1.8 地導体のある誘電体板による反射・透過

地導体のある単層誘電体板

 厚み\(d\)の単層誘電体の場合, \begin{gather} \left. \begin{pmatrix} b_1 \\ a_1 \end{pmatrix} = [\boldsymbol{R}_{s1}] [\boldsymbol{R}_{u2}] \begin{pmatrix} a_2 \\ b_2 \end{pmatrix} \right| _{a_2 = -b_2} \end{gather} ここで, \begin{align} &[\boldsymbol{R}_{s1}] = \frac{1}{\sqrt{1-\Gamma ^2}} \begin{pmatrix} 1 & \Gamma \\ \Gamma & 1 \end{pmatrix}, \ \ \ \ \ \Gamma = \frac{Y_1 - Y_2}{Y_1 + Y_2} \\ &[\boldsymbol{R}_{u2}] = \begin{pmatrix} e^{jk_{z2} d} & 0 \\ 0 & e^{-jk_{z2} d} \end{pmatrix} \end{align} ただし,\([\boldsymbol{R}_{s1}]\)は自由空間と誘電体の境界面でのRマトリクス,\([\boldsymbol{R}_{u2}]\)は誘電体の均一領域でのRマトリクスを示す.また,\(Y_1\)は自由空間のアドミタンス,\(Y_2\)は誘電体基板のアドミタンス,\(k_{z2}\)は誘電体中の波数ベクトルの$z$成分を示す.よって, \begin{eqnarray} \begin{pmatrix} b_1 \\ a_1 \end{pmatrix} &=& \frac{1}{\sqrt{1-\Gamma ^2}} \begin{pmatrix} 1 & \Gamma \\ \Gamma & 1 \end{pmatrix} \begin{pmatrix} e^{jk_{z2} d} & 0 \\ 0 & e^{-jk_{z2} d} \end{pmatrix} \begin{pmatrix} -b_2 \\ b_2 \end{pmatrix} \nonumber \\ &=& \frac{1}{\sqrt{1-\Gamma ^2}} \begin{pmatrix} e^{jk_{z2} d} & \Gamma e^{-jk_{z2} d} \\ \Gamma e^{jk_{z2} d} & e^{-jk_{z2} d} \end{pmatrix} \begin{pmatrix} -b_2 \\ b_2 \end{pmatrix} \end{eqnarray} したがって,反射係数\(R_t^{E+}\)は, \begin{eqnarray} R_t^{E+} &=& \left. \frac{b_1}{a_1} \right| _{a_2 = -b_2} = \frac{-e^{jk_{z2} d} + \Gamma e^{-jk_{z2} d}}{-\Gamma e^{jk_{z2} d} + e^{-jk_{z2} d}} \nonumber \\ &=& \frac{-(Y_1+Y_2) e^{jk_{z2} d} + (Y_1-Y_2) e^{-jk_{z2} d}}{-(Y_1-Y_2)e^{jk_{z2} d} + (Y_1+Y_2) e^{-jk_{z2} d}} \nonumber \\ &=& \frac{-Y_1 (e^{jk_{z2} d} - e^{-jk_{z2} d}) - Y_2 (e^{jk_{z2} d} + e^{-jk_{z2} d})}{ -Y_1 (e^{jk_{z2} d} - e^{-jk_{z2} d}) + Y_2 (e^{jk_{z2} d} + e^{-jk_{z2} d})} \nonumber \\ &=& \frac{-Y_1 j \sin k_{z2}d - Y_2 \cos k_{z2}d}{-Y_1 j \sin k_{z2}d + Y_2 \cos k_{z2}d} \nonumber \\ &=& \frac{Y_1 \sin k_{z2}d -j Y_2 \cos k_{z2}d}{Y_1 \sin k_{z2}d +j Y_2 \cos k_{z2}d} \end{eqnarray} これより,TE波の電界の反射係数\(R^{E+}_ \mathrm{te}\)は, \begin{eqnarray} R_ \mathrm{te}^{E+} &=& \frac{Y_{1_{\mathrm{TE}}} \sin k_{z2}d -j Y_{2_{\mathrm{TE}}} \cos k_{z2}d}{Y_{1_{\mathrm{TE}}} \sin k_{z2}d +j Y_{2_{\mathrm{TE}}} \cos k_{z2}d} \nonumber \\ &=& \frac{k_{z1} \sin k_{z2} d - j k_{z2} \cos k_{z2} d}{k_{z1} \sin k_{z2} d + j k_{z2} \cos k_{z2} d} \end{eqnarray} ただし, \begin{gather} Y_{1_{\mathrm{TE}}} = \frac{k_{z1}}{\omega \mu}, \ \ \ \ \ Y_{2_{\mathrm{TE}}} = \frac{k_{z2}}{\omega \mu} \end{gather} また,TM波の電界の反射係数\(R^{E+}_ \mathrm{tm}\)は, \begin{eqnarray} R_ \mathrm{tm}^{E+} &=& \frac{Y_{1_{\mathrm{TM}}} \sin k_{z2}d -j Y_{2_{\mathrm{TM}}} \cos k_{z2}d}{Y_{1_{\mathrm{TM}}} \sin k_{z2}d +j Y_{2_{\mathrm{TM}}} \cos k_{z2}d} \nonumber \\ &=& \frac{k_{z2} \sin k_{z2} d - j \epsilon _r k_{z1} \cos k_{z2} d}{k_{z2} \sin k_{z2} d + j \epsilon _r k_{z1} \cos k_{z2} d} \end{eqnarray} ただし, \begin{gather} Z_{1_{\mathrm{TM}}} = \frac{k_{z1}}{\omega \epsilon}, \ \ \ \ \ Z_{2_{\mathrm{TM}}} = \frac{k_{z2}}{\omega \epsilon \epsilon _r} \end{gather}

地導体のある多層誘電体板

 \(N\)層誘電体の場合, 地導体のある誘電体(厚み\(d\),比誘電率\(\epsilon _r\))を除いた\((N-1)\)層誘電体のRマトリクスを\([\boldsymbol{R}_{N-1}]\)とおくと, \begin{gather} \left. \begin{pmatrix} b_1 \\ a_1 \end{pmatrix} = [\boldsymbol{R}_{N-1}] [\boldsymbol{R}_{u,N}] \begin{pmatrix} a_2 \\ b_2 \end{pmatrix} \right| _{a_2 = -b_2} \end{gather} ここで, \begin{eqnarray} [\boldsymbol{R}_{N-1}] &=& \begin{pmatrix} R_{11} & R_{12} \\ R_{21} & R_{22} \end{pmatrix} \\ [\boldsymbol{R}_{u,N}] &=& \begin{pmatrix} e^{jk_{z} d} & 0 \\ 0 & e^{-jk_{z} d} \end{pmatrix} \end{eqnarray} ただし,\(k_{z}\)は誘電体中の波数ベクトルの$z$成分を示す.よって, \begin{eqnarray} \begin{pmatrix} b_1 \\ a_1 \end{pmatrix} &=& \begin{pmatrix} R_{11} & R_{12} \\ R_{21} & R_{22} \end{pmatrix} \begin{pmatrix} e^{jk_{z} d} & 0 \\ 0 & e^{-jk_{z} d} \end{pmatrix} \begin{pmatrix} -b_2 \\ b_2 \end{pmatrix} \nonumber \\ &=& \begin{pmatrix} R_{11} e^{jk_{z} d} & R_{12} e^{-jk_{z} d} \\ R_{21} e^{jk_{z} d} & R_{22} e^{-jk_{z} d} \end{pmatrix} \begin{pmatrix} -b_2 \\ b_2 \end{pmatrix} \end{eqnarray} したがって,反射係数\(R_t^{E+}\)は, \begin{eqnarray} R_t^{E+} &=& \left. \frac{b_1}{a_1} \right| _{a_2 = -b_2} = \frac{-R_{11} e^{jk_{z} d} + R_{12} e^{-jk_{z} d}}{-R_{21} e^{jk_{z} d} + R_{22} e^{-jk_{z} d}} \nonumber \\ &=& \frac{R_{11} - R_{12} e^{-j2k_{z} d}}{R_{21} - R_{22} e^{-j2k_{z} d}} \end{eqnarray} いま,\((N-1)\)層誘電体の散乱行列\([\boldsymbol{S}_{N-1}]\)を, \begin{gather} [\boldsymbol{S}_{N-1}] = \begin{pmatrix} S_{11} & S_{12} \\ S_{21} & S_{22} \end{pmatrix} \end{gather} とすると,\([\boldsymbol{R}_{N-1}]\)マトリクスは,この散乱行列要素より \begin{eqnarray} [\boldsymbol{R}_{N-1}] &=& \begin{pmatrix} R_{11} & R_{12} \\ R_{21} & R_{22} \end{pmatrix} \nonumber \\ &=& \frac{1}{S_{21}} \begin{pmatrix} -S_{11}S_{22} + S_{21}^2 & S_{11} \\ -S_{22} & 1 \end{pmatrix} \end{eqnarray} で表すことができ,これより, \begin{eqnarray} R_t^{E+} &=& \frac{-S_{11}S_{22} + S_{21}^2 - S_{11} e^{-j2k_{z} d}}{-S_{22} - e^{-j2k_{z} d}} \nonumber \\ &=& S_{11} - \frac{S_{21}^2}{S_{22} + e^{-j2k_{z} d}} \end{eqnarray}