4.5 透過係数

 透過波側の自由空間と誘電体の境界面を $z=0$ にとると,導体素子がない場合の透過波の接線電界 $\VEC{E}_{t,\tan}$ は, \begin{gather} \VEC{E}_{t,\tan} \Big| _{z=0} = \Big\{ T_{te}^{E-} V_{1_{\TE}}^- (\VEC{u}_t \times \VEC{u}_z ) + T_{tm}^{E-} V_{1_{\TM}}^- \VEC{u}_t \Big\} e^{j\VEC{k}_t \cdot \VECi{\rho}} \end{gather} また,導体素子による散乱波の接線電界 $\VEC{E}_{s,\tan}$ は, \begin{gather} \VEC{E}_{s,\tan} \Big| _{z=0} = \frac{1}{d_xd_y} \sum _{m,n} \widetilde{\DYA{G}}_T^{_{(d_o)EJ}} (\VEC{k}_{tmn}) \cdot \SDV{J}_s (\VEC{k}_{tmn}) e^{j\VEC{k}_{tmn} \cdot \VECi{\rho}} \end{gather} この境界面での全透過波 $\VEC{E}^{(\FSS)}_{t,\tan}$ を,反射波と同様に次のようにフロケモードで展開する. \begin{eqnarray} \VEC{E}^{(\FSS)}_{t,\tan} &=& \VEC{E}_{t,\tan} \Big| _{z=0} + \VEC{E}_{s,\tan} \Big| _{z=0} \nonumber \\ &=& \sum _{m,n} \left\{ V_{[mn]}^- \left( \VEC{u}_{tmn} \times \VEC{u}_z \right) + V_{(mn)}^- \VEC{u}_{tmn} \right\} e^{j\VEC{k}_{tmn} \cdot \VECi{\rho}} \end{eqnarray} 透過係数を求めるため,両者を等しくおき,両辺に $\psi _{00}^* (\VECi{\rho})= e^{-j\VEC{k}_{t00} \cdot \VECi{\rho}}$ を乗じ,単位セル$S$にわたり積分して, \begin{eqnarray} &&\int _S \Big[ \sum _{m,n} \left\{ V_{[mn]}^- \left( \VEC{u}_{tmn} \times \VEC{u}_z \right) + V_{(mn)}^- \VEC{u}_{tmn} \right\} e^{j\VEC{k}_{tmn} \cdot \VECi{\rho}} \Big] e^{-j\VEC{k}_{t00} \cdot \VECi{\rho}} dS \nonumber \\ &=& \int _S \Big[ \Big\{ T_{te}^{E-} V_{1_{\TE}}^- (\VEC{u}_t \times \VEC{u}_z ) + T_{tm}^{E-} V_{1_{\TM}}^- \VEC{u}_t \Big\} e^{j\VEC{k}_t \cdot \VECi{\rho}} \Big] e^{-j\VEC{k}_{t00} \cdot \VECi{\rho}} dS \nonumber \\ &&+ \int _S \Big[ \frac{1}{d_xd_y} \sum _{m,n} \widetilde{\DYA{G}}_T^{_{(d_o)EJ}} (\VEC{k}_{tmn}) \cdot \SDV{J}_s (\VEC{k}_{tmn}) e^{j\VEC{k}_{tmn} \cdot \VECi{\rho}} \Big] e^{-j\VEC{k}_{t00} \cdot \VECi{\rho}} dS \end{eqnarray} 直交性より, \begin{align} &\Big\{ V_{[00]}^- \left( \VEC{u}_t \times \VEC{u}_z \right) + V_{(00)}^- \VEC{u}_t \Big\} \nonumber \\ &= \Big\{ T_{te}^{E-} V_{1_{\TE}}^- \left( \VEC{u}_t \times \VEC{u}_z \right) + T_{tm}^{E-} V_{1_{\TM}}^- \VEC{u}_t \Big\} + \frac{1}{d_xd_y} \widetilde{\DYA{G}}_T^{_{(d_o)EJ}} (\VEC{k}_{t}) \cdot \SDV{J}_s (\VEC{k}_{t}) \end{align} これより,$(\VEC{u}_t \times \VEC{u}_z)$成分,$\VEC{u}_t$成分は, \begin{eqnarray} V_{[00]}^- &=& T_{te}^{E-} V_{1_{\TE}}^- + \frac{1}{d_xd_y} \left( \VEC{u}_t \times \VEC{u}_z \right) \cdot \widetilde{\DYA{G}}_T^{_{(d_o)EJ}} (\VEC{k}_{t}) \cdot \SDV{J}_s (\VEC{k}_{t}) \\ V_{(00)}^- &=& T_{tm}^{E-} V_{1_{\TM}}^- + \frac{1}{d_xd_y} \VEC{u}_t \cdot \widetilde{\DYA{G}}_T^{_{(d_o)EJ}} (\VEC{k}_{t}) \cdot \SDV{J}_s (\VEC{k}_{t}) \end{eqnarray} したがって,主偏波成分の透過係数 $T_{[00]}^{^{\TE \to \TE}}$(TE波), $T_{(00)}^{^{\TM \to \TM}}$(TM波)は, \begin{eqnarray} T_{[00]}^{^{\TE \to \TE}} &=& \frac{V_{[00]}^-}{V_{1_{\TE}}^-} \nonumber \\ &=& \left. T_{te}^{E-} + \frac{1}{d_x d_y} \left( \VEC{u}_z \times \VEC{u}_t \right) \cdot \widetilde{\DYA{G}}_T^{_{(d_o)EJ}} \cdot \SDV{J}_s \right| _{V_{1_{\TE}}^- = 1, V_{1_{\TM}}^- = 0} \\ T_{(00)}^{^{\TM \to \TM}} &=& \frac{V_{(00)}^-}{V_{1_{\TM}}^-} \nonumber \\ &=& \left. T_{tm}^{E-} + \frac{1}{d_x d_y} \VEC{u}_t \cdot \widetilde{\DYA{G}}_T^{_{(d_o)EJ}} \cdot \SDV{J}_s \right| _{V_{1_{\TE}}^- = 0, V_{1_{\TM}}^- = 1} \end{eqnarray} また,交差偏波成分の透過係数 $T_{(00)}^{^{\TE \to \TM}}$, $T_{[00]}^{^{\TM \to \TE}}$は, \begin{eqnarray} T_{(00)}^{^{\TE \to \TM}} &=& \frac{V_{(00)}^-}{V_{1_{\TE}}^-} \nonumber \\ &=& \left. \frac{1}{d_x d_y} \VEC{u}_t \cdot \widetilde{\DYA{G}}_T^{_{(d_o)EJ}} \cdot \SDV{J}_s \right| _{V_{1_{\TE}}^- = 1, V_{1_{\TM}}^- = 0} \\ T_{[00]}^{^{\TM \to \TE}} &=& \frac{V_{[00]}^-}{V_{1_{\TM}}^-} \nonumber \\ &=& \left. \frac{1}{d_x d_y} \left( \VEC{u}_z \times \VEC{u}_t \right) \cdot \widetilde{\DYA{G}}_T^{_{(d_o)EJ}} \cdot \SDV{J}_s \right| _{V_{1_{\TE}}^- = 0, V_{1_{\TM}}^- = 1} \end{eqnarray} ここで, \begin{eqnarray} &&\widetilde{\DYA{G}}_T^{_{EJ}} (\VEC{k}_{t}) \cdot \SDV{J}_s (\VEC{k}_{t}) \nonumber \\ &=& \begin{pmatrix} \VEC{u}_x & \VEC{u}_y \end{pmatrix} \begin{pmatrix} \SDS{G}_{xx} & \SDS{G}_{xy} \\ \SDS{G}_{yx} & \SDS{G}_{yy} \end{pmatrix} \begin{pmatrix} \SDS{J}_{x} \\ \SDS{J}_{y} \end{pmatrix} \nonumber \\ &=& \begin{pmatrix} \VEC{u}_t \times \VEC{u}_z & \VEC{u}_t \end{pmatrix} \begin{pmatrix} \sin \phi _i & -\cos \phi _i \\ \cos \phi _i & \sin \phi _i \end{pmatrix} \begin{pmatrix} \SDS{G}_{xx} & \SDS{G}_{xy} \\ \SDS{G}_{yx} & \SDS{G}_{yy} \end{pmatrix} \begin{pmatrix} \SDS{J}_{x} \\ \SDS{J}_{y} \end{pmatrix} \nonumber \\ &=& \begin{pmatrix} \VEC{u}_t \times \VEC{u}_z & \VEC{u}_t \end{pmatrix} \begin{pmatrix} \SDS{Z}_{_{\TE}} & 0 \\ 0 & \SDS{Z}_{_{\TM}} \end{pmatrix} \begin{pmatrix} \sin \phi _i & -\cos \phi _i \\ \cos \phi _i & \sin \phi _i \end{pmatrix} \begin{pmatrix} \SDS{J}_{x} \\ \SDS{J}_{y} \end{pmatrix} \nonumber \\ &=& \begin{pmatrix} \VEC{u}_t \times \VEC{u}_z & \VEC{u}_t \end{pmatrix} \begin{pmatrix} \SDS{Z}_{_{\TE}} \sin \phi _i & -\SDS{Z}_{_{\TE}} \sin \cos _i \\ \SDS{Z}_{_{\TM}} \cos \phi _i & \SDS{Z}_{_{\TM}} \sin \phi _i \end{pmatrix} \begin{pmatrix} \displaystyle{\sum _{p,q} \SDS{B}_{xpq} I_{xpq}} \\ \displaystyle{\sum _{p,q} \SDS{B}_{ypq} I_{ypq}} \end{pmatrix} \nonumber \\ &=& \begin{pmatrix} \VEC{u}_t \times \VEC{u}_z & \VEC{u}_t \end{pmatrix} \begin{pmatrix} \SDS{Z}_{_{\TE}} \Big\{ \sin \phi _i \displaystyle{\sum _{p,q} \SDS{B}_{xpq} I_{xpq}} - \cos \phi _i \displaystyle{\sum _{p,q} \SDS{B}_{ypq} I_{ypq}} \Big\} \\ \SDS{Z}_{_{\TM}} \Big\{ \cos \phi _i \displaystyle{\sum _{p,q} \SDS{B}_{xpq} I_{xpq}} + \sin \phi _i \displaystyle{\sum _{p,q} \SDS{B}_{ypq} I_{ypq}} \Big\} \end{pmatrix} \end{eqnarray} これより, \begin{align} &\left( \VEC{u}_t \times \VEC{u}_z \right) \cdot \widetilde{\DYA{G}}_T^{_{EJ}} (\VEC{k}_{t}) \cdot \SDV{J}_s (\VEC{k}_{t}) \nonumber \\ &= \SDS{Z}_{_{\TE}} \Big\{ \sin \phi _i \displaystyle{\sum _{p,q} \SDS{B}_{xpq} I_{xpq}} - \cos \phi _i \displaystyle{\sum _{p,q} \SDS{B}_{ypq} I_{ypq}} \Big\} \\ &\VEC{u}_t \cdot \widetilde{\DYA{G}}_T^{_{EJ}} (\VEC{k}_{t}) \cdot \SDV{J}_s (\VEC{k}_{t}) \nonumber \\ &= \SDS{Z}_{_{\TM}} \Big\{ \cos \phi _i \displaystyle{\sum _{p,q} \SDS{B}_{xpq} I_{xpq}} + \sin \phi _i \displaystyle{\sum _{p,q} \SDS{B}_{ypq} I_{ypq}} \Big\} \end{align}