1.2 TE波とTM波

$z$ 軸方向に関するTE波

 いま, $\VEC{F} = \psi (\VEC{r}) \VEC{u}_z = e^{\mp j\VEC{k} \cdot \VEC{r}} \VEC{u}_z $ とおくと, \begin{eqnarray} \VEC{E}^f &=& -\frac{1}{\epsilon} \nabla \times \VEC{F} \nonumber \\ &=& -\frac{1}{\epsilon} \nabla \times \big( \psi (\VEC{r}) \VEC{u}_z \big) \nonumber \\ &=& -\frac{1}{\epsilon} \nabla \psi (\VEC{r}) \times \VEC{u}_z \nonumber \\ &=& -\frac{1}{\epsilon} \big( \mp j\VEC{k} \big) \psi (\VEC{r}) \times \VEC{u}_z \nonumber \\ &=& \pm \frac{j}{\epsilon} \big( k_t \VEC{u}_t + k_z \VEC{u}_z \big) \psi (\VEC{r}) \times \VEC{u}_z \nonumber \\ &=& \pm \frac{jk_t}{\epsilon} \big( \VEC{u}_t \times \VEC{u}_z \big) \psi (\VEC{r}) \nonumber \\ &\equiv& \VEC{E}_t^f + E_z^{f} \VEC{u}_z \end{eqnarray} これより,電界の $z$ 成分 $E_z^f$,およびこれに直交する $\VEC{E}_t^f$ は, \begin{align} &E_z^f = \VEC{E}^f \cdot \VEC{u}_z = 0 \\ &\VEC{E}_t^f = \VEC{E}^f \end{align} となり,TE波を表していることがわかる. また,磁界 $\VEC{H}^f$ は, \begin{eqnarray} \VEC{H}^f &=& -\frac{1}{j\omega \mu} \nabla \times \VEC{E}^f \nonumber \\ &=& -\frac{1}{j\omega \mu} \nabla \times \Big( \pm \frac{jk_t}{\epsilon} \big( \VEC{u}_t \times \VEC{u}_z \big) \psi (\VEC{r}) \Big) \nonumber \\ &=& \mp \frac{k_t}{\omega \epsilon \mu} \nabla \psi (\VEC{r}) \times \big( \VEC{u}_t \times \VEC{u}_z \big) \nonumber \\ &=& \mp \frac{k_t}{\omega \epsilon \mu} \big( \mp j\VEC{k} \big) \psi (\VEC{r}) \times \big( \VEC{u}_t \times \VEC{u}_z \big) \nonumber \\ &=& \frac{jk_t}{\omega \epsilon \mu} \big( k_t \VEC{u}_t + k_z \VEC{u}_z \big) \times \big( \VEC{u}_t \times \VEC{u}_z \big) \psi (\VEC{r}) \end{eqnarray} ここで,$\VEC{u}_t \perp \VEC{u}_z$ ゆえ, \begin{align} &\VEC{u}_t \times ( \VEC{u}_t \times \VEC{u}_z ) = -\VEC{u}_z \\ &\VEC{u}_z \times ( \VEC{u}_t \times \VEC{u}_z ) = \VEC{u}_t \end{align} これより, \begin{eqnarray} \VEC{H}^f &=& \frac{jk_t}{\omega \epsilon \mu} \left( -k_t \VEC{u}_z + k_z \VEC{u}_t \right) \psi (\VEC{r}) \nonumber \\ &\equiv& \VEC{H}_t^f + H_z^{f} \VEC{u}_z \end{eqnarray} したがって,$z$ 軸に直交する磁界のベクトル $\VEC{H}_t^f$ は, \begin{eqnarray} \VEC{H}_t^f &=& \frac{jk_t}{\epsilon} \ \frac{k_z}{\omega \mu} \VEC{u}_t \psi (\VEC{r}) \nonumber \\ &=& \frac{jk_t}{\epsilon} Y_{_{\mathrm{TE}}} \VEC{u}_t \psi (\VEC{r}) \end{eqnarray} ただし, \begin{eqnarray} Y_{_{\mathrm{TE}}} &=& \frac{1}{Z_{_{\mathrm{TE}}}} \equiv \frac{k_z}{\omega \mu} \nonumber \\ &=& \frac{k}{\omega \mu} \cdot \frac{k_z}{k} \nonumber \\ &=& Y_w \frac{k_z}{k} \end{eqnarray} ここで, \begin{eqnarray} Y_w &=& \frac{1}{Z_w} = \frac{k}{\omega \mu} = \frac{\omega \epsilon}{k} \\ k^2 &=& \omega ^2 \epsilon \mu \end{eqnarray} このとき,$\VEC{H}^f$ は, \begin{eqnarray} \VEC{H}^f &=& \frac{jk_t}{\epsilon} Y_{_{\mathrm{TE}}} \frac{k}{k_z} \VEC{u}_r \times \big( \VEC{u}_t \times \VEC{u}_z \big) \psi (\VEC{r}) \nonumber \\ &=& \frac{jk_t}{\epsilon} Y_{_{\mathrm{TE}}} \frac{k}{k_z} \left( \frac{k_z}{k} \VEC{u}_t - \frac{k_t}{k} \VEC{u}_z \right) \psi (\VEC{r}) \end{eqnarray}

$z$ 軸方向に関するTM波

 一方, $\VEC{A} = \psi (\VEC{r}) \VEC{u}_z = e^{\mp j\VEC{k} \cdot \VEC{r}} \VEC{u}_z $ とおき,同様にして求めると(導出省略), \begin{eqnarray} \VEC{H}^a &=& \VEC{H}_t^a = \mp \frac{jk_t}{\mu} \big( \VEC{u}_t \times \VEC{u}_z \big) \psi (\VEC{r}) \\ H_z^a &=& 0 \\ \VEC{E}^a &=& \frac{jk_t}{\mu} Z_{_{\mathrm{TM}}} \frac{k}{k_z} \VEC{u}_r \times \big( \VEC{u}_t \times \VEC{u}_z \big) \psi (\VEC{r}) \nonumber \\ &=& \frac{jk_t}{\mu} Z_{_{\mathrm{TM}}} \frac{k}{k_z} \left( \frac{k_z}{k} \VEC{u}_t - \frac{k_t}{k} \VEC{u}_z \right) \psi (\VEC{r}) \nonumber \\ &\equiv& \VEC{E}_t^a + E_z^a \VEC{u}_z \\ \VEC{E}_t^a &=& \frac{jk_t}{\mu} Z_{_{\mathrm{TM}}} \VEC{u}_t \psi (\VEC{r}) \end{eqnarray} これはTM波を表していることがわかる.ただし, \begin{eqnarray} Z_{_{\mathrm{TM}}} &=& \frac{1}{Y_{_{\mathrm{TM}}}} = \frac{k_z}{\omega \epsilon} \nonumber \\ &=& \frac{k}{\omega \epsilon} \cdot \frac{k_z}{k} \nonumber \\ &=& Z_w \frac{k_z}{k} \end{eqnarray} したがって,$z$ 軸に直交する成分に着目すると, $(\VEC{u}_t \times \VEC{u}_z)$ に沿う電界成分はTE波, $\VEC{u}_t$ に沿う電界成分はTM波を表すことがわかる.

平面波の偏波とTE波・TM波との関係

 方向 $\VEC{u}_r$(単位ベクトル)に沿って伝搬する平面波(波数$k$)の電界 $\VEC{E}$ の偏波方向を $\VEC{u}_p$(単位ベクトル)とすると, 大きさ1の場合, \begin{eqnarray} \VEC{E} &=& \VEC{u}_p e^{-j\VEC{k} \cdot \VEC{r}} \\ \VEC{k} &=& k \VEC{u}_r \nonumber \\ &=& k_t \VEC{u}_t + k_z \VEC{u}_z \nonumber \\ &=& k_x \VEC{u}_x + k_y \VEC{u}_y + k_z \VEC{u}_z \\ \VEC{H} &=& Y_w \big( \VEC{u}_r \times \VEC{E} \big) \end{eqnarray} また, \begin{gather} \VEC{E} = -Z_w \big( \VEC{u}_r \times \VEC{H} \big) \end{gather} これを,$z$ 軸に対するTE波,TM波に分解して表すため,次のように変形する. \begin{gather} \VEC{E} = \Big\{ \VEC{u}_p \cdot (\VEC{u}_t \times \VEC{u}_z) (\VEC{u}_t \times \VEC{u}_z) + (\VEC{u}_p \cdot \VEC{u}_t) \VEC{u}_t + (\VEC{u}_p \cdot \VEC{u}_z) \VEC{u}_z \Big\} e^{-j\VEC{k} \cdot \VEC{r}} \end{gather} 上式において,$xy$ 面上の接線電界 $\VEC{E}_t$ は, \begin{gather} \VEC{E}_t = \Big\{ \VEC{u}_p \cdot (\VEC{u}_t \times \VEC{u}_z) (\VEC{u}_t \times \VEC{u}_z) + (\VEC{u}_p \cdot \VEC{u}_t) \VEC{u}_t \Big\} e^{-j\VEC{k} \cdot \VEC{r}} \end{gather} ただし, \begin{gather} \VEC{u}_r = (\VEC{u}_r \cdot \VEC{u}_t) \VEC{u}_t + (\VEC{u}_r \cdot \VEC{u}_z) \VEC{u}_z \end{gather}  いま,偏波面を $xz$ 面にとると, $\VEC{u}_p \equiv \VEC{u}_y \times \VEC{u}_r$より, \begin{eqnarray} \VEC{u}_p \cdot (\VEC{u}_t \times \VEC{u}_z) &=& (\VEC{u}_y \times \VEC{u}_r ) \cdot (\VEC{u}_t \times \VEC{u}_z) \nonumber \\ &=& \Big[ \VEC{u}_y \times \Big\{ (\VEC{u}_r \cdot \VEC{u}_t) \VEC{u}_t + (\VEC{u}_r \cdot \VEC{u}_z) \VEC{u}_z \Big\} \Big] \cdot (\VEC{u}_t \times \VEC{u}_z) \nonumber \\ &=& \Big[ (\VEC{u}_r \cdot \VEC{u}_t)(\VEC{u}_y \times \VEC{u}_t) + (\VEC{u}_r \cdot \VEC{u}_z) \VEC{u}_x \Big] \cdot (\VEC{u}_t \times \VEC{u}_z) \nonumber \\ &=& (\VEC{u}_r \cdot \VEC{u}_z) (\VEC{u}_z \times \VEC{u}_x) \cdot \VEC{u}_t \nonumber \\ &=& (\VEC{u}_r \cdot \VEC{u}_z) (\VEC{u}_y \cdot \VEC{u}_t) \end{eqnarray} \begin{eqnarray} \VEC{u}_p \cdot \VEC{u}_t &=& (\VEC{u}_y \times \VEC{u}_r ) \cdot \VEC{u}_t = (\VEC{u}_r \times \VEC{u}_t ) \cdot \VEC{u}_y \nonumber \\ &=& \Big[ \Big\{ (\VEC{u}_r \cdot \VEC{u}_t) \VEC{u}_t + (\VEC{u}_r \cdot \VEC{u}_z) \VEC{u}_z \Big\} \times \VEC{u}_t \Big] \cdot \VEC{u}_t \nonumber \\ &=& (\VEC{u}_r \cdot \VEC{u}_z)(\VEC{u}_z \times \VEC{u}_t) \cdot \VEC{u}_y \nonumber \\ &=& (\VEC{u}_r \cdot \VEC{u}_z)(\VEC{u}_y \times \VEC{u}_z) \cdot \VEC{u}_t \nonumber \\ &=& (\VEC{u}_r \cdot \VEC{u}_z) (\VEC{u}_x \cdot \VEC{u}_t) \end{eqnarray} \begin{eqnarray} \VEC{u}_p \cdot \VEC{u}_z &=& (\VEC{u}_y \times \VEC{u}_r ) \cdot \VEC{u}_z \nonumber \\ &=& (\VEC{u}_z \times \VEC{u}_y ) \cdot \VEC{u}_r \nonumber \\ &=& -(\VEC{u}_x \cdot \VEC{u}_r) \end{eqnarray} これより,このときの電界 $\VEC{E}_V$ は, \begin{eqnarray} \VEC{E}_V &=& \Big[ (\VEC{u}_r \cdot \VEC{u}_z) \Big\{ (\VEC{u}_t \cdot \VEC{u}_y) (\VEC{u}_t \times \VEC{u}_z) + (\VEC{u}_t \cdot \VEC{u}_x) \VEC{u}_t \Big\} \nonumber \\ &&- (\VEC{u}_r \cdot \VEC{u}_x) \VEC{u}_z \Big] e^{-j\VEC{k} \cdot \VEC{r}} \end{eqnarray}  また,偏波面が $yz$ 面の場合, \begin{gather} \VEC{u}_p \equiv \VEC{u}_r \times \VEC{u}_x \end{gather} このときの電界 $\VEC{E}_H$ は,同様して(導出省略), \begin{eqnarray} \VEC{E}_H &=& \Big[ (\VEC{u}_r \cdot \VEC{u}_z) \Big\{ (\VEC{u}_t \cdot \VEC{u}_x) (\VEC{u}_t \times \VEC{u}_z) + (\VEC{u}_t \cdot \VEC{u}_y) \VEC{u}_t \Big\} \nonumber \\ &&- (\VEC{u}_r \cdot \VEC{u}_y) \VEC{u}_z \Big] e^{-j\VEC{k} \cdot \VEC{r}} \end{eqnarray} さらに, \begin{eqnarray} \VEC{u}_r &=& \sin \theta \VEC{u}_t + \cos \theta \VEC{u}_z \\ \VEC{u}_t &=& \frac{k_x}{k_t} \VEC{u}_x + \frac{k_y}{k_t} \VEC{u}_y \end{eqnarray} とすると, \begin{gather} \VEC{E}_V = \frac{1}{k_t} \Big[ \cos \theta \Big\{ k_y (\VEC{u}_t \times \VEC{u}_z)+ k_x \VEC{u}_t \Big\} - \sin \theta \ k_x \VEC{u}_z \Big] e^{-j\VEC{k} \cdot \VEC{r}} \\ \VEC{E}_H = \frac{1}{k_t} \Big[ \cos \theta \Big\{ k_x (\VEC{u}_t \times \VEC{u}_z)+ k_y \VEC{u}_t \Big\} - \sin \theta \ k_y \VEC{u}_z \Big] e^{-j\VEC{k} \cdot \VEC{r}} \end{gather}