1.6 境界面での反射・透過

TE/TM波の反射係数および透過係数

 電界の接線成分の反射係数 \(R_t^{E\pm}\) は, \begin{eqnarray} R_t^{E+} &=& \left. \frac{V_1^-}{V_1^+} \right| _{V_2^- =0} = \left. \frac{\sqrt{Z_1} b_1}{\sqrt{Z_1} a_1} \right| _{a_2 =0} = \left. \frac{b_1}{a_1} \right| _{a_2 =0} = S_{11} \\ R_t^{E-} &=& \left. \frac{V_2^+}{V_2^-} \right| _{V_1^+ =0} = \left. \frac{\sqrt{Z_2} b_2}{\sqrt{Z_2} a_2} \right| _{a_1 =0} = \left. \frac{b_2}{a_2} \right| _{a_1 =0} = S_{22} \end{eqnarray} また,接線電界の透過係数 \(T_t^{E\pm}\) は, \begin{eqnarray} T_t ^{E+} &=& \left. \frac{V_2^+}{V_1^+} \right| _{V_2^- =0} = \left. \frac{\sqrt{Z_2} b_2}{\sqrt{Z_1} a_1} \right| _{a_2 =0} = \sqrt{Y_1 Z_2} S_{21} \\ T_t ^{E-} &=& \left. \frac{V_1^-}{V_2^-} \right| _{V_1^+ =0} = \left. \frac{\sqrt{Z_1} b_1}{\sqrt{Z_2} a_2} \right| _{a_1 =0} = \sqrt{Y_2 Z_1} S_{12} \end{eqnarray} これより,TE波の接線電界の透過係数 \(T^{E\pm}_ \mathrm{te}\) は, \begin{eqnarray} T_ \mathrm{te}^{E+} &=& \sqrt{Y_{1_{\mathrm{TE}}} Z_{2_{\mathrm{TE}}}} S_{21}^{^{\mathrm{TE}}} \nonumber \\ &=& \sqrt{Y_{w1} \frac{k_{z1}}{k_1} Z_{w2} \frac{k_2}{k_{z2}}} S_{21}^{^{\mathrm{TE}}} \nonumber \\ &=& \sqrt{\frac{Y_{w1} \cos \theta _1}{Y_{w2} \cos \theta _2}} S_{21}^{^{\mathrm{TE}}} \\ T_ \mathrm{te}^{E-} &=& \sqrt{Y_{2_{\mathrm{TE}}} Z_{1_{\mathrm{TE}}}} S_{12}^{^{\mathrm{TE}}} \nonumber \\ &=& \sqrt{Y_{w2} \frac{k_{z2}}{k_2} Z_{w1} \frac{k_1}{k_{z1}}} S_{12}^{^{\mathrm{TE}}} \nonumber \\ &=& \sqrt{\frac{Y_{w2} \cos \theta _2}{Y_{w1} \cos \theta _1}} S_{12}^{^{\mathrm{TE}}} \end{eqnarray} また,TM波の接線電界の透過係数 \(T^{E\pm}_ \mathrm{tm}\) は, \begin{eqnarray} T_ \mathrm{tm}^{E+} &=& \sqrt{Y_{1_{\mathrm{TM}}} Z_{2_{\mathrm{TM}}}} S_{21}^{^{\mathrm{TM}}} \nonumber \\ &=& \sqrt{Y_{w1} \frac{k_{z}}{k_{z1}} Z_{w2} \frac{k_{z2}}{k_z}} S_{21}^{^{\mathrm{TM}}} \nonumber \\ &=& \sqrt{\frac{Y_{w1} \cos \theta _2}{Y_{w2} \cos \theta _1}} S_{21}^{^{\mathrm{TM}}} \\ T_ \mathrm{tm}^{E-} &=& \sqrt{Y_{2_{\mathrm{TM}}} Z_{1_{\mathrm{TM}}}} S_{12}^{^{\mathrm{TM}}} \nonumber \\ &=& \sqrt{Y_{w2} \frac{k_{z}}{k_{z2}} Z_{w1} \frac{k_{z1}}{k_z}} S_{12}^{^{\mathrm{TM}}} \nonumber \\ &=& \sqrt{\frac{Y_{w2} \cos \theta _1}{Y_{w1} \cos \theta _2}} S_{12}^{^{\mathrm{TM}}} \end{eqnarray}

異なる誘電体の境界面での平面波の反射・透過

 境界面での反射係数・透過係数を求める(\(d=0\)).相対屈折率 \begin{gather} n=k_2/k_1 = \sqrt{\epsilon _2 / \epsilon _1} \end{gather} を用いると,スネルの法則 \begin{gather} \sin \theta _1 = n \sin \theta _2 \end{gather} より, \begin{eqnarray} \cos \theta _2 &=& \sqrt{1-\sin ^2 \theta _2} \nonumber \\ &=& \sqrt{1-\left( \frac{\sin \theta _1}{n} \right) ^2} \nonumber \\ &=& \frac{1}{n} \sqrt{n^2 - \sin ^2 \theta _1} \end{eqnarray} 反射係数 \(R^{E+}_ \mathrm{te}\),\(R^{E+}_ \mathrm{tm}\) は, \begin{eqnarray} R^{E+}_ \mathrm{te} &=& \frac{Y_{1_{\mathrm{TE}}} - Y_{2_{\mathrm{TE}}}}{Y_{1_{\mathrm{TE}}} + Y_{2_{\mathrm{TE}}}} \nonumber \\ &=& \frac{k_{z1} - k_{z2}}{k_{z1} + k_{z2}} \nonumber \\ &=& \frac{k_1 \cos \theta _1 - k_2 \cos \theta _2}{k_1 \cos \theta _1 + k_2 \cos \theta _2} \nonumber \\ &=& \frac{\cos \theta _1 - n \cos \theta _2}{\cos \theta _1 + n \cos \theta _2} \nonumber \\ &=& \frac{\cos \theta _1 - \sqrt{n^2 - \sin ^2 \theta _1}}{\cos \theta _1 + \sqrt{n^2 - \sin ^2 \theta _1}} \\ R^{E+}_ \mathrm{tm} &=& \frac{Z_{2_{\mathrm{TM}}} - Z_{1_{\mathrm{TM}}}}{Z_{2_{\mathrm{TM}}} + Z_{1_{\mathrm{TM}}}} \nonumber \\ &=& \frac{k_{z2} - n^2 k_{z1}}{k_{z2} + n^2 k_{z1}} \nonumber \\ &=& \frac{k_2 \cos \theta _2 - n^2 k_1 \cos \theta _1}{k_2 \cos \theta _2 + n^2 k_1 \cos \theta _1} \nonumber \\ &=& \frac{\cos \theta _2 - n \cos \theta _1}{\cos \theta _2 + n \cos \theta _1} \nonumber \\ &=& \frac{\sqrt{n^2 - \sin ^2 \theta _1} - n^2 \cos \theta _1}{\sqrt{n^2 - \sin ^2 \theta _1} + n^2 \cos \theta _1} \end{eqnarray} また,TE波の接線電界の透過係数 \(T^{E+}_ \mathrm{te}\),およびTM波の接線電界の透過係数 \(T^{E+}_ \mathrm{tm}\) は, \begin{eqnarray} T^{E+}_ \mathrm{te} &=& \frac{2 Y_{1_{\mathrm{TE}}}}{Y_{1_{\mathrm{TE}}} + Y_{2_{\mathrm{TE}}}} \nonumber \\ &=& \frac{2k_{z1}}{k_{z1} + k_{z2}} \nonumber \\ &=& \frac{2 k_1 \cos \theta _1}{k_1 \cos \theta _1 + k_2 \cos \theta _2} \nonumber \\ &=& \frac{2 \cos \theta _1}{\cos \theta _1 + n \cos \theta _2} \nonumber \\ &=& \frac{2 \cos \theta _1}{\cos \theta _1 + \sqrt{n^2 - \sin ^2 \theta _1}} \\ T^{E+}_ \mathrm{tm} &=& \frac{2 Z_{2_{\mathrm{TM}}}}{Z_{1_{\mathrm{TM}}} + Z_{2_{\mathrm{TM}}}} \nonumber \\ &=& \frac{2 k_{z2}}{n^2 k_{z1} + k_{z2}} \nonumber \\ &=& \frac{2 k_2 \cos \theta _2}{n^2 k_1 \cos \theta _1 + k_2 \cos \theta _2} \nonumber \\ &=& \frac{2 n \cos \theta _2}{n^2 \cos \theta _1 + n \cos \theta _2} \nonumber \\ &=& \frac{2\sqrt{n^2 - \sin ^2 \theta _1}}{n^2 \cos \theta _1 + \sqrt{n^2 - \sin ^2 \theta _1}} \end{eqnarray}

実効比誘電率

 実効比誘電率 \(\epsilon _{_{\mathrm{TE}}}\),\(\epsilon _{_{\mathrm{TM}}}\) を次式で定義する. \begin{eqnarray} \epsilon _{_{\mathrm{TE}}} &=& \frac{n^2-\sin ^2 \theta _1}{\cos ^2 \theta _1} \nonumber \\ &=& \frac{n^2-\sin ^2 \theta _1}{1-\sin ^2 \theta _1} \\ \epsilon _{_{\mathrm{TM}}} &=& \frac{n^4 \cos ^2 \theta _1}{n^2 - \sin ^2 \theta _1} \nonumber \\ &=& \frac{n^4 (1-\sin ^2 \theta _1)}{n^2 - \sin ^2 \theta _1} \end{eqnarray} これより,TE波の接線電界の透過係数 \(T^{E+}_ \mathrm{te}\),およびTM波の接線電界の透過係数 \(T^{E+}_ \mathrm{tm}\) は, \begin{eqnarray} T^{E+}_ \mathrm{te} &=& \frac{2}{1+\sqrt{\frac{n^2-\sin ^2 \theta _1}{\cos ^2 \theta _1}}} \nonumber \\ &=& \frac{2}{1+\sqrt{\epsilon _{_{\mathrm{TE}}}}} \\ T^{E+}_ \mathrm{tm} &=& \frac{2}{\sqrt{\frac{n^4 \cos ^2 \theta _1}{n^2 - \sin ^2 \theta _1}}+1} \nonumber \\ &=& \frac{2}{1+\sqrt{\epsilon _{_{\mathrm{TM}}}}} \end{eqnarray}