2.1 方形導波菅の不連続問題

方形導波菅のモード関数

 方形導波管 #1($a_1 \times b_1$)のTE$_{mn}$モードのスカラ関数 $\Psi^{\#1}_{[mn]}$, 方形導波管 #2($a_2 \times b_2$)のTE$_{m'n'}$モードのスカラ関数 $\Psi^{\#2}_{[m'n']}$ を, \begin{eqnarray} \Psi^{\#1}_{[mn]} &\equiv& A^{\#1}_{[mn]} h^{\#1}_{x[m]}(x) h^{\#1}_{y[n]}(y) \\ \Psi^{\#2}_{[m'n']} &\equiv& A^{\#2}_{[m'n']} h^{\#2}_{x[m']}(x) h^{\#2}_{y[n']}(y) \end{eqnarray} TEモードの境界条件より, \begin{gather} \left. \frac{dh^{\#1}_{x[m]}}{dx} \right|_{x=0,a_1} =0, \ \ \ \ \ \left. \frac{dh^{\#2}_{x[m']}}{dx} \right|_{x=-x_2,a_2-x_2} =0 \\ \left. \frac{dh^{\#1}_{y[n]}}{dy} \right|_{y=0,b_1} =0, \ \ \ \ \ \left. \frac{dh^{\#2}_{y[n']}}{dy} \right|_{y=-y_2,b_2-y_2} =0 \end{gather} よって, \begin{align} &h^{\#1}_{x[m]}(x) = \cos \big( k_{xm} x \big), \ \ \ \ \ h^{\#2}_{x[m']}(x) = \cos \big\{ \hat{k}_{xm'} (x + x_2) \big\} \\ &h^{\#1}_{y[n]}(y) = \cos \big( k_{yn} y \big), \ \ \ \ \ h^{\#2}_{y[n']}(y) = \cos \big\{ \hat{k}_{yn'} (y + y_2) \big\} \end{align} ただし(一様分布は存在しない), \begin{align} &k_{xm} = \frac{m\pi}{a_1}, \ \ \ \ \ k_{yn} = \frac{n\pi}{b_1} \ \ \ \ \ (m,n=0,1,2,\cdots , \ m=n\neq0) \\ &\hat{k}_{xm'} = \frac{m'\pi}{a_2}, \ \ \ \ \ \hat{k}_{yn'} = \frac{n'\pi}{b_2} \ \ \ \ \ (m',n'=0,1,2,\cdots , \ m'=n'\neq0) \end{align} また,$A^{\#1}_{[mn]}$,$A^{\#2}_{[m'n']}$はTEモードの正規化係数を示し, \begin{align} &A^{\#1}_{[mn]} = \frac{1}{\pi} \sqrt{\frac{a_1 b_1 \epsilon _m \epsilon _n}{(m b_1)^2+(n a_1)^2}} \\ &A^{\#2}_{[m'n']} = \frac{1}{\pi} \sqrt{\frac{a_2 b_2 \epsilon _{m'} \epsilon _{n'}}{(m' b_2)^2+(n' a_2)^2}} \end{align} ただし, \begin{align} &\epsilon _m = \left\{ \begin {array}{ll} 1 & (m=0) \\ 2 & (m=1,2, \cdots ) \end{array} \right., \ \ \ \ \ \epsilon _{m'} = \left\{ \begin {array}{ll} 1 & (m'=0) \\ 2 & (m'=1,2, \cdots ) \end{array} \right. \\ &\epsilon _n = \left\{ \begin {array}{ll} 1 & (n=0) \\ 2 & (n=1,2, \cdots ) \end{array} \right., \ \ \ \ \ \epsilon _{n'} = \left\{ \begin {array}{ll} 1 & (n'=0) \\ 2 & (n'=1,2, \cdots ) \end{array} \right. \end{align} また,導波管 #1のTM$_{mn}$モードと導波管 #2のTM$_{m'n'}$モードを, \begin{align} &\Psi^{\#1}_{(mn)} \equiv A^{\#1}_{(mn)} h^{\#1}_{x(m)}(x) h^{\#1}_{y(n)}(y) \\ &\Psi^{\#2}_{(m'n')} \equiv A^{\#2}_{(mn)} h^{\#2}_{x(m')}(x) h^{\#2}_{y(n')}(y) \end{align} TMモードの境界条件より, \begin{align} &\left. h^{\#1}_{x(m)} \right|_{x=0,a_1} =0, \ \ \ \ \ \left. h^{\#2}_{x(m')} \right|_{x=-x_2,a_2-x_2} =0 \\ &\left. h^{\#1}_{y(n)} \right|_{y=0,b_1} =0, \ \ \ \ \ \left. h^{\#2}_{y(n')} \right|_{y=-y_2,b_2-y_2} =0 \end{align} よって, \begin{align} &h^{\#1}_{x(m)}(x) = \sin \big( k_{xm} x \big), \ \ \ \ \ h^{\#2}_{x(m')}(x) = \sin \big\{ \hat{k}_{xm'} (x + x_2) \big\} \\ &h^{\#1}_{y(n)}(y) = \sin \big( k_{yn} y \big), \ \ \ \ \ h^{\#2}_{y(n')}(y) = \sin \big\{ \hat{k}_{yn'} (y + y_2) \big\} \end{align} ただし,$k_{xm}$,$k_{yn}$の定義は先に示したものと変わらないが, $m, m', n, n'=1,2,\cdots $ となる,また, $A^{\#1}_{(mn)}$,$A^{\#2}_{(m'n')}$ はTMモードの正規化係数を示し, \begin{align} &A^{\#1}_{(mn)} = \frac{2}{\pi} \sqrt{\frac{a_1b_1}{(mb_1)^2+(na_1)^2}} \\ &A^{\#2}_{(m'n')} = \frac{2}{\pi} \sqrt{\frac{a_2 b_2}{(m' b_2)^2+(n' a_2)^2}} \end{align} TMモードの場合は,$x$,$y$方向ともに分布をもつ.なお,TE$_{mn}$モードは添字$[mn]$,TM$_{mn}$モードは添字$(mn)$を用い,TEモードとTMモードの区別なく$mn$次のモードを表す場合,次のように表すことにする. \begin{align} &\Psi^{\#1}_{mn} \equiv A^{\#1}_{mn} h^{\#1}_{xm}(x) h^{\#1}_{yn}(y) \\ &\Psi^{\#2}_{m'n'} \equiv A^{\#2}_{m'n'} h^{\#2}_{xm'}(x) h^{\#2}_{yn'}(y) \end{align}

モード関数の内積(#1,#2)

 $\Psi^{\#1}_{[mn]}$で求められるTE$_{mn}$モードと $\Psi^{\#2}_{[m'n']}$で求められるTE$_{m'n'}$モードの内積, あるいは, $\Psi^{\#1}_{(mn)}$で求められるTM$_{mn}$モードと $\Psi^{\#2}_{(m'n')}$で求められるTM$_{m'n'}$モードの内積は次のようになる. \begin{eqnarray} &&\iint _{S_A} \nabla_t \Psi^{\#1}_{mn} \cdot \nabla_t \Psi^{\#2}_{m'n'} dS \nonumber \\ &=& \iint _{S_A} \left( \frac{\partial \Psi^{\#1}_{mn}}{\partial x} \frac{\partial \Psi^{\#2}_{m'n'}}{\partial x} + \frac{\partial \Psi^{\#1}_{mn}}{\partial y} \frac{\partial \Psi^{\#2}_{m'n'}}{\partial y} \right) dx dy \nonumber \\ &=& A^{\#1}_{mn} A^{\#2}_{m'n'} \int _{l_y} \int _{l_x} \left( \frac{dh^{\#1}_{xm}}{dx} \frac{dh^{\#2}_{xm'}}{dx} h^{\#1}_{yn} h^{\#2}_{yn'} \right. \nonumber \\ &&\left. + h^{\#1}_{xm} h^{\#2}_{xm'} \frac{dh^{\#1}_{yn}}{dy} \frac{dh^{\#2}_{yn'}}{dy} \right) dx dy \nonumber \\ &=& A^{\#1}_{mn} A^{\#2}_{m'n'} \left[ \int _{l_x} (h^{\#1}_{xm})' (h^{\#2}_{xm'})' dx \int _{l_y} h^{\#1}_{yn} h^{\#2}_{yn'} dy \right. \nonumber \\ &&\left. + \int _{l_x} h^{\#1}_{xm} h^{\#2}_{xm'} dx \int _{l_y} (h^{\#1}_{yn})' (h^{\#2}_{yn'})' dy \right] \end{eqnarray} ただし,$S_A$は導波管断面内の一部あるいは全部の領域, $l_x$,$l_y$は$x$,$y$の積分範囲を示す. 両者ともTEモードの場合,$m, n=0,1,2,\cdots (m\neq0$ or $n\neq0$), $m', n'=0,1,2,\cdots (m'\neq0$ or $n'\neq0$)について, \begin{eqnarray} &&\iint _{S_A} \VEC{e}^{\#1}_{[mn]} \cdot \VEC{e}^{\#2}_{[m'n']} dS \nonumber \\ &=& A^{\#1}_{[mn]} A^{\#2}_{[m'n']} \left[ \int _{l_x} (h^{\#1}_{x[m]})' (h^{\#2}_{x[m']})' dx \int _{l_y} h^{\#1}_{y[n]} h^{\#2}_{y[n']} dy \right. \nonumber \\ &&\left. + \int _{l_x} h^{\#1}_{x[m]} h^{\#2}_{x[m']} dx \int _{l_y} (h^{\#1}_{y[n]})' (h^{\#2}_{y[n']})' dy \right] \end{eqnarray} また,両者ともTMモードの場合,$m, n=1,2,3,\cdots$,$m', n'=1,2,3,\cdots$について, \begin{eqnarray} &&\iint _{S_A} \VEC{e}^{\#1}_{(mn)} \cdot \VEC{e}^{\#2}_{(m'n')} dS \nonumber \\ &=& A^{\#1}_{(mn)} A^{\#2}_{(m'n')} \left[ \int _{l_x} (h^{\#1}_{x(m)})' (h^{\#2}_{x(m')})' dx \int _{l_y} h^{\#1}_{y(n)} h^{\#2}_{y(n')} dy \right. \nonumber \\ &&\left. + \int _{l_x} h^{\#1}_{x(m)} h^{\#2}_{x(m')} dx \int _{l_y} (h^{\#1}_{y(n)})' (h^{\#2}_{y(n')})' dy \right] \end{eqnarray} 一方, $\Psi^{\#1}_{[mn]}$で求められるTE$_{mn}$モードと $\Psi^{\#2}_{(m'n')}$で求められるTM$_{m'n'}$モードでは, \begin{eqnarray} &&\iint _{S_A} \VEC{e}^{\#1}_{[mn]} \cdot \VEC{e}^{\#2}_{(m'n')} dS \nonumber \\ &=& \iint _{S_A} \big( \nabla_t \Psi^{\#1}_{[mn]} \times \VEC{a}_z \big) \cdot \nabla_t \Psi^{\#2}_{(m'n')} dS \nonumber \\ &=& \iint _{S_A} \left( -\VEC{a}_y \frac{\partial \Psi^{\#1}_{[mn]}}{\partial x} + \VEC{a}_x \frac{\partial \Psi^{\#1}_{[mn]}}{\partial y} \right) \cdot \left( \VEC{a}_x \frac{\partial \Psi^{\#2}_{[m'n']}}{\partial x} + \VEC{a}_y \frac{\partial \Psi^{\#2}_{[m'n']}}{\partial y} \right) dS \nonumber \\ &=& \iint_{S_A} \left( \frac{\partial \Psi^{\#1}_{[mn]}}{\partial y} \frac{\partial \Psi^{\#2}_{(m'n')}}{\partial x} - \frac{\partial \Psi^{\#1}_{[mn]}}{\partial x} \frac{\partial \Psi^{\#2}_{(m'n')}}{\partial y} \right) dx dy \nonumber \\ &=& A^{\#1}_{[mn]} A^{\#2}_{(m'n')} \int _{l_y} \int _{l_x} \left( h^{\#1}_{x[m]} \frac{dh^{\#1}_{y[n]}}{dy} \frac{dh^{\#2}_{x(m')}}{dx} h^{\#2}_{y(n')} \right. \nonumber \\ &&\left. - \frac{dh^{\#1}_{x[m]}}{dx} h^{\#1}_{y[n]} h^{\#2}_{x(m')} \frac{dh^{\#2}_{y(n')}}{dy} \right) dx dy \nonumber \\ &=& A^{\#1}_{[mn]} A^{\#2}_{(m'n')} \left[ \int _{l_x} h^{\#1}_{x[m]} (h^{\#2}_{x(m')})' dx \int _{l_y} (h^{\#1}_{y[n]})' h^{\#2}_{y(n')} dy \right. \nonumber \\ &&\left. - \int _{l_x} (h^{\#1}_{x[m]})' h^{\#2}_{x(m')} dx \int _{l_y} h^{\#1}_{y[n]} (h^{\#2}_{y(n')})' dy \right] \nonumber \end{eqnarray} 逆に, $\Psi^{\#1}_{(mn)}$で求められるTM$_{mn}$モードと $\Psi^{\#2}_{[m'n']}$で求められるTE$_{m'n'}$モードでは, \begin{eqnarray} &&\iint _{S_A} \VEC{e}^{\#1}_{(mn)} \cdot \VEC{e}^{\#2}_{[m'n']} dS \nonumber \\ &=& A^{\#1}_{(mn)} A^{\#2}_{[m'n']} \left[ \int _{l_x} (h^{\#1}_{x(m)})' h^{\#2}_{x[m']} dx \int _{l_y} h^{\#1}_{y(n)} (h^{\#2}_{y[n']})' dy \right. \nonumber \\ &&\left. - \int _{l_x} h^{\#1}_{x(m)} (h^{\#2}_{x[m']})' dx \int _{l_y} (h^{\#1}_{y(n)})' h^{\#2}_{y[n']} dy \right] \end{eqnarray} これらの式中の$x$,$y$に関する微分は,導波菅 #1のTEモードについては, \begin{align} &(h^{\#1}_{x[m]}(x))' = \frac{d}{dx} \Big\{ \cos \big( k_{xm} x \big) \Big\} = -k_{xm} \sin \big( k_{xm} x \big) \\ &(h^{\#1}_{y[n]}(y))' = \frac{d}{dy} \Big\{ \cos \big( k_{yn} y \big\} \Big\} = -k_{yn} \sin \big( k_{yn} y \big) \end{align} また,TMモードについては, \begin{align} &(h^{\#1}_{x(m)}(x))' = \frac{d}{dx} \Big\{ \sin \big( k_{xm} x \big) \Big\} = k_{xm} \cos \big( k_{xm} x \big) \\ &(h^{\#1}_{y(n)}(y))' = \frac{d}{dy} \Big\{ \sin \big( k_{yn} y \big) \Big\} = k_{yn} \cos \big( k_{yn} y \big) \end{align} 導波菅 #2も同様にして, \begin{align} &(h^{\#2}_{x[m']}(x))' = -\hat{k}_{xm'} \sin \big\{ \hat{k}_{xm'} (x + x_2) \big\} \\ &(h^{\#2}_{y[n']}(y))' = -\hat{k}_{yn'} \sin \big\{ \hat{k}_{yn'} (y + y_2) \big\} \\ &(h^{\#2}_{x(m')}(x))' = \hat{k}_{xm'} \cos \big\{ \hat{k}_{xm'} (x + x_2) \big\} \\ &(h^{\#2}_{y(n')}(y))' = \hat{k}_{yn'} \cos \big\{ \hat{k}_{yn'} (y + y_2) \big\} \end{align} いま, \begin{eqnarray} \hat{X}_{mm'}^{12,\mathrm{s}} &\equiv& \int _{L_x} \sin \big( k_{xm} x \big) \sin \big\{ \hat{k}_{xm'} (x + x_2) \big\} dx \\ \hat{Y}_{nn'}^{12,\mathrm{c}} &\equiv& \int _{L_y} \cos \big( k_{yn} y \big) \cos \big\{ \hat{k}_{yn'} (y + y_2) \big\} dy \\ \hat{X}_{mm'}^{12,\mathrm{c}} &\equiv& \int _{L_x} \cos \big( k_{xm} x \big) \cos \big\{ \hat{k}_{xm'} (x + x_2) \big\} dx \\ \hat{Y}_{nn'}^{12,\mathrm{s}} &\equiv& \int _{L_y} \sin \big( k_{yn} y \big) \sin \big\{ \hat{k}_{yn'} (y + y_2) \big\} dy \end{eqnarray} とおくと,両者ともTEモードの場合,および両者ともTMモードの場合, \begin{eqnarray} \int _{l_x} (h^{\#1}_{x[m]})' (h^{\#2}_{x[m']})' dx &=& \int _{l_x} k_{xm} \hat{k}_{xm'} \sin \big( k_{xm} x \big) \sin \big\{ \hat{k}_{xm'} (x + x_2) \big\} dx \nonumber \\ &=& k_{xm} \hat{k}_{xm'} \hat{X}_{mm'}^{12,\mathrm{s}} \end{eqnarray} \begin{eqnarray} \int _{l_y} h^{\#1}_{y[n]} h^{\#2}_{y[n']} dy &=& \int _{l_y} \cos \big( k_{yn} y \big) \cos \big\{ \hat{k}_{yn'} (y + y_2) \big\} dy \nonumber \\ &=& \hat{Y}_{nn'}^{12,\mathrm{c}} \end{eqnarray} \begin{eqnarray} \int _{l_x} h^{\#1}_{x[m]} h^{\#2}_{x[m']} dx &=& \int _{l_x} \cos \big( k_{xm} x \big) \cos \big\{ \hat{k}_{xm'} (x + x_2) \big\} dx \nonumber \\ &=& \hat{X}_{mm'}^{12,\mathrm{c}} \end{eqnarray} \begin{eqnarray} \int _{l_y} (h^{\#1}_{y[n]})' (h^{\#2}_{y[n']})' dy &=& \int _{l_y} k_{yn} \hat{k}_{yn'} \sin \big( k_{yn} y \big) \sin \big\{ \hat{k}_{yn'} (y + y_2) \big\} dy \nonumber \\ &=& k_{yn} \hat{k}_{yn'} \hat{Y}_{nn'}^{12,\mathrm{s}} \end{eqnarray} また,両者ともTMモードの場合, \begin{eqnarray} \int _{l_x} (h^{\#1}_{x(m)})' (h^{\#2}_{x(m')})' dx &=& \int _{l_x} k_{xm} \hat{k}_{xm'} \cos \big( k_{xm} x \big) \cos \big\{ \hat{k}_{xm'} (x + x_2) \big\} dx \nonumber \\ &=& k_{xm} \hat{k}_{xm'} \hat{X}_{mm'}^{12,\mathrm{c}} \end{eqnarray} \begin{eqnarray} \int _{l_y} h^{\#1}_{y(n)} h^{\#2}_{y(n')} dy &=& \int _{l_y} \sin \big( k_{yn} y \big) \sin \big\{ \hat{k}_{yn'} (y + y_2) \big\} dy \nonumber \\ &=& \hat{Y}_{nn'}^{12,\mathrm{s}} \end{eqnarray} \begin{eqnarray} \int _{l_x} h^{\#1}_{x(m)} h^{\#2}_{x(m')} dx &=& \int _{l_x} \sin \big( k_{xm} x \big) \sin \big\{ \hat{k}_{xm'} (x + x_2) \big\} dx \nonumber \\ &=& \hat{X}_{mm'}^{12,\mathrm{s}} \end{eqnarray} \begin{eqnarray} \int _{l_y} (h^{\#1}_{y(n)})' (h^{\#2}_{y(n')})' dy &=& \int _{l_y} k_{yn} \hat{k}_{yn'} \cos \big( k_{yn} y \big) \cos \big\{ \hat{k}_{yn'} (y + y_2) \big\} dy \nonumber \\ &=& k_{yn} \hat{k}_{yn'} \hat{Y}_{nn'}^{12,\mathrm{c}} \end{eqnarray} TEモードとTMモードの場合, \begin{eqnarray} \int _{l_x} h^{\#1}_{x[m]} (h^{\#2}_{x(m')})' dx &=& \int _{l_x} \hat{k}_{xm'} \cos \big( k_{xm} x \big) \cos \big\{ \hat{k}_{xm'} (x + x_2) \big\} dx \nonumber \\ &=& k_{xm} \hat{X}_{mm'}^{12,\mathrm{c}} \end{eqnarray} \begin{eqnarray} \int _{l_y} (h^{\#1}_{y[n]})' h^{\#2}_{y(n')} dy &=& \int _{l_y} -k_{yn} \sin \big( k_{yn} y \big) \sin \big\{ \hat{k}_{yn'} (y + y_2) \big\} dy \nonumber \\ &=& -k_{yn} \hat{Y}_{nn'}^{12,\mathrm{s}} \end{eqnarray} \begin{eqnarray} \int _{l_x} (h^{\#1}_{x[m]})' h^{\#2}_{x(m')} dx &=& \int _{l_x} -k_{xm} \sin \big( k_{xm} x \big) \sin \big\{ \hat{k}_{xm'} (x + x_2) \big\} dx \nonumber \\ &=& -k_{xm} \hat{X}_{mm'}^{12,\mathrm{s}} \end{eqnarray} \begin{eqnarray} \int _{l_y} h^{\#1}_{y[n]} (h^{\#2}_{y(n')})' dy &=& \int _{l_y} \hat{k}_{yn'} \cos \big( k_{yn} y \big) \cos \big\{ \hat{k}_{yn'} (y + y_2) \big\} dy \nonumber \\ &=& \hat{k}_{yn'} \hat{Y}_{nn'}^{12,\mathrm{c}} \end{eqnarray} TMモードとTEモードの場合, \begin{eqnarray} \int _{l_x} (h^{\#1}_{x(m)})' h^{\#2}_{x[m']} dx &=& \int _{l_x} k_{xm} \cos \big( k_{xm} x \big) \cos \big\{ \hat{k}_{xm'} (x + x_2) \big\} dx \nonumber \\ &=& k_{xm} \hat{X}_{mm'}^{12,\mathrm{c}} \end{eqnarray} \begin{eqnarray} \int _{l_y} h^{\#1}_{y(n)} (h^{\#2}_{y[n']})' dy &=& \int _{l_y} -\hat{k}_{yn'} \sin \big( k_{yn} y \big) \sin \big\{ \hat{k}_{yn'} (y + y_2) \big\} dy \nonumber \\ &=& -\hat{k}_{yn'} \hat{Y}_{nn'}^{12,\mathrm{s}} \end{eqnarray} \begin{eqnarray} \int _{l_x} h^{\#1}_{x(m)} (h^{\#2}_{x[m']})' dx &=& \int _{l_x} -\hat{k}_{xm'} \sin \big( k_{xm} x \big) \sin \big\{ \hat{k}_{xm'} (x + x_2) \big\} dx \nonumber \\ &=& -\hat{k}_{xm'} \hat{X}_{mm'}^{12,\mathrm{s}} \end{eqnarray} \begin{eqnarray} \int _{l_y} (h^{\#1}_{y(n)})' h^{\#2}_{y[n']} dy &=& \int _{l_y} k_{yn} \cos \big( k_{yn} y \big) \cos \big\{ \hat{k}_{yn'} (y + y_2) \big\} dy \nonumber \\ &=& k_{yn} \hat{Y}_{nn'}^{12,\mathrm{c}} \end{eqnarray} モード関数の内積は次のようになる. \begin{align} %------------------- TE-TE &\iint _{S_A} \VEC{e}^{\#1}_{[mn]} \cdot \VEC{e}^{\#2}_{[m'n']} dS \nonumber \\ &= A^{\#1}_{[mn]} A^{\#2}_{[m'n']} \Big( k_{xm} \hat{k}_{xm'} \hat{X}_{mm'}^{12,\mathrm{s}} \hat{Y}_{nn'}^{12,\mathrm{c}} + k_{yn} \hat{k}_{yn'}\hat{X}_{mm'}^{12,\mathrm{c}} \hat{Y}_{nn'}^{12,\mathrm{s}} \Big) \\ %------------------- TM-TM &\iint _{S_A} \VEC{e}^{\#1}_{(mn)} \cdot \VEC{e}^{\#2}_{(m'n')} dS \nonumber \\ &= A^{\#1}_{(mn)} A^{\#2}_{(m'n')} \Big( k_{yn} \hat{k}_{yn'} \hat{X}_{mm'}^{12,\mathrm{s}} \hat{Y}_{nn'}^{12,\mathrm{c}} + k_{xm} \hat{k}_{xm'} \hat{X}_{mm'}^{12,\mathrm{c}} \hat{Y}_{nn'}^{12,\mathrm{s}} \Big) \\ %------------------- TE-TM &\iint _{S_A} \VEC{e}^{\#1}_{[mn]} \cdot \VEC{e}^{\#2}_{(m'n')} dS \nonumber \\ &= A^{\#1}_{[mn]} A^{\#2}_{(m'n')} \Big( k_{xm} \hat{k}_{yn'} \hat{X}_{mm'}^{12,\mathrm{s}} \hat{Y}_{nn'}^{12,\mathrm{c}} - \hat{k}_{xm'} k_{yn} \hat{X}_{mm'}^{12,\mathrm{c}} \hat{Y}_{nn'}^{12,\mathrm{s}} \Big) \\ %------------------- TM-TE &\iint _{S_A} \VEC{e}^{\#1}_{(mn)} \cdot \VEC{e}^{\#2}_{[m'n']} dS \nonumber \\ &= A^{\#1}_{(mn)} A^{\#2}_{[m'n']} \Big( \hat{k}_{xm'} k_{yn} \hat{X}_{mm'}^{12,\mathrm{s}} \hat{Y}_{nn'}^{12,\mathrm{c}} - k_{xm} \hat{k}_{yn'} \hat{X}_{mm'}^{12,\mathrm{c}} \hat{Y}_{nn'}^{12,\mathrm{s}} \Big) \end{align}