1.3 誘電体境界での解析

接線電界および接線磁界の振幅

 次のように2つの媒質があり,\(z=d\) を境界面とする.
入射波・反射波・透過波

\(z \lt d\)(領域1)での接線電界\(\boldsymbol{E}_{\tan}^{(1)}\),接線磁界\(\boldsymbol{H}_{\tan}^{(1)}\)は, \begin{eqnarray} \boldsymbol{E}_{\tan}^{(1)} &=& \Big\{ V_{1_{\mathrm{TE}}} (z) (\boldsymbol{u}_{t1} \times \boldsymbol{u}_z ) + V_{1_{\mathrm{TM}}} (z) \boldsymbol{u}_{t1} \Big\} e^{\mp j\boldsymbol{k}_{t1} \cdot \boldsymbol{\rho}} \\ \boldsymbol{H}_{\tan}^{(1)} &=& \Big\{ I_{1_{\mathrm{TE}}} (z) \boldsymbol{u}_{t1} - I_{1_{\mathrm{TM}}} (z) (\boldsymbol{u}_{t1} \times \boldsymbol{u}_z ) \Big\} e^{\mp j\boldsymbol{k}_{t1} \cdot \boldsymbol{\rho}} \end{eqnarray} ここで, \begin{eqnarray} V_{1_{\mathrm{TE}}}(z) &=& V_{1_{\mathrm{TE}}}^+ e^{-jk_{z1} z} + V_{1_{\mathrm{TE}}}^- e^{jk_{z1} z} \\ I_{1_{\mathrm{TE}}}(z) &=& Y_{1_{\mathrm{TE}}} \Big( V_{1_{\mathrm{TE}}}^+ e^{-jk_{z1} z} - V_{1_{\mathrm{TE}}}^- e^{jk_{z1} z} \Big) \\ V_{1_{\mathrm{TM}}}(z) &=& V_{1_{\mathrm{TM}}}^+ e^{-jk_{z1} z} + V_{1_{\mathrm{TM}}}^- e^{jk_{z1} z} \\ I_{1_{\mathrm{TM}}}(z) &=& Y_{1_{\mathrm{TM}}} \Big( V_{1_{\mathrm{TM}}}^+ e^{-jk_{z1} z} - V_{1_{\mathrm{TM}}}^- e^{jk_{z1} z} \Big) \end{eqnarray} 一方,\(z \gt d\)(領域2)での接線電界\(\boldsymbol{E}_{\tan}^{(2)}\),接線磁界\(\boldsymbol{H}_{\tan}^{(2)}\)は, \begin{eqnarray} \boldsymbol{E}_{\tan}^{(2)} &=& \Big\{ V_{2_{\mathrm{TE}}} (z) (\boldsymbol{u}_{t2} \times \boldsymbol{u}_z ) + V_{2_{\mathrm{TM}}} (z) \boldsymbol{u}_{t2} \Big\} e^{\mp j\boldsymbol{k}_{t2} \cdot \boldsymbol{\rho}} \\ \boldsymbol{H}_{\tan}^{(2)} &=& \Big\{ I_{2_{\mathrm{TE}}} (z) \boldsymbol{u}_{t2} - I_{2_{\mathrm{TM}}} (z) (\boldsymbol{u}_{t2} \times \boldsymbol{u}_z ) \Big\} e^{\mp j\boldsymbol{k}_{t2} \cdot \boldsymbol{\rho}} \end{eqnarray} ここで, \begin{eqnarray} V_{2_{\mathrm{TE}}}(z) &=& V_{2_{\mathrm{TE}}}^+ e^{-jk_{z2} (z-d)} + V_{2_{\mathrm{TE}}}^- e^{jk_{z2} (z-d)} \\ I_{2_{\mathrm{TE}}}(z) &=& Y_{2_{\mathrm{TE}}} \Big( V_{2_{\mathrm{TE}}}^+ e^{-jk_{z2} (z-d)} - V_{2_{\mathrm{TE}}}^- e^{jk_{z2} (z-d)} \Big) \\ V_{2_{\mathrm{TM}}}(z) &=& V_{2_{\mathrm{TM}}}^+ e^{-jk_{z2} (z-d)} + V_{2_{\mathrm{TM}}}^- e^{jk_{z2} (z-d)} \\ I_{2_{\mathrm{TM}}}(z) &=& Y_{2_{\mathrm{TM}}} \Big( V_{2_{\mathrm{TM}}}^+ e^{-jk_{z2} (z-d)} - V_{2_{\mathrm{TM}}}^- e^{jk_{z2} (z-d)} \Big) \end{eqnarray} これより,\(z=0\) での接線電磁界は, \begin{eqnarray} \boldsymbol{E}_{\tan}^{(1)} \Big| _{z=0} &=& \Big\{ \big( V_{1_{\mathrm{TE}}}^+ + V_{1_{\mathrm{TE}}}^- \big) (\boldsymbol{u}_{t1} \times \boldsymbol{u}_z ) \nonumber \\ &&+ \big( V_{1_{\mathrm{TM}}}^+ + V_{1_{\mathrm{TM}}}^- \big) \boldsymbol{u}_{t1} \Big\} e^{\mp j\boldsymbol{k}_{t1} \cdot \boldsymbol{\rho}} \\ \boldsymbol{H}_{\tan}^{(1)} \Big| _{z=0} &=& \Big\{ Y_{1_{\mathrm{TE}}} \big( V_{1_{\mathrm{TE}}}^+ - V_{1_{\mathrm{TE}}}^- \big) \boldsymbol{u}_{t1} \nonumber \\ &&- Y_{1_{\mathrm{TM}}} \big( V_{1_{\mathrm{TM}}}^+ - V_{1_{\mathrm{TM}}}^- \big) (\boldsymbol{u}_{t1} \times \boldsymbol{u}_z ) \Big\} e^{\mp j\boldsymbol{k}_{t1} \cdot \boldsymbol{\rho}} \end{eqnarray} また,\(z=d\) での接線電磁界の連続条件より, \begin{gather} \boldsymbol{E}_{\tan}^{(1)} \Big| _{z=d} = \boldsymbol{E}_{\tan}^{(2)} \Big| _{z=d}\\ \boldsymbol{H}_{\tan}^{(1)} \Big| _{z=d} = \boldsymbol{H}_{\tan}^{(2)} \Big| _{z=d} \end{gather} 任意の \(x\),\(y\) で成り立つためには, \begin{gather} e^{\mp j\boldsymbol{k}_{t1} \cdot \boldsymbol{\rho}} = e^{\mp j\boldsymbol{k}_{t2} \cdot \boldsymbol{\rho}} \end{gather} でなければならない.よって, \begin{gather} \boldsymbol{k}_{t1} = \boldsymbol{k}_{t2} \end{gather} いま,入射角を\((\theta _i, \phi _i)\)とし, \(\boldsymbol{k}_{t1} = k_{t1} \boldsymbol{u}_{t1}\),\(\boldsymbol{k}_{t2} = k_{t2} \boldsymbol{u}_{t2}\)とおくと, \(k_{t1} = k_1 \sin \theta _1\),\(k_{t2} = k_2 \sin \theta _2\)ゆえ, \begin{gather} k_1 \sin \theta _1 = k_2 \sin \theta _2 \end{gather} が得られる(スネルの法則). また,\(\boldsymbol{u}_{t1} = \boldsymbol{u}_{t2} \equiv \boldsymbol{u}_t\)より, \(\boldsymbol{u}_{t1} \times \boldsymbol{u}_z = \boldsymbol{u}_{t2} \times \boldsymbol{u}_z\)(単位ベクトル)となるので, \begin{align} &\big( V_{1_{\mathrm{TE}}}^+ e^{-jk_{z1} d} + V_{1_{\mathrm{TE}}}^- e^{jk_{z1} d} \big) (\boldsymbol{u}_{t} \times \boldsymbol{u}_z ) \nonumber \\ &+ \big( V_{1_{\mathrm{TM}}}^+ e^{-jk_{z1} d} + V_{1_{\mathrm{TM}}}^- e^{jk_{z1} d} \big) \boldsymbol{u}_{t} \nonumber \\ &= \big( V_{2_{\mathrm{TE}}}^+ + V_{2_{\mathrm{TE}}}^- \big) (\boldsymbol{u}_{t} \times \boldsymbol{u}_z ) + \big( V_{2_{\mathrm{TM}}}^+ + V_{2_{\mathrm{TM}}}^- \big) \boldsymbol{u}_{t} \\ &Y_{1_{\mathrm{TE}}} \big( V_{1_{\mathrm{TE}}}^+ e^{-jk_{z1} d} - V_{1_{\mathrm{TE}}}^- e^{jk_{z1} d} \big) \boldsymbol{u}_{t} \nonumber \\ &- Y_{1_{\mathrm{TM}}} \big( V_{1_{\mathrm{TM}}}^+ e^{-jk_{z1} d} - V_{1_{\mathrm{TM}}}^- e^{jk_{z1} d} \big) (\boldsymbol{u}_{t} \times \boldsymbol{u}_z ) \nonumber \\ &= Y_{2_{\mathrm{TE}}} \big( V_{2_{\mathrm{TE}}}^+ - V_{2_{\mathrm{TE}}}^- \big) \boldsymbol{u}_{t} - Y_{2_{\mathrm{TM}}} \big( V_{2_{\mathrm{TM}}}^+ - V_{2_{\mathrm{TM}}}^- \big) (\boldsymbol{u}_{t} \times \boldsymbol{u}_z ) \end{align} 上式の\((\boldsymbol{u}_{t} \times \boldsymbol{u}_z)\)成分,\(\boldsymbol{u}_t\)成分は, \begin{align} &V_{1_{\mathrm{TE}}}^+ e^{-jk_{z1} d} + V_{1_{\mathrm{TE}}}^- e^{jk_{z1} d} = V_{2_{\mathrm{TE}}}^+ + V_{2_{\mathrm{TE}}}^- \\ &V_{1_{\mathrm{TM}}}^+ e^{-jk_{z1} d} + V_{1_{\mathrm{TM}}}^- e^{jk_{z1} d} = V_{2_{\mathrm{TM}}}^+ - V_{2_{\mathrm{TM}}}^- \\ &\left( V_{1_{\mathrm{TE}}}^+ e^{-jk_{z1} d} - V_{1_{\mathrm{TE}}}^- e^{jk_{z1} d} \right) Y_{1_{\mathrm{TE}}} = \left( V_{2_{\mathrm{TE}}}^+ - V_{2_{\mathrm{TE}}}^- \right) Y_{2_{\mathrm{TE}}} \\ &\left( -V_{1_{\mathrm{TM}}}^+ e^{-jk_{z1} d} + V_{1_{\mathrm{TM}}}^- e^{jk_{z1} d} \right) Y_{1_{\mathrm{TM}}} = \left( -V_{2_{\mathrm{TM}}}^+ + V_{2_{\mathrm{TM}}}^- \right) Y_{2_{\mathrm{TM}}} \end{align} これより,TE波,TM波ともに同じ形の式で表され,TE,TMの添字省略すると, \begin{align} &V_{1}^+ e^{-jk_{z1} d} + V_{1}^- e^{jk_{z1} d} = V_{2}^+ + V_{2}^- \\ &\left( V_{1}^+ e^{-jk_{z1} d} - V_{1}^- e^{jk_{z1} d} \right) Y_1 = \left( V_{2}^+ - V_{2}^- \right) Y_2 \end{align}

散乱行列

散乱行列の前進波,後進波の定義より, \begin{eqnarray} V_1^+ &=& \sqrt{Z_1} a_1 \\ V_1^- &=& \sqrt{Z_1} b_1 \\ V_2^+ &=& \sqrt{Z_2} b_2 \\ V_1^- &=& \sqrt{Z_2} a_2 \end{eqnarray} ゆえ, \begin{align} &\sqrt{Z_1} a_1 e^{-jk_{z1} d} + \sqrt{Z_1} b_1 e^{jk_{z1} d} = \sqrt{Z_2} b_2 + \sqrt{Z_2} a_2 \\ &\left( \sqrt{Z_1} a_1 e^{-jk_{z1} d} - \sqrt{Z_1} b_1 e^{jk_{z1} d} \right) Y_1 = \left( \sqrt{Z_2} b_2 - \sqrt{Z_2} a_2 \right) Y_2 \end{align} 整理して, \begin{gather} \sqrt{Z_1 Y_2} \left( a_1 e^{-jk_{z1} d} + b_1 e^{jk_{z1} d} \right) = b_2 + a_2 \\ \sqrt{Y_1 Z_2} \left( a_1 e^{-jk_{z1} d} - b_1 e^{jk_{z1} d} \right) = b_2 - a_2 \end{gather} 上式より,\(b_2\)を消去すると, \begin{align} &\left( \sqrt{Z_1 Y_2} -\sqrt{Y_1 Z_2} \right) a_1 e^{-jk_{z1} d} \nonumber \\ &+ \left( \sqrt{Z_1 Y_2} +\sqrt{Y_1 Z_2} \right) b_1 e^{jk_{z1} d} = 2a_2 \end{align} \begin{eqnarray} b_1 &=& \frac{Y_1 - Y_2}{Y_1 + Y_2} e^{-j2k_{z1} d} a_1 + \frac{2\sqrt{Y_1 Y_2}}{Y_1 + Y_2} e^{-jk_{z1} d} a_2 \nonumber \\ &\equiv& S_{11} a_1 + S_{12} a_2 \end{eqnarray} よって,散乱行列要素\(S_{11}\),\(S_{12}\)は次のようになる. \begin{eqnarray} S_{11} &=& \frac{Y_1 - Y_2}{Y_1 + Y_2} e^{-j2k_{z1} d} \\ S_{12} &=& \frac{2\sqrt{Y_1 Y_2}}{Y_1 + Y_2} e^{-jk_{z1} d} \end{eqnarray} 逆に,\(b_1\)を消去すると, \begin{eqnarray} 2a_1 e^{-jk_{z1} d} &=& \left( \sqrt{Y_1 Z_2} -\sqrt{Z_1 Y_2} \right) a_1 \nonumber \\ &&+ \left( \sqrt{Y_1 Z_2} +\sqrt{Z_1 Y_2} \right) b_1 \end{eqnarray} \begin{eqnarray} b_2 &=& \frac{2\sqrt{Y_1 Y_2}}{Y_1 + Y_2} e^{-jk_{z1} d} a_1 - \frac{Y_1 - Y_2}{Y_1 + Y_2} a_2 \nonumber \\ &\equiv& S_{21} a_1 + S_{22} a_2 \end{eqnarray} よって,散乱行列要素\(S_{21}\),\(S_{22}\)は, \begin{eqnarray} S_{21} &=& \frac{2\sqrt{Y_1 Y_2}}{Y_1 + Y_2} e^{-jk_{z1} d} \\ S_{22} &=& -\frac{Y_1 - Y_2}{Y_1 + Y_2} \end{eqnarray} したがって,散乱行列\([\boldsymbol{S}]\)は, \begin{eqnarray} [\boldsymbol{S}] &=& \begin{pmatrix} S_{11} & S_{12} \\ S_{21} & S_{22} \end{pmatrix} \nonumber \\ &=& \frac{1}{Y_1 + Y_2} \begin{pmatrix} (Y_1 - Y_2) e^{-j2k_{z1} d} & 2\sqrt{Y_1 Y_2} e^{-jk_{z1} d} \\ 2\sqrt{Y_1 Y_2} e^{-jk_{z1} d} & -(Y_1 - Y_2) \end{pmatrix} \end{eqnarray} \(d=0\) とおき2つの端子面を\(z=0\) にとると,異なる媒質の境界での散乱行列が得られ,次のようになる. \begin{eqnarray} [\boldsymbol{S}] &=& \begin{pmatrix} S_{11} & S_{12} \\ S_{21} & S_{22} \end{pmatrix} \nonumber \\ &=& \frac{1}{Y_1 + Y_2} \begin{pmatrix} (Y_1 - Y_2) & 2\sqrt{Y_1 Y_2} \\ 2\sqrt{Y_1 Y_2} & -(Y_1 - Y_2) \end{pmatrix} \end{eqnarray}

Rマトリクス

 多層構造に対して,伝送線路と同様の縦続接続を行うことができる. 上で求めた式より,\(a_1\)を消去すると, \begin{eqnarray} 2 b_1 e^{jk_z d} &=& b_2 \left( \sqrt{Y_1 Z_2} - \sqrt{Z_1 Y_2} \right) \nonumber \\ &&+ a_2 \left( \sqrt{Y_1 Z_2} + \sqrt{Z_1 Y_2} \right) \end{eqnarray} よって,\(b_1\)は, \begin{eqnarray} b_1 &=& \frac{\sqrt{Z_1 Z_2}}{2} e^{-jk_z d} \Big\{ (Y_1 + Y_2) a_2 + (Y_1 - Y_2) b_2 \Big\} \nonumber \\ &\equiv& R_{11} a_2 + R_{12} b_2 \end{eqnarray} したがって,Rマトリクスの要素\(R_{11}\),\(R_{12}\)は, \begin{gather} R_{11} = \frac{\sqrt{Z_1 Z_2}}{2} \big( Y_1 + Y_2 \big) e^{-jk_z d}\\ R_{12} = \frac{\sqrt{Z_1 Z_2}}{2} \big( Y_1 - Y_2 \big) e^{-jk_z d} \end{gather} 逆に,\(b_1\)を消去すると, \begin{eqnarray} 2 a_1 e^{-jk_z d} &=& b_2 \left( \sqrt{Y_1 Z_2} + \sqrt{Z_1 Y_2} \right) \nonumber \\ &&+ a_2 \left( \sqrt{Y_1 Z_2} - \sqrt{Z_1 Y_2} \right) \end{eqnarray} よって,\(a_1\)は, \begin{eqnarray} a_1 &=& \frac{\sqrt{Z_1 Z_2}}{2} e^{jk_z d} \Big\{ (Y_1 - Y_2) a_2 + (Y_1 + Y_2) b_2 \Big\} \nonumber \\ &\equiv& R_{21} a_2 + R_{22} b_2 \end{eqnarray} したがって,Rマトリクスの要素\(R_{21}\),\(R_{22}\)は, \begin{gather} R_{21} = \frac{\sqrt{Z_1 Z_2}}{2} \big( Y_1 - Y_2 \big) e^{jk_z d}\\ R_{22} = \frac{\sqrt{Z_1 Z_2}}{2} \big( Y_1 + Y_2 \big) e^{jk_z d} \end{gather} よって,\(z=0\),\(d\) に端子面を定義したRマトリクスは次のようになる. \begin{gather} \begin{pmatrix} b_1 \\ a_1 \end{pmatrix} = [\boldsymbol{R}] \begin{pmatrix} a_2 \\ b_2 \end{pmatrix} \end{gather} ここで, \begin{gather} [\boldsymbol{R}] = \frac{\sqrt{Z_1 Z_2}}{2} \begin{pmatrix} \big( Y_1 + Y_2 \big) e^{-jk_z d} & \big( Y_1 - Y_2 \big) e^{-jk_z d} \\ \big( Y_1 - Y_2 \big) e^{jk_z d} & \big( Y_1 + Y_2 \big) e^{jk_z d} \end{pmatrix} \end{gather} ただし,\(R_{11} R_{22} - R_{12} R_{21} = 1\). いま, \begin{gather} \Gamma \equiv \frac{Z_2 - Z_1}{Z_2 + Z_1} = \frac{Y_1 - Y_2}{Y_1 + Y_2} \end{gather} とおくと, \begin{eqnarray} 1-\Gamma ^2 &=& 1- \left( \frac{Y_1 - Y_2}{Y_1 + Y_2} \right) ^2 \nonumber \\ &=& \frac{4 Y_1 Y_2}{(Y_1 + Y_2)^2} \end{eqnarray} これより, \begin{eqnarray} [\boldsymbol{R}] &=& \frac{Y_1 + Y_2}{2\sqrt{Y_1 Y_2}} \begin{pmatrix} e^{-jk_z d} & \frac{Y_1 - Y_2}{Y_1 + Y_2} e^{-jk_z d} \\ \frac{Y_1 - Y_2}{Y_1 + Y_2} e^{jk_z d} & e^{jk_z d} \end{pmatrix} \nonumber \\ &=& \frac{1}{\sqrt{1-\Gamma ^2}} \begin{pmatrix} e^{-jk_z d} & \Gamma e^{-jk_z d} \\ \Gamma e^{jk_z d} & e^{jk_z d} \end{pmatrix} \end{eqnarray} 多層構造に対しては,Rマトリクスの積を求めて縦続接続できる. そして,縦続接続で得られたRマトリクスの要素から, 散乱行列\([\boldsymbol{S}]\)を次式により求めることができる. \begin{align} &\begin{pmatrix} b_1 \\ b_2 \end{pmatrix} = [\boldsymbol{S}] \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} \nonumber \\ &[\boldsymbol{S}] = \begin{pmatrix} S_{11} & S_{12} \\ S_{21} & S_{22} \end{pmatrix} = \frac{1}{R_{22}} \begin{pmatrix} R_{12} & 1 \\ 1 & -R_{21} \end{pmatrix} \end{align}