4.9 円形テーパ導波管

 導波菅のモード関数は, \begin{align} &\VEC{e}_n = \left\{ \begin{array}{ll} \displaystyle{ \VEC{e}^{\TE}_n = \VEC{a}_z \times \nabla _t \Psi ^{\TE}_n } & \mbox{ (TE mode) } \\ \displaystyle{ \VEC{e}^{\TM}_n = - \nabla _t \Psi ^{\TM}_n } & \mbox{ (TM mode) } \\ \end{array} \right. \\ &\VEC{h}_n = \left\{ \begin{array}{ll} \displaystyle{ \VEC{h}^{\TE}_n = - \nabla _t \Psi ^{\TE}_n } & \mbox{ (TE mode) } \\ \displaystyle{ \VEC{h}^{\TM}_n = - \VEC{a}_z \times \nabla _t \Psi ^{\TM}_n } & \mbox{ (TM mode) } \\ \end{array} \right. \end{align} ただし,スカラ関数 $\Psi ^{\TE}_n $および $\Psi ^{\TM}_n $は変数分離した$z$に依らないスカラー関数を示し,スカラヘルムホルツ方程式を満足する.ここでは,半径$a$の円形導波菅の場合を考え,TE$_{Mn}$モードのスカラ関数 $\Psi ^{\TE}_n$, およびTM$_{Mn}$モードのスカラ関数 $\Psi ^{\TM}_n$は, \begin{align} &\Psi ^{\TE}_n = A_n^{\TE} J_M(k_{c,n}^{\TE} \rho) \Phi_M^{\TE}(\phi), \ \ \ \ \ k_{c,n}^{\TE} = \frac{\chi_n'}{a}, \ \ \ \ \ J_M'(\chi_n') = 0 \\ &\Psi ^{\TM}_n = A_n^{\TM} J_M(k_{c,n}^{\TM} \rho) \Phi_M^{\TM}(\phi), \ \ \ \ \ k_{c,n}^{\TM} = \frac{\chi_n}{a}, \ \ \ \ \ J_M(\chi_n) = 0 \end{align} ただし,$\Phi_M^{\TE}(\phi)$,$\Phi_M^{\TM}(\phi)$は次式で表され, TEモードとTMモードは,同じ正弦モード間,同じ余弦モード間で結合する (両者をまとめて$\Phi_M(\phi)$とする). \begin{gather} \Phi_M^{\TE}(\phi)= \left\{ \begin{matrix} \sin (M \phi) \\ \cos (M \phi) \end{matrix} \right., \ \ \ \ \ \Phi_M^{\TM}(\phi)= \left\{ \begin{matrix} -\cos (M \phi) \\ \sin (M \phi) \end{matrix} \right. \end{gather}

伝送方程式の係数(TE-TE, TM-TM)

スカラ関数の微分について, TE,TMモードをまとめて $k_{c,l} = \frac{\bar{\chi}_l}{a}$,$k_{c,n} = \frac{\bar{\chi}_n}{a}$とおき, \begin{eqnarray} \frac{\partial \Psi_n}{\partial z} &=& \frac{\partial}{\partial z} \Big( A_n J_M(k_{c,n} \rho) \Phi_M(\phi) \Big) \nonumber \\ &=& A_n \frac{dk_{c,n}}{dz} \rho J_M'(k_{c,n}\rho) \Phi_M(\phi) \nonumber \\ &=& A_n \left( - \frac{1}{a} \frac{da}{dz} k_{c,n} \right) \rho J_M'(k_{c,n}\rho) \Phi_M(\phi) \label{eq:dPsindz} \\ \left. \frac{\partial \Psi_n}{\partial z} \right|_{\rho=a} &=& -A_n \frac{da}{dz} k_{c,n} J_M'(\bar{\chi}_n) \Phi_M(\phi) \\ \frac{\partial \Psi_l}{\partial n} &=& \frac{\partial}{\partial \rho} \Big( A_l J_M(k_{c,l} \rho) \Phi_M(\phi) \Big) \nonumber \\ &=& A_l k_{c,l} J_M'(k_{c,l}\rho) \Phi_M(\phi) \\ \left. \frac{\partial \Psi_l}{\partial n} \right|_{\rho=a} &=& \frac{\partial}{\partial \rho} \Big( A_l J_M(k_{c,l} \rho) \Phi_M(\phi) \Big) \nonumber \\ &=& A_l k_{c,l} J_M'(\bar{\chi}_l) \Phi_M(\phi) \end{eqnarray} さらに, \begin{eqnarray} &&\frac{\partial}{\partial n} \left( \frac{\partial \Psi_n}{\partial z} \right) = \frac{\partial}{\partial \rho} \left\{ A_n \left( - \frac{1}{a} \frac{da}{dz} k_{c,n} \right) \rho J_M'(k_{c,n}\rho) \Phi_M(\phi) \right\} \nonumber \\ &=& -A_n \frac{1}{a} \frac{da}{dz} k_{c,n} \Big\{ J_M'(k_{c,n}\rho) + \rho k_{c,n} J_M''(k_{c,n}\rho) \Big\} \Phi_M(\phi) \end{eqnarray} \begin{gather} \left. \frac{\partial}{\partial n} \left( \frac{\partial \Psi_n}{\partial z} \right) \right|_{\rho=a} = -A_n \frac{1}{a} \frac{da}{dz} k_{c,n} \Big\{ J_M'(\bar{\chi}_n) + \bar{\chi}_n J_M''(\bar{\chi}_n) \Big\} \Phi_M(\phi) \end{gather} ここで, \begin{gather} J_M''(\bar{\chi}_n) = \left( \frac{M^2}{\bar{\chi}_n^2} -1 \right) J_M(\bar{\chi}_n) - \frac{J_M'(\bar{\chi}_n)}{\bar{\chi}_n} %= \frac{M^2-\bar{\chi}_n^2}{\bar{\chi}_n^2} J_M(\bar{\chi}_n) \end{gather} これより, \begin{eqnarray} \left. \frac{\partial}{\partial n} \left( \frac{\partial \Psi_n}{\partial z} \right) \right|_{\rho=a} &=& -A_n \frac{da}{dz} \frac{\bar{\chi}_n}{a^2} \frac{M^2-\bar{\chi}_n^2}{\bar{\chi}_n} J_M(\bar{\chi}_n) \Phi_M(\phi) \nonumber \\ &=& -A_n \frac{da}{dz} \frac{M^2-\bar{\chi}_n^2}{a^2} J_M(\bar{\chi}_n) \Phi_M(\phi) \end{eqnarray} よって,異なるモードの場合($n \ne l$),TEモードのとき, \begin{eqnarray} T_{I,ln}^{\TETE} &=& \frac{(k_{c,l}^{\TE})^2}{(k_{c,l}^{\TE})^2 - (k_{c,n}^{\TE})^2} \oint _C \Psi_l^{\TE} \frac{\partial}{\partial n} \left( \frac{\partial \Psi_n^{\TE}}{\partial z} \right) d\sigma \nonumber \\ &=& \frac{(k_{c,l}^{\TE})^2}{(k_{c,l}^{\TE})^2 - (k_{c,n}^{\TE})^2} A_l^{\TE} J_M(\chi_l') (-A_n^{\TE}) \nonumber \\ &&\cdot \frac{da}{dz} \frac{M^2-\chi_n^{\prime 2}}{a^2} J_M(\chi_n') \int _0^{2\pi} \big( \Phi^{\TE} (\phi) \big)^2 a d\phi \nonumber \\ &=& A_l^{\TE} A_n^{\TE} \frac{1}{a} \frac{da}{dz} (\chi_n^{\prime 2}-M^2) \nonumber \\ &=& \frac{(k_{c,l}^{\TE})^2}{(k_{c,l}^{\TE})^2 - (k_{c,n}^{\TE})^2} J_M(\chi_l') J_M(\chi_n') \frac{2\pi}{\epsilon_M} \end{eqnarray} ここで,絶対値をとらないTE$_{Ml}$,TE$_{Mn}$モードの正規化係数 $A_l^{\TE}$,$A_n^{\TE}$より, \begin{eqnarray} A_l^{\TE} A_n^{\TE} &=& \sqrt{\frac{\epsilon _M}{\pi \big( \chi^{\prime 2}_l -M^2 \big) }} \ \frac{1}{J_M (\chi '_l)} \cdot \sqrt{\frac{\epsilon _M}{\pi \big( \chi^{\prime 2}_n -M^2 \big) }} \ \frac{1}{J_M (\chi '_n)} \nonumber \\ &=& \frac{\epsilon_M}{\pi} \frac{1}{\sqrt{\chi^{\prime 2}_l -M^2}} \frac{1}{\sqrt{\chi^{\prime 2}_n -M^2}} \frac{1}{J_M (\chi '_l)} \frac{1}{J_M (\chi '_n)} \end{eqnarray} よって, \begin{eqnarray} T_{I,ln}^{\TETE} &=& \frac{1}{a} \frac{da}{dz} \frac{2(k_{c,l}^{\TE})^2}{(k_{c,l}^{\TE})^2 - (k_{c,n}^{\TE})^2} \sqrt{\frac{\chi_n^{\prime 2}-M^2}{\chi_l^{\prime 2}-M^2}} \nonumber \\ &=& \frac{1}{a} \frac{da}{dz} \frac{2\chi_l^{\prime 2}}{\chi_l^{\prime 2} - \chi_n^{\prime 2}} \sqrt{\frac{\chi_n^{\prime 2}-M^2}{\chi_l^{\prime 2}-M^2}} \nonumber \\ &=& -\frac{1}{a} \frac{da}{dz} \frac{2\chi_l^{\prime 2}}{\chi_n^{\prime 2} - \chi_l^{\prime 2}} \sqrt{\frac{\chi_n^{\prime 2}-M^2}{\chi_l^{\prime 2}-M^2}} \end{eqnarray} また,TMモードのとき, $\Psi_l=0$,$\Psi_n=0$ (on C)ゆえ, \begin{eqnarray} T_{I,ln}^{\TMTM} &=& \frac{-(k_{c,n}^{\TM})^2}{(k_{c,l}^{\TM})^2 - (k_{c,n}^{\TM})^2} \oint _C \frac{\partial \Psi_n^{\TM}}{\partial z} \frac{\partial \Psi_l^{\TM}}{\partial n} d\sigma \nonumber \\ &=& \frac{-(k_{c,n}^{\TM})^2}{(k_{c,l}^{\TM})^2 - (k_{c,n}^{\TM})^2} (-A_n^{\TM}) \nonumber \\ &&\cdot \frac{da}{dz} k_{c,n}^{\TM} J_M'(\bar{\chi}_n) A_l^{\TM} k_{c,l}^{\TM} J_M'(\bar{\chi}_l) \int _0^{2\pi} \big( \Phi^{\TE} (\phi) \big)^2 a d\phi \nonumber \\ &=& A_n^{\TM} A_l^{\TM} \frac{da}{dz} \frac{(k_{c,n}^{\TM})^2}{(k_{c,l}^{\TM})^2 - (k_{c,n}^{\TM})^2} \frac{\chi_n \chi_l}{a^2} J_M'(\chi_n) J_M'(\chi_l) a \frac{2\pi}{\epsilon_M} \end{eqnarray} ここで,絶対値をとらないTM$_{Ml}$,TM$_{Mn}$モードの正規化係数 $A_l^{\TM}$,$A_n^{\TM}$より, \begin{eqnarray} A_l^{\TM} A_n^{\TM} &=& \sqrt{\frac{\epsilon_M}{\pi}} \frac{1}{\chi_l J_M'(\chi_l)} \cdot \sqrt{\frac{\epsilon_M}{\pi}} \frac{1}{\chi_n J_M'(\chi_n)} \nonumber \\ &=& \frac{\epsilon_M}{\pi} \frac{1}{\chi_l \chi_n} \frac{1}{J_M' (\chi_l)} \frac{1}{J_M' (\chi_n)} \end{eqnarray} よって, \begin{eqnarray} T_{I,ln}^{\TMTM} &=& \frac{1}{a} \frac{da}{dz} \frac{2(k_{c,n}^{\TM})^2}{(k_{c,l}^{\TM})^2 - (k_{c,n}^{\TM})^2} \nonumber \\ &=& \frac{1}{a} \frac{da}{dz} \frac{2\chi_n^2}{\chi_l^2 - \chi_n^2} \nonumber \\ &=& -\frac{1}{a} \frac{da}{dz} \frac{2\chi_n^2}{\chi_n^2 - \chi_l^2} \end{eqnarray} 同じモードの場合($n=l$), 円形導波菅モードをTEモードとTMモードをまとめて, \begin{gather} \Psi_n = A_n J_M(k_{c,n} \rho) \Phi_M (\phi) \label{eq:Psin} \end{gather} とすると, \begin{gather} &\nabla_t \Psi_n = A_n \left\{ \frac{\partial J_M(k_{c,n} \rho)}{\partial \rho} \Phi_M (\phi) \VEC{a}_\rho + J_M(k_{c,n} \rho) \frac{\partial \Phi_M(\phi)}{\rho \partial \phi} \VEC{a}_\phi \right\} \end{gather} \begin{align} &(\nabla_t \Psi_n) \cdot (\nabla_t \Psi_n) \nonumber \\ &= A_n^2 \left\{ \left( \frac{\partial J_M(k_{c,n} \rho)}{\partial \rho} \Phi_M (\phi) \right)^2 + \left( J_M(k_{c,n} \rho) \frac{\partial \Phi_M(\phi)}{\rho \partial \phi}\right)^2 \right\} \nonumber \\ &= A_n^2 \left\{ J_M^{\prime 2}(k_{c,n} \rho) k_{c,n}^2 \Phi^2_M (\phi) + J_M^2(k_{c,n} \rho) \frac{1}{\rho^2} \left( \frac{\partial \Phi_M(\phi)}{\partial \phi} \right)^2 \right\} \end{align} \begin{align} &(\nabla_t \Psi_n) \cdot (\nabla_t \Psi_n) \Big|_{\rho=a} \nonumber \\ &= A_n^2 \left\{ J_M^{\prime 2}(\chi_n) k_{c,n}^2 \Phi^2_M (\phi) + J_M^2(\chi_n) \frac{1}{a^2} \left( \frac{\partial \Phi_M(\phi)}{\partial \phi} \right)^2 \right\} \end{align} 軸対称ゆえ,$\vartheta$を定数として$\frac{da}{dz} = \tan \vartheta $.よって, \begin{gather} \iint_S \frac{\partial \VEC{e}_n}{\partial z} \cdot \VEC{e}_n dS = - \frac{1}{2} \frac{da}{dz} \int_\sigma (\nabla_t \Psi_n) \cdot (\nabla_t \Psi_n) \ d\sigma \end{gather} 周回積分は,半径$a$の円形導波管の管壁に沿う積分経路ゆえ, \begin{eqnarray} &&\int_\sigma (\nabla_t \Psi_n) \cdot (\nabla_t \Psi_n) d\sigma \nonumber \\ &=& \int_0^{2\pi} (\nabla_t \Psi_n) \cdot (\nabla_t \Psi_n) \rho \Big|_{\rho = a} d\phi \nonumber \\ &=& A_n^2 a \left\{ J_M^{\prime 2}(\chi_n) k_{c,n}^2 \int_0^{2\pi} \Phi^2_M (\phi) d\phi \right. \nonumber \\ &&\left. + J_M^2(\chi_n) \frac{1}{a^2} \int_0^{2\pi} \left( \frac{\partial \Phi_M(\phi)}{\partial \phi} \right)^2 d\phi \right\} \nonumber \\ &=& A_n^2 a \left\{ J_M^{\prime 2}(\chi_n) k_{c,n}^2 \frac{2\pi}{\epsilon_M} + J_M^2(\chi_n) \frac{1}{a^2} M^2 \frac{2\pi}{\epsilon_M} \right\} \nonumber \\ &=& A_n^2 \frac{2\pi}{\epsilon_M} \frac{1}{a} \left\{ \chi_n^2 J_M^{\prime 2}(\chi_n) + M^2 J_M^2(\chi_n) \right\} \end{eqnarray} ここで, \begin{align} &\int_0^{2\pi} \Phi^2_M (\phi) d\phi = \frac{2\pi}{\epsilon_M} \\ &\int_0^{2\pi} \left( \frac{\partial \Phi_M(\phi)}{\partial \phi} \right)^2 d\phi = M^2 \frac{2\pi}{\epsilon_M} \end{align} 両者ともTEモードのとき,$J_M'(\chi_n') =0$ より, \begin{eqnarray} \oint_\sigma (\nabla_t \Psi_n^{\TE}) \cdot (\nabla_t \Psi_n^{\TE}) d\sigma &=& (A_n^{\TE})^2 \frac{2\pi}{\epsilon_M} \frac{1}{a} \cdot M^2 J_M^2(\chi_n') \nonumber \\ &=& \frac{\epsilon _M}{\pi \big( \chi^{\prime 2}_n -M^2 \big) } \frac{1}{J_M^2 (\chi '_n)} \frac{2\pi}{\epsilon_M} \frac{1}{a} \cdot M^2 J_M^2(\chi_n') \nonumber \\ &=& \frac{1}{a} \frac{2M^2}{\chi^{\prime 2}_n -M^2} \end{eqnarray} よって, \begin{eqnarray} T_{I,nn}^{\TETE} &=& \iint_S \frac{\partial \VEC{e}_n^{\TE}}{\partial z} \cdot \VEC{e}_n^{\TE} dS \nonumber \\ &=& - \frac{1}{2} \frac{da}{dz} \oint_\sigma (\nabla_t \Psi_n^{\TE}) \cdot (\nabla_t \Psi_n^{\TE}) \ d\sigma \nonumber \\ &=& - \frac{1}{a} \frac{da}{dz} \frac{M^2}{\chi^{\prime 2}_n -M^2} \end{eqnarray} また,両者ともTMモードのとき,$J_M(\chi_n) =0$より, \begin{eqnarray} \oint_\sigma (\nabla_t \Psi_n^{\TM}) \cdot (\nabla_t \Psi_n^{\TM}) d\sigma &=& (A_n^{\TM})^2 \frac{2\pi}{\epsilon_M} \frac{1}{a} \cdot \chi_n^2 J_M^{\prime 2}(\chi_n) \nonumber \\ &=& \frac{\epsilon_M}{\pi} \frac{1}{\chi_n^2 J_M^{\prime 2}(\chi_n)} \frac{2\pi}{\epsilon_M} \frac{1}{a} \cdot \chi_n^2 J_M^{\prime 2}(\chi_n) \nonumber \\ &=& \frac{2}{a} \end{eqnarray} よって, \begin{eqnarray} T_{I,nn}^{\TMTM} &=& \iint_S \frac{\partial \VEC{e}_n^{\TM}}{\partial z} \cdot \VEC{e}_n^{\TM} dS \nonumber \\ &=& - \frac{1}{2} \frac{da}{dz} \oint_\sigma (\nabla_t \Psi_n^{\TM}) \cdot (\nabla_t \Psi_n^{\TM}) \ d\sigma \nonumber \\ &=& - \frac{1}{a} \frac{da}{dz} \end{eqnarray} 比較のため,面積分表示の式でも求め,同様の結果が得られることを確認する.まず, $a=a(z)$として, \begin{gather} \frac{\partial k_{c,n}}{\partial z} = \frac{\partial a}{\partial z} \frac{\partial k_{c,n}}{\partial a} = \frac{\partial a}{\partial z} \frac{\partial}{\partial a} \left( \frac{\chi_n}{a} \right) = -\frac{da}{dz} \frac{\chi_n}{a^2} = -\frac{1}{a} \frac{da}{dz} k_{c,n} \end{gather} \begin{gather} 2 k_{c,n} \frac{\partial k_{c,n}}{\partial z} \iint _S \Psi_l \Psi_n dS = 2 k_{c,n} \left( -\frac{1}{a} \frac{da}{dz} k_{c,n} \right) \frac{\delta_{ln}}{k_{c,n}^2} = -\frac{2}{a} \frac{da}{dz} \delta_{ln} \end{gather} $n=l$ のとき, \begin{eqnarray} T_{I,nn}^{\TETE} &=& (k_{c,n}^{\TE})^2 \iint _S \frac{\partial \Psi_n^{\TE}}{\partial z} \Psi_n^{\TE} dS \\ T_{I,nn}^{\TMTM} &=& (k_{c,n}^{\TM})^2 \iint _S \frac{\partial \Psi_n^{\TM}}{\partial z} \Psi_n^{\TM} dS - \frac{2}{a} \frac{da}{dz} \end{eqnarray} ここで,式\eqref{eq:Psin},式\eqref{eq:dPsindz}を再記して, \begin{align} &\Psi_n = A_n J_M(k_{c,n} \rho) \Phi_M (\phi) \\ &\frac{\partial \Psi_n}{\partial z} = A_n \left( - \frac{1}{a} \frac{da}{dz} k_{c,n} \right) \rho J_M'(k_{c,n}\rho) \Phi_M(\phi) \end{align} 面積分について,両者をまとめると, \begin{gather} \iint _S \frac{\partial \Psi_n}{\partial z} \Psi_n dS = -\frac{1}{a} \frac{da}{dz} A_n^2 k_{c,n} \int_0^a J_M'(k_{c,n}\rho) J_M(k_{c,n}\rho) \rho^2 d\rho \cdot \frac{2\pi}{\epsilon_M} \end{gather} ベッセル関数の積分については,まず, \begin{gather} \frac{d}{d\rho} \left\{ \rho^2 J_M^2(k_{c,n} \rho) \right\} = 2\rho J_M^2(k_{c,n} \rho) + \rho^2 \cdot 2 J_M(k_{c,n} \rho) J_M'(k_{c,n} \rho) k_{c,n} \end{gather} 不定積分して, \begin{eqnarray} &&\int \frac{d}{d\rho} \left\{ \rho^2 J_M^2(k_{c,n} \rho) \right\} d\rho \nonumber \\ &=& \rho^2 J_M^2(k_{c,n} \rho) \nonumber \\ &=& 2 \int \rho J_M^2(k_{c,n} \rho) d\rho + 2 k_{c,n} \int \rho^2 J_M(k_{c,n} \rho) J_M'(k_{c,n} \rho) d\rho \end{eqnarray} よって, \begin{gather} k_{c,n} \int \rho^2 J_M(k_{c,n} \rho) J_M'(k_{c,n} \rho) d\rho = \frac{1}{2} \rho^2 J_M^2(k_{c,n} \rho) - \int \rho J_M^2(k_{c,n} \rho) d\rho \end{gather} 右辺の第2項は不定積分公式 \begin{gather} \int \rho J_M^2(k_{c,n} \rho) d\rho = \frac{1}{2} \left\{ \rho^2 J_M^{\prime 2} (k_{c,n} \rho) + \left( \rho^2 - \frac{M^2}{k_{c,n}^2} \right) J_M^2 (k_{c,n} \rho) \right\} \end{gather} より, \begin{align} &k_{c,n} \int \rho^2 J_M(k_{c,n} \rho) J_M'(k_{c,n} \rho) d\rho \nonumber \\ &= -\frac{1}{2} \left\{ \rho^2 J_M^{\prime 2} (k_{c,n} \rho) - \frac{M^2}{k_{c,n}^2} J_M^2 (k_{c,n} \rho) \right\} \end{align} よって,新たに次の不定積分公式が得られる. \begin{align} &\int J_M(k_{c,n} \rho) J_M'(k_{c,n} \rho) \rho^2 d\rho \nonumber \\ &= \frac{1}{2 k_{c,n}^3} \Big\{ -(k_{c,n} \rho)^2 J_M^{\prime 2} (k_{c,n} \rho) + M^2 J_M^2 (k_{c,n} \rho) \Big\} \end{align} 半径$a$の円形導波管に対して定積分して, \begin{align} &\int_0^a J_M(k_{c,n} \rho) J_M'(k_{c,n} \rho) \rho^2 d\rho \nonumber \\ &= \frac{1}{2 k_{c,n}^3} \left[ -\chi_n^2 J_M^{\prime 2} (\chi_n) + M^2 \Big\{ J_M^2 (\chi_n) - J_M^2 (0) \Big\} \right] \end{align} 両者ともTE$_{Mn}$モードのとき($M \ne 0$), \begin{gather} \int J_M(k_{c,n}^{\TE} \rho) J_M'(k_{c,n}^{\TE} \rho) \rho^2 d\rho = \frac{M^2}{2 (k_{c,n}^{\TE})^3} J_M^2 (\chi_n') \end{gather} また,両者ともTM$_{Mn}$モードのとき, \begin{eqnarray} \int J_M(k_{c,n}^{\TM} \rho) J_M'(k_{c,n}^{\TM} \rho) \rho^2 d\rho &=& -\frac{\chi_n^2}{2 (k_{c,n}^{\TM})^3} J_M^{\prime 2} (\chi_n) \nonumber \\ &=& -\frac{a^2}{2 k_{c,n}^{\TM}} J_M^{\prime 2} (\chi_n) \end{eqnarray} よって, \begin{eqnarray} T_{I,nn}^{\TETE} &=& (k_{c,n}^{\TE})^2 \iint _S \frac{\partial \Psi_n^{\TE}}{\partial z} \Psi_n^{\TE} dS \nonumber \\ &=& (k_{c,n}^{\TE})^2 \left( -\frac{1}{a} \frac{da}{dz} (A_n^{\TE})^2 k_{c,n}^{\TE} \right) \frac{M^2}{2 (k_{c,n}^{\TE})^3} J_M^2 (\chi_n') \frac{2\pi}{\epsilon_M} \nonumber \\ &=& -(A_n^{\TE})^2 \frac{1}{a} \frac{da}{dz} M^2 J_M^2 (\chi_n') \frac{\pi}{\epsilon_M} \nonumber \\ &=& -\frac{\epsilon _M}{\pi \big( \chi^{\prime 2}_n -M^2 \big) } \frac{1}{J_M^2 (\chi '_n)} \frac{1}{a} \frac{da}{dz} M^2 J_M^2 (\chi_n') \frac{\pi}{\epsilon_M} \nonumber \\ &=& - \frac{1}{a} \frac{da}{dz} \frac{M^2}{\chi^{\prime 2}_n -M^2} \end{eqnarray} 線積分表示の式より求めた結果と一致する. また, \begin{eqnarray} T_{I,nn}^{\TMTM} &=& (k_{c,n}^{\TM})^2 \iint _S \frac{\partial \Psi_n^{\TM}}{\partial z} \Psi_n^{\TM} dS - \frac{2}{a} \frac{da}{dz} \nonumber \\ &=& (k_{c,n}^{\TM})^2 \left( -\frac{1}{a} \frac{da}{dz} (A_n^{\TM})^2 k_{c,n}^{\TM} \right) \left( -\frac{\chi_n^2}{2 (k_{c,n}^{\TM})^3} J_M^{\prime 2} (\chi_n) \right) \frac{2\pi}{\epsilon_M} \nonumber \\ &&- \frac{2}{a} \frac{da}{dz} \nonumber \\ &=& (A_n^{\TM})^2 \frac{1}{a} \frac{da}{dz} \chi_n^2 J_M^{\prime 2} (\chi_n) \frac{\pi}{\epsilon_M} - \frac{2}{a} \frac{da}{dz} \nonumber \\ &=& \frac{\epsilon_M}{\pi} \frac{1}{\chi_n^2 J_M^{\prime 2}(\chi_n)} \cdot \frac{1}{a} \frac{da}{dz} \chi_n^2 J_M^2 (\chi_n) \frac{\pi}{\epsilon_M} - \frac{2}{a} \frac{da}{dz} \nonumber \\ &=& \frac{1}{a} \frac{da}{dz} - \frac{2}{a} \frac{da}{dz} \nonumber \\ &=& -\frac{1}{a} \frac{da}{dz} \end{eqnarray} これについても,線積分表示の式より求めた結果と一致する.

伝送方程式の係数(TE-TM, TM-TE)

 TMモードの電界モード関数の微分とTEモードの場合,先に示したように $\VEC{e}_l^{\TM} \to \frac{\partial \VEC{e}_l^{\TM}}{\partial z}$とすると, $\Psi_l^{\TM} \to \frac{\partial \Psi_l^{\TM}}{\partial z}$より ($ J_M'(\chi_n') =0$,$J_M(\chi_l) =0$), \begin{eqnarray} %&&\iint_S \VEC{e}_n^{\TE} \cdot \frac{\partial \VEC{e}_l^{\TM}}{\partial z} \ dS %\nonumber \\ %&=& -\iint_S \left( \nabla_t \Psi_n^{\TE} \times \nabla_t \frac{\partial \Psi_l^{\TM}}{\partial z} \right) \cdot \VEC{a}_z dS %\nonumber \\ %&=& -\oint_C \Psi_n^{\TE} \frac{\partial}{\partial \sigma} %\left( \frac{\partial \Psi_l^{\TM}}{\partial z} \right) d\sigma %\nonumber \\ \oint_C \frac{\partial \Psi_n^{\TE}}{\partial \sigma} \frac{\partial \Psi_l^{\TM}}{\partial z} d\sigma = A_n^{\TE} J_M(\chi_n') A_l^{\TM} \frac{da}{dz} k_{c,l} J_M'(\chi_l) \int_0^{2\pi} \frac{d \Phi_M^{\TE}(\phi)}{ad\phi} \Phi_M^{\TM}(\phi) a d\phi \end{eqnarray} ここで, \begin{eqnarray} \int_0^{2\pi} \frac{d \Phi_M^{\TE}(\phi)}{d\phi} \Phi_M^{\TM}(\phi) d\phi &=& \int_0^{2\pi} M \begin{matrix} \cos (M \phi) \\ -\sin (M \phi) \end{matrix} \begin{matrix} (-\cos (M \phi)) \\ \sin (M \phi) \end{matrix} d\phi \nonumber \\ &=& -\frac{2M \pi}{\epsilon_M} \end{eqnarray} TE$_{Mn}$モードの正規化係数$A_n^{\TE}$, TM$_{Ml}$モードの正規化係数$A_l^{\TM}$ \begin{eqnarray} A_n^{\TE} &=& \sqrt{\frac{\epsilon _M}{\pi \big( \chi^{\prime 2}_n -M^2 \big) }} \ \frac{1}{J_M (\chi '_n)} \\ A_l^{\TM} &=& \sqrt{\frac{\epsilon_M}{\pi}} \frac{1}{\chi_l J_M'(\chi_l)} \end{eqnarray} より, \begin{gather} A_n^{\TE} A_l^{\TM} = \frac{\epsilon_M}{\pi} \frac{1}{\sqrt{ \chi^{\prime 2}_n -M^2}} \frac{1}{J_M (\chi '_n)} \frac{1}{\chi_l J_M'(\chi_l)} \end{gather} これより, \begin{eqnarray} %\iint_S \VEC{e}_n^{\TE} \cdot \frac{\partial \VEC{e}_l^{\TM}}{\partial z} \ dS -T_{V,ln}^{\TMTE} = T_{I,nl}^{\TETM} &=& \frac{\epsilon_M}{\pi} \frac{1}{\sqrt{ \chi^{\prime 2}_n -M^2}} \frac{1}{a} \frac{da}{dz} \left( -\frac{2M\pi}{\epsilon_M} \right) \nonumber \\ &=& -\frac{1}{a} \frac{da}{dz} \frac{2M}{\sqrt{ \chi^{\prime 2}_n -M^2}} \end{eqnarray}

伝送方程式

以上をまとめると, \begin{align} &T_{I,nl}^{\TETM} = -T_{V,ln}^{\TMTE} = -\frac{1}{a} \frac{da}{dz} \frac{2M}{\sqrt{ \chi^{\prime 2}_n -M^2}} \\ &T_{I,nn}^{\TETE} = -T_{V,nn}^{\TETE} = - \frac{1}{a} \frac{da}{dz} \frac{M^2}{\chi^{\prime 2}_n -M^2} \\ &T_{I,nn}^{\TMTM} = -T_{V,nn}^{\TMTM} = - \frac{1}{a} \frac{da}{dz} \\ &T_{I,ln}^{\TETE} = -T_{V,nl}^{\TETE} = -\frac{1}{a} \frac{da}{dz} \frac{2\chi_l^{\prime 2}}{\chi_n^{\prime 2} - \chi_l^{\prime 2}} \sqrt{\frac{\chi_n^{\prime 2}-M^2}{\chi_l^{\prime 2}-M^2}} \ \ \ (n \ne l) \\ &T_{I,ln}^{\TMTM} = -T_{V,nl}^{\TMTM} = -\frac{1}{a} \frac{da}{dz} \frac{2\chi_n^2}{\chi_n^2 - \chi_l^2} \ \ \ (n \ne l) \end{align} $n$ と $l$ を入れ換えて, \begin{align} &T_{I,ln}^{\TETM} = -T_{V,nl}^{\TMTE} = -\frac{1}{a} \frac{da}{dz} \frac{2M}{\sqrt{ \chi^{\prime 2}_l -M^2}} \\ &T_{I,nl}^{\TETE} = -T_{V,ln}^{\TETE} = -\frac{1}{a} \frac{da}{dz} \frac{2\chi_n^{\prime 2}}{\chi_l^{\prime 2} - \chi_n^{\prime 2}} \sqrt{\frac{\chi_l^{\prime 2}-M^2}{\chi_n^{\prime 2}-M^2}} \ \ \ (l \ne n) \\ &T_{I,nl}^{\TMTM} = -T_{V,ln}^{\TMTM} = -\frac{1}{a} \frac{da}{dz} \frac{2\chi_l^2}{\chi_l^2 - \chi_n^2} \ \ \ (l \ne n) \end{align} 展開モード数をTE,TMについて$N_{\TE}$,$N_{\TM}$とすると, \begin{align} &\frac{dV^{\TM}_l}{dz} = - Z^{\TM}_l I^{\TM}_l - \sum _n^{N_{\TM}} T^{\TMTM}_{V,ln} V^{\TM}_n - \sum _n^{N_{\TE}} T^{\TMTE}_{V,ln} V^{\TE}_n \nonumber \\ &(l=1,2, \cdots, N_{\TM}) \\ &\frac{dI^{\TM}_l}{dz} = - Y V^{\TM}_l + \sum _n^{N_{\TM}} T^{\TMTM}_{V,nl} I^{\TM}_n \ \ \ (l=1,2, \cdots, N_{\TM}) \\ &\frac{dV^{\TE}_l}{dz} = - Z I^{\TE}_l - \sum _n^{N_{\TE}} T^{\TETE}_{V,ln} V^{\TE}_n \ \ \ (l=1,2, \cdots, N_{\TE}) \\ &\frac{dI^{\TE}_l}{dz} = - Y^{\TE}_l V_l^{\TE} + \sum _n^{N_{\TE}} T^{\TETE}_{V,nl} I^{\TE}_n + T_{V,-l}^{\TMTE} \sum _n^{N_{\TM}} I^{\TM}_n \nonumber \\ &(l=1,2, \cdots, N_{\TE}) \end{align} ここで, \begin{align} &T_{V,ln}^{\TMTM} = \frac{1}{a} \frac{da}{dz} \frac{2\chi_l^2}{\chi_l^2 - \chi_n^2} \ \ \ (l \ne n) \\ &T_{V,ll}^{\TMTM} = \frac{1}{a} \frac{da}{dz} \\ &T_{V,ln}^{\TMTE} = \frac{1}{a} \frac{da}{dz} \frac{2M}{\sqrt{ \chi^{\prime 2}_n -M^2}} \\ &T_{V,nl}^{\TMTM} = \frac{1}{a} \frac{da}{dz} \frac{2\chi_n^2}{\chi_n^2 - \chi_l^2} \ \ \ (n \ne l) \\ &T_{V,ln}^{\TETE} = \frac{1}{a} \frac{da}{dz} \frac{2\chi_n^{\prime 2}}{\chi_l^{\prime 2} - \chi_n^{\prime 2}} \sqrt{\frac{\chi_l^{\prime 2}-M^2}{\chi_n^{\prime 2}-M^2}} \ \ \ (l \ne n) \\ &T_{V,ll}^{\TETE} = \frac{1}{a} \frac{da}{dz} \frac{M^2}{\chi^{\prime 2}_l -M^2} \\ &T_{V,nl}^{\TETE} = \frac{1}{a} \frac{da}{dz} \frac{2\chi_l^{\prime 2}}{\chi_n^{\prime 2} - \chi_l^{\prime 2}} \sqrt{\frac{\chi_n^{\prime 2}-M^2}{\chi_l^{\prime 2}-M^2}} \ \ \ (n \ne l) \\ &T_{V,nl}^{\TMTE} = \frac{1}{a} \frac{da}{dz} \frac{2M}{\sqrt{ \chi^{\prime 2}_l -M^2}} \equiv T_{V,-l}^{\TMTE} \end{align}