4.4 伝送方程式の係数(TE-TE, TM-TM)

面積分による計算

 伝送方程式の係数\(T_{I,ln}\),\(T_{V,nl}\)は, \begin{gather} T_{I,ln} = \iint \frac{\partial \VEC{e}_n}{\partial z} \cdot \VEC{e}_{l} dS = \iint \frac{\partial \VEC{h}_{n} }{\partial z} \cdot \VEC{h}_{l} dS = -T_{V,nl} \end{gather} 電界,磁界のモード関数の関係 \(\VEC{e} = \VEC{h} \times \VEC{a}_z\), \(\VEC{h} = \VEC{a}_z \times \VEC{e}\) より, \begin{eqnarray} \frac{\partial \VEC{e}}{\partial z} &=& \frac{\partial}{\partial z} \Big( \VEC{h} \times \VEC{a}_z \Big) = \frac{\partial \VEC{h}}{\partial z} \times \VEC{a}_z \\ \frac{\partial \VEC{h}}{\partial z} &=& \frac{\partial}{\partial z} \Big( \VEC{a}_z \times \VEC{e} \Big) = \VEC{a}_z \times \frac{\partial \VEC{e}}{\partial z} \end{eqnarray} これより, \begin{eqnarray} \frac{\partial \VEC{e}_n}{\partial z} \cdot \VEC{e}_{l} &=& \frac{\partial \VEC{e}_n}{\partial z} \cdot ( \VEC{h}_l \times \VEC{a}_z) \nonumber \\ &=& \VEC{h}_l \cdot \left(\VEC{a}_z \times \frac{\partial \VEC{e}_n}{\partial z} \right) \nonumber \\ &=& \VEC{h}_l \cdot \frac{\partial \VEC{h}_n}{\partial z} = \frac{\partial \VEC{h}_n}{\partial z} \cdot \VEC{h}_l \end{eqnarray} ここで,モード関数はスカラ関数\(\Psi^{\TE}\),\(\Psi^{\TM}\)より, \begin{eqnarray} \VEC{h}^{\TE} &=& - \nabla_t \Psi^{\TE} \\ \VEC{e}^{\TM} &=& - \nabla_t \Psi^{\TM} \end{eqnarray} よって,電界,磁界のモード関数の関係は, \begin{eqnarray} \VEC{e}^{\TE} &=& \VEC{h}^{\TE} \times \VEC{a}_z = - \nabla_t \Psi^{\TE} \times \VEC{a}_z \\ \VEC{h}^{\TM} &=& \VEC{a}_z \times \VEC{e}^{\TM} = \VEC{a}_z \times (- \nabla_t \Psi^{\TE} ) \end{eqnarray} これより,両者ともTEモードの場合, \begin{eqnarray} \frac{\partial \VEC{e}_n^{\TE}}{\partial z} \cdot \VEC{e}_{l}^{\TE} &=& \frac{\partial}{\partial z} \Big( \VEC{a}_z \times \nabla_t \Psi_n^{\TE} \Big) \cdot \VEC{e}_{l}^{\TE} \nonumber \\ &=& \left( \VEC{a}_z \times \nabla_t \frac{\partial \Psi_n^{\TE}}{\partial z} \right) \cdot \VEC{e}_{l}^{\TE} \nonumber \\ &=& \Big( \VEC{e}_{l}^{\TE} \times \VEC{a}_z \Big) \cdot \nabla_t \frac{\partial \Psi_n^{\TE}}{\partial z} \nonumber \\ &=& -\VEC{h}_{l}^{\TE} \cdot \nabla_t \frac{\partial \Psi_n^{\TE}}{\partial z} \nonumber \\ &=& \Big( \nabla_t \Psi_l^{\TE} \Big) \cdot \left( \nabla_t \frac{\partial \Psi_n^{\TE}}{\partial z} \right) \end{eqnarray} 両者ともTMモードの場合も,次のように同じ形となる. \begin{eqnarray} \frac{\partial \VEC{e}_n^{\TM}}{\partial z} \cdot \VEC{e}_{l}^{\TM} &=& \frac{\partial}{\partial z} \Big( - \nabla_t \Psi_n^{\TM} \Big) \cdot \Big( - \nabla_t \Psi_l^{\TM} \Big) \nonumber \\ &=& \Big( \nabla_t \Psi_l^{\TM} \Big) \cdot \left( \nabla_t \frac{\partial \Psi_n^{\TM}}{\partial z} \right) \end{eqnarray} 比較のため,TEモードとTMモードの場合を求めてみると, \begin{eqnarray} \frac{\partial \VEC{e}_n^{\TE}}{\partial z} \cdot \VEC{e}_{l}^{\TM} &=& \frac{\partial}{\partial z} \Big( -\nabla_t \Psi_n^{\TE} \times \VEC{a}_z \Big) \cdot \Big( - \nabla_t \Psi_l^{\TM} \Big) \nonumber \\ &=& \left( \nabla_t \frac{\partial \Psi_n^{\TE}} {\partial z} \times \VEC{a}_z \right) \cdot \Big( \nabla_t \Psi_l^{\TM} \Big) \nonumber \\ &=& \left\{ \Big( \nabla_t \Psi_l^{\TM} \Big) \times \left( \nabla_t \frac{\partial \Psi_n^{\TE}} {\partial z} \right) \right\} \cdot \VEC{a}_z \nonumber \\ &=& -\left\{ \left( \nabla_t \frac{\partial \Psi_n^{\TE}} {\partial z} \right) \times \Big( \nabla_t \Psi_l^{\TM} \Big) \right\} \cdot \VEC{a}_z \\ \frac{\partial \VEC{e}_n^{\TM}}{\partial z} \cdot \VEC{e}_{l}^{\TE} &=& \frac{\partial}{\partial z} \Big( - \nabla_t \Psi_n^{\TM} \Big) \cdot \Big( -\nabla_t \Psi_l^{\TE} \times \VEC{a}_z \Big) \nonumber \\ &=& \left( \nabla_t \frac{\partial \Psi_n^{\TM}} {\partial z} \right) \cdot \Big( \nabla_t \Psi_l^{\TE} \times \VEC{a}_z \Big) \nonumber \\ &=& \left\{ \left( \nabla_t \frac{\partial \Psi_n^{\TM}} {\partial z} \right) \times \Big( \nabla_t \Psi_l^{\TE} \Big) \right\} \cdot \VEC{a}_z \end{eqnarray}  さて,伝送方程式の係数\(T_{I,ln}\)をスカラ関数より求めることを考えよう. 両者とも同じTEモード(TE-TE),および両者とも同じTMモード(TM-TM)の場合, \begin{gather} T_{I,ln} = \iint \frac{\partial \VEC{e}_n}{\partial z} \cdot \VEC{e}_{l} dS = \iint \left( \nabla_t \frac{\partial \Psi_n}{\partial z} \right) \cdot \Big( \nabla_t \Psi_l \Big) dS \end{gather} 2次元演算子\(\nabla _t\)を用いたグリーンの第一定理 \begin{gather} \iint _S \left( \Phi \nabla _t^2 \Psi + \nabla _t \Phi \cdot \nabla _t \Psi \right) dS = \oint _C \Phi \frac{\partial \Psi}{\partial n} d\sigma \end{gather} より, \begin{gather} \iint _S \nabla _t \Phi \cdot \nabla _t \Psi dS = -\iint _S \Phi \nabla _t^2 \Psi dS + \oint _C \Phi \frac{\partial \Psi}{\partial n} d\sigma \end{gather} いま,\(\Phi \to \frac{\partial \Psi_n}{\partial z}\),\(\Psi \to \Psi_l\)とおくと, \begin{eqnarray} T_{I,ln} &=& \iint \left( \nabla_t \frac{\partial \Psi_n}{\partial z} \right) \cdot \Big( \nabla_t \Psi_l \Big) dS \nonumber \\ &=& -\iint _S \frac{\partial \Psi_n}{\partial z} \nabla _t^2 \Psi_l dS + \oint _C \frac{\partial \Psi_n}{\partial z} \frac{\partial \Psi_l}{\partial n} d\sigma \end{eqnarray} スカラヘルムホルツ方程式 \(\nabla _t^2 \Psi_l + k_{c,l}^2 \Psi_l = 0\) を用いれば, \begin{eqnarray} T_{I,ln} &=& -\iint _S \frac{\partial \Psi_n}{\partial z} (-k_{c,l}^2 \Psi_l) dS + \oint _C \frac{\partial \Psi_n}{\partial z} \frac{\partial \Psi_l}{\partial n} d\sigma \nonumber \\ &=& k_{c,l}^2 \iint _S \frac{\partial \Psi_n}{\partial z} \Psi_l dS + \oint _C \frac{\partial \Psi_n}{\partial z} \frac{\partial \Psi_l}{\partial n} d\sigma \label{eq:1} \end{eqnarray} 両者ともTEモードのとき,境界条件 \(\frac{\partial \Psi_l^{\TE}}{\partial n} = 0\) (on C) より,面積分を用いて, \begin{gather} T_{I,ln}^{\mathrm{TE:TE}} = (k_{c,l}^{\TE})^2 \iint _S \frac{\partial \Psi_n^{\TE}}{\partial z} \Psi_l^{\TE} dS \label{eq:TIlnTETE} \end{gather} 上式は,\(n=l\),および\(n \ne l\)の両方に対して計算が行えるが,面積分が必要となる.また,グリーンの第一定理に \(\Phi \to \Psi_l\),\(\Psi \to \frac{\partial \Psi_n}{\partial z}\) として求めれば, \begin{eqnarray} T_{I,ln} &=& \iint \Big( \nabla_t \Psi_l \Big) \cdot \left( \nabla_t \frac{\partial \Psi_n}{\partial z} \right) dS \nonumber \\ &=& -\iint _S \Psi_l \nabla _t^2 \frac{\partial \Psi_n}{\partial z} dS + \oint _C \Psi_l \frac{\partial}{\partial n} \left( \frac{\partial \Psi_n}{\partial z} \right) d\sigma \end{eqnarray} スカラヘルムホルツ方程式 \(\nabla _t^2 \Psi_n + k_{c,n}^2 \Psi_n = 0\) の両辺を\(z\)で微分すると, \begin{eqnarray} \frac{\partial}{\partial z} \Big( \nabla _t^2 \Psi_n + k_{c,n}^2 \Psi_n \Big) &=& \nabla _t^2 \frac{\partial \Psi_n}{\partial z} + 2 k_{c,n} \frac{\partial k_{c,n}}{\partial z} \Psi_n + k_{c,n}^2 \frac{\partial \Psi_n}{\partial z} \nonumber \\ &=& 0 \end{eqnarray} これより, \begin{eqnarray} T_{I,ln} &=& \iint _S \Psi_l \left( 2 k_{c,n} \frac{\partial k_{c,n}}{\partial z} \Psi_n + k_{c,n}^2 \frac{\partial \Psi_n}{\partial z} \right) dS \nonumber \\ &&+ \oint _C \Psi_l \frac{\partial}{\partial n} \left( \frac{\partial \Psi_n}{\partial z} \right) d\sigma \nonumber \\ &=& 2 k_{c,n} \frac{\partial k_{c,n}}{\partial z} \iint _S \Psi_l \Psi_n dS + k_{c,n}^2 \iint _S \Psi_l \frac{\partial \Psi_n}{\partial z} dS \nonumber \\ &&+ \oint _C \Psi_l \frac{\partial}{\partial n} \left( \frac{\partial \Psi_n}{\partial z} \right) d\sigma \end{eqnarray} ここで, \begin{gather} \iint_S \VEC{e}_l \cdot \VEC{e}_n dS = k_{c,n}^2 \iint_S \Psi_l \Psi_n dS = \delta_{ln} \end{gather} これより, \begin{gather} T_{I,ln} = \frac{2}{k_{c,n}} \frac{\partial k_{c,n}}{\partial z} \delta_{ln} + k_{c,n}^2 \iint _S \Psi_l \frac{\partial \Psi_n}{\partial z} dS + \oint _C \Psi_l \frac{\partial}{\partial n} \left( \frac{\partial \Psi_n}{\partial z} \right) d\sigma \label{eq:2} \end{gather} 両者ともTMモードのとき,TMモードの境界条件\(\Psi_l^{\TM} = 0\) (on C) より, \begin{gather} T_{I,ln}^{\mathrm{TM:TM}} = (k_{c,n}^{\TM})^2 \iint _S \Psi_l^{\TM} \frac{\partial \Psi_n^{\TM}}{\partial z} dS + \frac{2}{k_{c,n}^{\TM}} \frac{\partial k_{c,n}^{\TM}}{\partial z} \delta_{ln} \label{eq:TIlnTMTM} \end{gather} 両者ともTMモードの場合も,\(n=l\)および\(n \ne l\)の両方に対して計算が行えるが,面積分が必要である.

面積分から周回積分への変換

 次に,面積分を周回積分に変換することを考える.まず,式\eqref{eq:1},式\eqref{eq:2}より, \begin{eqnarray} \iint _S \Psi_l \frac{\partial \Psi_n}{\partial z} dS &=& \frac{1}{k_{c,l}^2} \left( T_{I,ln} - \oint _C \frac{\partial \Psi_n}{\partial z} \frac{\partial \Psi_l}{\partial n} d\sigma \right) \nonumber \\ &=& \frac{1}{k_{c,n}^2} \left( T_{I,ln} - \oint _C \Psi_l \frac{\partial}{\partial n} \left( \frac{\partial \Psi_n}{\partial z} \right) d\sigma - \frac{2}{k_{c,n}} \frac{\partial k_{c,n}}{\partial z} \delta_{ln}\right) \nonumber \end{eqnarray} \begin{align} &k_{c,n}^2 \left( T_{I,ln} - \oint _C \frac{\partial \Psi_n}{\partial z} \frac{\partial \Psi_l}{\partial n} d\sigma \right) \nonumber \\ &= k_{c,l}^2 \left( T_{I,ln} - \oint _C \Psi_l \frac{\partial}{\partial n} \left( \frac{\partial \Psi_n}{\partial z} \right) d\sigma - \frac{2}{k_{c,n}} \frac{\partial k_{c,n}}{\partial z} \delta_{ln} \right) \end{align} よって, \begin{eqnarray} T_{I,ln} &=& \frac{1}{k_{c,l}^2 - k_{c,n}^2} \left\{ -k_{c,n}^2 \oint _C \frac{\partial \Psi_n}{\partial z} \frac{\partial \Psi_l}{\partial n} d\sigma \right. \nonumber \\ &&\left. + k_{c,l}^2 \oint _C \Psi_l \frac{\partial}{\partial n} \left( \frac{\partial \Psi_n}{\partial z} \right) d\sigma \right. \left. + \frac{2k^2_{c,l}}{k_{c,n}} \frac{\partial k_{c,n}}{\partial z} \delta_{ln} \right\} \end{eqnarray} モードの次数が異なる場合(\(n \ne l\)), \(k_{c,n}^2 \ne k_{c,l}^2\),\(\delta_{ln} = 0\)(モード直交性)より, \begin{eqnarray} T_{I,ln} &=& \frac{1}{k_{c,l}^2 - k_{c,n}^2} \left\{ -k_{c,n}^2 \oint _C \frac{\partial \Psi_n}{\partial z} \frac{\partial \Psi_l}{\partial n} d\sigma \right. \nonumber \\ &&\left. + k_{c,l}^2 \oint _C \Psi_l \frac{\partial}{\partial n} \left( \frac{\partial \Psi_n}{\partial z} \right) d\sigma \right\} \end{eqnarray} 両者ともTEモードのとき(\(k_{c,l}^{\TE} = \frac{\chi_l'}{a}\), \(k_{c,n}^{\TE} = \frac{\chi_n'}{a}\)), \(\frac{\partial \Psi_l^{\TE}}{\partial n} =0\), \(\frac{\partial \Psi_n^{\TE}}{\partial n} =0\) (on C) ゆえ, \begin{gather} T_{I,ln}^{\TETE} = \frac{(k_{c,l}^{\TE})^2}{(k_{c,l}^{\TE})^2 - (k_{c,n}^{\TE})^2} \oint _C \Psi_l^{\TE} \frac{\partial}{\partial n} \left( \frac{\partial \Psi_n^{\TE}}{\partial z} \right) d\sigma \label{eq:TET} \end{gather} また,両者ともTMモードのとき(\(k_{c,l}^{\TM} = \frac{\chi_l}{a}\), \(k_{c,n}^{\TM} = \frac{\chi_n}{a}\)), \(\Psi_l^{\TM}=0\),\(\Psi_n^{\TM}=0\) (on C) ゆえ, \begin{gather} T_{I,ln}^{\TMTM} = \frac{-(k_{c,n}^{\TM})^2}{(k_{c,l}^{\TM})^2 - (k_{c,n}^{\TM})^2} \oint _C \frac{\partial \Psi_n^{\TM}}{\partial z} \frac{\partial \Psi_l^{\TM}}{\partial n} d\sigma \label{eq:TMT} \end{gather}  同じモードを計算する場合,モードの次数が等しい\(n=l\)とおいて, 曲線テーパ構造に対してガウスの発散定理を適用すると次式が得られる. \begin{gather} \iint_S \frac{\partial \VEC{e}_n}{\partial z} \cdot \VEC{e}_n dS = - \frac{1}{2} \oint_\sigma \tan \vartheta \ \VEC{e}_n \cdot \VEC{e}_n \ d\sigma \end{gather} 両者ともTEモードのとき, \begin{eqnarray} \VEC{e}_n^{\TE} \cdot \VEC{e}_n^{\TE} = \VEC{h}_n^{\TE} \cdot \VEC{h}_n^{\TE} &=& (-\nabla_t \Psi_n^{\TE}) \cdot (-\nabla_t \Psi_n^{\TE}) \nonumber \\ &=& (\nabla_t \Psi_n^{\TE}) \cdot (\nabla_t \Psi_n^{\TE}) \end{eqnarray} また,両者ともTMモードのとき, \begin{eqnarray} \VEC{h}_n^{\TM} \cdot \VEC{h}_n^{\TM} = \VEC{e}_n^{\TM} \cdot \VEC{e}_n^{\TM} &=& (-\nabla_t \Psi_n^{\TM}) \cdot (-\nabla_t \Psi_n^{\TM}) \nonumber \\ &=& (\nabla_t \Psi_n^{\TM}) \cdot (\nabla_t \Psi_n^{\TM}) \end{eqnarray} したがって, \begin{align} &\iint_S \frac{\partial \VEC{e}_n^{\TE}}{\partial z} \cdot \VEC{e}_n^{\TE} dS = - \frac{1}{2} \oint_\sigma \tan \vartheta \ (\nabla_t \Psi_n^{\TE}) \cdot (\nabla_t \Psi_n^{\TE}) \ d\sigma \\ &\iint_S \frac{\partial \VEC{e}_n^{\TM}}{\partial z} \cdot \VEC{e}_n^{\TM} dS = - \frac{1}{2} \oint_\sigma \tan \vartheta \ (\nabla_t \Psi_n^{\TM}) \cdot (\nabla_t \Psi_n^{\TM}) \ d\sigma \end{align}