一般化散乱行列と散乱行列の関係

 一般化散乱行列を散乱行列を用いて表す式[3],[4]を導出する. 一般化散乱行列\([\hat{\boldsymbol{S}}]\)をインピーダンス行列\([\boldsymbol{Z}]\)から求める式 \begin{gather} [\hat{\boldsymbol{S}}] = \left[ \sqrt{\hat{R}} \right]^{-1} \big( [\boldsymbol{Z}] - [\hat{Z}]^* \big) \big( [\boldsymbol{Z}] + [\hat{Z}] \big) ^{-1} \left[ \sqrt{\hat{R}} \right] \end{gather} に,インピーダンス行列\([\boldsymbol{Z}]\)を通常の散乱行列\([\boldsymbol{S}]\)から求める式 \begin{gather} [\boldsymbol{Z}] = \left[ \sqrt{R_0} \right] \big( [U] - [\boldsymbol{S}] \big) ^{-1} \big( [U] + [\boldsymbol{S}] \big) \left[ \sqrt{R_0} \right] \tag{1} \label{eq:ZRUSRSR} \end{gather} を代入して,インピーダンス行列\([\boldsymbol{Z}]\)を消去して,式を整理していく.まず, \begin{eqnarray} [ \boldsymbol{A}_1] &\equiv& \left[ \sqrt{\hat{R}} \right]^{-1} \big( [\boldsymbol{Z}] - [\hat{Z}]^* \big) \tag{2} \label{eq:A1} \\ [ \boldsymbol{A}_2] &\equiv& \big( [\boldsymbol{Z}] + [\hat{Z}] \big) ^{-1} \left[ \sqrt{\hat{R}} \right] \tag{3} \label{eq:A2} \end{eqnarray} とおくと, \begin{gather} [\boldsymbol{S}] = \left[ \sqrt{\hat{R}} \right]^{-1} \big( [\boldsymbol{Z}] - [\hat{Z}]^* \big) \big( [\boldsymbol{Z}] + [\hat{Z}] \big) ^{-1} \left[ \sqrt{\hat{R}} \right] = [ \boldsymbol{A}_1] [ \boldsymbol{A}_2] \nonumber \end{gather} 先に求めた式を再記して, \begin{eqnarray} \left[ \sqrt{\hat{R}} \right]^{-1} &=& \left[ \sqrt{R_0} \right]^{-1} [\Lambda]^{-1*} \big( [U] - [\gamma] \big) \tag{4} \label{eq:hatRi} \\ [\hat{Z}]^* &=& \left[ \sqrt{R_0} \right] \big( [U] -[\gamma]^* \big) ^{-1} \big( [U] +[\gamma]^* \big) \left[ \sqrt{R_0} \right] \tag{5} \label{eq:hatZcR0} \end{eqnarray} 式\eqref{eq:ZRUSRSR},式\eqref{eq:hatRi},式\eqref{eq:hatZcR0}を式\eqref{eq:A1}に代入して, \begin{eqnarray} [ \boldsymbol{A}_1] &=& \left[ \sqrt{\hat{R}} \right]^{-1} \big( [\boldsymbol{Z}] - [\hat{Z}]^* \big) \nonumber \\ &=& \left[ \sqrt{R_0} \right]^{-1} [\Lambda]^{-1} \big( [U] - [\gamma]^* \big) \nonumber \\ && \cdot \left[ \sqrt{R_0} \right] \left\{ \big( [U] - [\boldsymbol{S}] \big) ^{-1} \big( [U] + [\boldsymbol{S}] \big) - \big( [U] - [\gamma]^* \big) ^{-1} \big( [U] +[\gamma]^* \big) \right\} \left[ \sqrt{R_0} \right] \nonumber \\ &=& [\Lambda]^{-1} \left\{ \big( [U] - [\gamma]^* \big) \big( [U] - [\boldsymbol{S}] \big) ^{-1} \big( [U] + [\boldsymbol{S}] \big) - \big( [U] +[\gamma]^* \big) \right\} \left[ \sqrt{R_0} \right] \end{eqnarray} ここで, \begin{eqnarray} \big( [U] - [\boldsymbol{S}] \big) ^{-1} \big( [U] + [\boldsymbol{S}] \big) &=& \big( [U] - [\boldsymbol{S}] \big) ^{-1} \left\{ \big( [U] - [\boldsymbol{S}] \big) + 2[\boldsymbol{S}] \right\} \nonumber \\ &=& [U] + \big( [U] - [\boldsymbol{S}] \big) ^{-1} 2[\boldsymbol{S}] \nonumber \end{eqnarray} より, \begin{eqnarray} [ \boldsymbol{A}_1] &=& [\Lambda]^{-1} \left\{ \big( [U] - [\gamma]^* \big) \big\{ [U] + \big( [U] - [\boldsymbol{S}] \big) ^{-1} 2[\boldsymbol{S}] \big\} - \big( [U] +[\gamma]^* \big) \right\} \left[ \sqrt{R_0} \right] \nonumber \\ \hspace{7.3mm} &=& 2[\Lambda]^{-1} \left\{ -[\gamma]^* + \big( [U] - [\gamma]^* \big) \big( [U] - [\boldsymbol{S}] \big) ^{-1} [\boldsymbol{S}] \right\} \left[ \sqrt{R_0} \right] \nonumber \end{eqnarray} また,先に求めた式を再記して, \begin{eqnarray} [\hat{Z}] &=& \left[ \sqrt{R_0} \right] \big( [U] -[\gamma] \big) ^{-1} \big( [U] +[\gamma] \big) \left[ \sqrt{R_0} \right] \tag{6} \label{eq:hatZR0} \\ \left[ \sqrt{\hat{R}} \right] &=& \left[ \sqrt{R_0} \right] \big( [U] - [\gamma] \big) ^{-1} [\Lambda]^* \tag{7} \label{eq:hatR} \end{eqnarray} 式\eqref{eq:ZRUSRSR},式\eqref{eq:hatZR0},式\eqref{eq:hatR}を式\eqref{eq:A2}に代入して \begin{eqnarray} [ \boldsymbol{A}_2] &=& \big( [\boldsymbol{Z}] + [\hat{Z}] \big) ^{-1} \left[ \sqrt{\hat{R}} \right] \nonumber \\ &=& \left( \left[ \sqrt{R_0} \right] \left\{ \big( [U] - [\boldsymbol{S}] \big) ^{-1} \big( [U] + [\boldsymbol{S}] \big) + \big( [U] - [\gamma] \big) ^{-1} \big( [U] +[\gamma] \big) \right\} \left[ \sqrt{R_0} \right] \right)^{-1} \nonumber \\ && \cdot \left[ \sqrt{R_0} \right] \big( [U] - [\gamma] \big) ^{-1} [\Lambda]^* \end{eqnarray} 変形して, \begin{eqnarray} [U] &=& [\Lambda]^{-1*} \big( [U] - [\gamma] \big) \left[ \sqrt{R_0} \right]^{-1} \nonumber \\ && \cdot \left[ \sqrt{R_0} \right] \left\{ \big( [U] - [\boldsymbol{S}] \big) ^{-1} \big( [U] + [\boldsymbol{S}] \big) + \big( [U] - [\gamma] \big) ^{-1} \big( [U] +[\gamma] \big) \right\} \left[ \sqrt{R_0} \right] [\boldsymbol{A}_2] \nonumber \\ &=& [\Lambda]^{-1*} \big( [U] - [\gamma] \big) \left\{ [U] + \big( [U] - [\boldsymbol{S}] \big) ^{-1} 2[\boldsymbol{S}] + \big( [U] - [\gamma] \big) ^{-1} \big( [U] +[\gamma] \big) \right\} \left[ \sqrt{R_0} \right] [\boldsymbol{A}_2] \nonumber \\ &=& [\Lambda]^{-1*} \left\{ \big( [U] - [\gamma] \big) + \big( [U] - [\gamma] \big) \big( [U] - [\boldsymbol{S}] \big) ^{-1} 2[\boldsymbol{S}] + \big( [U] +[\gamma] \big) \right\} \left[ \sqrt{R_0} \right] [\boldsymbol{A}_2] \nonumber \\ &=& 2[\Lambda]^{-1*} \left\{ [U] + \big( [U] - [\gamma] \big) \big( [U] - [\boldsymbol{S}] \big)^{-1} [\boldsymbol{S}] \right\} \left[ \sqrt{R_0} \right] [\boldsymbol{A}_2] \end{eqnarray} したがって, \begin{gather} [\boldsymbol{A}_2] = \frac{1}{2} \left[ \sqrt{R_0} \right]^{-1} \left\{ [U] + \big( [U] - [\gamma] \big) \big( [U] - [\boldsymbol{S}] \big)^{-1} [\boldsymbol{S}] \right\}^{-1} [\Lambda]^{*} \end{gather} これより, \begin{eqnarray} [\hat{\boldsymbol{S}}] &=& \left\{ \left[ \sqrt{\hat{R}} \right]^{-1} \big( [\boldsymbol{Z}] - [\hat{Z}]^* \big) \right\} \left\{ \big( [\boldsymbol{Z}] + [\hat{Z}] \big)^{-1}\left[ \sqrt{\hat{R}} \right] \right\} \nonumber \\ &=& [\boldsymbol{A}_1] [\boldsymbol{A}_2] \nonumber \\ &=& 2[\Lambda]^{-1} \left\{ -[\gamma]^* + \big( [U] - [\gamma]^* \big) \big( [U] - [\boldsymbol{S}] \big) ^{-1} [\boldsymbol{S}] \right\} \left[ \sqrt{R_0} \right] \nonumber \\ && \cdot \frac{1}{2} \left[ \sqrt{R_0} \right]^{-1} \left\{ [U] + \big( [U] - [\gamma] \big) \big( [U] - [\boldsymbol{S}] \big)^{-1} [\boldsymbol{S}] \right\}^{-1} [\Lambda]^{*} \nonumber \\ &=& [\Lambda]^{-1} \left\{ -[\gamma]^* + \big( [U] - [\gamma]^* \big) \big( [U] - [\boldsymbol{S}] \big) ^{-1} [\boldsymbol{S}] \right\} \nonumber \\ && \cdot \left\{ [U] + \big( [U] - [\gamma] \big) \big( [U] - [\boldsymbol{S}] \big)^{-1} [\boldsymbol{S}] \right\}^{-1} [\Lambda]^{*} \end{eqnarray} 次に, \begin{eqnarray} &&-[\gamma]^* + \big( [U] - [\gamma]^* \big) \big( [U] - [\boldsymbol{S}] \big) ^{-1} [\boldsymbol{S}] \nonumber \\ &\equiv& \Big\{ -[\gamma]^* [\boldsymbol{A}_3] + \big( [U] - [\gamma]^* \big) \Big\} \big( [U] - [\boldsymbol{S}] \big) ^{-1} [\boldsymbol{S}] \end{eqnarray} とおいて,\([\boldsymbol{A}_3]\)を求めると, \begin{eqnarray} [U] &=& [\boldsymbol{A}_3] \big( [U] - [\boldsymbol{S}] \big) ^{-1} [\boldsymbol{S}] \nonumber \\ [\boldsymbol{A}_3] &=& [\boldsymbol{S}]^{-1} \big( [U] - [\boldsymbol{S}] \big) \nonumber \\ &=& [\boldsymbol{S}]^{-1} - [U] \end{eqnarray} これより, \begin{eqnarray} &&-[\gamma]^* + \big( [U] - [\gamma]^* \big) \big( [U] - [\boldsymbol{S}] \big) ^{-1} [\boldsymbol{S}] \nonumber \\ &=& \Big\{ -[\gamma]^* ([\boldsymbol{S}]^{-1} - [U]) + \big( [U] - [\gamma]^* \big) \Big\} \big( [U] - [\boldsymbol{S}] \big) ^{-1} [\boldsymbol{S}] \nonumber \\ &=& \big( -[\gamma]^* [\boldsymbol{S}]^{-1} + [U] \big) \big( [U] - [\boldsymbol{S}] \big) ^{-1} [\boldsymbol{S}] \end{eqnarray} 同様にして, \begin{eqnarray} \left\{ [U] + ( [U] - [\gamma] ) ( [U] - [\boldsymbol{S}] )^{-1} [\boldsymbol{S}] \right\}^{-1} &\equiv& [\boldsymbol{S}]^{-1} \big( [U] - [\boldsymbol{S}] \big) [\boldsymbol{A}_4] \nonumber \\ &=& \big( [\boldsymbol{S}]^{-1} - [U] \big) [\boldsymbol{A}_4] \nonumber \end{eqnarray} とおいて,\([\boldsymbol{A}_4]\)を求めよう. \begin{gather} [\boldsymbol{A}_4] \left\{ [U] + \big( [U] - [\gamma] \big) \big( [U] - [\boldsymbol{S}] \big)^{-1} [\boldsymbol{S}] \right\} [\boldsymbol{S}]^{-1} \big( [U] - [\boldsymbol{S}] \big) = [U] \nonumber \end{gather} 変形して, \begin{gather} [\boldsymbol{A}_4] \left\{ \big( [\boldsymbol{S}]^{-1} - [U] \big) + \big( [U] - [\gamma] \big) \right\} = [\boldsymbol{A}_4] \big( [\boldsymbol{S}]^{-1} - [\gamma] \big) = [U] \nonumber \\ [\boldsymbol{A}_4] = \big( [\boldsymbol{S}]^{-1} - [\gamma] \big)^{-1} \end{gather} よって, \begin{gather} \left\{ [U] + ( [U] - [\gamma] ) ( [U] - [\boldsymbol{S}] )^{-1} [\boldsymbol{S}] \right\}^{-1} = [\boldsymbol{S}]^{-1} \big( [U] - [\boldsymbol{S}] \big) \big( [\boldsymbol{S}]^{-1} - [\gamma] \big)^{-1} \nonumber \end{gather} したがって, \begin{eqnarray} [\hat{\boldsymbol{S}}] &=& [\Lambda]^{-1} \big( -[\gamma]^* [\boldsymbol{S}]^{-1} + [U] \big) \big( [U] - [\boldsymbol{S}] \big) ^{-1} [\boldsymbol{S}] \cdot [\boldsymbol{S}]^{-1} \big( [U] - [\boldsymbol{S}] \big) \big( [\boldsymbol{S}]^{-1} - [\gamma] \big)^{-1} [\Lambda]^{*} \nonumber \\ &=& [\Lambda]^{-1} \big( [U]-[\gamma]^* [\boldsymbol{S}]^{-1} \big) \big( [\boldsymbol{S}]^{-1} - [\gamma] \big)^{-1} [\Lambda]^{*} \end{eqnarray} ここで, \begin{gather} [\boldsymbol{A}_5] \equiv \big( [U]-[\gamma]^* [\boldsymbol{S}]^{-1} \big) \big( [\boldsymbol{S}]^{-1} - [\gamma] \big)^{-1} \end{gather} とおいて変形すると, \begin{gather} [U]-[\gamma]^* [\boldsymbol{S}]^{-1} = [\boldsymbol{A}_5] \big( [\boldsymbol{S}]^{-1} - [\gamma] \big) = [\boldsymbol{A}_5] \big( [U] - [\gamma] [\boldsymbol{S}] \big) [\boldsymbol{S}]^{-1} \nonumber \\ [\boldsymbol{S}] - [\gamma]^*= [\boldsymbol{A}_5] \big( [U] - [\gamma] [\boldsymbol{S}] \big) \nonumber \\ [\boldsymbol{A}_5] = \big( [\boldsymbol{S}] - [\gamma]^* \big) \big( [U] - [\gamma] [\boldsymbol{S}] \big)^{-1} \end{gather} よって, \begin{eqnarray} [\hat{\boldsymbol{S}}] &=& [\Lambda]^{-1} [\boldsymbol{A}_5] [\Lambda]^{*} \nonumber \\ &=& [\Lambda]^{-1} \big( [\boldsymbol{S}] - [\gamma]^* \big) \big( [U] - [\gamma] [\boldsymbol{S}] \big)^{-1} [\Lambda]^{*} \end{eqnarray} ここで, \begin{gather} [\boldsymbol{S}] = \begin{pmatrix} S_{11} & S_{12} \\ S_{21} & S_{22} \end{pmatrix}, \ \ \ \ \ [\gamma] = \begin{pmatrix} \gamma_1 & 0 \\ 0 & \gamma_2 \end{pmatrix}, \ \ \ \ \ [\Lambda] = \begin{pmatrix} \Lambda_1 & 0 \\ 0 & \Lambda_2 \end{pmatrix} \end{gather} ただし,\(\gamma_1\),\(\gamma_2\)は基準反射係数を示し,通常の散乱行列の基準インピーダンス\(R_{01}\),\(R_{02}\)と一般化散乱行列の複素基準インピーダンス\(Z_1\),\(Z_2\)より, \begin{gather} \gamma_1 = \frac{Z_1 - R_{01}}{Z_1 + R_{01}}, \ \ \ \ \ \gamma_2 = \frac{Z_2 - R_{02}}{Z_2 + R_{02}} \end{gather} 通常の散乱行列の基準インピーダンスを\(R_{01}=R_{02}=Z_c\)とすると, \begin{gather} \gamma_1 = \frac{Z_1 - Z_c}{Z_1 + Z_c}, \ \ \ \ \ \gamma_2 = \frac{Z_2 - Z_c}{Z_2 + Z_c} \end{gather} また, \begin{eqnarray} \Lambda_i &\equiv& (1-\gamma_i^*) \sqrt{\frac{1-\gamma_i \gamma_i^*}{(1-\gamma_i)(1-\gamma_i^*)}} \nonumber \\ &=& \frac{1-\gamma_i^*}{|1-\gamma_i^*|} \sqrt{1-|\gamma_i|^2} \nonumber \\ &=& \sqrt{\frac{ (1-\gamma_i^*)^2}{(1-\gamma_i)(1-\gamma_i^*)}} \sqrt{1-|\gamma_i|^2} \nonumber \\ &=& \sqrt{\frac{1-\gamma_i^*}{1-\gamma_i}} \sqrt{1-|\gamma_i|^2} \ \ \ (i=1,2) \end{eqnarray}  一般化散乱行列\([\hat{\boldsymbol{S}}]\)の要素を求めると, \begin{eqnarray} [\hat{\boldsymbol{S}}] &=& \begin{pmatrix} \hat{\mathcal{S}}_{11} & \hat{\mathcal{S}}_{12} \\ \hat{\mathcal{S}}_{21} & \hat{\mathcal{S}}_{22} \end{pmatrix} = \begin{pmatrix} \Lambda_1^{-1} & 0 \\ 0 & \Lambda_2^{-1} \end{pmatrix} \begin{pmatrix} S_{11}-\gamma_1^* & S_{12} \\ S_{21} & S_{22} - \gamma_2^* \end{pmatrix} \nonumber \\ && \cdot \frac{1}{W} \begin{pmatrix} 1-\gamma_2 S_{22} & \gamma_1 S_{12} \\ \gamma_2 S_{21} & 1-\gamma_1 S_{11} \end{pmatrix} \begin{pmatrix} \Lambda_1^* & 0 \\ 0 & \Lambda_2^* \end{pmatrix} \nonumber \\ &=& \frac{1}{W} \begin{pmatrix} \Lambda_1^{-1} (S_{11}-\gamma_1^*) & \Lambda_1^{-1 }S_{12} \\ \Lambda_2^{-1} S_{21} & \Lambda_2^{-1} (S_{22} - \gamma_2^*) \end{pmatrix} \begin{pmatrix} (1-\gamma_2 S_{22}) \Lambda_1^* & \gamma_1 S_{12}\Lambda_2^* \\ \gamma_2 S_{21} \Lambda_1^* & (1-\gamma_1 S_{11}) \Lambda_2^* \end{pmatrix} \end{eqnarray} ここで, \begin{gather} W = (1-\gamma_1 S_{11}) (1-\gamma_2 S_{22}) - \gamma_1 S_{12} \gamma_2 S_{21} \nonumber \end{gather} これより,\(\hat{\mathcal{S}}_{11}\)は, \begin{eqnarray} \hat{\mathcal{S}}_{11} &=& \frac{1}{W} \Big\{ \Lambda_1^{-1} (S_{11}-\gamma_1^*) (1-\gamma_2 S_{22}) \Lambda_1^* + \Lambda_1^{-1 }S_{12} \gamma_2 S_{21} \Lambda_1^* \Big\} \nonumber \\ &=& \frac{1}{W} \cdot \frac{1-\gamma_1}{1-\gamma_1^*} \Big\{ (S_{11}-\gamma_1^*) (1-\gamma_2 S_{22}) + S_{12} \gamma_2 S_{21} \Big\} \end{eqnarray} ここで, \begin{gather} \Lambda_1^{-1} \Lambda_1^* = \frac{1-\gamma_1}{1-\gamma_1^*} \nonumber \end{gather} 同様にして,\(\hat{\mathcal{S}}_{22}\)は, \begin{gather} \hat{\mathcal{S}}_{22} = \frac{1}{W} \cdot \frac{1-\gamma_2}{1-\gamma_2^*} \Big\{ (S_{22}-\gamma_2^*) (1-\gamma_1 S_{11}) + S_{21} \gamma_1 S_{12} \Big\} \end{gather} また,\(\hat{\mathcal{S}}_{12}\)は, \begin{eqnarray} \hat{\mathcal{S}}_{12} &=& \frac{1}{W} \Big\{ \Lambda_1^{-1} (S_{11}-\gamma_1^*) \gamma_1 S_{12}\Lambda_2^* + \Lambda_1^{-1 }S_{12} (1-\gamma_1 S_{11}) \Lambda_2^* \Big\} \nonumber \\ &=& \frac{S_{12}}{W} \Lambda_1^{-1} \Lambda_2^* \Big\{ (S_{11}-\gamma_1^*) \gamma_1+ (1-\gamma_1 S_{11}) \Big\} \nonumber \\ &=& \frac{S_{12}}{W} \Lambda_1^{-1} \Lambda_2^* ( 1-\gamma_1 \gamma_1^*) \nonumber \\ &=& \frac{S_{12}}{W} \sqrt{\frac{1-\gamma_1}{1-\gamma_1^*}} \frac{1}{\sqrt{1-|\gamma_1|^2}} \left( \sqrt{\frac{1-\gamma_2^*}{1-\gamma_2}} \sqrt{1-|\gamma_2|^2} \right)^* (1-|\gamma_1|^2) \nonumber \\ &=& \frac{S_{12}}{W} \sqrt{\frac{1-\gamma_1}{1-\gamma_1^*}} \cdot \sqrt{\frac{1-\gamma_2}{1-\gamma_2^*}} \cdot \sqrt{1-|\gamma_1|^2} \sqrt{1-|\gamma_2|^2} \nonumber \\ &=& \frac{S_{12}}{W} \frac{(1-\gamma_1) (1-\gamma_2)}{|1-\gamma_1| |1-\gamma_2|} \sqrt{1-|\gamma_1|^2} \sqrt{1-|\gamma_2|^2} \end{eqnarray} 同様にして,\(\hat{\mathcal{S}}_{21}\)は, \begin{eqnarray} \hat{\mathcal{S}}_{21} &=& \frac{S_{21}}{W} \frac{(1-\gamma_2) (1-\gamma_1)}{|1-\gamma_2| |1-\gamma_1|} \sqrt{1-|\gamma_2|^2} \sqrt{1-|\gamma_1|^2} \nonumber \\ &=& \frac{S_{21}}{S_{12}} \hat{\mathcal{S}}_{12} \end{eqnarray}