一般化散乱行列とインピーダンス行列の関係

 インピーダンス行列\([\boldsymbol{Z}]\)より, \(\boldsymbol{V} = [\boldsymbol{Z}] \boldsymbol{I}\). これより\(\boldsymbol{V}\)を消去すると,入射波振幅\(\hat{\boldsymbol{a}}\),反射波振幅\(\hat{\boldsymbol{b}}\)は, \begin{eqnarray} \hat{\boldsymbol{a}} &=& \frac{1}{2} \left[ \sqrt{\hat{R}} \right]^{-1} \Big( [\boldsymbol{Z}] + [\hat{Z}] \Big) \boldsymbol{I} \\ \hat{\boldsymbol{b}} &=& \frac{1}{2} \left[ \sqrt{\hat{R}} \right]^{-1} \Big( [\boldsymbol{Z}] - [\hat{Z}]^* \Big) \boldsymbol{I} \end{eqnarray} これを,\(\hat{\boldsymbol{b}} = [\hat{\boldsymbol{S}}] \hat{\boldsymbol{a}}\)に代入して, \begin{gather} \left[ \sqrt{\hat{R}} \right]^{-1} \Big( [\boldsymbol{Z}] - [\hat{Z}]^* \Big) \boldsymbol{I} = [\hat{\boldsymbol{S}}] \left[ \sqrt{\hat{R}} \right]^{-1} \Big( [\boldsymbol{Z}] + [\hat{Z}] \Big) \boldsymbol{I} \\ \left[ \sqrt{\hat{R}} \right]^{-1} \Big( [\boldsymbol{Z}] - [\hat{Z}]^* \Big) = [\hat{\boldsymbol{S}}] \left[ \sqrt{\hat{R}} \right]^{-1} \Big( [\boldsymbol{Z}] + [\hat{Z}] \Big) \tag{1} \label{ZmZSZpZ} \end{gather} よって,一般化散乱行列\([\hat{\boldsymbol{S}}]\)は, \begin{gather} [\hat{\boldsymbol{S}}] = \left[ \sqrt{\hat{R}} \right]^{-1} \Big( [\boldsymbol{Z}] - [\hat{Z}]^* \Big) \Big( [\boldsymbol{Z}] + [\hat{Z}] \Big) ^{-1} \left[ \sqrt{\hat{R}} \right] \label{eq:gSZ} \end{gather} 逆に,式\eqref{ZmZSZpZ}より, \begin{gather} \left[ \sqrt{\hat{R}} \right]^{-1} \Big( [\boldsymbol{Z}] - [\hat{Z}]^* \Big) = [\hat{\boldsymbol{S}}] \left[ \sqrt{\hat{R}} \right]^{-1} \Big( [\boldsymbol{Z}] + [\hat{Z}] \Big) \\ \Big( [U] - [\hat{\boldsymbol{S}}] \Big) \left[ \sqrt{\hat{R}} \right]^{-1} [\boldsymbol{Z}] =\left[ \sqrt{\hat{R}} \right]^{-1} [\hat{Z}]^* + [\hat{\boldsymbol{S}}] \left[ \sqrt{\hat{R}} \right]^{-1} [\hat{Z}] \nonumber \\ \hspace{37.5mm} = \left( [\hat{Z}]^* + [\hat{\boldsymbol{S}}] [\hat{Z}] \right) \left[ \sqrt{\hat{R}} \right]^{-1} \end{gather} これより,インピーダンス行列\([\boldsymbol{Z}]\)は, \begin{gather} [\boldsymbol{Z}] = \left[ \sqrt{\hat{R}} \right] \Big( [U] - [\hat{\boldsymbol{S}}] \Big)^{-1} \left( [\hat{Z}]^* + [\hat{\boldsymbol{S}}] [\hat{Z}] \right) \left[ \sqrt{\hat{R}} \right]^{-1} \label{eq:ZgS}% \\ \hspace{9mm} \end{gather}