4.4 伝送方程式の係数(TE-TE, TM-TM)
面積分による計算
伝送方程式の係数\(T_{I,ln}\),\(T_{V,nl}\)は,
\begin{gather}
T_{I,ln}
= \iint \frac{\partial \VEC{e}_n}{\partial z} \cdot \VEC{e}_{l} dS
= \iint \frac{\partial \VEC{h}_{n} }{\partial z} \cdot \VEC{h}_{l} dS
= -T_{V,nl}
\end{gather}
電界,磁界のモード関数の関係
\(\VEC{e} = \VEC{h} \times \VEC{a}_z\),
\(\VEC{h} = \VEC{a}_z \times \VEC{e}\)
より,
\begin{eqnarray}
\frac{\partial \VEC{e}}{\partial z}
&=& \frac{\partial}{\partial z} \Big( \VEC{h} \times \VEC{a}_z \Big)
= \frac{\partial \VEC{h}}{\partial z} \times \VEC{a}_z
\\
\frac{\partial \VEC{h}}{\partial z}
&=& \frac{\partial}{\partial z} \Big( \VEC{a}_z \times \VEC{e} \Big)
= \VEC{a}_z \times \frac{\partial \VEC{e}}{\partial z}
\end{eqnarray}
これより,
\begin{eqnarray}
\frac{\partial \VEC{e}_n}{\partial z} \cdot \VEC{e}_{l}
&=& \frac{\partial \VEC{e}_n}{\partial z} \cdot ( \VEC{h}_l \times \VEC{a}_z)
\nonumber \\
&=& \VEC{h}_l \cdot \left(\VEC{a}_z \times \frac{\partial \VEC{e}_n}{\partial z} \right)
\nonumber \\
&=& \VEC{h}_l \cdot \frac{\partial \VEC{h}_n}{\partial z}
= \frac{\partial \VEC{h}_n}{\partial z} \cdot \VEC{h}_l
\end{eqnarray}
ここで,モード関数はスカラ関数\(\Psi^{\TE}\),\(\Psi^{\TM}\)より,
\begin{eqnarray}
\VEC{h}^{\TE} &=& - \nabla_t \Psi^{\TE}
\\
\VEC{e}^{\TM} &=& - \nabla_t \Psi^{\TM}
\end{eqnarray}
よって,電界,磁界のモード関数の関係は,
\begin{eqnarray}
\VEC{e}^{\TE}
&=& \VEC{h}^{\TE} \times \VEC{a}_z
= - \nabla_t \Psi^{\TE} \times \VEC{a}_z
\\
\VEC{h}^{\TM}
&=& \VEC{a}_z \times \VEC{e}^{\TM}
= \VEC{a}_z \times (- \nabla_t \Psi^{\TE} )
\end{eqnarray}
これより,両者ともTEモードの場合,
\begin{eqnarray}
\frac{\partial \VEC{e}_n^{\TE}}{\partial z} \cdot \VEC{e}_{l}^{\TE}
&=& \frac{\partial}{\partial z} \Big( \VEC{a}_z \times \nabla_t \Psi_n^{\TE} \Big)
\cdot \VEC{e}_{l}^{\TE}
\nonumber \\
&=& \left( \VEC{a}_z \times \nabla_t \frac{\partial \Psi_n^{\TE}}{\partial z} \right)
\cdot \VEC{e}_{l}^{\TE}
\nonumber \\
&=& \Big( \VEC{e}_{l}^{\TE} \times \VEC{a}_z \Big)
\cdot \nabla_t \frac{\partial \Psi_n^{\TE}}{\partial z}
\nonumber \\
&=& -\VEC{h}_{l}^{\TE} \cdot \nabla_t \frac{\partial \Psi_n^{\TE}}{\partial z}
\nonumber \\
&=& \Big( \nabla_t \Psi_l^{\TE} \Big) \cdot
\left( \nabla_t \frac{\partial \Psi_n^{\TE}}{\partial z} \right)
\end{eqnarray}
両者ともTMモードの場合も,次のように同じ形となる.
\begin{eqnarray}
\frac{\partial \VEC{e}_n^{\TM}}{\partial z} \cdot \VEC{e}_{l}^{\TM}
&=& \frac{\partial}{\partial z} \Big( - \nabla_t \Psi_n^{\TM} \Big)
\cdot \Big( - \nabla_t \Psi_l^{\TM} \Big)
\nonumber \\
&=& \Big( \nabla_t \Psi_l^{\TM} \Big) \cdot
\left( \nabla_t \frac{\partial \Psi_n^{\TM}}{\partial z} \right)
\end{eqnarray}
比較のため,TEモードとTMモードの場合を求めてみると,
\begin{eqnarray}
\frac{\partial \VEC{e}_n^{\TE}}{\partial z} \cdot \VEC{e}_{l}^{\TM}
&=& \frac{\partial}{\partial z} \Big( -\nabla_t \Psi_n^{\TE} \times \VEC{a}_z \Big)
\cdot \Big( - \nabla_t \Psi_l^{\TM} \Big)
\nonumber \\
&=& \left( \nabla_t \frac{\partial \Psi_n^{\TE}} {\partial z} \times \VEC{a}_z \right)
\cdot \Big( \nabla_t \Psi_l^{\TM} \Big)
\nonumber \\
&=& \left\{ \Big( \nabla_t \Psi_l^{\TM} \Big) \times
\left( \nabla_t \frac{\partial \Psi_n^{\TE}} {\partial z} \right) \right\} \cdot \VEC{a}_z
\nonumber \\
&=& -\left\{ \left( \nabla_t \frac{\partial \Psi_n^{\TE}} {\partial z} \right) \times
\Big( \nabla_t \Psi_l^{\TM} \Big) \right\} \cdot \VEC{a}_z
\\
\frac{\partial \VEC{e}_n^{\TM}}{\partial z} \cdot \VEC{e}_{l}^{\TE}
&=& \frac{\partial}{\partial z} \Big( - \nabla_t \Psi_n^{\TM} \Big)
\cdot \Big( -\nabla_t \Psi_l^{\TE} \times \VEC{a}_z \Big)
\nonumber \\
&=& \left( \nabla_t \frac{\partial \Psi_n^{\TM}} {\partial z} \right)
\cdot \Big( \nabla_t \Psi_l^{\TE} \times \VEC{a}_z \Big)
\nonumber \\
&=& \left\{ \left( \nabla_t \frac{\partial \Psi_n^{\TM}} {\partial z} \right) \times
\Big( \nabla_t \Psi_l^{\TE} \Big) \right\} \cdot \VEC{a}_z
\end{eqnarray}
さて,伝送方程式の係数\(T_{I,ln}\)をスカラ関数より求めることを考えよう.
両者とも同じTEモード(TE-TE),および両者とも同じTMモード(TM-TM)の場合,
\begin{gather}
T_{I,ln}
= \iint \frac{\partial \VEC{e}_n}{\partial z} \cdot \VEC{e}_{l} dS
= \iint \left( \nabla_t \frac{\partial \Psi_n}{\partial z} \right) \cdot
\Big( \nabla_t \Psi_l \Big) dS
\end{gather}
2次元演算子\(\nabla _t\)を用いたグリーンの第一定理
\begin{gather}
\iint _S \left( \Phi \nabla _t^2 \Psi + \nabla _t \Phi \cdot \nabla _t \Psi \right) dS
= \oint _C \Phi \frac{\partial \Psi}{\partial n} d\sigma
\end{gather}
より,
\begin{gather}
\iint _S \nabla _t \Phi \cdot \nabla _t \Psi dS
= -\iint _S \Phi \nabla _t^2 \Psi dS
+ \oint _C \Phi \frac{\partial \Psi}{\partial n} d\sigma
\end{gather}
いま,\(\Phi \to \frac{\partial \Psi_n}{\partial z}\),\(\Psi \to \Psi_l\)とおくと,
\begin{eqnarray}
T_{I,ln}
&=& \iint \left( \nabla_t \frac{\partial \Psi_n}{\partial z} \right) \cdot
\Big( \nabla_t \Psi_l \Big) dS
\nonumber \\
&=& -\iint _S \frac{\partial \Psi_n}{\partial z} \nabla _t^2 \Psi_l dS
+ \oint _C \frac{\partial \Psi_n}{\partial z} \frac{\partial \Psi_l}{\partial n} d\sigma
\end{eqnarray}
スカラヘルムホルツ方程式
\(\nabla _t^2 \Psi_l + k_{c,l}^2 \Psi_l = 0\)
を用いれば,
\begin{eqnarray}
T_{I,ln}
&=& -\iint _S \frac{\partial \Psi_n}{\partial z} (-k_{c,l}^2 \Psi_l) dS
+ \oint _C \frac{\partial \Psi_n}{\partial z} \frac{\partial \Psi_l}{\partial n} d\sigma
\nonumber \\
&=& k_{c,l}^2 \iint _S \frac{\partial \Psi_n}{\partial z} \Psi_l dS
+ \oint _C \frac{\partial \Psi_n}{\partial z} \frac{\partial \Psi_l}{\partial n} d\sigma
\label{eq:1}
\end{eqnarray}
両者ともTEモードのとき,境界条件
\(\frac{\partial \Psi_l^{\TE}}{\partial n} = 0\) (on C) より,面積分を用いて,
\begin{gather}
T_{I,ln}^{\mathrm{TE:TE}}
= (k_{c,l}^{\TE})^2 \iint _S \frac{\partial \Psi_n^{\TE}}{\partial z} \Psi_l^{\TE} dS
\label{eq:TIlnTETE}
\end{gather}
上式は,\(n=l\),および\(n \ne l\)の両方に対して計算が行えるが,面積分が必要となる.また,グリーンの第一定理に
\(\Phi \to \Psi_l\),\(\Psi \to \frac{\partial \Psi_n}{\partial z}\)
として求めれば,
\begin{eqnarray}
T_{I,ln}
&=& \iint \Big( \nabla_t \Psi_l \Big)
\cdot \left( \nabla_t \frac{\partial \Psi_n}{\partial z} \right) dS
\nonumber \\
&=& -\iint _S \Psi_l \nabla _t^2 \frac{\partial \Psi_n}{\partial z} dS
+ \oint _C \Psi_l \frac{\partial}{\partial n} \left( \frac{\partial \Psi_n}{\partial z} \right) d\sigma
\end{eqnarray}
スカラヘルムホルツ方程式
\(\nabla _t^2 \Psi_n + k_{c,n}^2 \Psi_n = 0\)
の両辺を\(z\)で微分すると,
\begin{eqnarray}
\frac{\partial}{\partial z} \Big( \nabla _t^2 \Psi_n + k_{c,n}^2 \Psi_n \Big)
&=& \nabla _t^2 \frac{\partial \Psi_n}{\partial z}
+ 2 k_{c,n} \frac{\partial k_{c,n}}{\partial z} \Psi_n
+ k_{c,n}^2 \frac{\partial \Psi_n}{\partial z}
\nonumber \\
&=& 0
\end{eqnarray}
これより,
\begin{eqnarray}
T_{I,ln} &=& \iint _S \Psi_l \left( 2 k_{c,n} \frac{\partial k_{c,n}}{\partial z} \Psi_n
+ k_{c,n}^2 \frac{\partial \Psi_n}{\partial z} \right) dS
\nonumber \\
&&+ \oint _C \Psi_l \frac{\partial}{\partial n} \left( \frac{\partial \Psi_n}{\partial z} \right) d\sigma
\nonumber \\
&=& 2 k_{c,n} \frac{\partial k_{c,n}}{\partial z} \iint _S \Psi_l \Psi_n dS
+ k_{c,n}^2 \iint _S \Psi_l \frac{\partial \Psi_n}{\partial z} dS
\nonumber \\
&&+ \oint _C \Psi_l \frac{\partial}{\partial n} \left( \frac{\partial \Psi_n}{\partial z} \right) d\sigma
\end{eqnarray}
ここで,
\begin{gather}
\iint_S \VEC{e}_l \cdot \VEC{e}_n dS
= k_{c,n}^2 \iint_S \Psi_l \Psi_n dS = \delta_{ln}
\end{gather}
これより,
\begin{gather}
T_{I,ln}
= \frac{2}{k_{c,n}} \frac{\partial k_{c,n}}{\partial z} \delta_{ln}
+ k_{c,n}^2 \iint _S \Psi_l \frac{\partial \Psi_n}{\partial z} dS
+ \oint _C \Psi_l \frac{\partial}{\partial n} \left( \frac{\partial \Psi_n}{\partial z} \right) d\sigma
\label{eq:2}
\end{gather}
両者ともTMモードのとき,TMモードの境界条件\(\Psi_l^{\TM} = 0\) (on C) より,
\begin{gather}
T_{I,ln}^{\mathrm{TM:TM}}
= (k_{c,n}^{\TM})^2 \iint _S \Psi_l^{\TM} \frac{\partial \Psi_n^{\TM}}{\partial z} dS
+ \frac{2}{k_{c,n}^{\TM}} \frac{\partial k_{c,n}^{\TM}}{\partial z} \delta_{ln}
\label{eq:TIlnTMTM}
\end{gather}
両者ともTMモードの場合も,\(n=l\)および\(n \ne l\)の両方に対して計算が行えるが,面積分が必要である.
面積分から周回積分への変換
次に,面積分を周回積分に変換することを考える.まず,式\eqref{eq:1},式\eqref{eq:2}より,
\begin{eqnarray}
\iint _S \Psi_l \frac{\partial \Psi_n}{\partial z} dS
&=& \frac{1}{k_{c,l}^2} \left( T_{I,ln}
- \oint _C \frac{\partial \Psi_n}{\partial z} \frac{\partial \Psi_l}{\partial n} d\sigma \right)
\nonumber \\
&=& \frac{1}{k_{c,n}^2} \left( T_{I,ln}
- \oint _C \Psi_l \frac{\partial}{\partial n} \left( \frac{\partial \Psi_n}{\partial z} \right) d\sigma
- \frac{2}{k_{c,n}} \frac{\partial k_{c,n}}{\partial z} \delta_{ln}\right)
\nonumber
\end{eqnarray}
\begin{align}
&k_{c,n}^2 \left( T_{I,ln}
- \oint _C \frac{\partial \Psi_n}{\partial z} \frac{\partial \Psi_l}{\partial n} d\sigma \right)
\nonumber \\
&= k_{c,l}^2 \left( T_{I,ln}
- \oint _C \Psi_l \frac{\partial}{\partial n} \left( \frac{\partial \Psi_n}{\partial z} \right) d\sigma
- \frac{2}{k_{c,n}} \frac{\partial k_{c,n}}{\partial z} \delta_{ln} \right)
\end{align}
よって,
\begin{eqnarray}
T_{I,ln} &=& \frac{1}{k_{c,l}^2 - k_{c,n}^2}
\left\{ -k_{c,n}^2 \oint _C \frac{\partial \Psi_n}{\partial z} \frac{\partial \Psi_l}{\partial n} d\sigma \right.
\nonumber \\
&&\left. + k_{c,l}^2 \oint _C \Psi_l \frac{\partial}{\partial n} \left( \frac{\partial \Psi_n}{\partial z} \right) d\sigma \right.
\left. + \frac{2k^2_{c,l}}{k_{c,n}} \frac{\partial k_{c,n}}{\partial z} \delta_{ln}
\right\}
\end{eqnarray}
モードの次数が異なる場合(\(n \ne l\)),
\(k_{c,n}^2 \ne k_{c,l}^2\),\(\delta_{ln} = 0\)(モード直交性)より,
\begin{eqnarray}
T_{I,ln} &=& \frac{1}{k_{c,l}^2 - k_{c,n}^2}
\left\{ -k_{c,n}^2 \oint _C \frac{\partial \Psi_n}{\partial z} \frac{\partial \Psi_l}{\partial n} d\sigma \right.
\nonumber \\
&&\left. + k_{c,l}^2 \oint _C \Psi_l \frac{\partial}{\partial n} \left( \frac{\partial \Psi_n}{\partial z} \right) d\sigma \right\}
\end{eqnarray}
両者ともTEモードのとき(\(k_{c,l}^{\TE} = \frac{\chi_l'}{a}\),
\(k_{c,n}^{\TE} = \frac{\chi_n'}{a}\)),
\(\frac{\partial \Psi_l^{\TE}}{\partial n} =0\),
\(\frac{\partial \Psi_n^{\TE}}{\partial n} =0\) (on C) ゆえ,
\begin{gather}
T_{I,ln}^{\TETE} = \frac{(k_{c,l}^{\TE})^2}{(k_{c,l}^{\TE})^2 - (k_{c,n}^{\TE})^2}
\oint _C \Psi_l^{\TE} \frac{\partial}{\partial n} \left( \frac{\partial \Psi_n^{\TE}}{\partial z} \right) d\sigma
\label{eq:TET}
\end{gather}
また,両者ともTMモードのとき(\(k_{c,l}^{\TM} = \frac{\chi_l}{a}\),
\(k_{c,n}^{\TM} = \frac{\chi_n}{a}\)),
\(\Psi_l^{\TM}=0\),\(\Psi_n^{\TM}=0\) (on C) ゆえ,
\begin{gather}
T_{I,ln}^{\TMTM} = \frac{-(k_{c,n}^{\TM})^2}{(k_{c,l}^{\TM})^2 - (k_{c,n}^{\TM})^2}
\oint _C \frac{\partial \Psi_n^{\TM}}{\partial z} \frac{\partial \Psi_l^{\TM}}{\partial n} d\sigma
\label{eq:TMT}
\end{gather}
同じモードを計算する場合,モードの次数が等しい\(n=l\)とおいて,
曲線テーパ構造に対してガウスの発散定理を適用すると次式が得られる.
\begin{gather}
\iint_S \frac{\partial \VEC{e}_n}{\partial z} \cdot \VEC{e}_n dS
= - \frac{1}{2} \oint_\sigma \tan \vartheta \ \VEC{e}_n \cdot \VEC{e}_n \ d\sigma
\end{gather}
両者ともTEモードのとき,
\begin{eqnarray}
\VEC{e}_n^{\TE} \cdot \VEC{e}_n^{\TE}
= \VEC{h}_n^{\TE} \cdot \VEC{h}_n^{\TE}
&=& (-\nabla_t \Psi_n^{\TE}) \cdot (-\nabla_t \Psi_n^{\TE})
\nonumber \\
&=& (\nabla_t \Psi_n^{\TE}) \cdot (\nabla_t \Psi_n^{\TE})
\end{eqnarray}
また,両者ともTMモードのとき,
\begin{eqnarray}
\VEC{h}_n^{\TM} \cdot \VEC{h}_n^{\TM}
= \VEC{e}_n^{\TM} \cdot \VEC{e}_n^{\TM}
&=& (-\nabla_t \Psi_n^{\TM}) \cdot (-\nabla_t \Psi_n^{\TM})
\nonumber \\
&=& (\nabla_t \Psi_n^{\TM}) \cdot (\nabla_t \Psi_n^{\TM})
\end{eqnarray}
したがって,
\begin{align}
&\iint_S \frac{\partial \VEC{e}_n^{\TE}}{\partial z} \cdot \VEC{e}_n^{\TE} dS
= - \frac{1}{2} \oint_\sigma \tan \vartheta \
(\nabla_t \Psi_n^{\TE}) \cdot (\nabla_t \Psi_n^{\TE}) \ d\sigma
\\
&\iint_S \frac{\partial \VEC{e}_n^{\TM}}{\partial z} \cdot \VEC{e}_n^{\TM} dS
= - \frac{1}{2} \oint_\sigma \tan \vartheta \
(\nabla_t \Psi_n^{\TM}) \cdot (\nabla_t \Psi_n^{\TM}) \ d\sigma
\end{align}