4.6 周期構造の多モード散乱行列
周期的導体素子にフロケモードで展開した電界が入射したときの散乱行列を求めていく.境界面
$z=0$
においてフロケモードに対応する多端子対散乱行列(縦続接続に使用するため,モード数は少なくてよい)を定義するため,入射波側の接線電界
$\VEC{E}_{\tan}^{(1)}$
はフロケモード$m'$,$n'$によって次のように展開される.
\begin{gather}
\VEC{E}_{\tan}^{(1)} \Big| _{z=0}
= \sum _{m',n'} \Big( a_{1[m'n']} \VEC{e}_{1[m'n']} + a_{1(m'n')} \VEC{e}_{1(m'n')} \Big)
\nonumber \\
{} \hspace{20mm} + \sum _{m',n'} \Big( b_{1[m'n']} \VEC{e}_{1[m'n']} + b_{1(m'n')} \VEC{e}_{1(m'n')} \Big)
\end{gather}
ただし,$a_{1[m'n']}$,$a_{1(m'n')}$は各々TE波,TM波に対する入射波のフロケモード$m'$,$n'$のルート電力,
$b_{1[m'n']}$,$b_{1(m'n')}$は各々TE波,TM波に対する反射波のフロケモード$m'$,$n'$のルート電力を示す.
また,$\VEC{e}_{1[m'n']} $,$\VEC{e}_{1(m'n')}$は,TE波,TM波に対する電界のフロケモード関数を示し,次式で与えられる.
\begin{eqnarray}
\VEC{e}_{1[m'n']}
&=& \sqrt{Z_{1[m'n']}} (\VEC{u}_{tm'n'} \times \VEC{u}_z) e^{j\VEC{k}_{tm'n'} \cdot \VECi{\rho}}
\\
\VEC{e}_{1(m'n')}
&=& \sqrt{Z_{1(m'n')}} \VEC{u}_{tm'n'} e^{j\VEC{k}_{tm'n'} \cdot \VECi{\rho}}
\end{eqnarray}
行列形式では,
\begin{eqnarray}
\VEC{E}_{\tan}^{(1)} \Big| _{z=0}
&=&
\begin{pmatrix}
[\VEC{e}'_{1_{\TE}}]^t & [\VEC{e}'_{1_{\TM}}]^t
\end{pmatrix} \left\{
\begin{pmatrix}
\VECi{a}_{1_{\TE}} \\ \VECi{a}_{1_{\TM}}
\end{pmatrix} +
\begin{pmatrix}
\VECi{b}_{1_{\TE}} \\ \VECi{b}_{1_{\TM}}
\end{pmatrix} \right\}
\nonumber \\
&=& [\VEC{e}'_1]^t \Big\{ \VECi{a}_1 + \VECi{b}_1 \Big\}
\end{eqnarray}
ここで,
\begin{gather}
[\VEC{e}'_1]^t \equiv
\begin{pmatrix}
[\VEC{e}'_{1_{\TE}}]^t & [\VEC{e}'_{1_{\TM}}]^t
\end{pmatrix}
\end{gather}
また,
\begin{eqnarray}
\VECi{a}_1 &\equiv&
\begin{pmatrix}
\VECi{a}_{1_{\TE}} \\ \VECi{a}_{1_{\TM}}
\end{pmatrix}
\\
\VECi{b}_1 &\equiv&
\begin{pmatrix}
\VECi{b}_{1_{\TE}} \\ \VECi{b}_{1_{\TM}}
\end{pmatrix}
\end{eqnarray}
ただし,
$[\VEC{e}'_{1_{\TE}}]^t$,$[\VEC{e}'_{1_{\TM}}]^t$は各々
$\VEC{e}_{1[m'n']}^t$,$\VEC{e}_{1(m'n')}^t$を要素とする行ベクトルを示す.
また,$\VECi{a}_{1_{\TE}}$,$\VECi{a}_{1_{\TM}}$は各々
$a_{1[m'n']}$,$a_{1(m'n')}$を要素とする列ベクトル,
$\VECi{b}_{1_{\TE}}$,$\VECi{b}_{1_{\TM}}$は各々
$b_{1[m'n']}$,$b_{1(m'n')}$を要素とする列ベクトルを示す.
モーメント法より求められる結果を基に,
フロケモードで接線電界を展開すると,
\begin{eqnarray}
\VEC{E}_{\tan}^{(1)} \Big| _{z=0}
&=& \sum _{m',n'} \Big( a_{1[m'n']} \VEC{e}_{1[m'n']} + a_{1(m'n')} \VEC{e}_{1(m'n')} \Big) + \VEC{E}_{s,\tan}^{(1)} \Big| _{z=0}
\nonumber \\
&&+ \sum _{m',n'} \Big( R_{[m'n']}^+ a_{1[m'n']} \VEC{e}_{1[m'n']} + R_{(m'n')}^+ a_{1(m'n')} \VEC{e}_{1(m'n')} \Big)
\nonumber \\
&\equiv&
\begin{pmatrix}
[\VEC{e}'_{1_{\TE}}] & [\VEC{e}'_{1_{\TM}}]
\end{pmatrix} \left\{
\begin{pmatrix}
\VECi{a}_{1_{\TE}} \\ \VECi{a}_{1_{\TM}}
\end{pmatrix} +
\begin{pmatrix}
[R^+_{_{\TE}}]_d & 0 \\ 0 & [R^+_{_{\TM}}]_d
\end{pmatrix}
\begin{pmatrix}
\VECi{a}_{1_{\TE}} \\ \VECi{a}_{1_{\TM}}
\end{pmatrix} \right\}
\nonumber \\
&&+ \sum _{m',n'} \Big( \VEC{E}_{s[m'n']} + \VEC{E}_{s(m'n')} \Big)
\end{eqnarray}
ただし,
$[R^+_{_{\TE}}]_d$,$[R^+_{_{\TM}}]_d$は,各々$R^+_{[m'n']} $(TE波),$R^+_{(m'n')} $(TM波)を対角要素とする対角行列を示し,
\begin{eqnarray}
R^{+}_{[m'n']}
&=& \frac{Y_{1[m'n']} - Y_{2[m'n']}}{Y_{1[m'n']} + Y_{2[m'n']}}
\nonumber \\
&=& \frac{k_{1zm'n'} - k_{2zm'n'}}{k_{1zm'n'} + k_{2zm'n'}}
\\
R^{+}_{(m'n')}
&=& \frac{Z_{2(m'n')} - Z_{1(m'n')}}{Z_{2(m'n')} + Z_{1(m'n')}}
\nonumber \\
&=& \frac{k_{2zm'n'} - n^2 k_{1zm'n'}}{k_{2zm'n'} + n^2 k_{1zm'n'}}
\end{eqnarray}
ここで,
\begin{gather}
n^2 \equiv \frac{k^2_2}{k^2_1}
\end{gather}
いま,
$\mu _1 = \mu _2$,
$\epsilon _1 = \epsilon _0 \epsilon _{r1}$,
$\epsilon _2 = \epsilon _0 \epsilon _{r2}$
のとき,
\begin{eqnarray}
n^2 &=& \frac{\epsilon _{r2}}{\epsilon _{r1}}
\nonumber \\
&=& \frac{|\epsilon _{r2}| \big( 1-j\tan \delta _2 \big) }{|\epsilon _{r1}| \big( 1-j\tan \delta _1 \big)}
\end{eqnarray}
フロケモードの散乱波については,
\begin{eqnarray}
&&\VEC{E}_{s[m'n']} + \VEC{E}_{s(m'n')}
\nonumber \\
&=& \frac{1}{d_xd_y} \widetilde{\DYA{G}}_T^{_{(d_i)EJ}} (\VEC{k}_{tm'n'})
\cdot \SDV{J}_s (\VEC{k}_{tm'n'}) e^{j\VEC{k}_{tm'n'} \cdot \VECi{\rho}}
\nonumber \\
&=& \frac{1}{d_xd_y}
\begin{pmatrix}
\VEC{u}_x & \VEC{u}_y
\end{pmatrix}
\begin{pmatrix}
\SDS{G}_{xx}^{m'n'} & \SDS{G}_{xy}^{m'n'} \\ \SDS{G}_{yx}^{m'n'} & \SDS{G}_{yy}^{m'n'}
\end{pmatrix}
\begin{pmatrix}
\SDS{J}_x^{m'n'} \\ \SDS{J}_y^{m'n'}
\end{pmatrix} e^{j\VEC{k}_{tm'n'} \cdot \VECi{\rho}}
\nonumber \\
&=& \frac{1}{d_xd_y}
\begin{pmatrix}
\VEC{u}_{tm'n'} \times \VEC{u}_z & \VEC{u}_{tm'n'}
\end{pmatrix}
\begin{pmatrix}
(\VEC{u}_{tm'n'} \times \VEC{u}_z) \cdot \VEC{u}_x & (\VEC{u}_{tm'n'} \times \VEC{u}_z) \cdot \VEC{u}_y \\
\VEC{u}_{tm'n'} \cdot \VEC{u}_x & \VEC{u}_{tm'n'} \cdot \VEC{u}_y
\end{pmatrix}
\nonumber \\
&&\cdot
\begin{pmatrix}
\SDS{G}_{xx}^{m'n'} & \SDS{G}_{xy}^{m'n'} \\ \SDS{G}_{yx}^{m'n'} & \SDS{G}_{yx}^{m'n'}
\end{pmatrix}
\begin{pmatrix}
\SDS{J}_x^{m'n'} \\ \SDS{J}_y^{m'n'}
\end{pmatrix} e^{j\VEC{k}_{tm'n'} \cdot \VECi{\rho}}
\nonumber \\
&=& \frac{1}{d_xd_y}
\begin{pmatrix}
\VEC{e}_{1[m'n']} & \VEC{e}_{1(m'n')}
\end{pmatrix}
\begin{pmatrix}
\sqrt{Y_{1[m'n']}} & 0 \\ 0 & \sqrt{Y_{1(m'n')}}
\end{pmatrix}
\nonumber \\
&&\cdot
\begin{pmatrix}
\SDS{G}_{ux}^{m'n'} & \SDS{G}_{uy}^{m'n'} \\ \SDS{G}_{tx}^{m'n'} & \SDS{G}_{ty}^{m'n'}
\end{pmatrix}
\begin{pmatrix}
\SDS{J}_x^{m'n'} \\ \SDS{J}_y^{m'n'}
\end{pmatrix}
\end{eqnarray}
ここで,
\begin{eqnarray}
\widetilde{\DYA{G}}_T^{_{(d_i)EJ}}
&=& \SDS{G}_{xx}^{m'n'} \VEC{u}_x \VEC{u}_x + \SDS{G}_{xy}^{m'n'} \VEC{u}_x \VEC{u}_y
+ \SDS{G}_{yx}^{m'n'} \VEC{u}_y \VEC{u}_x + \SDS{G}_{yy}^{m'n'} \VEC{u}_y \VEC{u}_y
\nonumber \\
&\equiv& \SDS{G}_{ux}^{m'n'} \VEC{u}_{um'n'} \VEC{u}_x + \SDS{G}_{uy}^{m'n'} \VEC{u}_{um'n'} \VEC{u}_y
\nonumber \\
&&+ \SDS{G}_{tx}^{m'n'} \VEC{u}_{tm'n'} \VEC{u}_x + \SDS{G}_{ty}^{m'n'} \VEC{u}_{tm'n'} \VEC{u}_y
\\
\VEC{u}_{um'n'} &\equiv& \VEC{u}_{tm'n'} \times \VEC{u}_z
\end{eqnarray}
これより,散乱波は,
\begin{eqnarray}
\VEC{E}_{s,\tan}^{(1)} \Big| _{z=0}
&=& \sum _{m',n'} \Big( \VEC{E}_{s[m'n']} + \VEC{E}_{s(m'n')} \Big)
\nonumber \\
&=& \frac{1}{d_xd_y} \sum _{m',n'}
\begin{pmatrix}
\VEC{e}_{1[m'n']} & \VEC{e}_{1(m'n')}
\end{pmatrix}
\begin{pmatrix}
\sqrt{Y_{1[m'n']}} & 0 \\ 0 & \sqrt{Y_{1(m'n')}}
\end{pmatrix}
\nonumber \\
&&\cdot
\begin{pmatrix}
\SDS{G}_{ux}^{m'n'} & \SDS{G}_{uy}^{m'n'} \\ \SDS{G}_{tx}^{m'n'} & \SDS{G}_{ty}^{m'n'}
\end{pmatrix}
\begin{pmatrix}
\SDS{J}_x^{m'n'} \\ \SDS{J}_y^{m'n'}
\end{pmatrix}
\end{eqnarray}
さらに,$m'$,$n'$に対して行列として扱うと,
\begin{eqnarray}
\VEC{E}_{s,\tan}^{(1)} \Big| _{z=0}
&=& \frac{1}{d_xd_y}
\begin{pmatrix}
[ \VEC{e}_{1_{\TE}}' ]^t & [ \VEC{e}_{1_{\TM}}' ]^t
\end{pmatrix}
\begin{pmatrix}
\big[ \sqrt{Y_{1_{\TE}}} \big] _d & 0 \\ 0 & \big[ \sqrt{Y_{1_{\TM}}} \big] _d
\end{pmatrix}
\nonumber \\
&&\cdot
\begin{pmatrix}
\big[ \SDS{G}_{ux} \big] & \big[ \SDS{G}_{uy} \big] \\ \big[ \SDS{G}_{tx} \big] & \big[ \SDS{G}_{ty} \big]
\end{pmatrix}
\begin{pmatrix}
\SDS{\VECi{J}}_x \\ \SDS{\VECi{J}}_y
\end{pmatrix}
\nonumber \\
&\equiv& \frac{1}{d_xd_y} [ \VEC{e}'_1 ]^t \big[ \sqrt{Y_1} \big] _d \big[ \SDS{G}_{ut,xy} \big]
\begin{pmatrix}
\SDS{\VECi{J}}_x \\ \SDS{\VECi{J}}_y
\end{pmatrix}
\end{eqnarray}
ここで,
\begin{align}
&\big[ \sqrt{Y_1} \big] _d \equiv
\begin{pmatrix}
\big[ \sqrt{Y_{1_{\TE}}} \big] _d & 0 \\ 0 & \big[ \sqrt{Y_{1_{\TM}}} \big] _d
\end{pmatrix}
\\
&\big[ \SDS{G}_{ut,xy} \big] \equiv
\begin{pmatrix}
\big[ \SDS{G}_{ux} \big] & \big[ \SDS{G}_{uy} \big] \\ \big[ \SDS{G}_{tx} \big] & \big[ \SDS{G}_{ty} \big]
\end{pmatrix}
\end{align}
ただし,
$\big[ \sqrt{Y_{1_{\TE}}} \big] _d$,$\big[ \sqrt{Y_{1_{\TM}}} \big] _d$は各々
$\sqrt{Y_{1[m'n']}}$,$\sqrt{Y_{1(m'n')}}$を対角要素とする対角行列,
$\big[ \SDS{G}_{ux} \big]$,$\big[ \SDS{G}_{uy} \big]$,
$\big[ \SDS{G}_{tx} \big]$,$\big[ \SDS{G}_{ty} \big]$
は各々
$\SDS{G}_{ux}^{m'n'}$,$\SDS{G}_{uy}^{m'n'}$,
$\SDS{G}_{tx}^{m'n'}$,$\SDS{G}_{ty}^{m'n'}$
を要素とする行列を示す.また,
$\SDS{\VECi{J}}_x$,$\SDS{\VECi{J}}_y$は各々
$\SDS{J}_x^{m'n'}$,$\SDS{J}_y^{m'n'}$
を要素とする列ベクトルを示し,次のように基底関数で展開される.
\begin{gather}
\begin{pmatrix}
\SDS{\VECi{J}}_x \\ \SDS{\VECi{J}}_y
\end{pmatrix}
= \big[ \SDS{B} \Big]
\begin{pmatrix}
\VECi{I}_x \\ \VECi{I}_y
\end{pmatrix}
\end{gather}
ここで,
\begin{gather}
\big[ \SDS{B} \Big] =
\begin{pmatrix}
\big[ \SDS{B}_x \Big] & 0 \\ 0 & \big[ \SDS{B}_y \Big]
\end{pmatrix}
\end{gather}
ただし,
$\big[ \SDS{B}_x \Big]$,$\big[ \SDS{B}_y \Big]$は各々
基底関数$\SDS{B}_{xpq}^{m'n'}$,$\SDS{B}_{ypq}^{m'n'}$を要素とする行列を示す.
また,$\VECi{I}_x$,$\VECi{I}_y$は
$I_{xpq}$,$I_{ypq}$を要素とする列ベクトルを示し,
\begin{gather}
\begin{pmatrix}
\VECi{I}_x \\ \VECi{I}_y
\end{pmatrix}
= \Big[ Z \Big] ^{-1}
\begin{pmatrix}
\VECi{V}_x \\ \VECi{V}_y
\end{pmatrix}
\end{gather}
ここで,
\begin{gather}
\Big[ Z \Big] =
\begin{pmatrix}
\Big[ Z_{xx} \Big] & \Big[ Z_{xy} \Big] \\ \Big[ Z_{yx} \Big] & \Big[ Z_{yy} \Big]
\end{pmatrix}
\end{gather}
そして,$\VECi{V}_x$,$\VECi{V}_y$は次式で求められる.
\begin{eqnarray}
\begin{pmatrix}
\VECi{V}_x \\ \VECi{V}_y
\end{pmatrix}
&=& -
\begin{pmatrix}
\Big[ \SDS{T}_{xu}^* \big]^t & \Big[ \SDS{T}_{xt}^* \big]^t \\
\Big[ \SDS{T}_{yu}^* \big]^t & \Big[ \SDS{T}_{yt}^* \big]^t
\end{pmatrix}
\Big\{ [U] + [R^{+}]_d \Big\}
\begin{pmatrix}
V_{1_{\TE}}^+ \\ V_{1_{\TM}}^+
\end{pmatrix} \nonumber \\
&=& -
\Big[ \SDS{T}_{xy,ut}^* ]^t
\Big\{ [U] + [R^{+}]_d \Big\} [ \sqrt{Z_1} ]_d \VECi{a}_1
\end{eqnarray}
ここで,
\begin{align}
&\Big[ \SDS{T}_{xy,ut}^* ]^t \equiv
\begin{pmatrix}
\Big[ \SDS{T}_{xu}^* \big]^t & \Big[ \SDS{T}_{xt}^* \big]^t \\
\Big[ \SDS{T}_{yu}^* \big]^t & \Big[ \SDS{T}_{yt}^* \big]^t
\end{pmatrix}
\\
&[ \sqrt{Z_1} ]_d \equiv
\begin{pmatrix}
[ \sqrt{Z_{1_{\TE}}} ]_d & 0 \\ 0 & [ \sqrt{Z_{1_{\TM}}} ]_d
\end{pmatrix}
\end{align}
ただし,$[U]$は単位行列を示す.また,
$[ \sqrt{Z_{1_{\TE}}} ]_d$,$[ \sqrt{Z_{1_{\TM}}} ]_d$
は各々
$\sqrt{Z_{1[m'n']}}$,$\sqrt{Z_{1(m'n')}}$
を対角要素とする対角行列を示す.いま,
\begin{eqnarray}
\Big[ Z' \Big]
&=&
\begin{pmatrix}
\Big[ Z'_{xx} \Big] & \Big[ Z'_{xy} \Big] \\ \Big[ Z'_{yx} \Big] & \Big[ Z'_{yy} \Big]
\end{pmatrix}
\nonumber \\
&\equiv& d_x d_y \Big[ Z \Big]
\end{eqnarray}
とおくと,行列
$\Big[ Z'_{xx} \Big]$,$\Big[ Z'_{xy} \Big]$,
$\Big[ Z'_{yx} \Big]$,$\Big[ Z'_{yy} \Big]$
の各々の要素
$z_{kl,pq}^{xx\prime}$,$z_{kl,pq}^{xy\prime}$,
$z_{kl,pq}^{yx\prime}$,$z_{kl,pq}^{yy\prime}$
は次のようになる.
\begin{eqnarray}
z_{kl,pq}^{xx\prime}
&=& \sum _{m,n} \SDS{T}_{xkl}^{mn*} \SDS{G}_{xx}^{mn} \SDS{B}_{xpq}^{mn}
- d_x d_y Z_s \int _S T_{xkl}^* B_{xpq} dS
\\
z_{kl,pq}^{xy\prime}
&=& \sum _{m,n} \SDS{T}_{xkl}^{mn*} \SDS{G}_{xy}^{mn} \SDS{B}_{ypq}^{mn}
\\
z_{kl,pq}^{yx\prime}
&=& \sum _{m,n} \SDS{T}_{ykl}^{mn*} \SDS{G}_{yx}^{mn} \SDS{B}_{xpq}^{mn}
\\
z_{kl,pq}^{yy\prime}
&=& \sum _{m,n} \SDS{T}_{ykl}^{mn*} \SDS{G}_{yy}^{mn} \SDS{B}_{ypq}^{mn}
- d_x d_y Z_s \int _S T_{ykl}^* B_{ypq} dS
\end{eqnarray}
また,
\begin{eqnarray}
\Big[ \SDS{T}^{Z*} ]^t
&\equiv&
\Big[ \SDS{T}_{xy,ut}^* ]^t [ \sqrt{Z_1} ]_d
\nonumber \\
&\equiv&
\begin{pmatrix}
\Big[ \SDS{T}_{xu}^{Z*} \big]^t & \Big[ \SDS{T}_{xt}^{Z*} \big]^t \\
\Big[ \SDS{T}_{yu}^{Z*} \big]^t & \Big[ \SDS{T}_{yt}^{Z*} \big]^t
\end{pmatrix}
\end{eqnarray}
とおいたときの行列
$\Big[ \SDS{T}_{xu}^{Z*} \big]^t$,$\Big[ \SDS{T}_{xt}^{Z*} \big]^t$,
$\Big[ \SDS{T}_{yu}^{Z*} \big]^t$,$\Big[ \SDS{T}_{yt}^{Z*} \big]^t$
の要素
$\SDS{t}_{kl,m'n'}^{xu*}$,$\SDS{t}_{kl,m'n'}^{xt*}$,
$\SDS{t}_{kl,m'n'}^{yu*}$,$\SDS{t}_{kl,m'n'}^{yt*}$
は各々次のようになる.
\begin{eqnarray}
\SDS{t}_{kl,m'n'}^{xu*} &=& \SDS{T}_{xkl}^{m'n'*} \sqrt{Z_{1[m'n']}} \sin \phi _{m'n'}
\\
\SDS{t}_{kl,m'n'}^{xt*} &=& \SDS{T}_{xkl}^{m'n'*} \sqrt{Z_{1(m'n')}} \sin \phi _{m'n'}
\\
\SDS{t}_{kl,m'n'}^{yu*} &=& -\SDS{T}_{ykl}^{m'n'*} \sqrt{Z_{1[m'n']}} \cos \phi _{m'n'}
\\
\SDS{t}_{kl,m'n'}^{yt*} &=& \SDS{T}_{ykl}^{m'n'*} \sqrt{Z_{1(m'n')}} \cos \phi _{m'n'}
\end{eqnarray}
また,
\begin{eqnarray}
\big[ \SDS{G}^{YB} \Big]
&\equiv&
\big[ \sqrt{Y_1} \big]_d \big[ \SDS{G}_{ut,xy} \big]_d \big[ \SDS{B} \Big]
\nonumber \\
&\equiv&
\begin{pmatrix}
\big[ \SDS{G}_{ux}^{YB} \Big] & \big[ \SDS{G}_{uy}^{YB} \Big] \\
\big[ \SDS{G}_{tx}^{YB} \Big] & \big[ \SDS{G}_{ty}^{YB} \Big]
\end{pmatrix}
\end{eqnarray}
とおいたときの行列$\big[ \SDS{G}_{ux}^{YB} \Big]$,$\big[ \SDS{G}_{uy}^{YB} \Big]$,
$\big[ \SDS{G}_{tx}^{YB} \Big]$,$\big[ \SDS{G}_{ty}^{YB} \Big]$の要素
$\SDS{g}_{m'n',kl}^{ux}$,$\SDS{g}_{m'n',kl}^{uy}$,
$\SDS{g}_{m'n',kl}^{tx}$,$\SDS{g}_{m'n',kl}^{ty}$は各々次のようになる.
\begin{eqnarray}
\SDS{g}_{m'n',kl}^{ux}
&=& \sqrt{Y_{1[m'n']}}
\left( \SDS{G}_{xx}^{m'n'} \sin \phi _{m'n'} + \SDS{G}_{yx}^{m'n'} \cos \phi _{m'n'} \right) \SDS{B}_{xkl}^{m'n'}
\\
\SDS{g}_{m'n',kl}^{uy}
&=& \sqrt{Y_{1[m'n']}}
\left( \SDS{G}_{xy}^{m'n'} \sin \phi _{m'n'} + \SDS{G}_{yy}^{m'n'} \cos \phi _{m'n'} \right) \SDS{B}_{ykl}^{m'n'}
\\
\SDS{g}_{m'n',kl}^{tx}
&=& \sqrt{Y_{1(m'n')}}
\left( -\SDS{G}_{xx}^{m'n'} \cos \phi _{m'n'} + \SDS{G}_{yx}^{m'n'} \sin \phi _{m'n'} \right) \SDS{B}_{xkl}^{m'n'}
\\
\SDS{g}_{m'n',kl}^{ty}
&=& \sqrt{Y_{1(m'n')}}
\left( -\SDS{G}_{xy}^{m'n'} \cos \phi _{m'n'} + \SDS{G}_{yy}^{m'n'} \sin \phi _{m'n'} \right) \SDS{B}_{ykl}^{m'n'}
\end{eqnarray}
さらに,
\begin{eqnarray}
\big[ S_0 \big]
&\equiv& -\big[ \sqrt{Y_1} \big]_d \big[ \SDS{G}_{ut,xy} \big]_d \big[ \SDS{B} \Big]
\Big[ Z' \Big] ^{-1} \Big[ \SDS{T}_{xy,ut}^* ]^t [ \sqrt{Z_1} ]_d
\nonumber \\
&=& \big[ \SDS{G}^{YB} \Big] \Big[ Z' \Big] ^{-1} \Big[ \SDS{T}^{Z*} ]^t
\end{eqnarray}
とおくと,
\begin{eqnarray}
\VEC{E}_{s,\tan}^{(1)} \Big| _{z=0}
&=& -[ \VEC{e}'_1 ]^t \big[ \sqrt{Y_1} \big]_d \big[ \SDS{G}_{ut,xy} \big]_d
\big[ \SDS{B} \Big] \Big[ Z' \Big] ^{-1} \Big[ \SDS{T}_{xy,ut}^* ]^t
\nonumber \\
&&\cdot
\Big\{ [U] + [R^{+}]_d \Big\} [ \sqrt{Z_1} ]_d \VECi{a}_1
\nonumber \\
&=& [ \VEC{e}'_1 ] \big[ S_0 \big] \Big\{ [U] + [R^{+}]_d \Big\} \VECi{a}_1
\end{eqnarray}
よって,
\begin{gather}
[\VEC{e}'_1] \Big\{ \VECi{a}_1 + \VECi{b}_1 \Big\}
= [\VEC{e}'_1] \Big\{ \VECi{a}_1 + [R^{+}]_d \VECi{a}_1 \Big\}
+ [ \VEC{e}'_1 ] \big[ S_0 \big] \Big\{ [U] + [R^{+}]_d \Big\} \VECi{a}_1 \nonumber \\
\VECi{a}_1+ \VECi{b}_1
= \Big\{ \VECi{a}_1 + [R^{+}]_d \VECi{a}_1 \Big\}
+ \big[ S_0 \big] \Big\{ [U] + [R^{+}]_d \Big\} \VECi{a}_1 \nonumber \\
\VECi{b}_1 = \Big( [R^{+}]_d + \big[ S_0 \big] \Big\{ [U] + [R^{+}]_d \Big\} \Big) \VECi{a}_1
\equiv [S_{11}] \VECi{a}_1
\end{gather}
したがって,
$[S_{11}]$
は次のようになる.
\begin{gather}
[S_{11}] = [R^{+}]_d + \big[ S_0 \big] \Big( [U] + [R^{+}]_d \Big)
\end{gather}
同様にして,
$[S_{22}]$
は(導出省略),
\begin{gather}
[S_{22}] = [R^{-}]_d + \big[ S_0 \big] \Big( [U] + [R^{-}]_d \Big)
\end{gather}
ここで,
\begin{gather}
[ R^- ]_d =
\begin{pmatrix}
[ R^-_{_{\TE}} ]_d & 0 \\ 0 & [ R^-_{_{\TM}} ]_d
\end{pmatrix}
\end{gather}
ただし,
$[R^-_{_{\TE}}]_d$,$[R^-_{_{\TM}}]_d$は,各々
$R^-_{[m'n']} $(TE波),$R^-_{(m'n')} $(TM波)を対角要素とする対角行列を示し,
\begin{eqnarray}
R^{-}_{[m'n']}
&=& \frac{Y_{2[m'n']} - Y_{1[m'n']}}{Y_{2[m'n']} + Y_{1[m'n']}}
\nonumber \\
&=& -R^{+}_{[m'n']}
\\
R^{-}_{(m'n')}
&=& \frac{Z_{2(m'n')} - Z_{1(m'n')}}{Z_{2(m'n')} + Z_{1(m'n')}}
\nonumber \\
&=& -R^{+}_{(m'n')}
\end{eqnarray}
よって,
\begin{gather}
[R^{-}]_d = - [R^{+}]_d
\end{gather}
したがって,
$[S_{22}]$
は,
\begin{gather}
[S_{22}] = -[R^{+}]_d + \big[ S_0 \big] \Big( [U] - [R^{+}]_d \Big)
\end{gather}
また,
$[S_{21}]$
は(導出省略),
\begin{gather}
[S_{21}] = [T^{+}]_d + \big[ S_0 \big] [T^{+}]_d
\end{gather}
ここで,
\begin{gather}
[ T^+ ]_d =
\begin{pmatrix}
[ T^+_{_{\TE}} ]_d & 0 \\ 0 & [ T^+_{_{\TM}} ]_d
\end{pmatrix}
\end{gather}
ただし,
$[T^+_{_{\TE}}]_d$,$[T^+_{_{\TM}}]_d$は,各々
$T^+_{[m'n']} $(TE波),$T^+_{(m'n')} $(TM波)を対角要素とする対角行列を示し,
\begin{eqnarray}
T^{+}_{[m'n']}
&=& \frac{Y_{1[m'n']}}{Y_{2[m'n']} + Y_{1[m'n']}}
\nonumber \\
&=& 1+R^{+}_{[m'n']}
\\
T^{+}_{(m'n')}
&=& \frac{Y_{1(m'n')}}{Y_{2(m'n')} + Y_{1(m'n')}}
\nonumber \\
&=& 1+R^{+}_{(m'n')}
\end{eqnarray}
よって,
\begin{gather}
[T^{+}]_d = [U] + [R^{+}]_d
\end{gather}
したがって,
$[S_{21}]$
は,
\begin{eqnarray}
[S_{21}]
&=& \Big( [U] + [R^{+}]_d \Big) + \big[ S_0 \big] \Big( [U] + [R^{+}]_d \Big)
\nonumber \\
&=& \Big( [U] + [S_0] \Big) \Big( [U] + [R^{+}]_d \Big)
\end{eqnarray}
同様にして,
$[S_{12}]$
は,
\begin{gather}
[S_{12}] = \Big( [U] + [S_0] \Big) \Big( [U] - [R^{+}]_d \Big)
\end{gather}
これより,散乱行列$[S]$は,
\begin{eqnarray}
&&[S]
=
\begin{pmatrix}
[ S_{11} ] & [ S_{12} ] \\ [ S_{21} ] & [ S_{22} ]
\end{pmatrix}
\nonumber \\
&=&
\begin{pmatrix}
\left[ [R^{+}]_d + \big[ S_0 \big] \Big( [U] + [R^{+}]_d \Big) \right] &
\left[ \Big( [U] + [S_0] \Big) \Big( [U] - [R^{+}]_d \Big) \right] \\
\left[ \Big( [U] + [S_0] \Big) \Big( [U] + [R^{+}]_d \Big) \right] &
\left[ -[R^{+}]_d + \big[ S_0 \big] \Big( [U] - [R^{+}]_d \Big) \right]
\end{pmatrix}
\end{eqnarray}