基準反射係数と基準インピーダンスの関係

 一般化散乱行列の複素基準インピーダンス\(\hat{Z}_1\),\(\hat{Z}_2\)と,散乱行列の基準インピーダンス\(R_{01}\),\(R_{02}\),基準(反射)係数\(\gamma_1\),\(\gamma_2\)の関係を行列表示すると, \begin{eqnarray} [\hat{Z}] &=& \begin{pmatrix} \hat{Z}_1 & 0 \\ 0 & \hat{Z}_2 \end{pmatrix} = \begin{pmatrix} \frac{1+\gamma_1}{1-\gamma_1} R_{01} & 0 \\ 0 & \frac{1+\gamma_2}{1-\gamma_2} R_{02} \end{pmatrix} \nonumber \\ \hspace{5mm} &=& \begin{pmatrix} R_{01} & 0 \\ 0 & R_{02} \end{pmatrix} \begin{pmatrix} 1+\gamma_1 & 0 \\ 0 & 1+\gamma_2 \end{pmatrix} \begin{pmatrix} 1-\gamma_1 & 0 \\ 0 & 1-\gamma_2 \end{pmatrix}^{-1} \nonumber \end{eqnarray} ここで,対角行列を, \begin{gather} [R_0] = \begin{pmatrix} R_{01} & 0 \\ 0 & R_{02} \end{pmatrix}, \ \ \ \ \ [U] = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \ \ \ \ \ [\gamma] = \begin{pmatrix} \gamma_1 & 0 \\ 0 & \gamma_2 \end{pmatrix} \nonumber \end{gather} とおくと, \begin{eqnarray} [\hat{Z}] &=& [R_0] \big( [U] +[\gamma] \big) \big( [U] -[\gamma] \big) ^{-1} \nonumber \\ &=& [R_0] \big( [U] -[\gamma] \big) ^{-1} \big( [U] +[\gamma] \big) \nonumber \\ &=& \left[ \sqrt{R_0} \right] \big( [U] -[\gamma] \big) ^{-1} \big( [U] +[\gamma] \big) \left[ \sqrt{R_0} \right] \label{eq:hatZR0} \end{eqnarray} 複素共役をとると, \begin{eqnarray} [\hat{Z}]^* &=& [R_0] \big( [U] +[\gamma]^* \big) \big( [U] -[\gamma]^* \big) ^{-1} \nonumber \\ &=& [R_0] \big( [U] -[\gamma]^* \big) ^{-1} \big( [U] +[\gamma]^* \big) \nonumber \\ &=& \left[ \sqrt{R_0} \right] \big( [U] -[\gamma]^* \big) ^{-1} \big( [U] +[\gamma]^* \big) \left[ \sqrt{R_0} \right] \label{eq:hatZcR0} \end{eqnarray} 対角行列\([\hat{Z}]\)の実部の要素\(\hat{R}_i \ (i=1,2)\)を次のように変形する. \begin{eqnarray} \hat{R}_i &=& \frac{\hat{Z}_i + \hat{Z}_i^*}{2} \nonumber \\ &=& \frac{1}{2} \left( \frac{1+\gamma_i}{1-\gamma_i} R_{0i} + \frac{1+\gamma_i^*}{1-\gamma_i^*} R_{0i} \right) \nonumber \\ &=& \frac{R_{0i}}{2} \cdot \frac{(1+\gamma_i)(1-\gamma_i^*)+(1+\gamma_i^*)(1-\gamma_i)}{(1-\gamma_i)(1-\gamma_i^*)} \nonumber \\ &=& R_{0i} \frac{1-\gamma_i \gamma_i^*}{(1-\gamma_i)(1-\gamma_i^*)} \nonumber \end{eqnarray} これより, \begin{gather} \sqrt{\hat{R}_i} = \sqrt{R_{0i}} \sqrt{\frac{1-\gamma_i \gamma_i^*}{(1-\gamma_i)(1-\gamma_i^*)}} \nonumber \end{gather} いま, \begin{eqnarray} \Lambda_i &\equiv& (1-\gamma_i^*) \sqrt{\frac{1-\gamma_i \gamma_i^*}{(1-\gamma_i)(1-\gamma_i^*)}} \nonumber \\ &=& (1-\gamma_i^*) \sqrt{\frac{1-|\gamma_i|^2}{|1-\gamma_i^*|^2}} \nonumber \\ &=& \frac{1-\gamma_i^*}{|1-\gamma_i^*|} \sqrt{1-|\gamma_i|^2} \end{eqnarray} を定義すると,次式が成り立つ. \begin{eqnarray} \Lambda_i \Lambda_i^* &=& (1-\gamma_i^*) (1-\gamma_i) \frac{1-\gamma_i \gamma_i^*}{(1-\gamma_i)(1-\gamma_i^*)} \nonumber \\ &=& 1-\gamma_i \gamma_i^* \end{eqnarray} また, \begin{gather} \sqrt{\frac{1-\gamma_i \gamma_i^*}{(1-\gamma_i)(1-\gamma_i^*)}} = \frac{\Lambda_i}{1-\gamma_i^*} = \frac{\Lambda_i^*}{1-\gamma_i} \end{gather} これより,\(\sqrt{\hat{R}_i}\),\(1/\sqrt{\hat{R}_i}\)は, \begin{eqnarray} \sqrt{\hat{R}_i} &=& \sqrt{R_{0i}} \sqrt{\frac{1-\gamma_i \gamma_i^*}{(1-\gamma_i)(1-\gamma_i^*)}} \nonumber \\ &=& \sqrt{R_{0i}} \frac{\Lambda_i^*}{1-\gamma_i} \\ \frac{1}{\sqrt{\hat{R}_i}} &=& \frac{1}{\sqrt{R_{0i}}} \frac{1-\gamma_i}{\Lambda_i^*} \nonumber \\ &=& \frac{1}{\sqrt{R_{0i}}} \frac{1-\gamma_i^*}{\Lambda_i} \end{eqnarray} 行列表示して, \begin{eqnarray} \left[ \sqrt{\hat{R}} \right] &=& \left[ \sqrt{R_0} \right] \big( [U] - [\gamma] \big) ^{-1} [\Lambda]^* \label{eq:hatR}\\ \left[ \sqrt{\hat{R}} \right]^{-1} &=& \left[ \sqrt{R_0} \right]^{-1} [\Lambda]^{-1} \big( [U] - [\gamma]^* \big) \nonumber \\ &=& \left[ \sqrt{R_0} \right]^{-1} [\Lambda]^{-1*} \big( [U] - [\gamma] \big) \label{eq:hatRi} \end{eqnarray}