1.2 TE波とTM波
$z$ 軸方向に関するTE波
いま,
$\VEC{F} = \psi (\VEC{r}) \VEC{u}_z = e^{\mp j\VEC{k} \cdot \VEC{r}} \VEC{u}_z $
とおくと,
\begin{eqnarray}
\VEC{E}^f
&=& -\frac{1}{\epsilon} \nabla \times \VEC{F}
\nonumber \\
&=& -\frac{1}{\epsilon} \nabla \times \big( \psi (\VEC{r}) \VEC{u}_z \big)
\nonumber \\
&=& -\frac{1}{\epsilon} \nabla \psi (\VEC{r}) \times \VEC{u}_z
\nonumber \\
&=& -\frac{1}{\epsilon} \big( \mp j\VEC{k} \big) \psi (\VEC{r}) \times \VEC{u}_z
\nonumber \\
&=& \pm \frac{j}{\epsilon} \big( k_t \VEC{u}_t + k_z \VEC{u}_z \big) \psi (\VEC{r}) \times \VEC{u}_z
\nonumber \\
&=& \pm \frac{jk_t}{\epsilon} \big( \VEC{u}_t \times \VEC{u}_z \big) \psi (\VEC{r})
\nonumber \\
&\equiv& \VEC{E}_t^f + E_z^{f} \VEC{u}_z
\end{eqnarray}
これより,電界の $z$ 成分 $E_z^f$,およびこれに直交する $\VEC{E}_t^f$ は,
\begin{align}
&E_z^f = \VEC{E}^f \cdot \VEC{u}_z = 0
\\
&\VEC{E}_t^f = \VEC{E}^f
\end{align}
となり,TE波を表していることがわかる.
また,磁界 $\VEC{H}^f$ は,
\begin{eqnarray}
\VEC{H}^f
&=& -\frac{1}{j\omega \mu} \nabla \times \VEC{E}^f
\nonumber \\
&=& -\frac{1}{j\omega \mu} \nabla \times \Big( \pm \frac{jk_t}{\epsilon} \big( \VEC{u}_t \times \VEC{u}_z \big) \psi (\VEC{r}) \Big)
\nonumber \\
&=& \mp \frac{k_t}{\omega \epsilon \mu} \nabla \psi (\VEC{r}) \times \big( \VEC{u}_t \times \VEC{u}_z \big)
\nonumber \\
&=& \mp \frac{k_t}{\omega \epsilon \mu} \big( \mp j\VEC{k} \big) \psi (\VEC{r})
\times \big( \VEC{u}_t \times \VEC{u}_z \big)
\nonumber \\
&=& \frac{jk_t}{\omega \epsilon \mu} \big( k_t \VEC{u}_t + k_z \VEC{u}_z \big)
\times \big( \VEC{u}_t \times \VEC{u}_z \big) \psi (\VEC{r})
\end{eqnarray}
ここで,$\VEC{u}_t \perp \VEC{u}_z$ ゆえ,
\begin{align}
&\VEC{u}_t \times ( \VEC{u}_t \times \VEC{u}_z ) = -\VEC{u}_z
\\
&\VEC{u}_z \times ( \VEC{u}_t \times \VEC{u}_z ) = \VEC{u}_t
\end{align}
これより,
\begin{eqnarray}
\VEC{H}^f
&=& \frac{jk_t}{\omega \epsilon \mu} \left( -k_t \VEC{u}_z + k_z \VEC{u}_t \right) \psi (\VEC{r})
\nonumber \\
&\equiv& \VEC{H}_t^f + H_z^{f} \VEC{u}_z
\end{eqnarray}
したがって,$z$ 軸に直交する磁界のベクトル $\VEC{H}_t^f$ は,
\begin{eqnarray}
\VEC{H}_t^f
&=& \frac{jk_t}{\epsilon} \ \frac{k_z}{\omega \mu} \VEC{u}_t \psi (\VEC{r})
\nonumber \\
&=& \frac{jk_t}{\epsilon} Y_{_{\mathrm{TE}}} \VEC{u}_t \psi (\VEC{r})
\end{eqnarray}
ただし,
\begin{eqnarray}
Y_{_{\mathrm{TE}}}
&=& \frac{1}{Z_{_{\mathrm{TE}}}} \equiv \frac{k_z}{\omega \mu}
\nonumber \\
&=& \frac{k}{\omega \mu} \cdot \frac{k_z}{k}
\nonumber \\
&=& Y_w \frac{k_z}{k}
\end{eqnarray}
ここで,
\begin{eqnarray}
Y_w &=& \frac{1}{Z_w} = \frac{k}{\omega \mu} = \frac{\omega \epsilon}{k}
\\
k^2 &=& \omega ^2 \epsilon \mu
\end{eqnarray}
このとき,$\VEC{H}^f$ は,
\begin{eqnarray}
\VEC{H}^f
&=& \frac{jk_t}{\epsilon} Y_{_{\mathrm{TE}}} \frac{k}{k_z} \VEC{u}_r \times \big( \VEC{u}_t \times \VEC{u}_z \big) \psi (\VEC{r})
\nonumber \\
&=& \frac{jk_t}{\epsilon} Y_{_{\mathrm{TE}}} \frac{k}{k_z} \left( \frac{k_z}{k} \VEC{u}_t - \frac{k_t}{k} \VEC{u}_z \right) \psi (\VEC{r})
\end{eqnarray}
$z$ 軸方向に関するTM波
一方,
$\VEC{A} = \psi (\VEC{r}) \VEC{u}_z = e^{\mp j\VEC{k} \cdot \VEC{r}} \VEC{u}_z $
とおき,同様にして求めると(導出省略),
\begin{eqnarray}
\VEC{H}^a
&=& \VEC{H}_t^a
= \mp \frac{jk_t}{\mu} \big( \VEC{u}_t \times \VEC{u}_z \big) \psi (\VEC{r})
\\
H_z^a &=& 0
\\
\VEC{E}^a
&=& \frac{jk_t}{\mu} Z_{_{\mathrm{TM}}} \frac{k}{k_z} \VEC{u}_r \times \big( \VEC{u}_t \times \VEC{u}_z \big) \psi (\VEC{r})
\nonumber \\
&=& \frac{jk_t}{\mu} Z_{_{\mathrm{TM}}} \frac{k}{k_z} \left( \frac{k_z}{k} \VEC{u}_t - \frac{k_t}{k} \VEC{u}_z \right) \psi (\VEC{r})
\nonumber \\
&\equiv& \VEC{E}_t^a + E_z^a \VEC{u}_z
\\
\VEC{E}_t^a &=& \frac{jk_t}{\mu} Z_{_{\mathrm{TM}}} \VEC{u}_t \psi (\VEC{r})
\end{eqnarray}
これはTM波を表していることがわかる.ただし,
\begin{eqnarray}
Z_{_{\mathrm{TM}}}
&=& \frac{1}{Y_{_{\mathrm{TM}}}} = \frac{k_z}{\omega \epsilon}
\nonumber \\
&=& \frac{k}{\omega \epsilon} \cdot \frac{k_z}{k}
\nonumber \\
&=& Z_w \frac{k_z}{k}
\end{eqnarray}
したがって,$z$ 軸に直交する成分に着目すると,
$(\VEC{u}_t \times \VEC{u}_z)$
に沿う電界成分はTE波,
$\VEC{u}_t$
に沿う電界成分はTM波を表すことがわかる.
平面波の偏波とTE波・TM波との関係
方向 $\VEC{u}_r$(単位ベクトル)に沿って伝搬する平面波(波数$k$)の電界
$\VEC{E}$ の偏波方向を $\VEC{u}_p$(単位ベクトル)とすると,
大きさ1の場合,
\begin{eqnarray}
\VEC{E} &=& \VEC{u}_p e^{-j\VEC{k} \cdot \VEC{r}}
\\
\VEC{k} &=& k \VEC{u}_r
\nonumber \\
&=& k_t \VEC{u}_t + k_z \VEC{u}_z
\nonumber \\
&=& k_x \VEC{u}_x + k_y \VEC{u}_y + k_z \VEC{u}_z
\\
\VEC{H} &=& Y_w \big( \VEC{u}_r \times \VEC{E} \big)
\end{eqnarray}
また,
\begin{gather}
\VEC{E} = -Z_w \big( \VEC{u}_r \times \VEC{H} \big)
\end{gather}
これを,$z$ 軸に対するTE波,TM波に分解して表すため,次のように変形する.
\begin{gather}
\VEC{E} = \Big\{ \VEC{u}_p \cdot (\VEC{u}_t \times \VEC{u}_z) (\VEC{u}_t \times \VEC{u}_z)
+ (\VEC{u}_p \cdot \VEC{u}_t) \VEC{u}_t + (\VEC{u}_p \cdot \VEC{u}_z) \VEC{u}_z \Big\} e^{-j\VEC{k} \cdot \VEC{r}}
\end{gather}
上式において,$xy$ 面上の接線電界 $\VEC{E}_t$ は,
\begin{gather}
\VEC{E}_t = \Big\{ \VEC{u}_p \cdot (\VEC{u}_t \times \VEC{u}_z) (\VEC{u}_t \times \VEC{u}_z)
+ (\VEC{u}_p \cdot \VEC{u}_t) \VEC{u}_t \Big\} e^{-j\VEC{k} \cdot \VEC{r}}
\end{gather}
ただし,
\begin{gather}
\VEC{u}_r
= (\VEC{u}_r \cdot \VEC{u}_t) \VEC{u}_t + (\VEC{u}_r \cdot \VEC{u}_z) \VEC{u}_z
\end{gather}
いま,偏波面を $xz$ 面にとると,
$\VEC{u}_p \equiv \VEC{u}_y \times \VEC{u}_r$より,
\begin{eqnarray}
\VEC{u}_p \cdot (\VEC{u}_t \times \VEC{u}_z)
&=& (\VEC{u}_y \times \VEC{u}_r ) \cdot (\VEC{u}_t \times \VEC{u}_z)
\nonumber \\
&=& \Big[ \VEC{u}_y \times \Big\{ (\VEC{u}_r \cdot \VEC{u}_t) \VEC{u}_t + (\VEC{u}_r \cdot \VEC{u}_z) \VEC{u}_z \Big\} \Big]
\cdot (\VEC{u}_t \times \VEC{u}_z)
\nonumber \\
&=& \Big[ (\VEC{u}_r \cdot \VEC{u}_t)(\VEC{u}_y \times \VEC{u}_t) + (\VEC{u}_r \cdot \VEC{u}_z) \VEC{u}_x \Big]
\cdot (\VEC{u}_t \times \VEC{u}_z)
\nonumber \\
&=& (\VEC{u}_r \cdot \VEC{u}_z) (\VEC{u}_z \times \VEC{u}_x) \cdot \VEC{u}_t
\nonumber \\
&=& (\VEC{u}_r \cdot \VEC{u}_z) (\VEC{u}_y \cdot \VEC{u}_t)
\end{eqnarray}
\begin{eqnarray}
\VEC{u}_p \cdot \VEC{u}_t
&=& (\VEC{u}_y \times \VEC{u}_r ) \cdot \VEC{u}_t
= (\VEC{u}_r \times \VEC{u}_t ) \cdot \VEC{u}_y
\nonumber \\
&=& \Big[ \Big\{ (\VEC{u}_r \cdot \VEC{u}_t) \VEC{u}_t + (\VEC{u}_r \cdot \VEC{u}_z) \VEC{u}_z \Big\} \times \VEC{u}_t \Big] \cdot \VEC{u}_t
\nonumber \\
&=& (\VEC{u}_r \cdot \VEC{u}_z)(\VEC{u}_z \times \VEC{u}_t) \cdot \VEC{u}_y
\nonumber \\
&=& (\VEC{u}_r \cdot \VEC{u}_z)(\VEC{u}_y \times \VEC{u}_z) \cdot \VEC{u}_t
\nonumber \\
&=& (\VEC{u}_r \cdot \VEC{u}_z) (\VEC{u}_x \cdot \VEC{u}_t)
\end{eqnarray}
\begin{eqnarray}
\VEC{u}_p \cdot \VEC{u}_z
&=& (\VEC{u}_y \times \VEC{u}_r ) \cdot \VEC{u}_z
\nonumber \\
&=& (\VEC{u}_z \times \VEC{u}_y ) \cdot \VEC{u}_r
\nonumber \\
&=& -(\VEC{u}_x \cdot \VEC{u}_r)
\end{eqnarray}
これより,このときの電界 $\VEC{E}_V$ は,
\begin{eqnarray}
\VEC{E}_V
&=& \Big[ (\VEC{u}_r \cdot \VEC{u}_z) \Big\{ (\VEC{u}_t \cdot \VEC{u}_y) (\VEC{u}_t \times \VEC{u}_z)
+ (\VEC{u}_t \cdot \VEC{u}_x) \VEC{u}_t \Big\}
\nonumber \\
&&- (\VEC{u}_r \cdot \VEC{u}_x) \VEC{u}_z \Big] e^{-j\VEC{k} \cdot \VEC{r}}
\end{eqnarray}
また,偏波面が $yz$ 面の場合,
\begin{gather}
\VEC{u}_p \equiv \VEC{u}_r \times \VEC{u}_x
\end{gather}
このときの電界 $\VEC{E}_H$ は,同様して(導出省略),
\begin{eqnarray}
\VEC{E}_H
&=& \Big[ (\VEC{u}_r \cdot \VEC{u}_z) \Big\{ (\VEC{u}_t \cdot \VEC{u}_x) (\VEC{u}_t \times \VEC{u}_z)
+ (\VEC{u}_t \cdot \VEC{u}_y) \VEC{u}_t \Big\}
\nonumber \\
&&- (\VEC{u}_r \cdot \VEC{u}_y) \VEC{u}_z \Big] e^{-j\VEC{k} \cdot \VEC{r}}
\end{eqnarray}
さらに,
\begin{eqnarray}
\VEC{u}_r &=& \sin \theta \VEC{u}_t + \cos \theta \VEC{u}_z
\\
\VEC{u}_t &=& \frac{k_x}{k_t} \VEC{u}_x + \frac{k_y}{k_t} \VEC{u}_y
\end{eqnarray}
とすると,
\begin{gather}
\VEC{E}_V
= \frac{1}{k_t} \Big[ \cos \theta \Big\{ k_y (\VEC{u}_t \times \VEC{u}_z)+ k_x \VEC{u}_t \Big\}
- \sin \theta \ k_x \VEC{u}_z \Big] e^{-j\VEC{k} \cdot \VEC{r}} \\
\VEC{E}_H
= \frac{1}{k_t} \Big[ \cos \theta \Big\{ k_x (\VEC{u}_t \times \VEC{u}_z)+ k_y \VEC{u}_t \Big\}
- \sin \theta \ k_y \VEC{u}_z \Big] e^{-j\VEC{k} \cdot \VEC{r}}
\end{gather}