2.6 ダブルステップ不連続

 積分範囲が導波路 #1の断面と一致している場合,導波管 #1($a_1 \times b_1$)の管壁$C$の境界条件を適用して積分できる. そこで,導波管 #1のTE$_{mn}$モードと導波管 #2($a_2 \times b_2$)のTE$_{m'n'}$モードを, \begin{gather} \Psi^{\#1}_{[mn]} \equiv A^{\#1}_{[mn]} h^{\#1}_{x[m]}(x) h^{\#1}_{y[n]}(y), \ \ \ \ \ \Psi^{\#2}_{[m'n']} \equiv A^{\#2}_{[m'n']} h^{\#2}_{x[m']}(x) h^{\#2}_{y[n']}(y) \end{gather} ここで, \begin{align} &h^{\#1}_{x[m]}(x) = \cos \big( k_{xm} x \big), \ \ \ \ \ h^{\#2}_{x[m']}(x) = \cos \big\{ \hat{k}_{xm'} (x + x_2) \big\} \\ &h^{\#1}_{y[n]}(y) = \cos \big( k_{yn} y \big), \ \ \ \ \ h^{\#2}_{y[n']}(y) = \cos \big\{ \hat{k}_{yn'} (y + y_2) \big\} \end{align} ただし, \begin{align} &k_{xm} = \frac{m\pi}{a_1}, \ \ \ \ \ k_{yn} = \frac{n\pi}{b_1} \ \ \ \ \ (m,n=0,1,2,\cdots , \ m=n\neq0) \\ &\hat{k}_{xm'} = \frac{m'\pi}{a_2}, \ \ \ \ \ \hat{k}_{yn'} = \frac{n'\pi}{b_2} \ \ \ \ \ (m',n'=0,1,2,\cdots , \ m'=n'\neq0) \end{align} また,導波管 #1のTM$_{mn}$モードと導波管 #2のTM$_{m'n'}$モードを, \begin{gather} \Psi^{\#1}_{(mn)} \equiv A^{\#1}_{(mn)} h^{\#1}_{x(m)}(x) h^{\#1}_{y(n)}(y), \ \ \ \ \ \Psi^{\#2}_{(m'n')} \equiv A^{\#2}_{(mn)} h^{\#2}_{x(m')}(x) h^{\#2}_{y(n')}(y) \end{gather} ここで, \begin{align} &h^{\#1}_{x(m)}(x) = \sin \big( k_{xm} x \big), \ \ \ \ \ h^{\#2}_{x(m')}(x) = \sin \big\{ \hat{k}_{xm'} (x + x_2) \big\}, \\ &h^{\#1}_{y(n)}(y) = \sin \big( k_{yn} y \big), \ \ \ \ \ h^{\#2}_{y(n')}(y) = \sin \big\{ \hat{k}_{yn'} (y + y_2) \big\} \end{align} ただし, \begin{align} &k_{xm} = \frac{m\pi}{a_1}, \ \ \ \ \ k_{yn} = \frac{n\pi}{b_1} \ \ \ \ \ (m,n=1,2,\cdots ) \\ &\hat{k}_{xm'} = \frac{m'\pi}{a_2}, \ \ \ \ \ \hat{k}_{yn'} = \frac{n'\pi}{b_2} \ \ \ \ \ (m',n'=1,2,\cdots ) \end{align} 導波管 #2のモードの内積については,積分範囲$S_A$が導波管 #2の断面の一部となり, \begin{eqnarray} &&\iint _{S_A} \VEC{e}^{\#2}_{[mn]} \cdot \VEC{e}^{\#2}_{[m'n']} dS \nonumber \\ &=& A^{\#2}_{[mn]} A^{\#2}_{[m'n']} \Big( \hat{k}_{xm} \hat{k}_{xm'} \hat{X}_{mm'}^{22,\mathrm{s}} \hat{Y}_{nn'}^{22,\mathrm{c}} + \hat{k}_{yn} \hat{k}_{yn'}\hat{X}_{mm'}^{22,\mathrm{c}} \hat{Y}_{nn'}^{22,\mathrm{s}} \Big) \nonumber \\ &&(m, n=0,1,2,\cdots (m\neq0 \ \mbox{or} \ n\neq0) \nonumber \\ &&m', n'=0,1,2,\cdots (m'\neq0 \ \mbox{or} \ n'\neq0)) \\ &&\iint _{S_A} \VEC{e}^{\#2}_{(mn)} \cdot \VEC{e}^{\#2}_{(m'n')} dS \nonumber \\ &=& A^{\#2}_{(mn)} A^{\#2}_{(m'n')} \Big( \hat{k}_{yn} \hat{k}_{yn'} \hat{X}_{mm'}^{22,\mathrm{s}} \hat{Y}_{nn'}^{22,\mathrm{c}} + \hat{k}_{xm} \hat{k}_{xm'} \hat{X}_{mm'}^{22,\mathrm{c}} \hat{Y}_{nn'}^{22,\mathrm{s}} \Big) \nonumber \\ &&(m, n=1,2,3,\cdots , \ \ m',n'=1,2,3,\cdots) \\ &&\iint _{S_A} \VEC{e}^{\#2}_{[mn]} \cdot \VEC{e}^{\#2}_{(m'n')} dS \nonumber \\ &=& A^{\#2}_{[mn]} A^{\#2}_{(m'n')} \Big( \hat{k}_{xm} \hat{k}_{yn'} \hat{X}_{mm'}^{22,\mathrm{s}} \hat{Y}_{nn'}^{22,\mathrm{c}} - \hat{k}_{xm'} \hat{k}_{yn} \hat{X}_{mm'}^{22,\mathrm{c}} \hat{Y}_{nn'}^{22,\mathrm{s}} \Big) \nonumber \\ &&(m, n=0,1,2,\cdots (m\neq0 \ \mbox{or} \ n\neq0), \ \ m', n'=1,2,3,\cdots) \\ &&\iint _{S_A} \VEC{e}^{\#2}_{(mn)} \cdot \VEC{e}^{\#2}_{[m'n']} dS \nonumber \\ &=& A^{\#2}_{(mn)} A^{\#2}_{[m'n']} \Big( \hat{k}_{xm'} \hat{k}_{yn} \hat{X}_{mm'}^{22,\mathrm{s}} \hat{Y}_{nn'}^{22,\mathrm{c}} - \hat{k}_{xm} \hat{k}_{yn'} \hat{X}_{mm'}^{22,\mathrm{c}} \hat{Y}_{nn'}^{22,\mathrm{s}} \Big) \nonumber \\ &&(m, n=1,2,3,\cdots, \ \ m', n'=0,1,2,\cdots (m'\neq0 \ \mbox{or} \ n'\neq0)) \end{eqnarray} 積分範囲$S_A$は,導波管 #1の断面 $0 \leq x \leq a_1$,$0 \leq y \leq b_1$と一致しているので, 導波管 #1のモードの正規直交性より, \begin{eqnarray} \iint _{S_A} \VEC{e}^{\#1}_{[mn]} \cdot \VEC{e}^{\#1}_{[m'n']} dS &=& \delta _{mm'} \delta _{nn'} \\ \iint _{S_A} \VEC{e}^{\#1}_{(mn)} \cdot \VEC{e}^{\#1}_{(m'n')} dS &=& \delta _{mm'} \delta _{nn'} \\ \iint _{S_A} \VEC{e}^{\#1}_{[mn]} \cdot \VEC{e}^{\#1}_{(m'n')} dS &=& 0 \\ \iint _{S_A} \VEC{e}^{\#1}_{(mn)} \cdot \VEC{e}^{\#1}_{[m'n']} dS &=& 0 \end{eqnarray} また,導波管 #1と #2のモードの内積については, \begin{eqnarray} %------------------- TE-TE &&\iint _{S_A} \VEC{e}^{\#1}_{[mn]} \cdot \VEC{e}^{\#2}_{[m'n']} dS \nonumber \\ &=& A^{\#1}_{[mn]} A^{\#2}_{[m'n']} \Big( k_{xm} \hat{k}_{xm'} \hat{X}_{mm'}^{12,\mathrm{s}} \hat{Y}_{nn'}^{12,\mathrm{c}} + k_{yn} \hat{k}_{yn'}\hat{X}_{mm'}^{12,\mathrm{c}} \hat{Y}_{nn'}^{12,\mathrm{s}} \Big) \\ %------------------- TM-TM &&\iint _{S_A} \VEC{e}^{\#1}_{(mn)} \cdot \VEC{e}^{\#2}_{(m'n')} dS \nonumber \\ &=& A^{\#1}_{(mn)} A^{\#2}_{(m'n')} \Big( k_{yn} \hat{k}_{yn'} \hat{X}_{mm'}^{12,\mathrm{s}} \hat{Y}_{nn'}^{12,\mathrm{c}} + k_{xm} \hat{k}_{xm'} \hat{X}_{mm'}^{12,\mathrm{c}} \hat{Y}_{nn'}^{12,\mathrm{s}} \Big) \\ %------------------- TE-TM &&\iint _{S_A} \VEC{e}^{\#1}_{[mn]} \cdot \VEC{e}^{\#2}_{(m'n')} dS \nonumber \\ &=& A^{\#1}_{[mn]} A^{\#2}_{(m'n')} \Big( k_{xm} \hat{k}_{yn'} \hat{X}_{mm'}^{12,\mathrm{s}} \hat{Y}_{nn'}^{12,\mathrm{c}} - \hat{k}_{xm'} k_{yn} \hat{X}_{mm'}^{12,\mathrm{c}} \hat{Y}_{nn'}^{12,\mathrm{s}} \Big) \\ %------------------- TM-TE &&\iint _{S_A} \VEC{e}^{\#1}_{(mn)} \cdot \VEC{e}^{\#2}_{[m'n']} dS \nonumber \\ &=& A^{\#1}_{(mn)} A^{\#2}_{[m'n']} \Big( \hat{k}_{xm'} k_{yn} \hat{X}_{mm'}^{12,\mathrm{s}} \hat{Y}_{nn'}^{12,\mathrm{c}} - k_{xm} \hat{k}_{yn'} \hat{X}_{mm'}^{12,\mathrm{c}} \hat{Y}_{nn'}^{12,\mathrm{s}} \Big) \end{eqnarray}