1.5 接線電磁界の表示式
接線電界の入射波・反射波
\(z \lt 0 \) から平面波が入射したとき,\(z=0\) での入射電界\(\boldsymbol{E}_{i,\tan}^{(1)}\),入射磁界\(\boldsymbol{H}_{i,\tan}^{(1)}\)は,
\begin{eqnarray}
\boldsymbol{E}_{i,\tan}^{(1)} \Big| _{z=0}
&=& \Big\{ V_{1_{\mathrm{TE}}}^+ \big( \boldsymbol{u}_t \times \boldsymbol{u}_z \big) + V_{1_{\mathrm{TM}}}^+ \boldsymbol{u}_t \Big\}
e^{\mp j\boldsymbol{k}_t \cdot \boldsymbol{\rho}}
\\
\boldsymbol{H}_{i,\tan}^{(1)} \Big| _{z=0}
&=& \Big\{ Y_{1_{\mathrm{TE}}} V_{1_{\mathrm{TE}}}^+ \boldsymbol{u}_t + Y_{1_{\mathrm{TM}}} V_{1_{\mathrm{TM}}}^+ \big( \boldsymbol{u}_t \times \boldsymbol{u}_z \big) \Big\}
e^{\mp j\boldsymbol{k}_t \cdot \boldsymbol{\rho}}
\end{eqnarray}
これに対して,反射電界\(\boldsymbol{E}_{r,\tan}^{(1)}\),反射磁界\(\boldsymbol{H}_{r,\tan}^{(1)}\)は,
\begin{eqnarray}
\boldsymbol{E}_{r,\tan}^{(1)} \Big| _{z=0}
&=& \Big\{ V_{1_{\mathrm{TE}}}^- \big( \boldsymbol{u}_t \times \boldsymbol{u}_z \big) + V_{1_{\mathrm{TM}}}^- \boldsymbol{u}_t \Big\}
e^{\mp j\boldsymbol{k}_t \cdot \boldsymbol{\rho}}
\\
\boldsymbol{H}_{r,\tan}^{(1)} \Big| _{z=0}
&=& -\Big\{ Y_{1_{\mathrm{TE}}} V_{1_{\mathrm{TE}}}^- \boldsymbol{u}_t + Y_{1_{\mathrm{TM}}} V_{1_{\mathrm{TM}}}^- \big( \boldsymbol{u}_t \times \boldsymbol{u}_z \big) \Big\}
e^{\mp j\boldsymbol{k}_t \cdot \boldsymbol{\rho}}
\end{eqnarray}
接線電界の反射係数\(R_ \mathrm{te}^{E+}\)(TE波),\(R_ \mathrm{tm}^{E+}\)(TM波)を,次のように定義する.
\begin{gather}
R_ \mathrm{te}^{E+} = \left. \frac{V_{1_{\mathrm{TE}}}^-}{V_{1_{\mathrm{TE}}}^+} \right| _{V_{2_{\mathrm{TE}}}^- = 0}
\\
R_ \mathrm{tm}^{E+} = \left. \frac{V_{1_{\mathrm{TM}}}^-}{V_{1_{\mathrm{TM}}}^+} \right| _{V_{2_{\mathrm{TM}}}^- = 0}
\end{gather}
これより,反射波の接線電界,および接線磁界は,
\begin{eqnarray}
\boldsymbol{E}_{r,\tan}^{(1)} \Big| _{z=0}
&=& \Big\{ R_ \mathrm{te}^{E+} V_{1_{\mathrm{TE}}}^+ \big( \boldsymbol{u}_t \times \boldsymbol{u}_z \big) + R_ \mathrm{tm}^{E+} V_{1_{\mathrm{TM}}}^+ \boldsymbol{u}_t \Big\}
e^{\mp j\boldsymbol{k}_t \cdot \boldsymbol{\rho}}
\\
\boldsymbol{H}_{r,\tan}^{(1)} \Big| _{z=0}
&=& -\Big\{ Y_{1_{\mathrm{TE}}} R_ \mathrm{te}^{E+} V_{1_{\mathrm{TE}}}^+ \boldsymbol{u}_t + Y_{1_{\mathrm{TM}}} R_ \mathrm{tm}^{E+} V_{1_{\mathrm{TM}}}^+ \big( \boldsymbol{u}_t \times \boldsymbol{u}_z \big) \Big\}
e^{\mp j\boldsymbol{k}_t \cdot \boldsymbol{\rho}}
\end{eqnarray}
反射波の電界の\(x\)成分,\(y\)成分を
\begin{gather}
\boldsymbol{E}_{r,\tan}^{(1)} \Big| _{z=0} \equiv E_{r,x} \boldsymbol{u}_x + E_{r,y} \boldsymbol{u}_y
\end{gather}
とおくと,
\begin{eqnarray}
E_{r,x} &=& \Big\{ R_ \mathrm{te}^{E+} V_{1_{\mathrm{TE}}}^+ \big( \boldsymbol{u}_t \times \boldsymbol{u}_z \big) \cdot \boldsymbol{u}_x
+ R_ \mathrm{tm}^{E+} V_{1_{\mathrm{TM}}}^+ \boldsymbol{u}_t \cdot \boldsymbol{u}_x \Big\}
e^{\mp j\boldsymbol{k}_t \cdot \boldsymbol{\rho}}
\\
E_{r,y} &=& \Big\{ R_ \mathrm{te}^{E+} V_{1_{\mathrm{TE}}}^+ \big( \boldsymbol{u}_t \times \boldsymbol{u}_z \big) \cdot \boldsymbol{u}_y
+ R_ \mathrm{tm}^{E+} V_{1_{\mathrm{TM}}}^+ \boldsymbol{u}_t \cdot \boldsymbol{u}_y \Big\}
e^{\mp j\boldsymbol{k}_t \cdot \boldsymbol{\rho}}
\end{eqnarray}
ここで,
\begin{gather}
\boldsymbol{u}_t \equiv \cos \phi _i \boldsymbol{u}_x + \sin \phi _i \boldsymbol{u}_y
\end{gather}
とおくと,
\begin{eqnarray}
E_{r,x} &=& \Big\{ R_ \mathrm{te}^{E+} V_{1_{\mathrm{TE}}}^+ \sin \phi _i + R_ \mathrm{tm}^{E+} V_{1_{\mathrm{TM}}}^+ \cos \phi _i \Big\}
e^{\mp j\boldsymbol{k}_t \cdot \boldsymbol{\rho}}
\\
E_{r,y} &=& \Big\{ R_ \mathrm{te}^{E+} V_{1_{\mathrm{TE}}}^+ (-\cos \phi _i )+ R_ \mathrm{tm}^{E+} V_{1_{\mathrm{TM}}}^+ \sin \phi _i \Big\}
e^{\mp j\boldsymbol{k}_t \cdot \boldsymbol{\rho}}
\end{eqnarray}
行列表示すると,
\begin{eqnarray}
\begin{pmatrix}
E_{r,x} \\ E_{r,y}
\end{pmatrix}
&=& e^{\mp j\boldsymbol{k}_t \cdot \boldsymbol{\rho}}
\begin{pmatrix}
R_ \mathrm{te}^{E+} \sin \phi _i & R_ \mathrm{tm}^{E+} \cos \phi _i \\
-R_ \mathrm{te}^{E+} \cos \phi _i & R_ \mathrm{tm}^{E+} \sin \phi _i
\end{pmatrix}
\begin{pmatrix}
V_{1_{\mathrm{TE}}}^+ \\ V_{1_{\mathrm{TM}}}^+
\end{pmatrix} \nonumber \\
&=& e^{\mp j\boldsymbol{k}_t \cdot \boldsymbol{\rho}}
\begin{pmatrix}
\sin \phi _i & \cos \phi _i \\ -\cos \phi _i & \sin \phi _i
\end{pmatrix}
\begin{pmatrix}
R_ \mathrm{te}^{E+} & 0 \\ 0 & R_ \mathrm{tm}^{E+}
\end{pmatrix}
\begin{pmatrix}
V_{1_{\mathrm{TE}}}^+ \\ V_{1_{\mathrm{TM}}}^+
\end{pmatrix}
\end{eqnarray}
ここで,回転に関する行列\([\boldsymbol{\Phi}]\)の転置\([\boldsymbol{\Phi}]^t\),対角行列\([R^{E+}]\)を,
\begin{align}
&[\boldsymbol{\Phi}]^t \equiv
\begin{pmatrix}
\sin \phi _i & \cos \phi _i \\ -\cos \phi _i & \sin \phi _i
\end{pmatrix}
\\
&[R^{E+}] \equiv
\begin{pmatrix}
R_ \mathrm{te}^{E+} & 0 \\ 0 & R_ \mathrm{tm}^{E+}
\end{pmatrix}
\end{align}
とおくと,
\begin{gather}
\begin{pmatrix}
E_{r,x} \\ E_{r,y}
\end{pmatrix}
= e^{\mp j\boldsymbol{k}_t \cdot \boldsymbol{\rho}}
[\boldsymbol{\Phi}]^t [R^{E+}]
\begin{pmatrix}
V_{1_{\mathrm{TE}}}^+ \\ V_{1_{\mathrm{TM}}}^+
\end{pmatrix}
\end{gather}
同様に,入射波の電界の\(x\)成分,\(y\)成分を
\begin{gather}
\boldsymbol{E}_{i,\tan}^{(1)} \Big| _{z=0} \equiv E_{i,x} \boldsymbol{u}_x + E_{i,y} \boldsymbol{u}_y
\end{gather}
とおくと
\begin{eqnarray}
\begin{pmatrix}
E_{r,x} \\ E_{r,y}
\end{pmatrix}
&=& e^{\mp j\boldsymbol{k}_t \cdot \boldsymbol{\rho}} [\boldsymbol{\Phi}]^t
\begin{pmatrix}
V_{1_{\mathrm{TE}}}^+ \\ V_{1_{\mathrm{TM}}}^+
\end{pmatrix}
\nonumber \\
&\equiv& e^{\mp j\boldsymbol{k}_t \cdot \boldsymbol{\rho}} [\boldsymbol{\Phi}]^t [U]
\begin{pmatrix}
V_{1_{\mathrm{TE}}}^+ \\ V_{1_{\mathrm{TM}}}^+
\end{pmatrix}
\end{eqnarray}
ただし,\([U]\)は単位行列である.
\begin{gather}
[U] \equiv
\begin{pmatrix}
1 & 0 \\ 0 & 1
\end{pmatrix}
\end{gather}
これより,入射波と反射波の重ね合わせ,
\begin{eqnarray}
E_{ir,x} &\equiv& E_{i,x} + E_{r,x}
\\
E_{ir,y} &\equiv& E_{i,y} + E_{r,y}
\end{eqnarray}
については,
\begin{gather}
\begin{pmatrix}
E_{ir,x} \\ E_{ir,y}
\end{pmatrix}
= e^{\mp j\boldsymbol{k}_t \cdot \boldsymbol{\rho}} [\boldsymbol{\Phi}]^t \Big( [U] + [R^{E+}] \Big)
\begin{pmatrix}
V_{1_{\mathrm{TE}}}^+ \\ V_{1_{\mathrm{TM}}}^+
\end{pmatrix}
\end{gather}
さらに,
\begin{eqnarray}
E_{i,x} &=& \Big\{ V_{1_{\mathrm{TE}}}^+ \sin \phi _i + V_{1_{\mathrm{TM}}}^+ \cos \phi _i \Big\} e^{\mp j\boldsymbol{k}_t \cdot \boldsymbol{\rho}}
\nonumber \\
&\equiv& V_{1,x}^+ e^{\mp j\boldsymbol{k}_t \cdot \boldsymbol{\rho}}
\\
E_{i,y} &=& \Big\{ V_{1_{\mathrm{TE}}}^+ (-\cos \phi _i )+ V_{1_{\mathrm{TM}}}^+ \sin \phi _i \Big\} e^{\mp j\boldsymbol{k}_t \cdot \boldsymbol{\rho}}
\nonumber \\
&\equiv& V_{1,y}^+ e^{\mp j\boldsymbol{k}_t \cdot \boldsymbol{\rho}}
\end{eqnarray}
より\(V_{1,x}^+\),\(V_{1,y}^+\)を定義すると,
\begin{eqnarray}
\begin{pmatrix}
V_{1,x}^+ \\ V_{1,y}^+
\end{pmatrix}
&=&
\begin{pmatrix}
\sin \phi _i & \cos \phi _i \\ -\cos \phi _i & \sin \phi _i
\end{pmatrix}
\begin{pmatrix}
V_{1_{\mathrm{TE}}}^+ \\ V_{1_{\mathrm{TM}}}^+
\end{pmatrix}
\nonumber \\
&=& [\boldsymbol{\Phi}]^t
\begin{pmatrix}
V_{1_{\mathrm{TE}}}^+ \\ V_{1_{\mathrm{TM}}}^+
\end{pmatrix}
\end{eqnarray}
逆は,
\begin{gather}
\begin{pmatrix}
V_{1_{\mathrm{TE}}}^+ \\ V_{1_{\mathrm{TM}}}^+
\end{pmatrix}
= [\boldsymbol{\Phi}]
\begin{pmatrix}
V_{1,x}^+ \\ V_{1,y}^+
\end{pmatrix}
\end{gather}
ここで,
\begin{gather}
[\boldsymbol{\Phi}] \equiv
\begin{pmatrix}
\sin \phi _i & -\cos \phi _i \\ \cos \phi _i & \sin \phi _i
\end{pmatrix}
\end{gather}
したがって,\(E_{ir,x}\),\(E_{ir,y}\)は次のようになる.
\begin{gather}
\begin{pmatrix}
E_{ir,x} \\ E_{ir,y}
\end{pmatrix}
= e^{\mp j\boldsymbol{k}_t \cdot \boldsymbol{\rho}} [\boldsymbol{\Phi}]^t \Big( [U] + [R^{E+}] \Big) [\boldsymbol{\Phi}]
\begin{pmatrix}
V_{1,x}^+ \\ V_{1,y}^+
\end{pmatrix}
\end{gather}
接線磁界の入射波・反射波
同様にして,反射波の磁界の\(x\)成分,\(y\)成分を
\begin{gather}
\boldsymbol{H}_{r,\tan}^{(1)} \Big| _{z=0} \equiv H_{r,x} \boldsymbol{u}_x + H_{r,y} \boldsymbol{u}_y
\end{gather}
とおくと,
\begin{eqnarray}
H_{r,x}
&=& -\Big\{ Y_{1_{\mathrm{TE}}} R_ \mathrm{te}^{E+} V_{1_{\mathrm{TE}}}^+ \boldsymbol{u}_t \cdot \boldsymbol{u}_x
+ Y_{1_{\mathrm{TM}}} R_ \mathrm{tm}^{E+} V_{1_{\mathrm{TM}}}^+ \big( \boldsymbol{u}_t \times \boldsymbol{u}_z \big) \cdot \boldsymbol{u}_x \Big\}
e^{\mp j\boldsymbol{k}_t \cdot \boldsymbol{\rho}} \nonumber \\
&=& -\Big\{ Y_{1_{\mathrm{TE}}} R_ \mathrm{te}^{E+} V_{1_{\mathrm{TE}}}^+ \cos \phi _i + Y_{1_{\mathrm{TM}}} R_ \mathrm{tm}^{E+} V_{1_{\mathrm{TM}}}^+ \sin \phi _i \Big\}
e^{\mp j\boldsymbol{k}_t \cdot \boldsymbol{\rho}} \\
H_{r,y}
&=& -\Big\{ Y_{1_{\mathrm{TE}}} R_ \mathrm{te}^{E+} V_{1_{\mathrm{TE}}}^+ \boldsymbol{u}_t \cdot \boldsymbol{u}_y
+ Y_{1_{\mathrm{TM}}} R_ \mathrm{tm}^{E+} V_{1_{\mathrm{TM}}}^+ \big( \boldsymbol{u}_t \times \boldsymbol{u}_z \big) \cdot \boldsymbol{u}_y \Big\}
e^{\mp j\boldsymbol{k}_t \cdot \boldsymbol{\rho}} \nonumber \\
&=& -\Big\{ Y_{1_{\mathrm{TE}}} R_ \mathrm{te}^{E+} V_{1_{\mathrm{TE}}}^+ \sin \phi _i + Y_{1_{\mathrm{TM}}} R_ \mathrm{tm}^{E+} V_{1_{\mathrm{TM}}}^+ (-\cos \phi _i ) \Big\}
e^{\mp j\boldsymbol{k}_t \cdot \boldsymbol{\rho}}
\end{eqnarray}
行列表示して,
\begin{eqnarray}
\begin{pmatrix}
H_{r,x} \\ H_{r,y}
\end{pmatrix}
&=& -e^{\mp j\boldsymbol{k}_t \cdot \boldsymbol{\rho}}
\begin{pmatrix}
Y_{1_{\mathrm{TE}}} R_ \mathrm{te}^{E+} \cos \phi _i & Y_{1_{\mathrm{TM}}} R_ \mathrm{tm}^{E+} \sin \phi _i \\
Y_{1_{\mathrm{TE}}} R_ \mathrm{te}^{E+} \sin \phi _i & -Y_{1_{\mathrm{TM}}} R_ \mathrm{tm}^{E+} \cos \phi _i
\end{pmatrix}
\begin{pmatrix}
V_{1_{\mathrm{TE}}}^+ \\ V_{1_{\mathrm{TM}}}^+
\end{pmatrix} \nonumber \\
&=& -e^{\mp j\boldsymbol{k}_t \cdot \boldsymbol{\rho}}
\begin{pmatrix}
\sin \phi _i & \cos \phi _i \\ -\cos \phi _i & \sin \phi _i
\end{pmatrix}
\begin{pmatrix}
0 & Y_{1_{\mathrm{TM}}} R_ \mathrm{tm}^{E+} \\ Y_{1_{\mathrm{TE}}} R_ \mathrm{te}^{E+} & 0
\end{pmatrix}
\begin{pmatrix}
V_{1_{\mathrm{TE}}}^+ \\ V_{1_{\mathrm{TM}}}^+
\end{pmatrix} \nonumber \\
&=& -e^{\mp j\boldsymbol{k}_t \cdot \boldsymbol{\rho}} [\boldsymbol{\Phi}]^t
\begin{pmatrix}
0 & Y_{1_{\mathrm{TM}}} \\ Y_{1_{\mathrm{TE}}} & 0
\end{pmatrix}
\begin{pmatrix}
R_ \mathrm{te}^{E+} & 0 \\ 0 & R_ \mathrm{tm}^{E+}
\end{pmatrix}
\begin{pmatrix}
V_{1_{\mathrm{TE}}}^+ \\ V_{1_{\mathrm{TM}}}^+
\end{pmatrix} \nonumber \\
&\equiv & e^{\mp j\boldsymbol{k}_t \cdot \boldsymbol{\rho}}
[\boldsymbol{\Phi}]^t [Y] \Big( -[R^{E+}] \Big)
\begin{pmatrix}
V_{1_{\mathrm{TE}}}^+ \\ V_{1_{\mathrm{TM}}}^+
\end{pmatrix}
\end{eqnarray}
ただし,\([Y]\),\([R^{E+}]\)は次のような対角行列である.
\begin{align}
&[Y] \equiv
\begin{pmatrix}
0 & Y_{1_{\mathrm{TM}}} \\ Y_{1_{\mathrm{TE}}} & 0
\end{pmatrix}
\\
&[R^{E+}] \equiv
\begin{pmatrix}
R_ \mathrm{te}^{E+} & 0 \\ 0 & R_ \mathrm{tm}^{E+}
\end{pmatrix}
\end{align}
入射波の磁界の\(x\)成分,\(y\)成分を
\begin{gather}
\boldsymbol{H}_{i,\tan}^{(1)} \Big| _{z=0} \equiv H_{i,x} \boldsymbol{u}_x + H_{i,y} \boldsymbol{u}_y
\end{gather}
とおくと
\begin{gather}
\begin{pmatrix}
H_{i,x} \\ H_{i,y}
\end{pmatrix}
= e^{\mp j\boldsymbol{k}_t \cdot \boldsymbol{\rho}} [\boldsymbol{\Phi}]^t [Y] [U]
\begin{pmatrix}
V_{1_{\mathrm{TE}}}^+ \\ V_{1_{\mathrm{TM}}}^+
\end{pmatrix}
\end{gather}
これより,
\begin{eqnarray}
H_{ir,x} &\equiv& H_{i,x} + H_{r,x}
\\
H_{ir,y} &\equiv& H_{i,y} + H_{r,y}
\end{eqnarray}
については,
\begin{eqnarray}
\begin{pmatrix}
H_{ir,x} \\ H_{ir,y}
\end{pmatrix}
&=& e^{\mp j\boldsymbol{k}_t \cdot \boldsymbol{\rho}} [\boldsymbol{\Phi}]^t [Y] \Big( [U] - [R^{E+}] \Big)
\begin{pmatrix}
V_{1_{\mathrm{TE}}}^+ \\ V_{1_{\mathrm{TM}}}^+
\end{pmatrix}
\nonumber \\
&=& e^{\mp j\boldsymbol{k}_t \cdot \boldsymbol{\rho}} [\boldsymbol{\Phi}]^t [Y] \Big( [U] - [R^{E+}] \Big) [\boldsymbol{\Phi}]
\begin{pmatrix}
V_{1,x}^+ \\ V_{1,y}^+
\end{pmatrix}
\end{eqnarray}
透過波
自由空間中に多層媒質がある場合を考え,上と同様に\(z< \lt 0\)から平面波が入射したとき,透過波側の誘電体と自由空間との境界面での接線電磁界の表示式を示す(導出省略).
まず,透過波の接線電界\(\boldsymbol{E}_{t,\tan}\)は,
\begin{align}
&\boldsymbol{E}_{t,\tan} = E_{t,x} \boldsymbol{u}_x + E_{t,y} \boldsymbol{u}_y
\\
&\begin{pmatrix}
E_{t,x} \\ E_{t,y}
\end{pmatrix}
= e^{\mp j\boldsymbol{k}_t \cdot \boldsymbol{\rho}} [\boldsymbol{\Phi}]^t [T^{E+}] [\boldsymbol{\Phi}]
\begin{pmatrix}
V_{1,x}^+ \\ V_{1,y}^+
\end{pmatrix}
\end{align}
ここで,
\begin{gather}
[\boldsymbol{\Phi}] =
\begin{pmatrix}
\sin \phi _i & -\cos \phi _i \\ \cos \phi _i & \sin \phi _i
\end{pmatrix}
\\
[T^{E+}] =
\begin{pmatrix}
T_ \mathrm{te}^{E+} & 0 \\ 0 & T_ \mathrm{tm}^{E+}
\end{pmatrix}
\end{gather}
ただし,行列\([\boldsymbol{\Phi}]^t\)は\([\boldsymbol{\Phi}]\)の転置を示す.また,透過波の接線磁界\(\boldsymbol{H}_{t,\tan}\)は,
\begin{align}
&\boldsymbol{H}_{t,\tan} = H_{t,x} \boldsymbol{u}_x + H_{t,y} \boldsymbol{u}_y
\\
&\begin{pmatrix}
H_{t,x} \\ H_{t,y}
\end{pmatrix}
= e^{\mp j\boldsymbol{k}_t \cdot \boldsymbol{\rho}} [\boldsymbol{\Phi}]^t [Y] [T^{E+}] [\boldsymbol{\Phi}]
\begin{pmatrix}
V_{1,x}^+ \\ V_{1,y}^+
\end{pmatrix}
\end{align}
ここで,
\begin{gather}
[Y] =
\begin{pmatrix}
0 & Y_{1_{\mathrm{TM}}} \\ Y_{1_{\mathrm{TE}}} & 0
\end{pmatrix}
\end{gather}