1.3 誘電体境界での解析
接線電界および接線磁界の振幅
次のように2つの媒質があり,\(z=d\) を境界面とする.
\(z \lt d\)(領域1)での接線電界\(\boldsymbol{E}_{\tan}^{(1)}\),接線磁界\(\boldsymbol{H}_{\tan}^{(1)}\)は,
\begin{eqnarray}
\boldsymbol{E}_{\tan}^{(1)} &=& \Big\{ V_{1_{\mathrm{TE}}} (z) (\boldsymbol{u}_{t1} \times \boldsymbol{u}_z ) + V_{1_{\mathrm{TM}}} (z) \boldsymbol{u}_{t1} \Big\}
e^{\mp j\boldsymbol{k}_{t1} \cdot \boldsymbol{\rho}} \\
\boldsymbol{H}_{\tan}^{(1)} &=& \Big\{ I_{1_{\mathrm{TE}}} (z) \boldsymbol{u}_{t1} - I_{1_{\mathrm{TM}}} (z) (\boldsymbol{u}_{t1} \times \boldsymbol{u}_z ) \Big\}
e^{\mp j\boldsymbol{k}_{t1} \cdot \boldsymbol{\rho}}
\end{eqnarray}
ここで,
\begin{eqnarray}
V_{1_{\mathrm{TE}}}(z) &=& V_{1_{\mathrm{TE}}}^+ e^{-jk_{z1} z} + V_{1_{\mathrm{TE}}}^- e^{jk_{z1} z} \\
I_{1_{\mathrm{TE}}}(z) &=& Y_{1_{\mathrm{TE}}} \Big( V_{1_{\mathrm{TE}}}^+ e^{-jk_{z1} z} - V_{1_{\mathrm{TE}}}^- e^{jk_{z1} z} \Big) \\
V_{1_{\mathrm{TM}}}(z) &=& V_{1_{\mathrm{TM}}}^+ e^{-jk_{z1} z} + V_{1_{\mathrm{TM}}}^- e^{jk_{z1} z} \\
I_{1_{\mathrm{TM}}}(z) &=& Y_{1_{\mathrm{TM}}} \Big( V_{1_{\mathrm{TM}}}^+ e^{-jk_{z1} z} - V_{1_{\mathrm{TM}}}^- e^{jk_{z1} z} \Big)
\end{eqnarray}
一方,\(z \gt d\)(領域2)での接線電界\(\boldsymbol{E}_{\tan}^{(2)}\),接線磁界\(\boldsymbol{H}_{\tan}^{(2)}\)は,
\begin{eqnarray}
\boldsymbol{E}_{\tan}^{(2)} &=& \Big\{ V_{2_{\mathrm{TE}}} (z) (\boldsymbol{u}_{t2} \times \boldsymbol{u}_z ) + V_{2_{\mathrm{TM}}} (z) \boldsymbol{u}_{t2} \Big\}
e^{\mp j\boldsymbol{k}_{t2} \cdot \boldsymbol{\rho}} \\
\boldsymbol{H}_{\tan}^{(2)} &=& \Big\{ I_{2_{\mathrm{TE}}} (z) \boldsymbol{u}_{t2} - I_{2_{\mathrm{TM}}} (z) (\boldsymbol{u}_{t2} \times \boldsymbol{u}_z ) \Big\}
e^{\mp j\boldsymbol{k}_{t2} \cdot \boldsymbol{\rho}}
\end{eqnarray}
ここで,
\begin{eqnarray}
V_{2_{\mathrm{TE}}}(z) &=& V_{2_{\mathrm{TE}}}^+ e^{-jk_{z2} (z-d)} + V_{2_{\mathrm{TE}}}^- e^{jk_{z2} (z-d)} \\
I_{2_{\mathrm{TE}}}(z) &=& Y_{2_{\mathrm{TE}}} \Big( V_{2_{\mathrm{TE}}}^+ e^{-jk_{z2} (z-d)} - V_{2_{\mathrm{TE}}}^- e^{jk_{z2} (z-d)} \Big) \\
V_{2_{\mathrm{TM}}}(z) &=& V_{2_{\mathrm{TM}}}^+ e^{-jk_{z2} (z-d)} + V_{2_{\mathrm{TM}}}^- e^{jk_{z2} (z-d)} \\
I_{2_{\mathrm{TM}}}(z) &=& Y_{2_{\mathrm{TM}}} \Big( V_{2_{\mathrm{TM}}}^+ e^{-jk_{z2} (z-d)} - V_{2_{\mathrm{TM}}}^- e^{jk_{z2} (z-d)} \Big)
\end{eqnarray}
これより,\(z=0\) での接線電磁界は,
\begin{eqnarray}
\boldsymbol{E}_{\tan}^{(1)} \Big| _{z=0}
&=& \Big\{ \big( V_{1_{\mathrm{TE}}}^+ + V_{1_{\mathrm{TE}}}^- \big) (\boldsymbol{u}_{t1} \times \boldsymbol{u}_z )
\nonumber \\
&&+ \big( V_{1_{\mathrm{TM}}}^+ + V_{1_{\mathrm{TM}}}^- \big) \boldsymbol{u}_{t1} \Big\}
e^{\mp j\boldsymbol{k}_{t1} \cdot \boldsymbol{\rho}}
\\
\boldsymbol{H}_{\tan}^{(1)} \Big| _{z=0}
&=& \Big\{ Y_{1_{\mathrm{TE}}} \big( V_{1_{\mathrm{TE}}}^+ - V_{1_{\mathrm{TE}}}^- \big) \boldsymbol{u}_{t1}
\nonumber \\
&&- Y_{1_{\mathrm{TM}}} \big( V_{1_{\mathrm{TM}}}^+ - V_{1_{\mathrm{TM}}}^- \big) (\boldsymbol{u}_{t1} \times \boldsymbol{u}_z ) \Big\}
e^{\mp j\boldsymbol{k}_{t1} \cdot \boldsymbol{\rho}}
\end{eqnarray}
また,\(z=d\) での接線電磁界の連続条件より,
\begin{gather}
\boldsymbol{E}_{\tan}^{(1)} \Big| _{z=d} = \boldsymbol{E}_{\tan}^{(2)} \Big| _{z=d}\\
\boldsymbol{H}_{\tan}^{(1)} \Big| _{z=d} = \boldsymbol{H}_{\tan}^{(2)} \Big| _{z=d}
\end{gather}
任意の \(x\),\(y\) で成り立つためには,
\begin{gather}
e^{\mp j\boldsymbol{k}_{t1} \cdot \boldsymbol{\rho}} = e^{\mp j\boldsymbol{k}_{t2} \cdot \boldsymbol{\rho}}
\end{gather}
でなければならない.よって,
\begin{gather}
\boldsymbol{k}_{t1} = \boldsymbol{k}_{t2}
\end{gather}
いま,入射角を\((\theta _i, \phi _i)\)とし,
\(\boldsymbol{k}_{t1} = k_{t1} \boldsymbol{u}_{t1}\),\(\boldsymbol{k}_{t2} = k_{t2} \boldsymbol{u}_{t2}\)とおくと,
\(k_{t1} = k_1 \sin \theta _1\),\(k_{t2} = k_2 \sin \theta _2\)ゆえ,
\begin{gather}
k_1 \sin \theta _1 = k_2 \sin \theta _2
\end{gather}
が得られる(スネルの法則).
また,\(\boldsymbol{u}_{t1} = \boldsymbol{u}_{t2} \equiv \boldsymbol{u}_t\)より,
\(\boldsymbol{u}_{t1} \times \boldsymbol{u}_z = \boldsymbol{u}_{t2} \times \boldsymbol{u}_z\)(単位ベクトル)となるので,
\begin{align}
&\big( V_{1_{\mathrm{TE}}}^+ e^{-jk_{z1} d} + V_{1_{\mathrm{TE}}}^- e^{jk_{z1} d} \big) (\boldsymbol{u}_{t} \times \boldsymbol{u}_z )
\nonumber \\
&+ \big( V_{1_{\mathrm{TM}}}^+ e^{-jk_{z1} d} + V_{1_{\mathrm{TM}}}^- e^{jk_{z1} d} \big) \boldsymbol{u}_{t}
\nonumber \\
&= \big( V_{2_{\mathrm{TE}}}^+ + V_{2_{\mathrm{TE}}}^- \big) (\boldsymbol{u}_{t} \times \boldsymbol{u}_z )
+ \big( V_{2_{\mathrm{TM}}}^+ + V_{2_{\mathrm{TM}}}^- \big) \boldsymbol{u}_{t}
\\
&Y_{1_{\mathrm{TE}}} \big( V_{1_{\mathrm{TE}}}^+ e^{-jk_{z1} d} - V_{1_{\mathrm{TE}}}^- e^{jk_{z1} d} \big) \boldsymbol{u}_{t}
\nonumber \\
&- Y_{1_{\mathrm{TM}}} \big( V_{1_{\mathrm{TM}}}^+ e^{-jk_{z1} d} - V_{1_{\mathrm{TM}}}^- e^{jk_{z1} d} \big) (\boldsymbol{u}_{t} \times \boldsymbol{u}_z )
\nonumber \\
&= Y_{2_{\mathrm{TE}}} \big( V_{2_{\mathrm{TE}}}^+ - V_{2_{\mathrm{TE}}}^- \big) \boldsymbol{u}_{t}
- Y_{2_{\mathrm{TM}}} \big( V_{2_{\mathrm{TM}}}^+ - V_{2_{\mathrm{TM}}}^- \big) (\boldsymbol{u}_{t} \times \boldsymbol{u}_z )
\end{align}
上式の\((\boldsymbol{u}_{t} \times \boldsymbol{u}_z)\)成分,\(\boldsymbol{u}_t\)成分は,
\begin{align}
&V_{1_{\mathrm{TE}}}^+ e^{-jk_{z1} d} + V_{1_{\mathrm{TE}}}^- e^{jk_{z1} d} = V_{2_{\mathrm{TE}}}^+ + V_{2_{\mathrm{TE}}}^-
\\
&V_{1_{\mathrm{TM}}}^+ e^{-jk_{z1} d} + V_{1_{\mathrm{TM}}}^- e^{jk_{z1} d} = V_{2_{\mathrm{TM}}}^+ - V_{2_{\mathrm{TM}}}^-
\\
&\left( V_{1_{\mathrm{TE}}}^+ e^{-jk_{z1} d} - V_{1_{\mathrm{TE}}}^- e^{jk_{z1} d} \right) Y_{1_{\mathrm{TE}}}
= \left( V_{2_{\mathrm{TE}}}^+ - V_{2_{\mathrm{TE}}}^- \right) Y_{2_{\mathrm{TE}}}
\\
&\left( -V_{1_{\mathrm{TM}}}^+ e^{-jk_{z1} d} + V_{1_{\mathrm{TM}}}^- e^{jk_{z1} d} \right) Y_{1_{\mathrm{TM}}}
= \left( -V_{2_{\mathrm{TM}}}^+ + V_{2_{\mathrm{TM}}}^- \right) Y_{2_{\mathrm{TM}}}
\end{align}
これより,TE波,TM波ともに同じ形の式で表され,TE,TMの添字省略すると,
\begin{align}
&V_{1}^+ e^{-jk_{z1} d} + V_{1}^- e^{jk_{z1} d} = V_{2}^+ + V_{2}^-
\\
&\left( V_{1}^+ e^{-jk_{z1} d} - V_{1}^- e^{jk_{z1} d} \right) Y_1
= \left( V_{2}^+ - V_{2}^- \right) Y_2
\end{align}
散乱行列
散乱行列の前進波,後進波の定義より,
\begin{eqnarray}
V_1^+ &=& \sqrt{Z_1} a_1
\\
V_1^- &=& \sqrt{Z_1} b_1
\\
V_2^+ &=& \sqrt{Z_2} b_2
\\
V_1^- &=& \sqrt{Z_2} a_2
\end{eqnarray}
ゆえ,
\begin{align}
&\sqrt{Z_1} a_1 e^{-jk_{z1} d} + \sqrt{Z_1} b_1 e^{jk_{z1} d} = \sqrt{Z_2} b_2 + \sqrt{Z_2} a_2
\\
&\left( \sqrt{Z_1} a_1 e^{-jk_{z1} d} - \sqrt{Z_1} b_1 e^{jk_{z1} d} \right) Y_1
= \left( \sqrt{Z_2} b_2 - \sqrt{Z_2} a_2 \right) Y_2
\end{align}
整理して,
\begin{gather}
\sqrt{Z_1 Y_2} \left( a_1 e^{-jk_{z1} d} + b_1 e^{jk_{z1} d} \right) = b_2 + a_2 \\
\sqrt{Y_1 Z_2} \left( a_1 e^{-jk_{z1} d} - b_1 e^{jk_{z1} d} \right) = b_2 - a_2
\end{gather}
上式より,\(b_2\)を消去すると,
\begin{align}
&\left( \sqrt{Z_1 Y_2} -\sqrt{Y_1 Z_2} \right) a_1 e^{-jk_{z1} d}
\nonumber \\
&+ \left( \sqrt{Z_1 Y_2} +\sqrt{Y_1 Z_2} \right) b_1 e^{jk_{z1} d}
= 2a_2
\end{align}
\begin{eqnarray}
b_1 &=& \frac{Y_1 - Y_2}{Y_1 + Y_2} e^{-j2k_{z1} d} a_1 + \frac{2\sqrt{Y_1 Y_2}}{Y_1 + Y_2} e^{-jk_{z1} d} a_2
\nonumber \\
&\equiv& S_{11} a_1 + S_{12} a_2
\end{eqnarray}
よって,散乱行列要素\(S_{11}\),\(S_{12}\)は次のようになる.
\begin{eqnarray}
S_{11} &=& \frac{Y_1 - Y_2}{Y_1 + Y_2} e^{-j2k_{z1} d}
\\
S_{12} &=& \frac{2\sqrt{Y_1 Y_2}}{Y_1 + Y_2} e^{-jk_{z1} d}
\end{eqnarray}
逆に,\(b_1\)を消去すると,
\begin{eqnarray}
2a_1 e^{-jk_{z1} d}
&=& \left( \sqrt{Y_1 Z_2} -\sqrt{Z_1 Y_2} \right) a_1
\nonumber \\
&&+ \left( \sqrt{Y_1 Z_2} +\sqrt{Z_1 Y_2} \right) b_1
\end{eqnarray}
\begin{eqnarray}
b_2 &=& \frac{2\sqrt{Y_1 Y_2}}{Y_1 + Y_2} e^{-jk_{z1} d} a_1 - \frac{Y_1 - Y_2}{Y_1 + Y_2} a_2
\nonumber \\
&\equiv& S_{21} a_1 + S_{22} a_2
\end{eqnarray}
よって,散乱行列要素\(S_{21}\),\(S_{22}\)は,
\begin{eqnarray}
S_{21} &=& \frac{2\sqrt{Y_1 Y_2}}{Y_1 + Y_2} e^{-jk_{z1} d}
\\
S_{22} &=& -\frac{Y_1 - Y_2}{Y_1 + Y_2}
\end{eqnarray}
したがって,散乱行列\([\boldsymbol{S}]\)は,
\begin{eqnarray}
[\boldsymbol{S}] &=&
\begin{pmatrix}
S_{11} & S_{12} \\ S_{21} & S_{22}
\end{pmatrix}
\nonumber \\
&=& \frac{1}{Y_1 + Y_2}
\begin{pmatrix}
(Y_1 - Y_2) e^{-j2k_{z1} d} & 2\sqrt{Y_1 Y_2} e^{-jk_{z1} d} \\
2\sqrt{Y_1 Y_2} e^{-jk_{z1} d} & -(Y_1 - Y_2)
\end{pmatrix}
\end{eqnarray}
\(d=0\) とおき2つの端子面を\(z=0\) にとると,異なる媒質の境界での散乱行列が得られ,次のようになる.
\begin{eqnarray}
[\boldsymbol{S}] &=&
\begin{pmatrix}
S_{11} & S_{12} \\ S_{21} & S_{22}
\end{pmatrix}
\nonumber \\
&=& \frac{1}{Y_1 + Y_2}
\begin{pmatrix}
(Y_1 - Y_2) & 2\sqrt{Y_1 Y_2} \\ 2\sqrt{Y_1 Y_2} & -(Y_1 - Y_2)
\end{pmatrix}
\end{eqnarray}
Rマトリクス
多層構造に対して,伝送線路と同様の縦続接続を行うことができる.
上で求めた式より,\(a_1\)を消去すると,
\begin{eqnarray}
2 b_1 e^{jk_z d}
&=& b_2 \left( \sqrt{Y_1 Z_2} - \sqrt{Z_1 Y_2} \right)
\nonumber \\
&&+ a_2 \left( \sqrt{Y_1 Z_2} + \sqrt{Z_1 Y_2} \right)
\end{eqnarray}
よって,\(b_1\)は,
\begin{eqnarray}
b_1 &=& \frac{\sqrt{Z_1 Z_2}}{2} e^{-jk_z d} \Big\{ (Y_1 + Y_2) a_2 + (Y_1 - Y_2) b_2 \Big\}
\nonumber \\
&\equiv& R_{11} a_2 + R_{12} b_2
\end{eqnarray}
したがって,Rマトリクスの要素\(R_{11}\),\(R_{12}\)は,
\begin{gather}
R_{11} = \frac{\sqrt{Z_1 Z_2}}{2} \big( Y_1 + Y_2 \big) e^{-jk_z d}\\
R_{12} = \frac{\sqrt{Z_1 Z_2}}{2} \big( Y_1 - Y_2 \big) e^{-jk_z d}
\end{gather}
逆に,\(b_1\)を消去すると,
\begin{eqnarray}
2 a_1 e^{-jk_z d} &=& b_2 \left( \sqrt{Y_1 Z_2} + \sqrt{Z_1 Y_2} \right)
\nonumber \\
&&+ a_2 \left( \sqrt{Y_1 Z_2} - \sqrt{Z_1 Y_2} \right)
\end{eqnarray}
よって,\(a_1\)は,
\begin{eqnarray}
a_1 &=& \frac{\sqrt{Z_1 Z_2}}{2} e^{jk_z d} \Big\{ (Y_1 - Y_2) a_2 + (Y_1 + Y_2) b_2 \Big\}
\nonumber \\
&\equiv& R_{21} a_2 + R_{22} b_2
\end{eqnarray}
したがって,Rマトリクスの要素\(R_{21}\),\(R_{22}\)は,
\begin{gather}
R_{21} = \frac{\sqrt{Z_1 Z_2}}{2} \big( Y_1 - Y_2 \big) e^{jk_z d}\\
R_{22} = \frac{\sqrt{Z_1 Z_2}}{2} \big( Y_1 + Y_2 \big) e^{jk_z d}
\end{gather}
よって,\(z=0\),\(d\) に端子面を定義したRマトリクスは次のようになる.
\begin{gather}
\begin{pmatrix}
b_1 \\ a_1
\end{pmatrix}
= [\boldsymbol{R}]
\begin{pmatrix}
a_2 \\ b_2
\end{pmatrix}
\end{gather}
ここで,
\begin{gather}
[\boldsymbol{R}] = \frac{\sqrt{Z_1 Z_2}}{2}
\begin{pmatrix}
\big( Y_1 + Y_2 \big) e^{-jk_z d} & \big( Y_1 - Y_2 \big) e^{-jk_z d} \\
\big( Y_1 - Y_2 \big) e^{jk_z d} & \big( Y_1 + Y_2 \big) e^{jk_z d}
\end{pmatrix}
\end{gather}
ただし,\(R_{11} R_{22} - R_{12} R_{21} = 1\).
いま,
\begin{gather}
\Gamma \equiv \frac{Z_2 - Z_1}{Z_2 + Z_1} = \frac{Y_1 - Y_2}{Y_1 + Y_2}
\end{gather}
とおくと,
\begin{eqnarray}
1-\Gamma ^2
&=& 1- \left( \frac{Y_1 - Y_2}{Y_1 + Y_2} \right) ^2
\nonumber \\
&=& \frac{4 Y_1 Y_2}{(Y_1 + Y_2)^2}
\end{eqnarray}
これより,
\begin{eqnarray}
[\boldsymbol{R}]
&=& \frac{Y_1 + Y_2}{2\sqrt{Y_1 Y_2}}
\begin{pmatrix}
e^{-jk_z d} & \frac{Y_1 - Y_2}{Y_1 + Y_2} e^{-jk_z d} \\
\frac{Y_1 - Y_2}{Y_1 + Y_2} e^{jk_z d} & e^{jk_z d}
\end{pmatrix}
\nonumber \\
&=& \frac{1}{\sqrt{1-\Gamma ^2}}
\begin{pmatrix}
e^{-jk_z d} & \Gamma e^{-jk_z d} \\
\Gamma e^{jk_z d} & e^{jk_z d}
\end{pmatrix}
\end{eqnarray}
多層構造に対しては,Rマトリクスの積を求めて縦続接続できる.
そして,縦続接続で得られたRマトリクスの要素から,
散乱行列\([\boldsymbol{S}]\)を次式により求めることができる.
\begin{align}
&\begin{pmatrix}
b_1 \\ b_2
\end{pmatrix}
= [\boldsymbol{S}]
\begin{pmatrix}
a_1 \\ a_2
\end{pmatrix}
\nonumber \\
&[\boldsymbol{S}] =
\begin{pmatrix}
S_{11} & S_{12} \\ S_{21} & S_{22}
\end{pmatrix}
= \frac{1}{R_{22}}
\begin{pmatrix}
R_{12} & 1 \\ 1 & -R_{21}
\end{pmatrix}
\end{align}