1.4 縦続接続

散乱行列

 図のような散乱行列 \begin{gather} \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} = [\boldsymbol{S}_a] \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}, \ \ \ [\boldsymbol{S}_a] = \begin{pmatrix} S_{11}^{(a)} & S_{12}^{(a)} \\ S_{21}^{(a)} & S_{22}^{(a)} \\ \end{pmatrix} \\ \begin{pmatrix} b_2' \\ b_3 \end{pmatrix} = [\boldsymbol{S}_b] \begin{pmatrix} a_2' \\ a_3 \end{pmatrix}, \ \ \ [\boldsymbol{S}_b] = \begin{pmatrix} S_{11}^{(b)} & S_{12}^{(b)} \\ S_{21}^{(b)} & S_{22}^{(b)} \\ \end{pmatrix} \end{gather} を縦続接続し(接続した端子は,\(a_2 = b_2'\),\(b_2 = a_2'\)), 同図中の散乱行列\([\boldsymbol{S}]\)を求める.
散乱行列の縦続接続

まず,\(a_2 = b_2'\),\(b_2 = a_2'\)より, \begin{gather} b_1 = S_{11}^{(a)} a_1 + S_{12}^{(a)} a_2 \label{eq:Sa-1} \\ b_2 = S_{21}^{(a)} a_1 + S_{22}^{(a)} a_2 \label{eq:Sa-2} \\ a_2 = S_{11}^{(b)} b_2 + S_{12}^{(b)} a_3 \label{eq:Sb-1} \\ b_3 = S_{21}^{(b)} b_2 + S_{22}^{(b)} a_3 \label{eq:Sb-2} \end{gather} 上式より,\(a_2\),\(b_2\)を消去して次式が得られればよい. \begin{gather} b_1 = S_{11} a_1 + S_{12} a_3 \label{eq:Sab-1} \\ b_3 = S_{21} a_1 + S_{22} a_3 \label{eq:Sab-2} \end{gather} そこで,式\eqref{eq:Sa-2}と式\eqref{eq:Sb-1}より,\(b_2\)を消去すると, \begin{gather} a_2 = S_{11}^{(b)} \left( S_{21}^{(a)} a_1 + S_{22}^{(a)} a_2 \right) + S_{12}^{(b)} a_3 \nonumber \\ \left( 1 - S_{11}^{(b)} S_{22}^{(a)} \right) a_2 = S_{11}^{(b)} S_{21}^{(a)} a_1 + S_{12}^{(b)} a_3 \nonumber \\ a_2 = \left( 1-S_{11}^{(b)} S_{22}^{(a)} \right) ^{-1} \left( S_{11}^{(b)} S_{21}^{(a)} a_1 + S_{12}^{(b)} a_3 \right) \label{eq:a2a1a3} \end{gather} 式\eqref{eq:Sa-1}に代入して,\(a_2\)を消去すると, \begin{eqnarray} b_1 &=& S_{11}^{(a)} a_1 +S_{12}^{(a)} \left( 1-S_{11}^{(b)} S_{22}^{(a)} \right) ^{-1} \left( S_{11}^{(b)} S_{21}^{(a)} a_1 + S_{12}^{(b)} a_3 \right) \nonumber \\ &=& \left\{ S_{11}^{(a)}+S_{12}^{(a)} \left( 1-S_{11}^{(b)} S_{22}^{(a)} \right) ^{-1} S_{11}^{(b)} S_{21}^{(a)} \right\} a_1 \nonumber \\ &&+ \left\{ S_{12}^{(a)} \left( 1-S_{11}^{(b)} S_{22}^{(a)} \right) ^{-1} S_{12}^{(b)} \right\} a_3 \end{eqnarray} 一方,式\eqref{eq:Sa-2}と式\eqref{eq:Sb-1}より,\(a_2\)を消去すると, \begin{align} &b_2 = S_{21}^{(a)} a_1 + S_{22}^{(a)} \left( S_{11}^{(b)} b_2 + S_{12}^{(b)} a_3 \right) \nonumber \\ &\left( 1-S_{22}^{(a)} S_{11}^{(b)} \right) b_2 = S_{21}^{(a)} a_1 + S_{22}^{(a)} S_{12}^{(b)} a_3 \nonumber \\ &b_2 = \left( 1-S_{22}^{(a)} S_{11}^{(b)} \right) ^{-1} \left( S_{21}^{(a)} a_1 + S_{22}^{(a)} S_{12}^{(b)} a_3 \right) \label{eq:b2a1a3} \end{align} 式\eqref{eq:Sb-2}に代入して,\(b_2\)を消去すると, \begin{eqnarray} b_3 &=& S_{21}^{(b)} \left( 1-S_{22}^{(a)} S_{11}^{(b)} \right) ^{-1} %\nonumber \\ \hspace{10mm} \cdot \left( S_{21}^{(a)} a_1 + S_{22}^{(a)} S_{12}^{(b)} a_3 \right) +S_{22}^{(b)} a_3 \nonumber \\ &=& \left\{ S_{21}^{(b)} \left( 1-S_{22}^{(a)} S_{11}^{(b)} \right) ^{-1} S_{21}^{(a)} \right\} a_1 \nonumber \\ &&+ \left\{ S_{21}^{(b)} \left( 1-S_{22}^{(a)} S_{11}^{(b)} \right) ^{-1} S_{22}^{(a)} S_{12}^{(b)} + S_{22}^{(b)} \right\} a_3 \end{eqnarray} したがって,散乱行列要素\(S_{11}\),\(S_{12}\),\(S_{21}\),\(S_{22}\)は, \begin{eqnarray} S_{11} &=& S_{11}^{(a)}+S_{12}^{(a)} \left( 1-S_{11}^{(b)} S_{22}^{(a)} \right) ^{-1} S_{11}^{(b)} S_{21}^{(a)} \\ S_{12} &=& S_{12}^{(a)} \left( 1-S_{11}^{(b)} S_{22}^{(a)} \right) ^{-1} S_{12}^{(b)} \\ S_{21} &=& S_{21}^{(b)} \left( 1-S_{22}^{(a)} S_{11}^{(b)} \right) ^{-1} S_{21}^{(a)} \\ S_{22} &=& S_{21}^{(b)} \left( 1-S_{22}^{(a)} S_{11}^{(b)} \right) ^{-1} S_{22}^{(a)} S_{12}^{(b)} + S_{22}^{(b)} \end{eqnarray}

縦続接続ポートの波動振幅

 式\eqref{eq:a2a1a3},\eqref{eq:b2a1a3}に示した\(a_2\),\(b_2\)は,2つの散乱行列を縦続接続しているポート2の波動振幅であり, 縦続接続した両者の散乱行列による多重反射を考慮できる. いま,ポート1から励振して,ポート3を整合させたとき,ポート2の波動振幅\(a_2\),\(b_2\)は,\eqref{eq:a2a1a3},\eqref{eq:b2a1a3}より次のようになる. \begin{eqnarray} a_2 \Big|_{a_3 =0} &=& \left( 1-S_{11}^{(b)} S_{22}^{(a)} \right) ^{-1} S_{11}^{(b)} S_{21}^{(a)} a_1 \\ b_2 \Big|_{a_3 =0} &=& \left( 1-S_{22}^{(a)} S_{11}^{(b)} \right) ^{-1} S_{21}^{(a)} a_1 \end{eqnarray} 逆に,ポート3から励振して,ポート1を整合させたときは, \begin{eqnarray} a_2 \Big|_{a_1 =0} &=& \left( 1-S_{11}^{(b)} S_{22}^{(a)} \right) ^{-1} S_{12}^{(b)} a_3 \\ b_2 \Big|_{a_1 =0} &=& \left( 1-S_{22}^{(a)} S_{11}^{(b)} \right) ^{-1} S_{22}^{(a)} S_{12}^{(b)} a_3 \end{eqnarray}