調和関数の不定積分
     境界条件の異なる2つの固有関数$f_m$(固有値$k_m$),
    $g_n$(固有値$\hat{k}_n$)
    \begin{gather}
    f_m'' + k_m^2 f_m = 0, \ \ \ \ \ g_n'' + \hat{k}_n^2 g_n = 0
    \label{eq:fmgn}
    \end{gather}
    について,
    \begin{eqnarray}
    \frac{d}{dx} \left( f_m g_n' - f_m' g_n \right)
    &=& f_m' g_n' + f_m g_n'' - f_m'' g_n - f_m' g_n'
    \nonumber \\
    &=& f_m g_n'' - f_m'' g_n
    \nonumber \\
    &=& f_m (-\hat{k}_n^2 g_n ) - (-k_m^2 f_m) g_n
    \nonumber \\
    &=& \big( k_m^2 - \hat{k}_n^2 \big) f_m g_n
    \nonumber
    \end{eqnarray}
    不定積分すると,次式が得られる(積分定数省略).
    \begin{gather}
    f_m g_n' - f_m' g_n
    = \big( k_m^2 - \hat{k}_n^2 \big) \int f_m g_n dx
    \end{gather}
    よって,$k_m \neq \hat{k}_{n}$のとき,調和関数に関する不定積分は次のようになる.
    \begin{gather}
    \int f_m g_n dx = \frac{f_m g_n' - f_m' g_n}{k_m^2 - \hat{k}_n^2 }
    \label{eq:int_fmgn}
    \end{gather}
    正弦・正弦関数($\sin$,$\sin$)の不定積分
     まず,$f$,$g$をともに正弦関数
    \begin{gather}
    f = \sin (k_x x + \xi ), \ \ \ \ \
    g = \sin (\hat{k}_x x + \hat{\xi})
    \end{gather}
    とする.これらを$x$で微分すると,
    \begin{gather}
    f' = k_x \cos (k_x x + \xi), \ \ \ \
    g' = \hat{k}_x \cos (\hat{k}_x x + \hat{\xi})
    \end{gather}
    先に求めた不定積分の公式\eqref{eq:int_fmgn}より,
    \begin{eqnarray}
    &&\int f g dx 
    \nonumber \\
    &=& \int \sin (k_x x + \xi) \cdot \sin (\hat{k}_x x + \hat{\xi}) dx
    \nonumber \\
    &=& \frac{\sin (k_x x + \xi ) \cdot \hat{k}_x \cos (\hat{k}_x x + \hat{\xi}) 
    - k_x \cos (k_x x + \xi) \cdot \sin (\hat{k}_x x + \hat{\xi})}{k_x^2 - \hat{k}_x^2}
    \end{eqnarray}
    三角関数の積和公式
    \begin{align}
    &2 \sin \alpha \cos \beta = \sin (\alpha + \beta) + \sin (\alpha - \beta)
    \\
    &2 \cos \alpha \sin \beta = \sin (\alpha + \beta) - \sin (\alpha - \beta)
    \end{align}
    より,
    \begin{eqnarray}
    &&\int f g dx 
    \nonumber \\
    &=& \hat{k}_x \frac{\sin \big\{ (k_x+\hat{k}_x)x + (\xi+\hat{\xi}) \big\}
    + \sin \big\{ (k_x-\hat{k}_x)x + (\xi-\hat{\xi}) \big\} }{2(k_x^2 - \hat{k}_x^2)}
    \nonumber \\
    &&- k_x \frac{\sin \big\{ (k_x+\hat{k}_x)x + (\xi+\hat{\xi}) \big\}
    - \sin \big\{ (k_x-\hat{k}_x)x + (\xi-\hat{\xi}) \big\} }{2(k_x^2 - \hat{k}_x^2)}
    \nonumber \\
    &=& -\frac{\sin \big\{ (k_x+\hat{k}_x)x + (\xi+\hat{\xi}) \big\} }{2(k_x+\hat{k}_x)}
    + \frac{\sin \big\{ (k_x-\hat{k}_x)x + (\xi-\hat{\xi}) \big\} }{2(k_x-\hat{k}_x)}
    \end{eqnarray}
    ここで,加法定理より,
    \begin{align}
    &\sin \big\{ (k_x-\hat{k}_x)x + (\xi-\hat{\xi}) \big\}
    \nonumber \\
    &= \sin \big\{ (k_x-\hat{k}_x)x \big\} \cos (\xi-\hat{\xi})
    + \cos \big\{ (k_x-\hat{k}_x)x \big\} \sin (\xi-\hat{\xi})
    \end{align}
    $\hat{k}_x \to k_x$のとき,
    \begin{gather}
    \lim_{\hat{k}_x \to k_x} \frac{\sin \big\{ (k_x-\hat{k}_x)x \big\}
     \cos (\xi-\hat{\xi})}{2(k_x-\hat{k}_x)}
    = \frac{x}{2} \cos (\xi-\hat{\xi})
    \end{gather}
    $k_x = \hat{k}_x$のとき,
    \begin{gather}
    \int f g dx 
    = -\frac{\sin \big\{ 2k_x x + (\xi+\hat{\xi}) \big\} }{4 k_x} + \frac{x \cos (\xi-\hat{\xi})}{2} 
    \end{gather}
    また,加法定理より,
    \begin{gather}
    \sin \big\{ 2k_x x + (\xi+\hat{\xi}) \big\}
    = \sin (2k_x x) \cos (\xi+\hat{\xi}) + \cos (2k_x x) \sin (\xi+\hat{\xi})
    \end{gather}
    $k_x \to 0$ のとき,
    \begin{gather}
    \lim_{k_x \to 0} \frac{\sin (2k_x x) \cos (\xi+\hat{\xi})}{4k_x}
    = \frac{x}{2} \cos (\xi+\hat{\xi})
    \end{gather}
    $k_x = 0$ のとき,三角関数の和積公式
    \begin{gather}
    -\cos A + \cos B = 2 \sin \frac{A+B}{2} \sin \frac{A-B}{2}
    \end{gather}
    より,
    \begin{eqnarray}
    \int f g dx 
    &=& -\frac{x \cos (\xi+\hat{\xi})}{2}+ \frac{x \cos (\xi-\hat{\xi})}{2} 
    \nonumber \\
    &=& x \sin \xi \sin\hat{\xi}
    \end{eqnarray}
    あるいは,$k_x = \hat{k}_x = 0$ のとき,
    $f = \sin \xi$,$g = \sin \hat{\xi}$より,
    \begin{eqnarray}
    \int f g dx 
    &=& \sin \xi \sin \hat{\xi} \int dx 
    \nonumber \\
    &=& x \sin \xi \sin \hat{\xi} 
    \end{eqnarray}
    また,$k_x = \hat{k}_x \ne 0$のとき,
    $f = \sin (k_x x + \xi )$,
    $g = \sin (k_x x + \hat{\xi})$.
    三角関数の積和公式
    \begin{gather}
    2 \sin \alpha \sin \beta = -\cos (\alpha + \beta) + \cos (\alpha - \beta)
    \end{gather}
    より,
    \begin{eqnarray}
    fg &=& \sin (k_x x + \xi ) \cdot  \sin (k_x x + \hat{\xi})
    \nonumber \\
    &=& \frac{1}{2} \Big[ -\cos \big\{ 2k_x x + (\xi + \hat{\xi}) \big\} + \cos (\xi - \hat{\xi}) \Big]
    \end{eqnarray}
    よって,
    \begin{eqnarray}
    \int f g dx 
    &=& \frac{1}{2} \int \Big[ -\cos \big\{ 2k_x x + (\xi + \hat{\xi}) \big\} + \cos (\xi - \hat{\xi}) \Big] dx
    \nonumber \\
    &=& -\frac{\sin \big\{ 2k_x x + (\xi+\hat{\xi}) \big\} }{4 k_x} + \frac{x \cos (\xi-\hat{\xi})}{2} 
    \end{eqnarray}
    正弦・正弦関数の積分をまとめると,$k_x \ne \hat{k}_x$のとき,
    \begin{align}
    &\int \sin (k_x x + \xi) \cdot \sin (\hat{k}_x x + \hat{\xi}) dx
    \nonumber \\
    &= -\frac{\sin \big\{ (k_x+\hat{k}_x)x + (\xi+\hat{\xi}) \big\} }{2(k_x+\hat{k}_x)}
    + \frac{\sin \big\{ (k_x-\hat{k}_x)x + (\xi-\hat{\xi}) \big\} }{2(k_x-\hat{k}_x)}
    \end{align}
    また,$k_x = \hat{k}_x \ne 0$ のとき,
    \begin{align}
    &\int \sin (k_x x + \xi) \cdot \sin (k_x x + \hat{\xi}) dx
    \nonumber \\
    &= -\frac{\sin \big\{ 2k_x x + (\xi+\hat{\xi}) \big\} }{4 k_x} + \frac{x \cos (\xi-\hat{\xi})}{2} 
    \end{align}
    さらに,$k_x = \hat{k}_x = 0$のとき,
    \begin{gather}
    %\int f g dx = 
    \int \sin \xi \sin \hat{\xi} dx = x \sin \xi \sin \hat{\xi} 
    \end{gather}
    余弦・余弦関数($\cos$,$\cos$)の不定積分
     次に,$f$,$g$をともに余弦関数
    \begin{gather}
    f = \cos (k_x x + \xi ), \ \ \ \ \
    g = \cos (\hat{k}_x x + \hat{\xi})
    \end{gather}
    とする.ここで,$\xi \equiv \zeta + \pi/2$,$\hat{\xi} \equiv \hat{\zeta} + \pi/2$
    とおくと,
    \begin{eqnarray}
    f &=& \cos (k_x x + \zeta + \pi/2 ) = \sin (k_x x + \zeta )
    \\
    g &=& \cos (\hat{k}_x x + \hat{\zeta} + \pi/2) = \sin (\hat{k}_x x + \hat{\zeta} )
    \end{eqnarray}
    ここで,$\zeta = \xi - \pi/2$,$\hat{\zeta} = \hat{\xi} - \pi/2$より,
    \begin{align}
    &\zeta + \hat{\zeta} = \xi + \hat{\xi} - \pi
    \\
    &\zeta - \hat{\zeta} = \xi - \hat{\xi}
    \end{align}
    よって,
    \begin{eqnarray}
    &&\int f g dx 
    \nonumber \\
    &=& \int \cos (k_x x + \xi) \cdot \cos (\hat{k}_x x + \hat{\xi}) dx
    \nonumber \\
    &=& \int \sin (k_x x + \zeta) \cdot \sin (\hat{k}_x x + \hat{\zeta}) dx
    \nonumber \\
    &=& -\frac{\sin \big\{ (k_x+\hat{k}_x)x + (\zeta+\hat{\zeta}) \big\} }{2(k_x+\hat{k}_x)}
    + \frac{\sin \big\{ (k_x-\hat{k}_x)x + (\zeta-\hat{\zeta}) \big\} }{2(k_x-\hat{k}_x)}
    \nonumber \\
    &=& \frac{\sin \big\{ (k_x+\hat{k}_x)x + (\xi+\hat{\xi}) \big\} }{2(k_x+\hat{k}_x)}
    + \frac{\sin \big\{ (k_x-\hat{k}_x)x + (\xi-\hat{\xi}) \big\} }{2(k_x-\hat{k}_x)}
    \end{eqnarray}
    また,$k_x = \hat{k}_x \ne 0$のとき,
    \begin{eqnarray}
    \int f g dx 
    &=& \int \cos (k_x x + \xi) \cdot \cos (k_x x + \hat{\xi}) dx
    \nonumber \\
    &=& \int \sin (k_x x + \zeta) \cdot \sin (k_x x + \hat{\zeta}) dx
    \nonumber \\
    &=& -\frac{\sin \big\{ 2k_x x + (\zeta+\hat{\zeta}) \big\} }{4 k_x} + \frac{x \cos (\zeta-\hat{\zeta})}{2}
    \nonumber \\
    &=& \frac{\sin \big\{ 2k_x x + (\xi+\hat{\xi}) \big\} }{4 k_x} + \frac{x \cos (\xi-\hat{\xi})}{2} 
    \end{eqnarray}
    さらに,$k_x = \hat{k}_x = 0$のとき,
    \begin{eqnarray}
    \int f g dx 
    &=& \int \cos \xi \cos \hat{\xi} dx
    \nonumber \\
    &=& x \cos \xi \cos \hat{\xi}
    \end{eqnarray}
    不定積分のまとめ
     正弦・正弦関数を上側,余弦・余弦関数を下側に記して
    積分をまとめると,$k_x \ne \hat{k}_x$ のとき,
    \begin{eqnarray}
    &&\int \begin{matrix} \sin \\ \cos \end{matrix} (k_x x + \xi) 
    \cdot \begin{matrix} \sin \\ \cos \end{matrix} (\hat{k}_x x + \hat{\xi}) dx
    \nonumber \\
    &=& \mp \frac{\sin \big\{ (k_x+\hat{k}_x)x + (\xi+\hat{\xi}) \big\}}{2(k_x+\hat{k}_x)}
    + \frac{\sin \big\{ (k_x-\hat{k}_x)x + (\xi-\hat{\xi}) \big\} }{2(k_x-\hat{k}_x)}
    \end{eqnarray}
    また,$k_x = \hat{k}_x \ne 0$ のとき,
    \begin{align}
    &\int \begin{matrix} \sin \\ \cos \end{matrix} (k_x x + \xi) 
    \cdot \begin{matrix} \sin \\ \cos \end{matrix} (k_x x + \hat{\xi}) dx
    \nonumber \\
    &= \mp \frac{\sin \big\{ 2k_x x + (\xi+\hat{\xi}) \big\} }{4 k_x} + \frac{x \cos (\xi-\hat{\xi})}{2} 
    \end{align}
    さらに,$k_x = \hat{k}_x = 0$ のとき,
    \begin{gather}
    %\int f g dx = 
    \int \begin{matrix} \sin \\ \cos \end{matrix} \ \xi 
    \cdot \begin{matrix} \sin \\ \cos \end{matrix} \ \hat{\xi} dx 
    = x \ \begin{matrix} \sin \\ \cos \end{matrix} \ \xi 
    \cdot \begin{matrix} \sin \\ \cos \end{matrix} \ \hat{\xi} 
    \end{gather}
    被積分関数の定数項を若干,変形した形について,$k_x \ne \hat{k}_x$ のとき,
    \begin{eqnarray}
    &&\int \begin{matrix} \sin \\ \cos \end{matrix} \big\{ k_x (x +x_1) \big\}
    \cdot \begin{matrix} \sin \\ \cos \end{matrix}  \big\{ \hat{k}_x (x +x_2) \big\}  dx
    \nonumber \\
    &=& \mp \frac{\sin \big\{ k_x (x +x_1) + \hat{k}_x (x +x_2) \big\} }{2(k_x+\hat{k}_x)}
    \nonumber \\
    &&+ \frac{\sin \big\{ k_x (x +x_1) - \hat{k}_x (x +x_2) \big\} }{2(k_x-\hat{k}_x)}
    \end{eqnarray}
    また,$k_x = \hat{k}_x \ne 0$ のとき,
    \begin{align}
    &\int \begin{matrix} \sin \\ \cos \end{matrix} \big\{ k_x (x +x_1) \big\} 
    \cdot \begin{matrix} \sin \\ \cos \end{matrix} \big\{ k_x (x +x_2) \big\} dx
    \nonumber \\
    &= \mp \frac{\sin \big\{ k_x (2x + x_1 + x_2) \big\} }{4 k_x} 
    + \frac{x \cos \big\{ k_x (x_1-x_2) \big\} }{2} 
    \end{align}
    さらに,$k_x = \hat{k}_x = 0$ のとき,
    \begin{gather}
    \int \begin{matrix} \sin \\ \cos \end{matrix} \big\{ k_x (x +x_1) \big\} 
    \cdot \begin{matrix} \sin \\ \cos \end{matrix} \big\{ k_x (x +x_2) \big\} dx
    = \begin{matrix} 0 \\ x \end{matrix} 
    \end{gather}