yn}\Delta y /2} \nonumber \\ &&\cdot e^{-j(k_{xm} p \Delta x + k_{yn} q \Delta y)} e^{-jk_{xm} \frac{\Delta x}{2}} \nonumber \\ &=& \Delta x \Delta y \ \mbox{sinc} ^2 \left( k_{xm} \frac{\Delta x}{2} \right) \ \mbox{sinc} \left( k_{yn} \frac{\Delta y}{2} \right) \nonumber \\ &&\cdot e^{-j(k_{xm} p \Delta x + k_{yn} q \Delta y)} e^{-jk_{xm} \frac{\Delta x}{2}} \nonumber \\ &\equiv& \SDS{B}_x^{mn} e^{-j(k_{xm} p \Delta x + k_{yn} q \Delta y)} e^{-jk_{xm} \frac{\Delta x}{2}} \\ \SDS{B}_{ypq}^{mn} &=& \Delta x \Delta y \ \mbox{sinc} \left( k_{xm} \frac{\Delta x}{2} \right) \ \mbox{sinc} ^2 \left( k_{yn} \frac{\Delta y}{2} \right) \nonumber \\ &&\cdot e^{-j(k_{xm} p \Delta x + k_{yn} q \Delta y)} e^{-jk_{yn} \frac{\Delta y}{2}} \nonumber \\ &\equiv& \SDS{B}_y^{mn} e^{-j(k_{xm} p \Delta x + k_{yn} q \Delta y)} e^{-jk_{yn} \frac{\Delta y}{2}} \end{eqnarray} 試行関数 $T_{xkl}$,$T_{ykl}$ を,基底関数と同じ関数にとると, $\SDS{T}_{xkl}^{mn}$,$\SDS{T}_{ykl}^{mn}$は, \begin{eqnarray} \SDS{T}_{xkl}^{mn} &=& \Delta x \Delta y \ \mbox{sinc} ^2 \left( k_{xm} \frac{\Delta x}{2} \right) \ \mbox{sinc} \left( k_{yn} \frac{\Delta y}{2} \right) \nonumber \\ &&\cdot e^{-j(k_{xm} k \Delta x + k_{yn} l \Delta y)} e^{-jk_{xm} \frac{\Delta x}{2}} \nonumber \\ &\equiv& \SDS{T}_x^{mn} e^{-j(k_{xm} k \Delta x + k_{yn} l \Delta y)} e^{-jk_{xm} \frac{\Delta x}{2}} \\ \SDS{T}_{ykl}^{mn} &=& \Delta x \Delta y \ \mbox{sinc} \left( k_{xm} \frac{\Delta x}{2} \right) \ \mbox{sinc} ^2 \left( k_{yn} \frac{\Delta y}{2} \right) \nonumber \\ &&\cdot e^{-j(k_{xm} k \Delta x + k_{yn} l \Delta y)} e^{-jk_{yn} \frac{\Delta y}{2}} \nonumber \\ &\equiv& \SDS{T}_y^{mn} e^{-j(k_{xm} k \Delta x + k_{yn} l \Delta y)} e^{-jk_{yn} \frac{\Delta y}{2}} \end{eqnarray} ただし, \begin{gather} \SDS{B}_{x}^{mn} = \SDS{T}_{x}^{mn} = \Delta x \Delta y \ \mbox{sinc} ^2 \left( k_{xm} \frac{\Delta x}{2} \right) \ \mbox{sinc} \left( k_{yn} \frac{\Delta y}{2} \right) \\ \SDS{B}_{y}^{mn} = \SDS{T}_{y}^{mn} = \Delta x \Delta y \ \mbox{sinc} \left( k_{xm} \frac{\Delta x}{2} \right) \ \mbox{sinc} ^2 \left( k_{yn} \frac{\Delta y}{2} \right) \end{gather} これより,$\SDS{T}_{xkl}^{mn*} \SDS{B}_{xpq}^{mn} $は, \begin{gather} \SDS{T}_{xkl}^{mn*} \SDS{B}_{xpq}^{mn} = \SDS{T}_{x}^{mn*} \SDS{B}_{x}^{mn} \cdot e^{j(k_{xm} (k-p) \Delta x + k_{yn} (l-q) \Delta y)} \end{gather} ここで,単位セル内の$x$方向および$y$方向のメッシュの数を$M_p$,$N_q$とすると, \begin{eqnarray} d_x &=& M_p \Delta x \\ d_y &=& N_q \Delta y \end{eqnarray} また, \begin{eqnarray} \bar{p} &\equiv& k-p \\ \bar{q} &\equiv& l-q \end{eqnarray} とおくと \begin{eqnarray} k_{xm} (k-p) \Delta x &=& \left( \frac{2\pi m}{d_x} + k_x^{inc} \right) \bar{p} \Delta x \nonumber \\ &=& \left( \frac{2\pi m}{M_p} + k_x^{inc} \Delta x \right) \bar{p} \\ k_{yn} (l-q) \Delta y &=& \left( \frac{2\pi n}{d_y} + k_y^{inc} \right) \bar{q} \Delta y \nonumber \\ &=& \left( \frac{2\pi n}{N_q} + k_y^{inc} \Delta y \right) \bar{q} \end{eqnarray} より, \begin{gather} \SDS{T}_{xkl}^{mn*} \SDS{B}_{xpq}^{mn} = \SDS{T}_{x}^{mn*} \SDS{B}_{x}^{mn} \ e^{j2\pi \left( \frac{m\bar{p}}{M_p} + \frac{n\bar{q}}{N_q} \right)} W_{\bar{p}\bar{q}}^* \end{gather} ただし, \begin{gather} W_{\bar{p}\bar{q}} \equiv e^{-j(k_x^{inc} \bar{p} \Delta x + k_y^{inc} \bar{q} \Delta y)} \end{gather} 同様にして,$\SDS{T}_{xkl}^{mn*} \SDS{B}_{ypq}^{mn}$, $\SDS{T}_{ykl}^{mn*} \SDS{B}_{xpq}^{mn}$,$\SDS{T}_{ykl}^{mn*} \SDS{B}_{ypq}^{mn}$は, \begin{gather} \SDS{T}_{xkl}^{mn*} \SDS{B}_{ypq}^{mn} = \SDS{T}_{x}^{mn*} \SDS{B}_{y}^{mn} \ e^{jk_{xm} \frac{\Delta x}{2}} e^{-jk_{yn} \frac{\Delta y}{2}} e^{j2\pi \left( \frac{m\bar{p}}{M_p} + \frac{n\bar{q}}{N_q} \right)} W_{\bar{p}\bar{q}}^* \\ \SDS{T}_{ykl}^{mn*} \SDS{B}_{xpq}^{mn} = \SDS{T}_{y}^{mn*} \SDS{B}_{x}^{mn} \ e^{-jk_{xm} \frac{\Delta x}{2}} e^{jk_{yn} \frac{\Delta y}{2}} e^{j2\pi \left( \frac{m\bar{p}}{M_p} + \frac{n\bar{q}}{N_q} \right)} W_{\bar{p}\bar{q}}^* \end{gather} また, \begin{gather} \SDS{T}_{ykl}^{mn*} \SDS{B}_{ypq}^{mn} = \SDS{T}_{y}^{mn*} \SDS{B}_{y}^{mn} \ e^{j2\pi \left( \frac{m\bar{p}}{M_p} + \frac{n\bar{q}}{N_q} \right)} W_{\bar{p}\bar{q}}^* \end{gather} いま,簡単のため,導体損がない場合を考えると,行列要素 $z_{kl,pq}^{xx}$ は, \begin{eqnarray} z_{kl,pq}^{xx} &=& \frac{1}{d_xd_y} \sum _{m,n} \SDS{T}_{xkl}^{mn*} \SDS{G}_{xx}^{mn} \SDS{B}_{xpq}^{mn} \nonumber \\ &=& \frac{1}{d_xd_y} \sum _{m,n} \SDS{T}_{x}^{mn*} \SDS{G}_{xx}^{mn} \SDS{B}_{x}^{mn} e^{j2\pi \left( \frac{m\bar{p}}{M_p} + \frac{n\bar{q}}{N_q} \right)} W_{\bar{p}\bar{q}}^* \end{eqnarray} ここで,整数$m'$,$n'$を \begin{eqnarray} m' &=& -\frac{M_p}{2}, -\frac{M_p}{2}+1, \cdots , \frac{M_p}{2}-1 \\ n' &=& -\frac{N_q}{2}, -\frac{N_q}{2}+1, \cdots , \frac{N_q}{2}-1 \end{eqnarray} で新たに定義し, \begin{eqnarray} m &\equiv& m'+rM_p \\ n &\equiv& n' + sN_q \end{eqnarray} とおくと($r$,$s$は整数), \begin{eqnarray} e^{j2\pi \left( \frac{m\bar{p}}{M_p} + \frac{n\bar{q}}{N_q} \right)} &=& e^{j2\pi \left( \frac{(m'+rM_p)\bar{p}}{M_p} + \frac{(n'+sN_q)\bar{q}}{N_q} \right)} \nonumber \\ &=& e^{j2\pi \left( \frac{m'\bar{p}}{M_p} + \frac{n'\bar{q}}{N_q} \right)} \ e^{j2\pi (r\bar{p}+s\bar{q})} \nonumber \\ &=& e^{j2\pi \left( \frac{m'\bar{p}}{M_p} + \frac{n'\bar{q}}{N_q} \right)} \end{eqnarray} これより,行列要素 $z_{kl,pq}^{xx}$ は, \begin{eqnarray} z_{kl,pq}^{xx} &=& \frac{W_{\bar{p}\bar{q}}^*}{d_xd_y} \sum _{m,n} \SDS{T}_{x}^{mn*} \SDS{G}_{xx}^{mn} \SDS{B}_{x}^{mn} e^{j2\pi \left( \frac{m'\bar{p}}{M_p} + \frac{n'\bar{q}}{N_q} \right)} \nonumber \\ &=& \frac{W_{\bar{p}\bar{q}}^*}{d_xd_y} \sum _{m',n'} \left( \sum _{r,s} \SDS{T}_{x}^{mn*} \SDS{G}_{xx}^{mn} \SDS{B}_{x}^{mn} \right) e^{j2\pi \left( \frac{m'\bar{p}}{M_p} + \frac{n'\bar{q}}{N_q} \right)} \end{eqnarray} ここで, \begin{gather} \SDS{g}_{m'n'}^{xx} \equiv \frac{1}{\Delta x \Delta y} \sum _{r}\ \sum _{s} \SDS{T}_{x}^{mn*} \SDS{G}_{xx}^{mn} \SDS{B}_{x}^{mn} \end{gather} とおくと, \begin{eqnarray} z_{kl,pq}^{xx} &=& W_{\bar{p}\bar{q}}^* \ \frac{1}{M_p N_q} \hspace{-2mm} \sum _{m'=-\frac{M_p}{2}}^{\frac{M_p}{2}-1} \sum _{n'=-\frac{N_q}{2}}^{\frac{N_q}{2}-1} \SDS{g}^{xx}_{m'n'} e^{j2\pi \left( \frac{m'\bar{p}}{M_p} + \frac{n'\bar{q}}{N_q} \right)} \nonumber \\ &=& W_{\bar{p}\bar{q}}^* \ \mbox{FFT}^{-1}_{\bar{p}\bar{q}} \Big[ \SDS{g}_{m'n'}^{xx} \Big] \end{eqnarray} 同様にして,$z_{kl,pq}^{xy}$は, \begin{gather} z_{kl,pq}^{xy} = \frac{W_{\bar{p}\bar{q}}^*}{d_xd_y} \sum _{m,n} \SDS{T}_{x}^{mn*} \SDS{G}_{xy}^{mn} \SDS{B}_{y}^{mn} e^{j2\pi \left( \frac{m'\bar{p}}{M_p} + \frac{n'\bar{q}}{N_q} \right)} e^{j\left( k_{xm} \frac{\Delta x}{2} -k_{yn} \frac{\Delta y}{2} \right) } \end{gather} ここで, \begin{gather} \SDS{g}_{m'n'}^{xy} \equiv \frac{1}{\Delta x \Delta y} \sum _{r}\ \sum _{s} \SDS{T}_{x}^{mn*} \SDS{G}_{xy}^{mn} \SDS{B}_{y}^{mn} e^{j\left( k_{xm} \frac{\Delta x}{2} -k_{yn} \frac{\Delta y}{2} \right) } \end{gather} とおくと, \begin{eqnarray} z_{kl,pq}^{xy} &=& W_{\bar{p}\bar{q}}^* \ \frac{1}{M_p N_q} \sum _{m'=-\frac{M_p}{2}}^{\frac{M_p}{2}-1} \sum _{n'=-\frac{N_q}{2}}^{\frac{N_q}{2}-1} \SDS{g}^{xy}_{m'n'} e^{j2\pi \left( \frac{m'\bar{p}}{M_p} + \frac{n'\bar{q}}{N_q} \right)} \nonumber \\ &=& W_{\bar{p}\bar{q}}^* \ \mbox{FFT}^{-1}_{\bar{p}\bar{q}} \Big[ \SDS{g}_{m'n'}^{xy} \Big] \end{eqnarray} また,$z_{kl,pq}^{yx}$は, \begin{gather} z_{kl,pq}^{yx} = \frac{W_{\bar{p}\bar{q}}^*}{d_xd_y} \sum _{m,n} \SDS{T}_{y}^{mn*} \SDS{G}_{yx}^{mn} \SDS{B}_{x}^{mn} e^{j2\pi \left( \frac{m'\bar{p}}{M_p} + \frac{n'\bar{q}}{N_q} \right)} e^{j\left( -k_{xm} \frac{\Delta x}{2} +k_{yn} \frac{\Delta y}{2} \right) } \end{gather} ここで, \begin{gather} \SDS{g}_{m'n'}^{yx} \equiv \frac{1}{\Delta x \Delta y} \sum _{r}\ \sum _{s} \SDS{T}_{y}^{mn*} \SDS{G}_{yx}^{mn} \SDS{B}_{x}^{mn} e^{j\left( -k_{xm} \frac{\Delta x}{2} +k_{yn} \frac{\Delta y}{2} \right) } \end{gather} とおくと, \begin{eqnarray} z_{kl,pq}^{yx} &=& W_{\bar{p}\bar{q}}^* \ \frac{1}{M_p N_q} \sum _{m'=-\frac{M_p}{2}}^{\frac{M_p}{2}-1} \sum _{n'=-\frac{N_q}{2}}^{\frac{N_q}{2}-1} \SDS{g}^{yx}_{m'n'} e^{j2\pi \left( \frac{m'\bar{p}}{M_p} + \frac{n'\bar{q}}{N_q} \right)} \nonumber \\ &=& W_{\bar{p}\bar{q}}^* \ \mbox{FFT}^{-1}_{\bar{p}\bar{q}} \Big[ \SDS{g}_{m'n'}^{yx} \Big] \end{eqnarray} そして,$z_{kl,pq}^{yy}$は, \begin{gather} z_{kl,pq}^{yy} = \frac{W_{\bar{p}\bar{q}}^*}{d_xd_y} \sum _{m,n} \SDS{T}_{y}^{mn*} \SDS{G}_{yy}^{mn} \SDS{B}_{y}^{mn} e^{j2\pi \left( \frac{m'\bar{p}}{M_p} + \frac{n'\bar{q}}{N_q} \right)} \end{gather} ここで, \begin{gather} \SDS{g}_{m'n'}^{yy} \equiv \frac{1}{\Delta x \Delta y} \sum _{r}\ \sum _{s} \SDS{T}_{y}^{mn*} \SDS{G}_{yy}^{mn} \SDS{B}_{y}^{mn} \end{gather} とおくと, \begin{eqnarray} z_{kl,pq}^{yy} &=& W_{\bar{p}\bar{q}}^* \ \frac{1}{M_p N_q} \sum _{m'=-\frac{M_p}{2}}^{\frac{M_p}{2}-1} \sum _{n'=-\frac{N_q}{2}}^{\frac{N_q}{2}-1} \SDS{g}^{yy}_{m'n'} e^{j2\pi \left( \frac{m'\bar{p}}{M_p} + \frac{n'\bar{q}}{N_q} \right)} \nonumber \\ &=& W_{\bar{p}\bar{q}}^* \ \mbox{FFT}^{-1}_{\bar{p}\bar{q}} \Big[ \SDS{g}_{m'n'}^{yy} \Big] \end{eqnarray} よって, \begin{eqnarray} v_{xkl} &=& \sum _{p=-\frac{M_p}{2}}^{\frac{M_p}{2}-1} \sum _{q=-\frac{N_q}{2}}^{\frac{N_q}{2}-1} \Big( z_{kl,pq}^{xx} I_{xpq} + z_{kl,pq}^{xy} I_{ypq} \Big) \nonumber \\ &=& \sum _{p=-\frac{M_p}{2}}^{\frac{M_p}{2}-1} \sum _{q=-\frac{N_q}{2}}^{\frac{N_q}{2}-1} W_{\bar{p}\bar{q}}^* \left( \mbox{FFT}^{-1}_{\bar{p}\bar{q}} \Big[ \SDS{g}_{m'n'}^{xx} \Big] I_{xpq} + \mbox{FFT}^{-1}_{\bar{p}\bar{q}} \Big[ \SDS{g}_{m'n'}^{xy} \Big] I_{ypq} \right) \\ v_{ykl} &=& \sum _{p=-\frac{M_p}{2}}^{\frac{M_p}{2}-1} \sum _{q=-\frac{N_q}{2}}^{\frac{N_q}{2}-1} \Big( z_{kl,pq}^{yx} I_{xpq} + z_{kl,pq}^{yy} I_{ypq} \Big) \nonumber \\ &=& \sum _{p=-\frac{M_p}{2}}^{\frac{M_p}{2}-1} \sum _{q=-\frac{N_q}{2}}^{\frac{N_q}{2}-1} W_{\bar{p}\bar{q}}^* \left( \mbox{FFT}^{-1}_{\bar{p}\bar{q}} \Big[ \SDS{g}_{m'n'}^{yx} \Big] I_{xpq} + \mbox{FFT}^{-1}_{\bar{p}\bar{q}} \Big[ \SDS{g}_{m'n'}^{yy} \Big] I_{ypq} \right) \end{eqnarray} 成分を行列表示すると, \begin{gather} \begin{pmatrix} v_{xkl} \\ v_{ykl} \end{pmatrix} = \sum _{p=-\frac{M_p}{2}}^{\frac{M_p}{2}-1} \sum _{q=-\frac{N_q}{2}}^{\frac{N_q}{2}-1} W_{\bar{p}\bar{q}}^* \left\{ \mbox{FFT}^{-1}_{\bar{p}\bar{q}} \begin{pmatrix} \SDS{g}_{m'n'}^{xx} & \SDS{g}_{m'n'}^{xy} \\ \SDS{g}_{m'n'}^{yx} & \SDS{g}_{m'n'}^{yy} \end{pmatrix} \right\} \begin{pmatrix} I_{xpq} \\ I_{ypq} \end{pmatrix} \end{gather} ここで,$k$,$l$は, \begin{gather} k = -\frac{M_p}{2}, -\frac{M_p}{2}+1, \cdots , \frac{M_p}{2}-1 \\ l = -\frac{N_q}{2}, -\frac{N_q}{2}+1, \cdots , \frac{N_q}{2}-1 \end{gather} これより,電流分布の未知係数$I_{xpq}$,$I_{ypq}$は次式より求めることができる. \begin{gather} \begin{pmatrix} \VECi{I}_x \\ \VECi{I}_y \end{pmatrix} = \begin{pmatrix} \Big[ Z_{xx} \Big] & \Big[ Z_{xy} \Big] \\ \Big[ Z_{yx} \Big] & \Big[ Z_{yy} \Big] \end{pmatrix}^{-1} \begin{pmatrix} \VECi{V}_x \\ \VECi{V}_y \end{pmatrix} \end{gather} また,$\bar{p}=k-p$,$\bar{q}=l-q$より, \begin{eqnarray} W_{\bar{p}\bar{q}}^* &=& e^{j \left( k_x^{inc} \bar{p} \Delta x + k_y^{inc} \bar{q} \Delta y \right)} \nonumber \\ &=& e^{j \left( k_x^{inc} k \Delta x + k_y^{inc} l \Delta y \right)} e^{-j \left( k_x^{inc} p \Delta x + k_y^{inc} q \Delta y \right)} \nonumber \\ &=& W_{kl}^* W_{pq} \end{eqnarray} そして, \begin{gather} \frac{m'\bar{p}}{M_p} + \frac{n'\bar{q}}{N_q} = \left( \frac{m'k}{M_p} + \frac{n'l}{N_q} \right) - \left( \frac{m'p}{M_p} + \frac{n'q}{N_q} \right) \end{gather} これより, \begin{eqnarray} \sum _{p,q} z_{kl,pq} I_{xpq} &=& \sum _{p,q} W_{\bar{p}\bar{q}}^* \ \frac{1}{M_p N_q} \sum _{m',n'} \SDS{g}^{xx}_{m'n'} e^{j2\pi \left( \frac{m'\bar{p}}{M_p} + \frac{n'\bar{q}}{N_q} \right)} I_{xpq} \nonumber \\ &=& \sum _{p,q} W_{kl}^* W_{pq} \ \frac{1}{M_p N_q} \sum _{m',n'} \SDS{g}^{xx}_{m'n'} e^{j2\pi \left( \frac{m'k}{M_p} + \frac{n'l}{N_q} \right)} e^{-j2\pi \left( \frac{m'p}{M_p} + \frac{n'q}{N_q} \right)} I_{xpq} \nonumber \\ &=& \frac{W_{kl}^*}{M_p N_q} \sum _{m',n'} \SDS{g}^{xx}_{m'n'} \left( \sum _{p,q} W_{pq} I_{xpq} e^{-j2\pi \left( \frac{m'p}{M_p} + \frac{n'q}{N_q} \right)} \right) e^{j2\pi \left( \frac{m'k}{M_p} + \frac{n'l}{N_q} \right)} \end{eqnarray} 上式の$( \ )$は,FFTで計算でき,次のようになる. \begin{eqnarray} \sum _{p,q} z_{kl,pq} I_{xpq} &=& \frac{W_{kl}^*}{M_p N_q} \sum _{m',n'} \SDS{g}^{xx}_{m'n'} \left( \mbox{FFT}_{m'n'} \Big[ W_{pq} I_{xpq} \Big] \right) e^{j2\pi \left( \frac{m'k}{M_p} + \frac{n'l}{N_q} \right)} \nonumber \\ &=& W_{kl}^* \ \mbox{FFT}^{-1}_{k,l} \left[ \SDS{g}^{xx}_{m'n'} \left( \mbox{FFT}_{m'n'} \Big[ W_{pq} I_{xpq} \Big] \right) \right] \end{eqnarray} したがって, \begin{eqnarray} v_{xkl} &=& W_{kl}^* \ \mbox{FFT}^{-1}_{k,l} \left[ \SDS{g}^{xx}_{m'n'} \left( \mbox{FFT}_{m'n'} \Big[ W_{pq} I_{xpq} \Big] \right) \right. \nonumber \\ &&\left. + \SDS{g}^{xy}_{m'n'} \left( \mbox{FFT}_{m'n'} \Big[ W_{pq} I_{ypq} \Big] \right) \right] \\ v_{ykl} &=& W_{kl}^* \ \mbox{FFT}^{-1}_{k,l} \left[ \SDS{g}^{yx}_{m'n'} \left( \mbox{FFT}_{m'n'} \Big[ W_{pq} I_{xpq} \Big] \right) \right. \nonumber \\ &&\left. + \SDS{g}^{yy}_{m'n'} \left( \mbox{FFT}_{m'n'} \Big[ W_{pq} I_{ypq} \Big] \right) \right] \end{eqnarray} 成分を行列表示すると, \begin{gather} \begin{pmatrix} v_{xkl} \\ v_{ykl} \end{pmatrix} = W_{k,l}^* \ \mbox{FFT}^{-1}_{k,l} \left[ \begin{pmatrix} \SDS{g}_{m'n'}^{xx} & \SDS{g}_{m'n'}^{xy} \\ \SDS{g}_{m'n'}^{yx} & \SDS{g}_{m'n'}^{yy} \end{pmatrix} \mbox{FFT}_{m'n'} \left\{ W_{pq} \begin{pmatrix} I_{xpq} \\ I_{ypq} \end{pmatrix} \right\} \right] \end{gather} ここで,$k$,$l$は, \begin{gather} k = -\frac{M_p}{2}, -\frac{M_p}{2}+1, \cdots , \frac{M_p}{2}-1 \\ l = -\frac{N_q}{2}, -\frac{N_q}{2}+1, \cdots , \frac{N_q}{2}-1 \end{gather}  また,導体損を考慮すると, \begin{gather} F_{x\bar{p}\bar{q}} \equiv \int _S T_{xkl}^* B_{xpq} dS = \delta _{lq} \left\{ \begin {array}{cc} \displaystyle{\frac{2}{3} \Delta x \Delta y} & (\bar{p}=0) \\ \displaystyle{\frac{1}{6} \Delta x \Delta y} & (|\bar{p}|=1) \\ 0 & (\mbox{otherwise}) \end{array} \right. \end{gather} \begin{gather} F_{y\bar{p}\bar{q}} \equiv \int _S T_{ykl}^* B_{ypq} dS = \delta _{kp} \left\{ \begin {array}{cc} \displaystyle{\frac{2}{3} \Delta x \Delta y} & (\bar{q}=0) \\ \displaystyle{\frac{1}{6} \Delta x \Delta y} & (|\bar{q}|=1) \\ 0 & (\mbox{otherwise}) \end{array} \right. \end{gather} これより, \begin{gather} v_{xkl} = \sum _{p,q} \left\{ \left( W_{\bar{p}\bar{q}}^* \mbox{FFT}^{-1}_{\bar{p}\bar{q}} \Big[ \SDS{g}_{m'n'}^{xx} \Big] - Z_s F_{x\bar{p}\bar{q}} \right) I_{xpq} + W_{\bar{p}\bar{q}}^* \mbox{FFT}^{-1}_{\bar{p}\bar{q}} \Big[ \SDS{g}_{m'n'}^{xy} \Big] I_{ypq} \right\} \\ v_{ykl} = \sum _{p,q} \left\{ W_{\bar{p}\bar{q}}^* \mbox{FFT}^{-1}_{\bar{p}\bar{q}} \Big[ \SDS{g}_{m'n'}^{yx} \Big] I_{xpq} + \left( W_{\bar{p}\bar{q}}^* \mbox{FFT}^{-1}_{\bar{p}\bar{q}} \Big[ \SDS{g}_{m'n'}^{yy} \Big] - Z_s F_{y\bar{p}\bar{q}} \right) I_{ypq} \right\} \end{gather} 成分を行列表示すると, \begin{gather} \begin{pmatrix} v_{xkl} \\ v_{ykl} \end{pmatrix} = \hspace{-3mm} \sum _{p=-\frac{M_p}{2}}^{\frac{M_p}{2}-1} \sum _{q=-\frac{N_q}{2}}^{\frac{N_q}{2}-1} \left\{ W_{\bar{p}\bar{q}}^* \ \mbox{FFT}^{-1}_{\bar{p}\bar{q}} \begin{pmatrix} \SDS{g}_{m'n'}^{xx} & \SDS{g}_{m'n'}^{xy} \\ \SDS{g}_{m'n'}^{yx} & \SDS{g}_{m'n'}^{yy} \end{pmatrix} \right. \nonumber \\ \left. - Z_s \begin{pmatrix} F_{x\bar{p}\bar{q}} & 0 \\ 0 & F_{y\bar{p}\bar{q}} \end{pmatrix} \right\} \begin{pmatrix} I_{xpq} \\ I_{ypq} \end{pmatrix} \end{gather} また, \begin{eqnarray} \begin{pmatrix} v_{xkl} \\ v_{ykl} \end{pmatrix} &=& W_{k,l}^* \ \mbox{FFT}^{-1}_{k,l} \left[ \begin{pmatrix} \SDS{g}_{m'n'}^{xx} & \SDS{g}_{m'n'}^{xy} \\ \SDS{g}_{m'n'}^{yx} & \SDS{g}_{m'n'}^{yy} \end{pmatrix} \mbox{FFT}_{m'n'} \left\{ W_{pq} \begin{pmatrix} I_{xpq} \\ I_{ypq} \end{pmatrix} \right\} \right] \nonumber \\ &&- Z_s \begin{pmatrix} F_{x\bar{p}\bar{q}} & 0 \\ 0 & F_{y\bar{p}\bar{q}} \end{pmatrix} \begin{pmatrix} I_{xpq} \\ I_{ypq} \end{pmatrix} \end{eqnarray}