1.2 不連続部の散乱行列

 散乱行列を次式で定義する. \begin{gather} \begin{pmatrix} \VECi{b}_1 \\ \VECi{b}_2 \\ \end{pmatrix} = \Big[ S \Big] \begin{pmatrix} \VECi{a}_1 \\ \VECi{a}_2 \\ \end{pmatrix}, \ \ \ \ \ \Big[ S \Big] = \begin{pmatrix} \big[ S_{11} \big] & \big[ S_{12} \big] \\ \big[ S_{21} \big] & \big[ S_{22} \big] \\ \end{pmatrix} \end{gather} ここで,$i=1,2$,$j=1,2$として \begin{align} &\big[ S_{i j} \big] = \begin{pmatrix} S_{ij,11} & S_{ij,12} & \cdots & S_{ij,1n} & \cdots \\ S_{ij,21} & S_{ij,22} & \cdots & S_{ij,2n} & \cdots \\ \vdots & \vdots & \ddots & \vdots & \\ S_{ij,m1} & S_{ij,m2} & \cdots & S_{ij,mn} & \cdots \\ \vdots & \vdots & & \vdots & \ddots \\ \end{pmatrix} \\ &\VECi{b}_i = \begin{pmatrix} b^{(i)}_1 \\ b^{(i)}_2 \\ \vdots \\ b^{(i)}_m \\ \vdots \end{pmatrix}, \ \ \ \ \ \VECi{a}_i = \begin{pmatrix} a^{(i)}_1 \\ a^{(i)}_2 \\ \vdots \\ a^{(i)}_m \\ \vdots \end{pmatrix} \end{align} 先に示した式 \begin{align} &\VECi{a}_1 - \big[ \bar{P}_{21} \big]_T \VECi{a}_2 = -\VECi{b}_1 + \big[ \bar{P}_{21} \big]_T \VECi{b}_2 \\ &\big[ \bar{P}_{21} \big] \VECi{a}_1 + \big[ \bar{P}_{22} \big] \VECi{a}_2 = \big[ \bar{P}_{21} \big] \VECi{b}_1 + \big[ \bar{P}_{22} \big] \VECi{b}_2 \end{align} を行列表示すると, \begin{eqnarray} \begin{pmatrix} \big[ U \big] & -\big[ \bar{P}_{21} \big]_T \\ \big[ \bar{P}_{21} \big] & \big[ \bar{P}_{22} \big] \\ \end{pmatrix} \begin{pmatrix} \VECi{a}_1 \\ \VECi{a}_2 \\ \end{pmatrix} &=& \begin{pmatrix} -\big[ U \big] & \big[ \bar{P}_{21} \big]_T \\ \big[ \bar{P}_{21} \big] & \big[ \bar{P}_{22} \big] \\ \end{pmatrix} \begin{pmatrix} \VECi{b}_1 \\ \VECi{b}_2 \\ \end{pmatrix} \nonumber \\ &=& \begin{pmatrix} -\big[ U \big] & \big[ \bar{P}_{21} \big]_T \\ \big[ \bar{P}_{21} \big] & \big[ \bar{P}_{22} \big] \\ \end{pmatrix} \Big[ S \Big] \begin{pmatrix} \VECi{a}_1 \\ \VECi{a}_2 \\ \end{pmatrix} \end{eqnarray} よって,散乱行列$\Big[ S \Big]$は, \begin{gather} \Big[ S \Big] = \begin{pmatrix} -\big[ U \big] & \big[ \bar{P}_{21} \big]_T \\ \big[ \bar{P}_{21} \big] & \big[ \bar{P}_{22} \big] \\ \end{pmatrix}^{-1} \begin{pmatrix} \big[ U \big] & -\big[ \bar{P}_{21} \big]_T \\ \big[ \bar{P}_{21} \big] & \big[ \bar{P}_{22} \big] \\ \end{pmatrix} \end{gather} あるいは,次のように変形して計算すると, \begin{eqnarray} \VECi{b}_1 &=& \big[ \bar{P}_{21} \big]_T \big( \VECi{b}_2 +\VECi{a}_2 \big) - \VECi{a}_1 \nonumber \\ &=& \big[ \bar{P}_{21} \big]_T \Big\{ \big( \big[ S_{21} \big] \VECi{a}_1 + \big[ S_{22} \big]\VECi{a}_2 \big) +\VECi{a}_2 \Big\} - \VECi{a}_1 \nonumber \\ &=& \Big\{ \big[ \bar{P}_{21} \big]_T \big[ S_{21} \big] - \big[ U \big] \Big\} \VECi{a}_1 + \big[ \bar{P}_{21} \big]_T \Big\{ \big[ S_{22} \big] + \big[ U \big] \Big\} \VECi{a}_2 \nonumber \\ &\equiv& \big[ S_{11} \big] \VECi{a}_1 + \big[ S_{12} \big] \VECi{a}_2 \end{eqnarray} また, \begin{eqnarray} \VECi{b}_2 &=& \big[ \bar{P}_{22} \big]^{-1} \big[ \bar{P}_{21} \big] \big( \VECi{a}_1 -\VECi{b}_1 \big)+ \VECi{a}_2 \nonumber \\ &=& \big[ \bar{P}_{22} \big]^{-1} \big[ \bar{P}_{21} \big] \Big\{ \VECi{a}_1 - \big( \big[ S_{11} \big] \VECi{a}_1 + \big[ S_{12} \big] \VECi{a}_2 \big) \Big\} + \VECi{a}_2 \nonumber \\ &=& \big[ \bar{P}_{22} \big]^{-1} \big[ \bar{P}_{21} \big] \Big\{ \big[ U \big] - \big[ S_{22} \big] \Big\} \VECi{a}_1 + \Big\{ \big[ U \big] - \big[ \bar{P}_{22} \big]^{-1} \big[ \bar{P}_{21} \big] \big[ S_{12} \big] \Big\} \VECi{a}_2 \nonumber \\ &\equiv& \big[ S_{21} \big] \VECi{a}_1 + \big[ S_{22} \big] \VECi{a}_2 \end{eqnarray} さらに,第1式を第2式に代入すると, \begin{align} &\big[ \bar{P}_{22} \big] \VECi{b}_2 = \big[ \bar{P}_{21} \big] \big( \VECi{a}_1 - \big\{ \big[ \bar{P}_{21} \big]_T \big( \VECi{b}_2 +\VECi{a}_2 \big) - \VECi{a}_1 \big\} \big) + \big[ \bar{P}_{22} \big] \VECi{a}_2 \nonumber \\ &\Big( \big[ \bar{P}_{22} \big] + \big[ \bar{P}_{21} \big] \big[ \bar{P}_{21} \big]_T \Big) \VECi{b}_2 = 2 \big[ \bar{P}_{21} \big] \VECi{a}_1 + \Big( \big[ \bar{P}_{22} \big] - \big[ \bar{P}_{21} \big] \big[ \bar{P}_{21} \big]_T \Big) \VECi{a}_2 \end{align} よって, \begin{eqnarray} \VECi{b}_2 &=& \Big( \big[ \bar{P}_{22} \big] + \big[ \bar{P}_{21} \big] \big[ \bar{P}_{21} \big]_T \Big)^{-1} \nonumber \\ &&\cdot \Big\{ 2 \big[ \bar{P}_{21} \big] \VECi{a}_1 + \Big( \big[ \bar{P}_{22} \big] - \big[ \bar{P}_{21} \big] \big[ \bar{P}_{21} \big]_T \Big) \VECi{a}_2 \Big\} \nonumber \\ &\equiv& \big[ S_{21} \big] \VECi{a}_1 + \big[ S_{22} \big] \VECi{a}_2 \end{eqnarray} したがって, \begin{gather} \big[ S_{21} \big] = 2 \Big( \big[ \bar{P}_{22} \big] + \big[ \bar{P}_{21} \big] \big[ \bar{P}_{21} \big]_T \Big)^{-1} \big[ \bar{P}_{21} \big] \end{gather} これより, \begin{gather} \big[ S_{11} \big] = \big[ \bar{P}_{21} \big]_T \big[ S_{21} \big] - \big[ U \big] \end{gather} 逆に,第2式を第1式に代入して$\VECi{b}_2$を消去して整理すると次式が得られる, \begin{gather} \big[ S_{12} \big] = 2\Big( \big[ U \big] + \big[ \bar{P}_{21} \big]_T \big[ \bar{P}_{22} \big]^{-1} \big[ \bar{P}_{21} \big] \Big)^{-1} \big[ \bar{P}_{21} \big]_T \end{gather} ただし,散乱行列の対称性より$\big[ S_{12} \big] $は次のように転置で求めることができる. \begin{gather} \big[ S_{12} \big] = \big[ S_{21} \big]_T \end{gather} さらに, \begin{gather} \big[ S_{22} \big] = \big[ U \big] - \big[ \bar{P}_{22} \big]^{-1} \big[ \bar{P}_{21} \big] \big[ S_{12} \big] \end{gather} 積分範囲$S_0$が導波管 #2の断面と同じ場合,$[\bar{P}_{22} \big] = \big[ U \big]$となり,不連続部でSelf-Reactionが連続となる. 同様にして,すでに求めた式 \begin{align} &\big[ \bar{P}_{12} \big]_T \VECi{a}_1 - \VECi{a}_2 = -\big[ \bar{P}_{12} \big]_T \VECi{b}_1 + \VECi{b}_2 \\ &\big[ \bar{P}_{11} \big] \VECi{a}_1 + \big[ \bar{P}_{12} \big] \VECi{a}_2 = \big[ \bar{P}_{11} \big] \VECi{b}_1 + \big[ \bar{P}_{12} \big] \VECi{b}_2 \end{align} を行列表示して, \begin{eqnarray} \begin{pmatrix} \big[ \bar{P}_{12} \big]_T & -\big[ U \big] \\ \big[ \bar{P}_{11} \big] & \big[ \bar{P}_{12} \big] \\ \end{pmatrix} \begin{pmatrix} \VECi{a}_1 \\ \VECi{a}_2 \\ \end{pmatrix} &=& \begin{pmatrix} -\big[ \bar{P}_{12} \big]_T & \big[ U \big] \\ \big[ \bar{P}_{11} \big] & \big[ \bar{P}_{12} \big] \\ \end{pmatrix} \begin{pmatrix} \VECi{b}_1 \\ \VECi{b}_2 \\ \end{pmatrix} \nonumber \\ &=& \begin{pmatrix} -\big[ \bar{P}_{12} \big]_T & \big[ U \big] \\ \big[ \bar{P}_{11} \big] & \big[ \bar{P}_{12} \big] \\ \end{pmatrix} \Big[ S \Big] \begin{pmatrix} \VECi{a}_1 \\ \VECi{a}_2 \\ \end{pmatrix} \end{eqnarray} よって,散乱行列$\Big[ S \Big]$は, \begin{gather} \Big[ S \Big] = \begin{pmatrix} -\big[ \bar{P}_{12} \big]_T & \big[ U \big] \\ \big[ \bar{P}_{11} \big] & \big[ \bar{P}_{12} \big] \\ \end{pmatrix}^{-1} \begin{pmatrix} \big[ \bar{P}_{12} \big]_T & -\big[ U \big] \\ \big[ \bar{P}_{11} \big] & \big[ \bar{P}_{12} \big] \\ \end{pmatrix} \end{gather} あるいは,次のように変形して計算すると, \begin{eqnarray} \VECi{b}_2 &=& \big[ \bar{P}_{12} \big]_T \big( \VECi{a}_1 +\VECi{b}_1 \big) - \VECi{a}_2 \nonumber \\ &=& \big[ \bar{P}_{12} \big]_T \Big\{ \VECi{a}_1 + \big( \big[ S_{11} \big] \VECi{a}_1 + \big[ S_{12} \big] \VECi{a}_2 \big) \Big\} - \VECi{a}_2 \nonumber \\ &=& \big[ \bar{P}_{12} \big]_T \Big\{ \big[ U \big] + \big[ S_{11} \big] \Big\} \VECi{a}_1 + \Big\{ \big[ \bar{P}_{12} \big]_T \big[ S_{12} \big] - \big[ U \big] \Big\} \VECi{a}_2 \nonumber \\ &\equiv& \big[ S_{21} \big] \VECi{a}_1 + \big[ S_{22} \big] \VECi{a}_2 \end{eqnarray} また, \begin{eqnarray} \VECi{b}_1 &=& -\big[ \bar{P}_{11} \big]^{-1} \big[ \bar{P}_{12} \big] \big( \VECi{b}_2 -\VECi{a}_2 \big)+ \VECi{a}_1 \nonumber \\ &=& -\big[ \bar{P}_{11} \big]^{-1} \big[ \bar{P}_{12} \big] \Big\{ \big( \big[ S_{21} \big] \VECi{a}_1 + \big[ S_{22} \big] \VECi{a}_2 \big) - \VECi{a}_2 \Big\} + \VECi{a}_1 \nonumber \\ &=& \Big\{ \big[ U \big] - \big[ \bar{P}_{11} \big]^{-1} \big[ \bar{P}_{12} \big] \big[ S_{21} \big] \Big\} \VECi{a}_1 \nonumber \\ &&+ \big[ \bar{P}_{11} \big]^{-1} \big[ \bar{P}_{12} \big] \Big\{ \big[ U \big] - \big[ S_{22} \big] \Big\} \VECi{a}_2 \nonumber \\ &\equiv& \big[ S_{11} \big] \VECi{a}_1 + \big[ S_{12} \big] \VECi{a}_2 \end{eqnarray} さらに,第1式を第2式に代入すると, \begin{align} &\big[ \bar{P}_{11} \big] \VECi{b}_1 = \big[ \bar{P}_{12} \big] \big( \VECi{a}_2 - \big\{ \big[ \bar{P}_{12} \big]_T \big( \VECi{a}_1 +\VECi{b}_1 \big) - \VECi{a}_2 \big\} \big) + \big[ \bar{P}_{11} \big] \VECi{a}_1 \nonumber \\ &\Big( \big[ \bar{P}_{11} \big] + \big[ \bar{P}_{12} \big] \big[ \bar{P}_{12} \big]_T \Big) \VECi{b}_1 = 2 \big[ \bar{P}_{12} \big] \VECi{a}_2 + \Big( \big[ \bar{P}_{11} \big] - \big[ \bar{P}_{12} \big] \big[ \bar{P}_{12} \big]_T \Big) \VECi{a}_1 \end{align} よって, \begin{eqnarray} \VECi{b}_1 &=& \Big( \big[ \bar{P}_{11} \big] + \big[ \bar{P}_{12} \big] \big[ \bar{P}_{12} \big]_T \Big)^{-1} \nonumber \\ &&\cdot \Big\{ 2 \big[ \bar{P}_{12} \big] \VECi{a}_2 + \Big( \big[ \bar{P}_{11} \big] - \big[ \bar{P}_{12} \big] \big[ \bar{P}_{12} \big]_T \Big) \VECi{a}_1 \Big\} \nonumber \\ &\equiv& \big[ S_{12} \big] \VECi{a}_2 + \big[ S_{11} \big] \VECi{a}_1 \end{eqnarray} したがって, \begin{gather} \big[ S_{12} \big] = 2 \Big( \big[ \bar{P}_{11} \big] + \big[ \bar{P}_{12} \big] \big[ \bar{P}_{12} \big]_T \Big)^{-1} \big[ \bar{P}_{12} \big] \end{gather} これより, \begin{gather} \big[ S_{22} \big] = \big[ \bar{P}_{12} \big]_T \big[ S_{12} \big] - \big[ U \big] \end{gather} 逆に,第2式を第1式に代入して$\VECi{b}_1$を消去して整理すると次式が得られる, \begin{gather} \big[ S_{21} \big] = 2\Big( \big[ U \big] + \big[ \bar{P}_{12} \big]_T \big[ \bar{P}_{11} \big]^{-1} \big[ \bar{P}_{12} \big] \Big)^{-1} \big[ \bar{P}_{12} \big]_T \end{gather} ただし,散乱行列の対称性より$\big[ S_{21} \big] $は次のように転置で求めることができる. \begin{gather} \big[ S_{21} \big] = \big[ S_{12} \big]_T \end{gather} さらに, \begin{gather} \big[ S_{11} \big] = \big[ U \big] - \big[ \bar{P}_{11} \big]^{-1} \big[ \bar{P}_{12} \big] \big[ S_{21} \big] \end{gather} 積分範囲$S_0$が導波管 #1の断面と同じ場合,$[\bar{P}_{11} \big] = \big[ U \big]$となり, 不連続部でSelf-Reactionが連続となる.