フィルタの特性関数

 特性関数(characteristic function)\(K(s)\)を, \begin{gather} \frac{P_{max}}{P_2}= 1+|K(s)|^2 \end{gather} で定義し(\(s = j\omega\)),伝達関数(transfer function, transducer function)\(H(s)\)も次のように定義する. \begin{gather} H(s)= \sqrt{\frac{P_{max}}{P_2}} = \frac{1}{2} \sqrt{\frac{R_2}{R_1}} \frac{E}{V_2} \end{gather} よって, \begin{gather} |H(s)|^2= 1+|K(s)|^2 \end{gather} 次に,反射係数との関係を導出する. \begin{eqnarray} 1-\frac{P_2}{P_{max}} &=& 1-4 \frac{R_1}{R_2} \left| \frac{V_2}{E} \right|^2 = 1-4 \frac{R_1}{R_2} \cdot \frac{R_2 \Re (Z_{in,1})}{|R_1+Z_{in,1}|^2} \nonumber \\ &=& \frac{(R_1+Z_{in,1})(R_1+Z_{in,1}^*)-4R_1 \Re (Z_{in,1})}{|R_1+Z_{in,1}|^2} \nonumber \\ &=& \frac{R_1^2+R_1(Z_{in,1}+Z_{in,1}^*)+|Z_{in,1}|^2-2R_1(Z_{in,1}+Z_{in,1}^*)}{|R_1+Z_{in,1}|^2} \nonumber \\ &=& \frac{R_1^2 - R_1(Z_{in,1}+Z_{in,1}^*) + |Z_{in,1}|^2}{|R_1+Z_{in,1}|^2} \nonumber \\ &=& \frac{(R_1 - Z_{in,1})(R_1-Z_{in,1}^*)}{|R_1+Z_{in,1}|^2} \nonumber \\ &=& \left| \frac{Z_{in,1}-R_1}{Z_{in,1}+R_1} \right|^2 = |\Gamma_1|^2 \end{eqnarray} つまり, \begin{eqnarray} |\Gamma_1|^2 &=& 1-\frac{1}{|H|^2} = \frac{|H|^2-1}{|H|^2} \nonumber \\ &=& \frac{|K|^2}{|H|^2} = \frac{|K|^2}{1-|K|^2} \end{eqnarray} これより,特性関数\(K\)に関して次式が成り立つ. \begin{gather} |K|^2 = |\Gamma_1|^2 |H|^2 \\ K K^* = \Gamma_1 \Gamma_1^* H H^* \end{gather}