3.2 軸対称導波管のモード関数の内積(TE-TE,TM-TM)

 2つのモードともTEモード,あるいはTMモードの場合,モード関数の内積は,次のようにスカラー関数によって求めることができる. \begin{gather} \iint_S \VEC{e} \cdot \widehat{\VEC{e}} \ dS = \iint_S \VEC{h} \cdot \widehat{\VEC{h}} \ dS = \iint_S \big( \nabla_t \Psi \big) \cdot \big( \nabla_t \widehat{\Psi} \big) dS \end{gather} グリーンの第一定理 \begin{gather} \iint _S \left( \Phi \nabla _t^2 \Psi + \nabla _t \Phi \cdot \nabla _t \Psi \right) dS = \oint _C \Phi \frac{\partial \Psi}{\partial n} d\sigma \end{gather} および \begin{gather} \nabla _t^2 \Psi_{mn} + k_{c,mn}^2 \Psi_{mn} = 0, \ \ \ \ \ \nabla _t^2 \widehat{\Psi}_{m'n'} + \widehat{k}_{c,m'n'}^2 \widehat{\Psi}_{m'n'} = 0 \end{gather} より, \begin{eqnarray} I_{mn,\widehat{m'n'}} &\equiv& \iint_S \big( \nabla_t \Psi_{mn} \big) \cdot \big( \nabla_t \widehat{\Psi}_{m'n'} \big) dS \nonumber \\ &=& \widehat{k}_{c,m'n'}^2 \iint_S \Psi_{mn} \widehat{\Psi}_{m'n'} dS + \oint _C \Psi_{mn} \frac{\partial \widehat{\Psi}_{m'n'}}{\partial n} d\sigma \label{eq:Iihj1} \end{eqnarray} ただし,$\partial/\partial n$は積分範囲$S$からの外向き法線方向の微分, $d\sigma $は$S$の周囲にとった周回積分路$C$に沿う線要素を示す.逆に,$\Psi_{mn}$と$\widehat{\Psi}_{m'n'}$を交換して, \begin{gather} I_{mn,\widehat{m'n'}} = k_{c,mn}^2 \iint_S \widehat{\Psi}_{m'n'} \Psi_{mn} dS + \oint _C \widehat{\Psi}_{m'n'} \frac{\partial \Psi_{mn}}{\partial n} d\sigma \end{gather} グリーンの第一定理から得られた2つの式を用いて面積分の項を消去すると, \begin{align} &\big( k_{c,mn}^2 - \widehat{k}_{c,m'n'}^2 \big) I_{mn,\widehat{m'n'}} \nonumber \\ &= k_{c,mn}^2 \oint _C \Psi_{mn} \frac{\partial \widehat{\Psi}_{m'n'}}{\partial n} d\sigma - \widehat{k}_{c,m'n'}^2 \oint _C \widehat{\Psi}_{m'n'} \frac{\partial \Psi_{mn}}{\partial n} d\sigma \end{align} これより,$k_{c,mn} \neq \widehat{k}_{c,mn'}$のとき, \begin{align} &I_{mn,\widehat{m'n'}} \nonumber \\ &= \frac{1}{k_{c,mn}^2 - \widehat{k}_{c,m'n'}^2} \left( k_{c,mn}^2 \oint _C \Psi_{mn} \frac{\partial \widehat{\Psi}_{m'n'}}{\partial n} d\sigma - \widehat{k}_{c,m'n'}^2 \oint _C \widehat{\Psi}_{m'n'} \frac{\partial \Psi_{mn}}{\partial n} d\sigma \right) \nonumber \end{align} 積分範囲(周回積分路C)が$z$軸(導波路断面に直交)に関して回転対称な場合,断面上の法線方向成分$n$は$\rho$方向であり,その微分は次のようになる. \begin{eqnarray} \frac{\partial \Psi_{mn}}{\partial n} &=& \frac{\partial}{\partial \rho} \Big\{ A_{mn} f_{mn} (k_{c,mn} \rho) \Phi(m\phi) \Big\} \nonumber \\ &=& A_{mn} \frac{df_{mn}}{d\rho} \Phi(m\phi) \nonumber \\ &=& A_{mn} k_{c,mn} \Big\{ B_{mn}^N J'_m \big( k_{c,mn} \rho \big) - B_{mn}^J N'_m \big( k_{c,mn} \rho \big) \Big\} \Phi(m\phi) \end{eqnarray} ここで, \begin{align} &f'_{mn} \equiv B_{mn}^N J'_m \big( k_{c,mn} \rho \big) - B_{mn}^J N'_m \big( k_{c,mn} \rho \big) \\ &g'_{m'n'} \equiv \widehat{B}_{m'n'}^N J'_{m'} \big( \widehat{k}_{c,m'n'} \rho \big) - \widehat{B}_{m'n'}^J N'_{m'} \big( \widehat{k}_{c,m'n'} \rho \big) \end{align} これより, \begin{align} &\frac{\partial \Psi_{mn}}{\partial n} = A_{mn} k_{c,mn} f'_{mn} \Phi(m\phi) \\ &\frac{\partial \widehat{\Psi}_{m'n'}}{\partial n} = \widehat{A}_{m'n'} \widehat{k}_{c,m'n'} g'_{m'n'} \Phi(m' \phi) \end{align} ただし, \begin{gather} J_m'(\xi)= \frac{dJ_m(\xi)}{d\xi}, \ \ \ \ \ N_m'(\xi)= \frac{dN_m(\xi)}{d\xi} \end{gather} よって,周回積分は, \begin{eqnarray} &&\oint _C \Psi_{mn} \frac{\partial \widehat{\Psi}_{m'n'}}{\partial n} d\sigma \nonumber \\ &=& A_{mn} \widehat{A}_{m'n'} \oint _C f_{mn} (k_{c,mn} \rho) \Phi (m\phi) \frac{dg_{m'n'} (\widehat{k}_{c,m'n'} \rho)}{d\rho} \Phi(m' \phi) \rho d\phi \nonumber \\ &=& A_{mn} \widehat{A}_{m'n'} \left[ \rho f_{mn} (k_{c,mn} \rho) \frac{dg_{m'n'}(\widehat{k}_{c,m'n'} \rho)}{d\rho} \right]_{\rho_1}^{\rho_2} \int_0^{2\pi} \Phi_m (\phi) \Phi_{m'} (\phi) d\phi \end{eqnarray} このとき,両者ともTEモード,および両者ともTMモードの場合,各々, \begin{eqnarray} \int_0^{2\pi} \Phi_m^{\TE} (\phi) \Phi_{m'}^{\TE} (\phi) d\phi &=& \int_0^{2\pi} \begin{matrix} \sin (m \phi) \sin (m' \phi) \\ \cos (m \phi) \cos (m' \phi) \end{matrix} d\phi \nonumber \\ &=& \delta _{mm'} \frac{2\pi}{\epsilon _m} \\ \int_0^{2\pi} \Phi_m^{\TM} (\phi) \Phi_{m'}^{\TM} (\phi) d\phi &=& \int_0^{2\pi} \begin{matrix} (-\cos (m \phi)) (-\cos (m' \phi)) \\ \sin (m \phi) \sin (m' \phi)\end{matrix} d\phi \nonumber \\ &=& \delta _{mm'} \frac{2\pi}{\epsilon _m} \end{eqnarray} ここで, \begin{gather} \epsilon _m = \left\{ \begin {array}{ll} 1 & (m=0) \\ 2 & (m=1,2, \cdots ) \end{array} \right. \label{eq:epsilon_m} \end{gather} ただし,$m=0$ のときの$\sin m \phi$は除く. TE,TMをまとめると, \begin{gather} \int_0^{2\pi} \Phi_m (\phi) \Phi_{m'} (\phi) d\phi = \delta _{mm'} \frac{2\pi}{\epsilon _m} \end{gather} よって, \begin{gather} \oint _C \Psi_{mn} \frac{\partial \widehat{\Psi}_{m'n'}}{\partial n} d\sigma = A_{mn} \widehat{A}_{mn'} \widehat{k}_{c,mn'} \Big[ \rho f_{mn} g_{mn'}' \Big]_{\rho_1}^{\rho_2} \delta _{mm'} \frac{2\pi}{\epsilon _m} \end{gather} 同様にして, \begin{gather} \oint _C \widehat{\Psi}_{m'n'} \frac{\partial \Psi_{mn}}{\partial n} d\sigma = A_{mn} \widehat{A}_{mn'} k_{c,mn} \Big[ \rho g_{mn'} f_{mn}' \Big]_{\rho_1}^{\rho_2} \delta _{mm'} \frac{2\pi}{\epsilon _m} \end{gather} これより,$k_{c,mn} \neq \widehat{k}_{c,mn'}$のとき, \begin{align} &I_{mn,\widehat{m'n'}} \nonumber \\ &= A_{mn} \widehat{A}_{mn'} \frac{k_{c,mn} \widehat{k}_{c,mn'} }{k_{c,mn}^2 - \widehat{k}_{c,mn'}^2} \Big[ k_{c,mn} \rho f_{mn} g_{mn'}' - \widehat{k}_{c,mn'} \rho f'_{mn} g_{mn'} \Big]_{\rho_1}^{\rho_2} \delta _{mm'} \frac{2\pi}{\epsilon _m} \nonumber \end{align} 両者とも,同一の導波路のモード関数であれば,$k_{c,mn} \neq k_{c,mn'}$のとき, \begin{align} &I_{mn,m'n'} \nonumber \\ &= A_{mn} A_{mn'} \frac{k_{c,mn} k_{c,mn'} }{k_{c,mn}^2 - k_{c,mn'}^2} \Big[ k_{c,mn} \rho f_{mn} f_{mn'}' - k_{c,mn'} \rho f'_{mn} f_{mn'} \Big]_{\rho_1}^{\rho_2} \delta _{mm'} \frac{2\pi}{\epsilon _m} \nonumber \end{align} 積分範囲を導波路断面と一致させると, $C$上で$\Psi_{mn}, \Psi_{mn'}=0$,あるいは $\displaystyle{\frac{\partial \Psi_{mn}}{\partial n}, \frac{\partial \Psi_{mn'}}{\partial n}=0}$ のとき,上式はゼロ,つまり $k_{c,mn} \neq k_{c,mn'}$ のとき,$I_{mn,m'n'}=0$ が成り立ち,異なるモードが直交していることもわかる.
 逆に,$I_{mn,\widehat{m'n'}}$を消去すると, \begin{align} &\big( k_{c,mn}^2 - \widehat{k}_{c,m'n'}^2 \big) \iint_S \Psi_{mn} \widehat{\Psi}_{m'n'} dS \nonumber \\ &= \oint _C \left( \Psi_{mn} \frac{\partial \widehat{\Psi}_{m'n'}}{\partial n} - \widehat{\Psi}_{m'n'} \frac{\partial \Psi_{mn}}{\partial n} \right) d\sigma \end{align} $k_{c,mn} \neq k_{c,m'n'}$のとき, \begin{align} &\iint_S \Psi_{mn} \widehat{\Psi}_{m'n'} dS \nonumber \\ &= \frac{1}{k_{c,mn}^2 - \widehat{k}_{c,m'n'}^2} \oint _C \left( \Psi_{mn} \frac{\partial \widehat{\Psi}_{m'n'}}{\partial n} - \widehat{\Psi}_{m'n'} \frac{\partial \Psi_{mn}}{\partial n} \right) d\sigma \end{align} 上式右辺は周回積分より, \begin{gather} A_{mn} \widehat{A}_{mn'} \frac{1}{k_{c,mn}^2 - \widehat{k}_{c,mn'}^2} \Big[ \widehat{k}_{c,mn'} \rho f_{mn} g_{mn'}' - k_{c,mn} \rho f'_{mn} g_{mn'} \Big]_{\rho_1}^{\rho_2} \delta _{mm'} \frac{2\pi}{\epsilon _m} \end{gather} 一方,左辺は面積分より, \begin{eqnarray} &&\iint_{S_C} \Psi_{mn} \widehat{\Psi}_{m'n'} dS \nonumber \\ &=& A_{mn} \widehat{A}_{m'n'} \iint_{S_C} f_{mn} (k_{c,mn} \rho) \Phi_m(\phi) g_{m'n'} (\widehat{k}_{c,m'n'} \rho) \Phi_{m'} (\phi) dS \nonumber \\ &=& A_{mn} \widehat{A}_{m'n'} \int_{\rho_1}^{\rho_2} f_{mn} g_{m'n'} \rho d\rho \int_0^{2\pi} \Phi_m \Phi_{m'} d\phi \nonumber \\ &=& A_{mn} \widehat{A}_{mn'} \delta _{mm'} \frac{2\pi}{\epsilon _m} \int_{\rho_1}^{\rho_2} f_{mn} g_{mn'} \rho d\rho \end{eqnarray} 半径方向$\rho$の積分は,ベッセル関数の不定積分公式 \begin{gather} \int zuv \ dz = \frac{z ( uv'-u'v ) }{\alpha^2- \beta^2} \end{gather} より,$k_{c,mn} \neq k_{c,mn'}$のとき, \begin{align} &\int_{\rho_1}^{\rho_2} f_{mn} g_{mn'} \rho d\rho \nonumber \\ &= \left[ \frac{\rho}{k_{c,mn}^2 - \widehat{k}_{c,mn'}^2} \left\{ \widehat{k}_{c,mn'} f_{mn} g_{mn'}' - k_{c,mn} f_{mn}' g_{mn'} \right\} \right]_{\rho_1}^{\rho_2} \end{align} したがって,次のように周回積分の結果と一致することが確認できる. \begin{align} &\iint_{S_C} \Psi_{mn} \widehat{\Psi}_{m'n'} dS \nonumber \\ &= \delta _{mm'} \frac{2\pi}{\epsilon _m} \frac{A_{mn} \widehat{A}_{mn'}}{k_{c,mn}^2 - \widehat{k}_{c,mn'}^2} \Big[ \widehat{k}_{c,mn'} \rho f_{mn} g_{mn'}' - k_{c,mn} \rho f'_{mn} g_{mn'} \Big]_{\rho_1}^{\rho_2} \end{align}  次に,$k_{c,mn} = k_{c,mn'}(\neq 0)$のとき,ベッセル関数の不定積分公式 \begin{gather} \int zu_1 u_2 dz = \frac{1}{2} \left\{ \frac{z^2}{\alpha^2} u_1' u_2' + \left( z^2 - \frac{\nu ^2}{\alpha ^2} \right) u_1 u_2 \right\} \end{gather} より, \begin{gather} \int_{\rho_1}^{\rho_2} f_{mn} g_{mn'} \rho d\rho = \frac{1}{2} \left[ \rho^2 f_{mn}' g_{mn}' + \left( \rho^2 - \frac{m^2}{k_{c,mn}^2} \right) f_{mn} g_{mn'} \right]_{\rho_1}^{\rho_2} \end{gather} これより, \begin{align} &\iint_{S_C} \Psi_{mn} \widehat{\Psi}_{m'n'} dS \nonumber \\ &= A_{mn} \widehat{A}_{mn'} \delta _{mm'} \frac{2\pi}{\epsilon _m} \frac{1}{2} \left[ \rho^2 f_{mn}' g_{mn}' + \left( \rho^2 - \frac{m^2}{k_{c,mn}^2} \right) f_{mn} g_{mn'} \right]_{\rho_1}^{\rho_2} \end{align} $I_{mn,\widehat{m'n'}}$は,$k_{c,mn} = \widehat{k}_{c,m'n'}$のとき, \begin{eqnarray} I_{mn,\widehat{m'n'}} &=& k_{c,mn}^2 \iint_S \Psi_{mn} \widehat{\Psi}_{m'n'} dS + \oint _C \frac{\partial \Psi_{mn}}{\partial n} \widehat{\Psi}_{m'n'} d\sigma \nonumber \\ &=& k_{c,mn}^2 \iint_S \Psi_{mn} \widehat{\Psi}_{m'n'} dS + \oint _C \Psi_{mn} \frac{\partial \widehat{\Psi}_{m'n'}}{\partial n} d\sigma \end{eqnarray} ここで, \begin{gather} \oint _C \Psi_{mn} \frac{\partial \widehat{\Psi}_{m'n'}}{\partial n} d\sigma = \oint _C \widehat{\Psi}_{m'n'} \frac{\partial \Psi_{mn}}{\partial n} d\sigma \ \ \ \ \ (k_{c,mn} = \widehat{k}_{c,m'n'}) \label{eq:ki_eq_kj} \end{gather} これより, \begin{eqnarray} I_{mn,\widehat{m'n'}} &=& k_{c,mn}^2 \iint_S \Psi_{mn} \widehat{\Psi}_{m'n'} dS + \frac{1}{2} \oint _C \frac{\partial}{\partial n} \Big( \Psi_{mn} \widehat{\Psi}_{m'n'} \Big) d\sigma \nonumber \\ &=& A_{mn} \widehat{A}_{m'n'} \delta _{mm'} \frac{\pi}{\epsilon _m} \left[ k_{c,mn}^2 \rho^2 f_{mn}' g_{mn'}' + \Big( k_{c,mn}^2 \rho^2 - m^2 \right) f_{mn} g_{mn'} \nonumber \\ &&+ k_{c,mn} \rho \Big( f_{mn} g_{mn'}' + f'_{mn} g_{mn'} \Big) \Big]_{\rho_1}^{\rho_2} \nonumber \end{eqnarray} ただし, \begin{gather} \Big[ \rho f_{mn} g_{mn'}' \Big]_{\rho_1}^{\rho_2} = \Big[ \rho g_{mn'} f_{mn}' \Big]_{\rho_1}^{\rho_2} \end{gather} 実際に計算すると, \begin{eqnarray} &&\Big[ \rho \big\{ B_{mn}^N J_m (k_{c,mn} \rho ) - B_{mn}^J N_m (k_{c,mn} \rho ) \big\} \nonumber \\ && \cdot \big\{ \widehat{B}_{mn'}^N J'_m (k_{c,mn'} \rho ) - \widehat{B}_{mn'}^J N'_m (k_{c,mn} \rho ) \big\} \Big]_{\rho_1}^{\rho_2} \nonumber \\ &&- \Big[ \rho \big\{ \widehat{B}_{mn}^N J_m (k_{c,mn} \rho ) - \widehat{B}_{mn}^J N_m (k_{c,mn} \rho ) \big\} \nonumber \\ && \cdot \big\{ B_{mn'}^N J'_m (k_{c,mn'} \rho ) - B_{mn'}^J N'_m (k_{c,mn} \rho ) \big\} \Big]_{\rho_1}^{\rho_2} \nonumber \\ &=& \Big[ \rho \big( -B_{mn}^N \widehat{B}_{mn'}^J J_m N'_m - B_{mn}^J \widehat{B}_{mn'}^N N_m J'_m \big) \Big]_{\rho_1}^{\rho_2} \nonumber \\ &&- \Big[ \rho \big( - \widehat{B}_{mn'}^N B_{mn}^J J_m N'_m -\widehat{B}_{mn'}^JB_{mn}^N N_m J'_m \big) \Big]_{\rho_1}^{\rho_2} \nonumber \\ &=& \big( B_{mn}^J \widehat{B}_{mn'}^N - B_{mn}^N \widehat{B}_{mn'}^J \big) \nonumber \\ &&\cdot \Big[ \rho \big\{ J_m(k_{c,mn} \rho) N'_m(k_{c,mn}) - J_m'(k_{c,mn}) N_m(k_{c,mn}) \big\} \Big]_{\rho_1}^{\rho_2} \nonumber \\ &=& \big( B_{mn}^J \widehat{B}_{mn'}^N - B_{mn}^N \widehat{B}_{mn'}^J \big) \left[ \rho \frac{2}{\pi k_{c,mn} \rho} \right]_{\rho_1}^{\rho_2} \nonumber \\ &=& 0 \end{eqnarray}  両者とも,同一の導波路のモード関数であれば, \begin{align} &I_{mn,m'n'} = A_{mn} A_{mn'} \delta _{mm'} \frac{\pi}{\epsilon _m} \Big[ k_{c,mn}^2 \rho^2 f_{mn}' f_{mn'}' \nonumber \\ &+ \Big( k_{c,mn}^2 \rho^2 - m^2 \Big) f_{mn} f_{mn'} + k_{c,mn} \rho \Big( f_{mn} f_{mn'}' + f'_{mn} f_{mn'} \Big) \Big]_{\rho_1}^{\rho_2} \end{align} 特に,同一モードの場合, \begin{eqnarray} I_{mn,mn} &=& A_{mn}^2 \frac{\pi}{\epsilon _m} \Big[ k_{c,mn}^2 \rho^2 f_{mn}^{\prime 2} \nonumber \\ &&+ \Big( k_{c,mn}^2 \rho^2 - m^2 \Big) f_{mn}^2 + 2k_{c,mn} \rho f_{mn} f_{mn}' \Big]_{\rho_1}^{\rho_2} \end{eqnarray}