1.5 接線電磁界の表示式

接線電界の入射波・反射波

 \(z \lt 0 \) から平面波が入射したとき,\(z=0\) での入射電界\(\boldsymbol{E}_{i,\tan}^{(1)}\),入射磁界\(\boldsymbol{H}_{i,\tan}^{(1)}\)は, \begin{eqnarray} \boldsymbol{E}_{i,\tan}^{(1)} \Big| _{z=0} &=& \Big\{ V_{1_{\mathrm{TE}}}^+ \big( \boldsymbol{u}_t \times \boldsymbol{u}_z \big) + V_{1_{\mathrm{TM}}}^+ \boldsymbol{u}_t \Big\} e^{\mp j\boldsymbol{k}_t \cdot \boldsymbol{\rho}} \\ \boldsymbol{H}_{i,\tan}^{(1)} \Big| _{z=0} &=& \Big\{ Y_{1_{\mathrm{TE}}} V_{1_{\mathrm{TE}}}^+ \boldsymbol{u}_t + Y_{1_{\mathrm{TM}}} V_{1_{\mathrm{TM}}}^+ \big( \boldsymbol{u}_t \times \boldsymbol{u}_z \big) \Big\} e^{\mp j\boldsymbol{k}_t \cdot \boldsymbol{\rho}} \end{eqnarray} これに対して,反射電界\(\boldsymbol{E}_{r,\tan}^{(1)}\),反射磁界\(\boldsymbol{H}_{r,\tan}^{(1)}\)は, \begin{eqnarray} \boldsymbol{E}_{r,\tan}^{(1)} \Big| _{z=0} &=& \Big\{ V_{1_{\mathrm{TE}}}^- \big( \boldsymbol{u}_t \times \boldsymbol{u}_z \big) + V_{1_{\mathrm{TM}}}^- \boldsymbol{u}_t \Big\} e^{\mp j\boldsymbol{k}_t \cdot \boldsymbol{\rho}} \\ \boldsymbol{H}_{r,\tan}^{(1)} \Big| _{z=0} &=& -\Big\{ Y_{1_{\mathrm{TE}}} V_{1_{\mathrm{TE}}}^- \boldsymbol{u}_t + Y_{1_{\mathrm{TM}}} V_{1_{\mathrm{TM}}}^- \big( \boldsymbol{u}_t \times \boldsymbol{u}_z \big) \Big\} e^{\mp j\boldsymbol{k}_t \cdot \boldsymbol{\rho}} \end{eqnarray} 接線電界の反射係数\(R_ \mathrm{te}^{E+}\)(TE波),\(R_ \mathrm{tm}^{E+}\)(TM波)を,次のように定義する. \begin{gather} R_ \mathrm{te}^{E+} = \left. \frac{V_{1_{\mathrm{TE}}}^-}{V_{1_{\mathrm{TE}}}^+} \right| _{V_{2_{\mathrm{TE}}}^- = 0} \\ R_ \mathrm{tm}^{E+} = \left. \frac{V_{1_{\mathrm{TM}}}^-}{V_{1_{\mathrm{TM}}}^+} \right| _{V_{2_{\mathrm{TM}}}^- = 0} \end{gather} これより,反射波の接線電界,および接線磁界は, \begin{eqnarray} \boldsymbol{E}_{r,\tan}^{(1)} \Big| _{z=0} &=& \Big\{ R_ \mathrm{te}^{E+} V_{1_{\mathrm{TE}}}^+ \big( \boldsymbol{u}_t \times \boldsymbol{u}_z \big) + R_ \mathrm{tm}^{E+} V_{1_{\mathrm{TM}}}^+ \boldsymbol{u}_t \Big\} e^{\mp j\boldsymbol{k}_t \cdot \boldsymbol{\rho}} \\ \boldsymbol{H}_{r,\tan}^{(1)} \Big| _{z=0} &=& -\Big\{ Y_{1_{\mathrm{TE}}} R_ \mathrm{te}^{E+} V_{1_{\mathrm{TE}}}^+ \boldsymbol{u}_t + Y_{1_{\mathrm{TM}}} R_ \mathrm{tm}^{E+} V_{1_{\mathrm{TM}}}^+ \big( \boldsymbol{u}_t \times \boldsymbol{u}_z \big) \Big\} e^{\mp j\boldsymbol{k}_t \cdot \boldsymbol{\rho}} \end{eqnarray} 反射波の電界の\(x\)成分,\(y\)成分を \begin{gather} \boldsymbol{E}_{r,\tan}^{(1)} \Big| _{z=0} \equiv E_{r,x} \boldsymbol{u}_x + E_{r,y} \boldsymbol{u}_y \end{gather} とおくと, \begin{eqnarray} E_{r,x} &=& \Big\{ R_ \mathrm{te}^{E+} V_{1_{\mathrm{TE}}}^+ \big( \boldsymbol{u}_t \times \boldsymbol{u}_z \big) \cdot \boldsymbol{u}_x + R_ \mathrm{tm}^{E+} V_{1_{\mathrm{TM}}}^+ \boldsymbol{u}_t \cdot \boldsymbol{u}_x \Big\} e^{\mp j\boldsymbol{k}_t \cdot \boldsymbol{\rho}} \\ E_{r,y} &=& \Big\{ R_ \mathrm{te}^{E+} V_{1_{\mathrm{TE}}}^+ \big( \boldsymbol{u}_t \times \boldsymbol{u}_z \big) \cdot \boldsymbol{u}_y + R_ \mathrm{tm}^{E+} V_{1_{\mathrm{TM}}}^+ \boldsymbol{u}_t \cdot \boldsymbol{u}_y \Big\} e^{\mp j\boldsymbol{k}_t \cdot \boldsymbol{\rho}} \end{eqnarray} ここで, \begin{gather} \boldsymbol{u}_t \equiv \cos \phi _i \boldsymbol{u}_x + \sin \phi _i \boldsymbol{u}_y \end{gather} とおくと, \begin{eqnarray} E_{r,x} &=& \Big\{ R_ \mathrm{te}^{E+} V_{1_{\mathrm{TE}}}^+ \sin \phi _i + R_ \mathrm{tm}^{E+} V_{1_{\mathrm{TM}}}^+ \cos \phi _i \Big\} e^{\mp j\boldsymbol{k}_t \cdot \boldsymbol{\rho}} \\ E_{r,y} &=& \Big\{ R_ \mathrm{te}^{E+} V_{1_{\mathrm{TE}}}^+ (-\cos \phi _i )+ R_ \mathrm{tm}^{E+} V_{1_{\mathrm{TM}}}^+ \sin \phi _i \Big\} e^{\mp j\boldsymbol{k}_t \cdot \boldsymbol{\rho}} \end{eqnarray} 行列表示すると, \begin{eqnarray} \begin{pmatrix} E_{r,x} \\ E_{r,y} \end{pmatrix} &=& e^{\mp j\boldsymbol{k}_t \cdot \boldsymbol{\rho}} \begin{pmatrix} R_ \mathrm{te}^{E+} \sin \phi _i & R_ \mathrm{tm}^{E+} \cos \phi _i \\ -R_ \mathrm{te}^{E+} \cos \phi _i & R_ \mathrm{tm}^{E+} \sin \phi _i \end{pmatrix} \begin{pmatrix} V_{1_{\mathrm{TE}}}^+ \\ V_{1_{\mathrm{TM}}}^+ \end{pmatrix} \nonumber \\ &=& e^{\mp j\boldsymbol{k}_t \cdot \boldsymbol{\rho}} \begin{pmatrix} \sin \phi _i & \cos \phi _i \\ -\cos \phi _i & \sin \phi _i \end{pmatrix} \begin{pmatrix} R_ \mathrm{te}^{E+} & 0 \\ 0 & R_ \mathrm{tm}^{E+} \end{pmatrix} \begin{pmatrix} V_{1_{\mathrm{TE}}}^+ \\ V_{1_{\mathrm{TM}}}^+ \end{pmatrix} \end{eqnarray} ここで,回転に関する行列\([\boldsymbol{\Phi}]\)の転置\([\boldsymbol{\Phi}]^t\),対角行列\([R^{E+}]\)を, \begin{align} &[\boldsymbol{\Phi}]^t \equiv \begin{pmatrix} \sin \phi _i & \cos \phi _i \\ -\cos \phi _i & \sin \phi _i \end{pmatrix} \\ &[R^{E+}] \equiv \begin{pmatrix} R_ \mathrm{te}^{E+} & 0 \\ 0 & R_ \mathrm{tm}^{E+} \end{pmatrix} \end{align} とおくと, \begin{gather} \begin{pmatrix} E_{r,x} \\ E_{r,y} \end{pmatrix} = e^{\mp j\boldsymbol{k}_t \cdot \boldsymbol{\rho}} [\boldsymbol{\Phi}]^t [R^{E+}] \begin{pmatrix} V_{1_{\mathrm{TE}}}^+ \\ V_{1_{\mathrm{TM}}}^+ \end{pmatrix} \end{gather} 同様に,入射波の電界の\(x\)成分,\(y\)成分を \begin{gather} \boldsymbol{E}_{i,\tan}^{(1)} \Big| _{z=0} \equiv E_{i,x} \boldsymbol{u}_x + E_{i,y} \boldsymbol{u}_y \end{gather} とおくと \begin{eqnarray} \begin{pmatrix} E_{r,x} \\ E_{r,y} \end{pmatrix} &=& e^{\mp j\boldsymbol{k}_t \cdot \boldsymbol{\rho}} [\boldsymbol{\Phi}]^t \begin{pmatrix} V_{1_{\mathrm{TE}}}^+ \\ V_{1_{\mathrm{TM}}}^+ \end{pmatrix} \nonumber \\ &\equiv& e^{\mp j\boldsymbol{k}_t \cdot \boldsymbol{\rho}} [\boldsymbol{\Phi}]^t [U] \begin{pmatrix} V_{1_{\mathrm{TE}}}^+ \\ V_{1_{\mathrm{TM}}}^+ \end{pmatrix} \end{eqnarray} ただし,\([U]\)は単位行列である. \begin{gather} [U] \equiv \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \end{gather} これより,入射波と反射波の重ね合わせ, \begin{eqnarray} E_{ir,x} &\equiv& E_{i,x} + E_{r,x} \\ E_{ir,y} &\equiv& E_{i,y} + E_{r,y} \end{eqnarray} については, \begin{gather} \begin{pmatrix} E_{ir,x} \\ E_{ir,y} \end{pmatrix} = e^{\mp j\boldsymbol{k}_t \cdot \boldsymbol{\rho}} [\boldsymbol{\Phi}]^t \Big( [U] + [R^{E+}] \Big) \begin{pmatrix} V_{1_{\mathrm{TE}}}^+ \\ V_{1_{\mathrm{TM}}}^+ \end{pmatrix} \end{gather} さらに, \begin{eqnarray} E_{i,x} &=& \Big\{ V_{1_{\mathrm{TE}}}^+ \sin \phi _i + V_{1_{\mathrm{TM}}}^+ \cos \phi _i \Big\} e^{\mp j\boldsymbol{k}_t \cdot \boldsymbol{\rho}} \nonumber \\ &\equiv& V_{1,x}^+ e^{\mp j\boldsymbol{k}_t \cdot \boldsymbol{\rho}} \\ E_{i,y} &=& \Big\{ V_{1_{\mathrm{TE}}}^+ (-\cos \phi _i )+ V_{1_{\mathrm{TM}}}^+ \sin \phi _i \Big\} e^{\mp j\boldsymbol{k}_t \cdot \boldsymbol{\rho}} \nonumber \\ &\equiv& V_{1,y}^+ e^{\mp j\boldsymbol{k}_t \cdot \boldsymbol{\rho}} \end{eqnarray} より\(V_{1,x}^+\),\(V_{1,y}^+\)を定義すると, \begin{eqnarray} \begin{pmatrix} V_{1,x}^+ \\ V_{1,y}^+ \end{pmatrix} &=& \begin{pmatrix} \sin \phi _i & \cos \phi _i \\ -\cos \phi _i & \sin \phi _i \end{pmatrix} \begin{pmatrix} V_{1_{\mathrm{TE}}}^+ \\ V_{1_{\mathrm{TM}}}^+ \end{pmatrix} \nonumber \\ &=& [\boldsymbol{\Phi}]^t \begin{pmatrix} V_{1_{\mathrm{TE}}}^+ \\ V_{1_{\mathrm{TM}}}^+ \end{pmatrix} \end{eqnarray} 逆は, \begin{gather} \begin{pmatrix} V_{1_{\mathrm{TE}}}^+ \\ V_{1_{\mathrm{TM}}}^+ \end{pmatrix} = [\boldsymbol{\Phi}] \begin{pmatrix} V_{1,x}^+ \\ V_{1,y}^+ \end{pmatrix} \end{gather} ここで, \begin{gather} [\boldsymbol{\Phi}] \equiv \begin{pmatrix} \sin \phi _i & -\cos \phi _i \\ \cos \phi _i & \sin \phi _i \end{pmatrix} \end{gather} したがって,\(E_{ir,x}\),\(E_{ir,y}\)は次のようになる. \begin{gather} \begin{pmatrix} E_{ir,x} \\ E_{ir,y} \end{pmatrix} = e^{\mp j\boldsymbol{k}_t \cdot \boldsymbol{\rho}} [\boldsymbol{\Phi}]^t \Big( [U] + [R^{E+}] \Big) [\boldsymbol{\Phi}] \begin{pmatrix} V_{1,x}^+ \\ V_{1,y}^+ \end{pmatrix} \end{gather}

接線磁界の入射波・反射波

 同様にして,反射波の磁界の\(x\)成分,\(y\)成分を \begin{gather} \boldsymbol{H}_{r,\tan}^{(1)} \Big| _{z=0} \equiv H_{r,x} \boldsymbol{u}_x + H_{r,y} \boldsymbol{u}_y \end{gather} とおくと, \begin{eqnarray} H_{r,x} &=& -\Big\{ Y_{1_{\mathrm{TE}}} R_ \mathrm{te}^{E+} V_{1_{\mathrm{TE}}}^+ \boldsymbol{u}_t \cdot \boldsymbol{u}_x + Y_{1_{\mathrm{TM}}} R_ \mathrm{tm}^{E+} V_{1_{\mathrm{TM}}}^+ \big( \boldsymbol{u}_t \times \boldsymbol{u}_z \big) \cdot \boldsymbol{u}_x \Big\} e^{\mp j\boldsymbol{k}_t \cdot \boldsymbol{\rho}} \nonumber \\ &=& -\Big\{ Y_{1_{\mathrm{TE}}} R_ \mathrm{te}^{E+} V_{1_{\mathrm{TE}}}^+ \cos \phi _i + Y_{1_{\mathrm{TM}}} R_ \mathrm{tm}^{E+} V_{1_{\mathrm{TM}}}^+ \sin \phi _i \Big\} e^{\mp j\boldsymbol{k}_t \cdot \boldsymbol{\rho}} \\ H_{r,y} &=& -\Big\{ Y_{1_{\mathrm{TE}}} R_ \mathrm{te}^{E+} V_{1_{\mathrm{TE}}}^+ \boldsymbol{u}_t \cdot \boldsymbol{u}_y + Y_{1_{\mathrm{TM}}} R_ \mathrm{tm}^{E+} V_{1_{\mathrm{TM}}}^+ \big( \boldsymbol{u}_t \times \boldsymbol{u}_z \big) \cdot \boldsymbol{u}_y \Big\} e^{\mp j\boldsymbol{k}_t \cdot \boldsymbol{\rho}} \nonumber \\ &=& -\Big\{ Y_{1_{\mathrm{TE}}} R_ \mathrm{te}^{E+} V_{1_{\mathrm{TE}}}^+ \sin \phi _i + Y_{1_{\mathrm{TM}}} R_ \mathrm{tm}^{E+} V_{1_{\mathrm{TM}}}^+ (-\cos \phi _i ) \Big\} e^{\mp j\boldsymbol{k}_t \cdot \boldsymbol{\rho}} \end{eqnarray} 行列表示して, \begin{eqnarray} \begin{pmatrix} H_{r,x} \\ H_{r,y} \end{pmatrix} &=& -e^{\mp j\boldsymbol{k}_t \cdot \boldsymbol{\rho}} \begin{pmatrix} Y_{1_{\mathrm{TE}}} R_ \mathrm{te}^{E+} \cos \phi _i & Y_{1_{\mathrm{TM}}} R_ \mathrm{tm}^{E+} \sin \phi _i \\ Y_{1_{\mathrm{TE}}} R_ \mathrm{te}^{E+} \sin \phi _i & -Y_{1_{\mathrm{TM}}} R_ \mathrm{tm}^{E+} \cos \phi _i \end{pmatrix} \begin{pmatrix} V_{1_{\mathrm{TE}}}^+ \\ V_{1_{\mathrm{TM}}}^+ \end{pmatrix} \nonumber \\ &=& -e^{\mp j\boldsymbol{k}_t \cdot \boldsymbol{\rho}} \begin{pmatrix} \sin \phi _i & \cos \phi _i \\ -\cos \phi _i & \sin \phi _i \end{pmatrix} \begin{pmatrix} 0 & Y_{1_{\mathrm{TM}}} R_ \mathrm{tm}^{E+} \\ Y_{1_{\mathrm{TE}}} R_ \mathrm{te}^{E+} & 0 \end{pmatrix} \begin{pmatrix} V_{1_{\mathrm{TE}}}^+ \\ V_{1_{\mathrm{TM}}}^+ \end{pmatrix} \nonumber \\ &=& -e^{\mp j\boldsymbol{k}_t \cdot \boldsymbol{\rho}} [\boldsymbol{\Phi}]^t \begin{pmatrix} 0 & Y_{1_{\mathrm{TM}}} \\ Y_{1_{\mathrm{TE}}} & 0 \end{pmatrix} \begin{pmatrix} R_ \mathrm{te}^{E+} & 0 \\ 0 & R_ \mathrm{tm}^{E+} \end{pmatrix} \begin{pmatrix} V_{1_{\mathrm{TE}}}^+ \\ V_{1_{\mathrm{TM}}}^+ \end{pmatrix} \nonumber \\ &\equiv & e^{\mp j\boldsymbol{k}_t \cdot \boldsymbol{\rho}} [\boldsymbol{\Phi}]^t [Y] \Big( -[R^{E+}] \Big) \begin{pmatrix} V_{1_{\mathrm{TE}}}^+ \\ V_{1_{\mathrm{TM}}}^+ \end{pmatrix} \end{eqnarray} ただし,\([Y]\),\([R^{E+}]\)は次のような対角行列である. \begin{align} &[Y] \equiv \begin{pmatrix} 0 & Y_{1_{\mathrm{TM}}} \\ Y_{1_{\mathrm{TE}}} & 0 \end{pmatrix} \\ &[R^{E+}] \equiv \begin{pmatrix} R_ \mathrm{te}^{E+} & 0 \\ 0 & R_ \mathrm{tm}^{E+} \end{pmatrix} \end{align} 入射波の磁界の\(x\)成分,\(y\)成分を \begin{gather} \boldsymbol{H}_{i,\tan}^{(1)} \Big| _{z=0} \equiv H_{i,x} \boldsymbol{u}_x + H_{i,y} \boldsymbol{u}_y \end{gather} とおくと \begin{gather} \begin{pmatrix} H_{i,x} \\ H_{i,y} \end{pmatrix} = e^{\mp j\boldsymbol{k}_t \cdot \boldsymbol{\rho}} [\boldsymbol{\Phi}]^t [Y] [U] \begin{pmatrix} V_{1_{\mathrm{TE}}}^+ \\ V_{1_{\mathrm{TM}}}^+ \end{pmatrix} \end{gather} これより, \begin{eqnarray} H_{ir,x} &\equiv& H_{i,x} + H_{r,x} \\ H_{ir,y} &\equiv& H_{i,y} + H_{r,y} \end{eqnarray} については, \begin{eqnarray} \begin{pmatrix} H_{ir,x} \\ H_{ir,y} \end{pmatrix} &=& e^{\mp j\boldsymbol{k}_t \cdot \boldsymbol{\rho}} [\boldsymbol{\Phi}]^t [Y] \Big( [U] - [R^{E+}] \Big) \begin{pmatrix} V_{1_{\mathrm{TE}}}^+ \\ V_{1_{\mathrm{TM}}}^+ \end{pmatrix} \nonumber \\ &=& e^{\mp j\boldsymbol{k}_t \cdot \boldsymbol{\rho}} [\boldsymbol{\Phi}]^t [Y] \Big( [U] - [R^{E+}] \Big) [\boldsymbol{\Phi}] \begin{pmatrix} V_{1,x}^+ \\ V_{1,y}^+ \end{pmatrix} \end{eqnarray}

透過波

 自由空間中に多層媒質がある場合を考え,上と同様に\(z< \lt 0\)から平面波が入射したとき,透過波側の誘電体と自由空間との境界面での接線電磁界の表示式を示す(導出省略). まず,透過波の接線電界\(\boldsymbol{E}_{t,\tan}\)は, \begin{align} &\boldsymbol{E}_{t,\tan} = E_{t,x} \boldsymbol{u}_x + E_{t,y} \boldsymbol{u}_y \\ &\begin{pmatrix} E_{t,x} \\ E_{t,y} \end{pmatrix} = e^{\mp j\boldsymbol{k}_t \cdot \boldsymbol{\rho}} [\boldsymbol{\Phi}]^t [T^{E+}] [\boldsymbol{\Phi}] \begin{pmatrix} V_{1,x}^+ \\ V_{1,y}^+ \end{pmatrix} \end{align} ここで, \begin{gather} [\boldsymbol{\Phi}] = \begin{pmatrix} \sin \phi _i & -\cos \phi _i \\ \cos \phi _i & \sin \phi _i \end{pmatrix} \\ [T^{E+}] = \begin{pmatrix} T_ \mathrm{te}^{E+} & 0 \\ 0 & T_ \mathrm{tm}^{E+} \end{pmatrix} \end{gather} ただし,行列\([\boldsymbol{\Phi}]^t\)は\([\boldsymbol{\Phi}]\)の転置を示す.また,透過波の接線磁界\(\boldsymbol{H}_{t,\tan}\)は, \begin{align} &\boldsymbol{H}_{t,\tan} = H_{t,x} \boldsymbol{u}_x + H_{t,y} \boldsymbol{u}_y \\ &\begin{pmatrix} H_{t,x} \\ H_{t,y} \end{pmatrix} = e^{\mp j\boldsymbol{k}_t \cdot \boldsymbol{\rho}} [\boldsymbol{\Phi}]^t [Y] [T^{E+}] [\boldsymbol{\Phi}] \begin{pmatrix} V_{1,x}^+ \\ V_{1,y}^+ \end{pmatrix} \end{align} ここで, \begin{gather} [Y] = \begin{pmatrix} 0 & Y_{1_{\mathrm{TM}}} \\ Y_{1_{\mathrm{TE}}} & 0 \end{pmatrix} \end{gather}